Spdk/module/bdev/nvme/bdev_nvme.c

3447 lines
95 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "bdev_nvme.h"
#include "bdev_ocssd.h"
#include "spdk/accel_engine.h"
#include "spdk/config.h"
#include "spdk/endian.h"
#include "spdk/bdev.h"
#include "spdk/json.h"
#include "spdk/nvme.h"
#include "spdk/nvme_ocssd.h"
#include "spdk/nvme_zns.h"
#include "spdk/thread.h"
#include "spdk/string.h"
#include "spdk/util.h"
#include "spdk/bdev_module.h"
#include "spdk/log.h"
#define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
#define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS (10000)
static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
struct nvme_bdev_io {
/** array of iovecs to transfer. */
struct iovec *iovs;
/** Number of iovecs in iovs array. */
int iovcnt;
/** Current iovec position. */
int iovpos;
/** Offset in current iovec. */
uint32_t iov_offset;
/** array of iovecs to transfer. */
struct iovec *fused_iovs;
/** Number of iovecs in iovs array. */
int fused_iovcnt;
/** Current iovec position. */
int fused_iovpos;
/** Offset in current iovec. */
uint32_t fused_iov_offset;
/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
struct spdk_nvme_cpl cpl;
/** Originating thread */
struct spdk_thread *orig_thread;
/** Keeps track if first of fused commands was submitted */
bool first_fused_submitted;
/** Temporary pointer to zone report buffer */
struct spdk_nvme_zns_zone_report *zone_report_buf;
/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
uint64_t handled_zones;
};
struct nvme_probe_ctx {
size_t count;
struct spdk_nvme_transport_id trids[NVME_MAX_CONTROLLERS];
struct spdk_nvme_host_id hostids[NVME_MAX_CONTROLLERS];
const char *names[NVME_MAX_CONTROLLERS];
uint32_t prchk_flags[NVME_MAX_CONTROLLERS];
const char *hostnqn;
};
struct nvme_probe_skip_entry {
struct spdk_nvme_transport_id trid;
TAILQ_ENTRY(nvme_probe_skip_entry) tailq;
};
/* All the controllers deleted by users via RPC are skipped by hotplug monitor */
static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
g_skipped_nvme_ctrlrs);
static struct spdk_bdev_nvme_opts g_opts = {
.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
.timeout_us = 0,
.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
.retry_count = 4,
.arbitration_burst = 0,
.low_priority_weight = 0,
.medium_priority_weight = 0,
.high_priority_weight = 0,
.nvme_adminq_poll_period_us = 10000ULL,
.nvme_ioq_poll_period_us = 0,
.io_queue_requests = 0,
.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
};
#define NVME_HOTPLUG_POLL_PERIOD_MAX 10000000ULL
#define NVME_HOTPLUG_POLL_PERIOD_DEFAULT 100000ULL
static int g_hot_insert_nvme_controller_index = 0;
static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
static bool g_nvme_hotplug_enabled = false;
static struct spdk_thread *g_bdev_nvme_init_thread;
static struct spdk_poller *g_hotplug_poller;
static struct spdk_poller *g_hotplug_probe_poller;
static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
static void nvme_ctrlr_populate_namespaces(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_async_probe_ctx *ctx);
static void nvme_ctrlr_populate_namespaces_done(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_async_probe_ctx *ctx);
static int bdev_nvme_library_init(void);
static void bdev_nvme_library_fini(void);
static int bdev_nvme_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags);
static int bdev_nvme_no_pi_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba);
static int bdev_nvme_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags);
static int bdev_nvme_zone_appendv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count,
uint64_t zslba, uint32_t flags);
static int bdev_nvme_comparev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags);
static int bdev_nvme_comparev_and_writev(struct spdk_nvme_ns *ns,
struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags);
static int bdev_nvme_get_zone_info(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
struct spdk_bdev_zone_info *info);
static int bdev_nvme_zone_management(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, uint64_t zone_id,
enum spdk_bdev_zone_action action);
static int bdev_nvme_admin_passthru(struct nvme_io_channel *nvme_ch,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
static int bdev_nvme_io_passthru(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
static int bdev_nvme_io_passthru_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len);
static int bdev_nvme_abort(struct nvme_io_channel *nvme_ch,
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
static int bdev_nvme_reset(struct nvme_io_channel *nvme_ch, struct nvme_bdev_io *bio);
static int bdev_nvme_failover(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, bool remove);
static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
typedef void (*populate_namespace_fn)(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_bdev_ns *nvme_ns, struct nvme_async_probe_ctx *ctx);
static void nvme_ctrlr_populate_standard_namespace(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_bdev_ns *nvme_ns, struct nvme_async_probe_ctx *ctx);
static populate_namespace_fn g_populate_namespace_fn[] = {
NULL,
nvme_ctrlr_populate_standard_namespace,
bdev_ocssd_populate_namespace,
};
typedef void (*depopulate_namespace_fn)(struct nvme_bdev_ns *nvme_ns);
static void nvme_ctrlr_depopulate_standard_namespace(struct nvme_bdev_ns *nvme_ns);
static depopulate_namespace_fn g_depopulate_namespace_fn[] = {
NULL,
nvme_ctrlr_depopulate_standard_namespace,
bdev_ocssd_depopulate_namespace,
};
typedef void (*config_json_namespace_fn)(struct spdk_json_write_ctx *w,
struct nvme_bdev_ns *nvme_ns);
static void nvme_ctrlr_config_json_standard_namespace(struct spdk_json_write_ctx *w,
struct nvme_bdev_ns *nvme_ns);
static config_json_namespace_fn g_config_json_namespace_fn[] = {
NULL,
nvme_ctrlr_config_json_standard_namespace,
bdev_ocssd_namespace_config_json,
};
struct spdk_nvme_qpair *
bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
{
struct nvme_io_channel *nvme_ch;
assert(ctrlr_io_ch != NULL);
nvme_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
return nvme_ch->qpair;
}
static int
bdev_nvme_get_ctx_size(void)
{
return sizeof(struct nvme_bdev_io);
}
static struct spdk_bdev_module nvme_if = {
.name = "nvme",
.async_fini = true,
.module_init = bdev_nvme_library_init,
.module_fini = bdev_nvme_library_fini,
.config_json = bdev_nvme_config_json,
.get_ctx_size = bdev_nvme_get_ctx_size,
};
SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
static void
bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "qpair %p is disconnected, attempting reconnect.\n", qpair);
/*
* Currently, just try to reconnect indefinitely. If we are doing a reset, the reset will
* reconnect a qpair and we will stop getting a callback for this one.
*/
rc = spdk_nvme_ctrlr_reconnect_io_qpair(qpair);
if (rc != 0) {
SPDK_WARNLOG("Failed to reconnect to qpair %p, errno %d\n", qpair, -rc);
}
}
static int
bdev_nvme_poll(void *arg)
{
struct nvme_bdev_poll_group *group = arg;
int64_t num_completions;
if (group->collect_spin_stat && group->start_ticks == 0) {
group->start_ticks = spdk_get_ticks();
}
num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
bdev_nvme_disconnected_qpair_cb);
if (group->collect_spin_stat) {
if (num_completions > 0) {
if (group->end_ticks != 0) {
group->spin_ticks += (group->end_ticks - group->start_ticks);
group->end_ticks = 0;
}
group->start_ticks = 0;
} else {
group->end_ticks = spdk_get_ticks();
}
}
return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
}
static int
bdev_nvme_poll_adminq(void *arg)
{
int32_t rc;
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = arg;
assert(nvme_bdev_ctrlr != NULL);
rc = spdk_nvme_ctrlr_process_admin_completions(nvme_bdev_ctrlr->ctrlr);
if (rc < 0) {
bdev_nvme_failover(nvme_bdev_ctrlr, false);
}
return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
}
static int
bdev_nvme_destruct(void *ctx)
{
struct nvme_bdev *nvme_disk = ctx;
struct nvme_bdev_ns *nvme_ns = nvme_disk->nvme_ns;
pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
nvme_ns->bdev = NULL;
if (!nvme_ns->populated) {
pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
nvme_bdev_ctrlr_destruct(nvme_ns->ctrlr);
} else {
pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
}
free(nvme_disk->disk.name);
free(nvme_disk);
return 0;
}
static int
bdev_nvme_flush(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, uint64_t offset, uint64_t nbytes)
{
spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_SUCCESS);
return 0;
}
static int
bdev_nvme_create_qpair(struct nvme_io_channel *nvme_ch)
{
struct spdk_nvme_ctrlr *ctrlr = nvme_ch->ctrlr->ctrlr;
struct spdk_nvme_io_qpair_opts opts;
struct spdk_nvme_qpair *qpair;
int rc;
spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
opts.delay_cmd_submit = g_opts.delay_cmd_submit;
opts.create_only = true;
opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
g_opts.io_queue_requests = opts.io_queue_requests;
qpair = spdk_nvme_ctrlr_alloc_io_qpair(ctrlr, &opts, sizeof(opts));
if (qpair == NULL) {
return -1;
}
assert(nvme_ch->group != NULL);
rc = spdk_nvme_poll_group_add(nvme_ch->group->group, qpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
goto err;
}
rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to connect I/O qpair.\n");
goto err;
}
nvme_ch->qpair = qpair;
return 0;
err:
spdk_nvme_ctrlr_free_io_qpair(qpair);
return rc;
}
static int
bdev_nvme_destroy_qpair(struct nvme_io_channel *nvme_ch)
{
int rc;
if (nvme_ch->qpair == NULL) {
return 0;
}
rc = spdk_nvme_ctrlr_free_io_qpair(nvme_ch->qpair);
if (!rc) {
nvme_ch->qpair = NULL;
}
return rc;
}
static void
_bdev_nvme_check_pending_destruct(struct spdk_io_channel_iter *i, int status)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = spdk_io_channel_iter_get_ctx(i);
pthread_mutex_lock(&nvme_bdev_ctrlr->mutex);
if (nvme_bdev_ctrlr->destruct_after_reset) {
assert(nvme_bdev_ctrlr->ref == 0 && nvme_bdev_ctrlr->destruct);
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
spdk_thread_send_msg(nvme_bdev_ctrlr->thread, nvme_bdev_ctrlr_unregister,
nvme_bdev_ctrlr);
} else {
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
}
}
static void
_bdev_nvme_complete_pending_resets(struct nvme_io_channel *nvme_ch,
enum spdk_bdev_io_status status)
{
struct spdk_bdev_io *bdev_io;
while (!TAILQ_EMPTY(&nvme_ch->pending_resets)) {
bdev_io = TAILQ_FIRST(&nvme_ch->pending_resets);
TAILQ_REMOVE(&nvme_ch->pending_resets, bdev_io, module_link);
spdk_bdev_io_complete(bdev_io, status);
}
}
static void
bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(_ch);
_bdev_nvme_complete_pending_resets(nvme_ch, SPDK_BDEV_IO_STATUS_SUCCESS);
spdk_for_each_channel_continue(i, 0);
}
static void
bdev_nvme_abort_pending_resets(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(_ch);
_bdev_nvme_complete_pending_resets(nvme_ch, SPDK_BDEV_IO_STATUS_FAILED);
spdk_for_each_channel_continue(i, 0);
}
static void
_bdev_nvme_reset_complete(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, int rc)
{
struct nvme_bdev_ctrlr_trid *curr_trid;
struct nvme_bdev_io *bio = nvme_bdev_ctrlr->reset_bio;
enum spdk_bdev_io_status io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
nvme_bdev_ctrlr->reset_bio = NULL;
if (rc) {
SPDK_ERRLOG("Resetting controller failed.\n");
io_status = SPDK_BDEV_IO_STATUS_FAILED;
} else {
SPDK_NOTICELOG("Resetting controller successful.\n");
}
pthread_mutex_lock(&nvme_bdev_ctrlr->mutex);
nvme_bdev_ctrlr->resetting = false;
nvme_bdev_ctrlr->failover_in_progress = false;
curr_trid = TAILQ_FIRST(&nvme_bdev_ctrlr->trids);
assert(curr_trid != NULL);
assert(&curr_trid->trid == nvme_bdev_ctrlr->connected_trid);
curr_trid->is_failed = rc != 0 ? true : false;
if (nvme_bdev_ctrlr->ref == 0 && nvme_bdev_ctrlr->destruct) {
/* Destruct ctrlr after clearing pending resets. */
nvme_bdev_ctrlr->destruct_after_reset = true;
}
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
if (bio) {
spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), io_status);
}
/* Make sure we clear any pending resets before returning. */
spdk_for_each_channel(nvme_bdev_ctrlr,
rc == 0 ? bdev_nvme_complete_pending_resets :
bdev_nvme_abort_pending_resets,
nvme_bdev_ctrlr,
_bdev_nvme_check_pending_destruct);
}
static void
_bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = spdk_io_channel_iter_get_ctx(i);
_bdev_nvme_reset_complete(nvme_bdev_ctrlr, status);
}
static void
_bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(_ch);
int rc;
rc = bdev_nvme_create_qpair(nvme_ch);
spdk_for_each_channel_continue(i, rc);
}
static void
_bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = spdk_io_channel_iter_get_ctx(i);
int rc;
if (status) {
rc = status;
goto err;
}
rc = spdk_nvme_ctrlr_reset(nvme_bdev_ctrlr->ctrlr);
if (rc != 0) {
goto err;
}
/* Recreate all of the I/O queue pairs */
spdk_for_each_channel(nvme_bdev_ctrlr,
_bdev_nvme_reset_create_qpair,
nvme_bdev_ctrlr,
_bdev_nvme_reset_create_qpairs_done);
return;
err:
_bdev_nvme_reset_complete(nvme_bdev_ctrlr, rc);
}
static void
_bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
int rc;
rc = bdev_nvme_destroy_qpair(nvme_ch);
spdk_for_each_channel_continue(i, rc);
}
static int
_bdev_nvme_reset(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr)
{
pthread_mutex_lock(&nvme_bdev_ctrlr->mutex);
if (nvme_bdev_ctrlr->destruct) {
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
return -EBUSY;
}
if (nvme_bdev_ctrlr->resetting) {
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
return -EAGAIN;
}
nvme_bdev_ctrlr->resetting = true;
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
/* First, delete all NVMe I/O queue pairs. */
spdk_for_each_channel(nvme_bdev_ctrlr,
_bdev_nvme_reset_destroy_qpair,
nvme_bdev_ctrlr,
_bdev_nvme_reset_ctrlr);
return 0;
}
static int
bdev_nvme_reset(struct nvme_io_channel *nvme_ch, struct nvme_bdev_io *bio)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
int rc;
rc = _bdev_nvme_reset(nvme_ch->ctrlr);
if (rc == 0) {
assert(nvme_ch->ctrlr->reset_bio == NULL);
nvme_ch->ctrlr->reset_bio = bio;
} else if (rc == -EBUSY) {
/* Don't bother resetting if the controller is in the process of being destructed. */
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
} else if (rc == -EAGAIN) {
/*
* Reset call is queued only if it is from the app framework. This is on purpose so that
* we don't interfere with the app framework reset strategy. i.e. we are deferring to the
* upper level. If they are in the middle of a reset, we won't try to schedule another one.
*/
TAILQ_INSERT_TAIL(&nvme_ch->pending_resets, bdev_io, module_link);
} else {
return rc;
}
return 0;
}
static int
_bdev_nvme_failover_start(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, bool remove)
{
struct nvme_bdev_ctrlr_trid *curr_trid = NULL, *next_trid = NULL;
int rc;
pthread_mutex_lock(&nvme_bdev_ctrlr->mutex);
if (nvme_bdev_ctrlr->destruct) {
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
/* Don't bother resetting if the controller is in the process of being destructed. */
return -EBUSY;
}
curr_trid = TAILQ_FIRST(&nvme_bdev_ctrlr->trids);
assert(curr_trid);
assert(&curr_trid->trid == nvme_bdev_ctrlr->connected_trid);
next_trid = TAILQ_NEXT(curr_trid, link);
if (nvme_bdev_ctrlr->resetting) {
if (next_trid && !nvme_bdev_ctrlr->failover_in_progress) {
rc = -EAGAIN;
} else {
rc = -EBUSY;
}
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
return rc;
}
nvme_bdev_ctrlr->resetting = true;
curr_trid->is_failed = true;
if (next_trid) {
assert(curr_trid->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", curr_trid->trid.traddr,
curr_trid->trid.trsvcid, next_trid->trid.traddr, next_trid->trid.trsvcid);
nvme_bdev_ctrlr->failover_in_progress = true;
spdk_nvme_ctrlr_fail(nvme_bdev_ctrlr->ctrlr);
nvme_bdev_ctrlr->connected_trid = &next_trid->trid;
rc = spdk_nvme_ctrlr_set_trid(nvme_bdev_ctrlr->ctrlr, &next_trid->trid);
assert(rc == 0);
TAILQ_REMOVE(&nvme_bdev_ctrlr->trids, curr_trid, link);
if (!remove) {
/** Shuffle the old trid to the end of the list and use the new one.
* Allows for round robin through multiple connections.
*/
TAILQ_INSERT_TAIL(&nvme_bdev_ctrlr->trids, curr_trid, link);
} else {
free(curr_trid);
}
}
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
return 0;
}
static int
bdev_nvme_failover(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, bool remove)
{
int rc;
rc = _bdev_nvme_failover_start(nvme_bdev_ctrlr, remove);
if (rc == 0) {
/* First, delete all NVMe I/O queue pairs. */
spdk_for_each_channel(nvme_bdev_ctrlr,
_bdev_nvme_reset_destroy_qpair,
nvme_bdev_ctrlr,
_bdev_nvme_reset_ctrlr);
} else if (rc != -EBUSY) {
return rc;
}
return 0;
}
static int
bdev_nvme_unmap(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
uint64_t offset_blocks,
uint64_t num_blocks);
static void
bdev: Not assert but pass completion status to spdk_bdev_io_get_buf_cb When the specified buffer size to spdk_bdev_io_get_buf() is greater than the permitted maximum, spdk_bdev_io_get_buf() asserts simply and doesn't call the specified callback function. SPDK SCSI library doesn't allocate read buffer and specifies expected read buffer size, and expects that it is allocated by spdk_bdev_io_get_buf(). Bdev perf tool also doesn't allocate read buffer and specifies expected read buffer size, and expects that it is allocated by spdk_bdev_io_get_buf(). When we support DIF insert and strip in iSCSI target, the read buffer size iSCSI initiator requests and the read buffer size iSCSI target requests will become different. Even after that, iSCSI initiator and iSCSI target will negotiate correctly not to cause buffer overflow in spdk_bdev_io_get_buf(), but if iSCSI initiator ignores the result of negotiation, iSCSI initiator can request read buffer size larger than the permitted maximum, and can cause failure in iSCSI target. This is very flagile and should be avoided. This patch do the following - Add the completion status of spdk_bdev_io_get_buf() to spdk_bdev_io_get_buf_cb(), - spdk_bdev_io_get_buf() calls spdk_bdev_io_get_buf_cb() by setting success to false, and return. - spdk_bdev_io_get_buf_cb() in each bdev module calls assert if success is false. Subsequent patches will process the case that success is false in spdk_bdev_io_get_buf_cb(). Change-Id: I76429a86e18a69aa085a353ac94743296d270b82 Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Reviewed-on: https://review.gerrithub.io/c/446045 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com> Reviewed-by: Ziye Yang <ziye.yang@intel.com> Reviewed-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com>
2019-02-25 00:34:28 +00:00
bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
bool success)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev->ctxt;
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
struct nvme_bdev_ns *nvme_ns;
struct spdk_nvme_qpair *qpair;
int ret;
if (!success) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
return;
}
bdev: Not assert but pass completion status to spdk_bdev_io_get_buf_cb When the specified buffer size to spdk_bdev_io_get_buf() is greater than the permitted maximum, spdk_bdev_io_get_buf() asserts simply and doesn't call the specified callback function. SPDK SCSI library doesn't allocate read buffer and specifies expected read buffer size, and expects that it is allocated by spdk_bdev_io_get_buf(). Bdev perf tool also doesn't allocate read buffer and specifies expected read buffer size, and expects that it is allocated by spdk_bdev_io_get_buf(). When we support DIF insert and strip in iSCSI target, the read buffer size iSCSI initiator requests and the read buffer size iSCSI target requests will become different. Even after that, iSCSI initiator and iSCSI target will negotiate correctly not to cause buffer overflow in spdk_bdev_io_get_buf(), but if iSCSI initiator ignores the result of negotiation, iSCSI initiator can request read buffer size larger than the permitted maximum, and can cause failure in iSCSI target. This is very flagile and should be avoided. This patch do the following - Add the completion status of spdk_bdev_io_get_buf() to spdk_bdev_io_get_buf_cb(), - spdk_bdev_io_get_buf() calls spdk_bdev_io_get_buf_cb() by setting success to false, and return. - spdk_bdev_io_get_buf_cb() in each bdev module calls assert if success is false. Subsequent patches will process the case that success is false in spdk_bdev_io_get_buf_cb(). Change-Id: I76429a86e18a69aa085a353ac94743296d270b82 Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Reviewed-on: https://review.gerrithub.io/c/446045 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com> Reviewed-by: Ziye Yang <ziye.yang@intel.com> Reviewed-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com>
2019-02-25 00:34:28 +00:00
if (spdk_unlikely(!bdev_nvme_find_io_path(nbdev, nvme_ch, &nvme_ns, &qpair))) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
return;
}
ret = bdev_nvme_readv(nvme_ns->ns,
qpair,
(struct nvme_bdev_io *)bdev_io->driver_ctx,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
if (spdk_likely(ret == 0)) {
return;
} else if (ret == -ENOMEM) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM);
} else {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
static int
_bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
struct spdk_bdev *bdev = bdev_io->bdev;
struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev->ctxt;
struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
struct nvme_bdev_io *nbdev_io_to_abort;
struct nvme_bdev_ns *nvme_ns;
struct spdk_nvme_qpair *qpair;
if (spdk_unlikely(!bdev_nvme_find_io_path(nbdev, nvme_ch, &nvme_ns, &qpair))) {
return -1;
}
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
return bdev_nvme_readv(nvme_ns->ns,
qpair,
nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
} else {
spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
bdev_io->u.bdev.num_blocks * bdev->blocklen);
return 0;
}
case SPDK_BDEV_IO_TYPE_WRITE:
return bdev_nvme_writev(nvme_ns->ns,
qpair,
nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
case SPDK_BDEV_IO_TYPE_COMPARE:
return bdev_nvme_comparev(nvme_ns->ns,
qpair,
nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
return bdev_nvme_comparev_and_writev(nvme_ns->ns,
qpair,
nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.fused_iovs,
bdev_io->u.bdev.fused_iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
case SPDK_BDEV_IO_TYPE_UNMAP:
return bdev_nvme_unmap(nvme_ns->ns,
qpair,
nbdev_io,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
case SPDK_BDEV_IO_TYPE_RESET:
return bdev_nvme_reset(nvme_ch, nbdev_io);
case SPDK_BDEV_IO_TYPE_FLUSH:
return bdev_nvme_flush(nvme_ns->ns,
qpair,
nbdev_io,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
return bdev_nvme_zone_appendv(nvme_ns->ns,
qpair,
nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
return bdev_nvme_get_zone_info(nvme_ns->ns,
qpair,
nbdev_io,
bdev_io->u.zone_mgmt.zone_id,
bdev_io->u.zone_mgmt.num_zones,
bdev_io->u.zone_mgmt.buf);
case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
return bdev_nvme_zone_management(nvme_ns->ns,
qpair,
nbdev_io,
bdev_io->u.zone_mgmt.zone_id,
bdev_io->u.zone_mgmt.zone_action);
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
return bdev_nvme_admin_passthru(nvme_ch,
nbdev_io,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes);
case SPDK_BDEV_IO_TYPE_NVME_IO:
return bdev_nvme_io_passthru(nvme_ns->ns,
qpair,
nbdev_io,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes);
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
return bdev_nvme_io_passthru_md(nvme_ns->ns,
qpair,
nbdev_io,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes,
bdev_io->u.nvme_passthru.md_buf,
bdev_io->u.nvme_passthru.md_len);
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
case SPDK_BDEV_IO_TYPE_ABORT:
nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
return bdev_nvme_abort(nvme_ch,
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
nbdev_io,
nbdev_io_to_abort);
default:
return -EINVAL;
}
return 0;
}
static void
bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
{
int rc = _bdev_nvme_submit_request(ch, bdev_io);
if (spdk_unlikely(rc != 0)) {
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
if (rc == -ENOMEM) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM);
} else {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
}
static bool
bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
{
struct nvme_bdev *nbdev = ctx;
struct nvme_bdev_ns *nvme_ns;
struct spdk_nvme_ns *ns;
struct spdk_nvme_ctrlr *ctrlr;
const struct spdk_nvme_ctrlr_data *cdata;
nvme_ns = nvme_bdev_to_bdev_ns(nbdev);
assert(nvme_ns != NULL);
ns = nvme_ns->ns;
ctrlr = spdk_nvme_ns_get_ctrlr(ns);
switch (io_type) {
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
case SPDK_BDEV_IO_TYPE_RESET:
case SPDK_BDEV_IO_TYPE_FLUSH:
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
case SPDK_BDEV_IO_TYPE_NVME_IO:
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
case SPDK_BDEV_IO_TYPE_ABORT:
return true;
case SPDK_BDEV_IO_TYPE_COMPARE:
return spdk_nvme_ns_supports_compare(ns);
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
return spdk_nvme_ns_get_md_size(ns) ? true : false;
case SPDK_BDEV_IO_TYPE_UNMAP:
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
return cdata->oncs.dsm;
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
/*
* The NVMe controller write_zeroes function is currently not used by our driver.
* NVMe write zeroes is limited to 16-bit block count, and the bdev layer currently
* has no mechanism for reporting a max write zeroes block count, nor ability to
* split a write zeroes request.
*/
return false;
case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
if (spdk_nvme_ctrlr_get_flags(ctrlr) &
SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
return true;
}
return false;
case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
default:
return false;
}
}
static int
bdev_nvme_create_cb(void *io_device, void *ctx_buf)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = io_device;
struct nvme_io_channel *nvme_ch = ctx_buf;
struct spdk_io_channel *pg_ch = NULL;
int rc;
if (spdk_nvme_ctrlr_is_ocssd_supported(nvme_bdev_ctrlr->ctrlr)) {
rc = bdev_ocssd_create_io_channel(nvme_ch);
if (rc != 0) {
return rc;
}
}
pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
if (!pg_ch) {
rc = -1;
goto err_pg_ch;
}
nvme_ch->group = spdk_io_channel_get_ctx(pg_ch);
#ifdef SPDK_CONFIG_VTUNE
nvme_ch->group->collect_spin_stat = true;
#else
nvme_ch->group->collect_spin_stat = false;
#endif
TAILQ_INIT(&nvme_ch->pending_resets);
nvme_ch->ctrlr = nvme_bdev_ctrlr;
rc = bdev_nvme_create_qpair(nvme_ch);
if (rc != 0) {
goto err_qpair;
}
return 0;
err_qpair:
spdk_put_io_channel(pg_ch);
err_pg_ch:
if (nvme_ch->ocssd_ch) {
bdev_ocssd_destroy_io_channel(nvme_ch);
}
return rc;
}
static void
bdev_nvme_destroy_cb(void *io_device, void *ctx_buf)
{
struct nvme_io_channel *nvme_ch = ctx_buf;
assert(nvme_ch->group != NULL);
if (nvme_ch->ocssd_ch != NULL) {
bdev_ocssd_destroy_io_channel(nvme_ch);
}
bdev_nvme_destroy_qpair(nvme_ch);
spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_ch->group));
}
static void
bdev_nvme_poll_group_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
uint32_t iov_cnt, uint32_t seed,
spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
{
struct nvme_bdev_poll_group *group = ctx;
int rc;
assert(group->accel_channel != NULL);
assert(cb_fn != NULL);
rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
if (rc) {
/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
if (rc == -ENOMEM || rc == -EINVAL) {
cb_fn(cb_arg, rc);
}
SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
}
}
static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
.table_size = sizeof(struct spdk_nvme_accel_fn_table),
.submit_accel_crc32c = bdev_nvme_poll_group_submit_accel_crc32c,
};
static int
bdev_nvme_poll_group_create_cb(void *io_device, void *ctx_buf)
{
struct nvme_bdev_poll_group *group = ctx_buf;
group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
if (group->group == NULL) {
return -1;
}
group->accel_channel = spdk_accel_engine_get_io_channel();
if (!group->accel_channel) {
spdk_nvme_poll_group_destroy(group->group);
SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
group);
return -1;
}
group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
if (group->poller == NULL) {
spdk_put_io_channel(group->accel_channel);
spdk_nvme_poll_group_destroy(group->group);
return -1;
}
return 0;
}
static void
bdev_nvme_poll_group_destroy_cb(void *io_device, void *ctx_buf)
{
struct nvme_bdev_poll_group *group = ctx_buf;
if (group->accel_channel) {
spdk_put_io_channel(group->accel_channel);
}
spdk_poller_unregister(&group->poller);
if (spdk_nvme_poll_group_destroy(group->group)) {
SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.");
assert(false);
}
}
static struct spdk_io_channel *
bdev_nvme_get_io_channel(void *ctx)
{
struct nvme_bdev *nvme_bdev = ctx;
return spdk_get_io_channel(nvme_bdev->nvme_ns->ctrlr);
}
static void *
bdev_nvme_get_module_ctx(void *ctx)
{
struct nvme_bdev *nvme_bdev = ctx;
return bdev_nvme_get_ctrlr(&nvme_bdev->disk);
}
static int
bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
{
struct nvme_bdev *nvme_bdev = ctx;
struct nvme_bdev_ns *nvme_ns;
struct spdk_nvme_ns *ns;
struct spdk_nvme_ctrlr *ctrlr;
const struct spdk_nvme_ctrlr_data *cdata;
const struct spdk_nvme_transport_id *trid;
union spdk_nvme_vs_register vs;
union spdk_nvme_csts_register csts;
char buf[128];
nvme_ns = nvme_bdev_to_bdev_ns(nvme_bdev);
assert(nvme_ns != NULL);
ns = nvme_ns->ns;
ctrlr = spdk_nvme_ns_get_ctrlr(ns);
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
spdk_json_write_named_object_begin(w, "nvme");
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
spdk_json_write_named_string(w, "pci_address", trid->traddr);
}
spdk_json_write_named_object_begin(w, "trid");
nvme_bdev_dump_trid_json(trid, w);
spdk_json_write_object_end(w);
#ifdef SPDK_CONFIG_NVME_CUSE
size_t cuse_name_size = 128;
char cuse_name[cuse_name_size];
int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
cuse_name, &cuse_name_size);
if (rc == 0) {
spdk_json_write_named_string(w, "cuse_device", cuse_name);
}
#endif
spdk_json_write_named_object_begin(w, "ctrlr_data");
spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "model_number", buf);
snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "serial_number", buf);
snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "firmware_revision", buf);
if (cdata->subnqn[0] != '\0') {
spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
}
spdk_json_write_named_object_begin(w, "oacs");
spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "vs");
spdk_json_write_name(w, "nvme_version");
if (vs.bits.ter) {
spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
} else {
spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
}
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "csts");
spdk_json_write_named_uint32(w, "rdy", csts.bits.rdy);
spdk_json_write_named_uint32(w, "cfs", csts.bits.cfs);
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "ns_data");
spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
spdk_json_write_object_end(w);
if (cdata->oacs.security) {
spdk_json_write_named_object_begin(w, "security");
spdk_json_write_named_bool(w, "opal", nvme_bdev->opal);
spdk_json_write_object_end(w);
}
spdk_json_write_object_end(w);
return 0;
}
static void
bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
{
/* No config per bdev needed */
}
static uint64_t
bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
struct nvme_bdev_poll_group *group = nvme_ch->group;
uint64_t spin_time;
if (!group || !group->collect_spin_stat) {
return 0;
}
if (group->end_ticks != 0) {
group->spin_ticks += (group->end_ticks - group->start_ticks);
group->end_ticks = 0;
}
spin_time = (group->spin_ticks * 1000000ULL) / spdk_get_ticks_hz();
group->start_ticks = 0;
group->spin_ticks = 0;
return spin_time;
}
static const struct spdk_bdev_fn_table nvmelib_fn_table = {
.destruct = bdev_nvme_destruct,
.submit_request = bdev_nvme_submit_request,
.io_type_supported = bdev_nvme_io_type_supported,
.get_io_channel = bdev_nvme_get_io_channel,
.dump_info_json = bdev_nvme_dump_info_json,
.write_config_json = bdev_nvme_write_config_json,
.get_spin_time = bdev_nvme_get_spin_time,
.get_module_ctx = bdev_nvme_get_module_ctx,
};
static int
nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
uint32_t prchk_flags, void *ctx)
{
const struct spdk_uuid *uuid;
const struct spdk_nvme_ctrlr_data *cdata;
const struct spdk_nvme_ns_data *nsdata;
int rc;
enum spdk_nvme_csi csi;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
csi = spdk_nvme_ns_get_csi(ns);
switch (csi) {
case SPDK_NVME_CSI_NVM:
disk->product_name = "NVMe disk";
break;
case SPDK_NVME_CSI_ZNS:
disk->product_name = "NVMe ZNS disk";
disk->zoned = true;
disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
spdk_nvme_ns_get_extended_sector_size(ns);
disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
break;
default:
SPDK_ERRLOG("unsupported CSI: %u\n", csi);
return -ENOTSUP;
}
disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
if (!disk->name) {
return -ENOMEM;
}
disk->write_cache = 0;
if (cdata->vwc.present) {
/* Enable if the Volatile Write Cache exists */
disk->write_cache = 1;
}
disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
uuid = spdk_nvme_ns_get_uuid(ns);
if (uuid != NULL) {
disk->uuid = *uuid;
}
nsdata = spdk_nvme_ns_get_data(ns);
disk->md_len = spdk_nvme_ns_get_md_size(ns);
if (disk->md_len != 0) {
disk->md_interleave = nsdata->flbas.extended;
disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
if (disk->dif_type != SPDK_DIF_DISABLE) {
disk->dif_is_head_of_md = nsdata->dps.md_start;
disk->dif_check_flags = prchk_flags;
}
}
if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
disk->acwu = 0;
} else if (nsdata->nsfeat.ns_atomic_write_unit) {
disk->acwu = nsdata->nacwu;
} else {
disk->acwu = cdata->acwu;
}
disk->ctxt = ctx;
disk->fn_table = &nvmelib_fn_table;
disk->module = &nvme_if;
rc = spdk_bdev_register(disk);
if (rc) {
SPDK_ERRLOG("spdk_bdev_register() failed\n");
free(disk->name);
return rc;
}
return 0;
}
static int
nvme_bdev_create(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, struct nvme_bdev_ns *nvme_ns)
{
struct nvme_bdev *bdev;
int rc;
bdev = calloc(1, sizeof(*bdev));
if (!bdev) {
SPDK_ERRLOG("bdev calloc() failed\n");
return -ENOMEM;
}
bdev->nvme_ns = nvme_ns;
bdev->opal = nvme_bdev_ctrlr->opal_dev != NULL;
rc = nvme_disk_create(&bdev->disk, nvme_bdev_ctrlr->name, nvme_bdev_ctrlr->ctrlr,
nvme_ns->ns, nvme_bdev_ctrlr->prchk_flags, bdev);
if (rc != 0) {
SPDK_ERRLOG("Failed to create NVMe disk\n");
free(bdev);
return rc;
}
nvme_ns->bdev = bdev;
return 0;
}
static void
nvme_ctrlr_populate_standard_namespace(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_bdev_ns *nvme_ns, struct nvme_async_probe_ctx *ctx)
{
struct spdk_nvme_ctrlr *ctrlr = nvme_bdev_ctrlr->ctrlr;
struct spdk_nvme_ns *ns;
int rc = 0;
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
if (!ns) {
SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
rc = -EINVAL;
goto done;
}
nvme_ns->ns = ns;
nvme_ns->populated = true;
rc = nvme_bdev_create(nvme_bdev_ctrlr, nvme_ns);
done:
nvme_ctrlr_populate_namespace_done(ctx, nvme_ns, rc);
}
static bool
hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
struct nvme_probe_skip_entry *entry;
TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
return false;
}
}
opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
return true;
}
static void
nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = ctx;
if (spdk_nvme_cpl_is_error(cpl)) {
SPDK_WARNLOG("Abort failed. Resetting controller.\n");
_bdev_nvme_reset(nvme_bdev_ctrlr);
}
}
static void
timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair, uint16_t cid)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = cb_arg;
union spdk_nvme_csts_register csts;
int rc;
assert(nvme_bdev_ctrlr->ctrlr == ctrlr);
SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
* queue. (Note: qpair == NULL when there's an admin cmd timeout.) Otherwise we
* would submit another fabrics cmd on the admin queue to read CSTS and check for its
* completion recursively.
*/
if (nvme_bdev_ctrlr->connected_trid->trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
if (csts.bits.cfs) {
SPDK_ERRLOG("Controller Fatal Status, reset required\n");
_bdev_nvme_reset(nvme_bdev_ctrlr);
return;
}
}
switch (g_opts.action_on_timeout) {
case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
if (qpair) {
rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
nvme_abort_cpl, nvme_bdev_ctrlr);
if (rc == 0) {
return;
}
SPDK_ERRLOG("Unable to send abort. Resetting.\n");
}
/* FALLTHROUGH */
case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
_bdev_nvme_reset(nvme_bdev_ctrlr);
break;
case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
break;
default:
SPDK_ERRLOG("An invalid timeout action value is found.\n");
break;
}
}
static void
nvme_ctrlr_depopulate_standard_namespace(struct nvme_bdev_ns *nvme_ns)
{
struct nvme_bdev *bdev;
bdev = nvme_ns->bdev;
if (bdev != NULL) {
spdk_bdev_unregister(&bdev->disk, NULL, NULL);
}
nvme_ctrlr_depopulate_namespace_done(nvme_ns);
}
static void
nvme_ctrlr_populate_namespace(struct nvme_bdev_ctrlr *ctrlr, struct nvme_bdev_ns *nvme_ns,
struct nvme_async_probe_ctx *ctx)
{
g_populate_namespace_fn[nvme_ns->type](ctrlr, nvme_ns, ctx);
}
static void
nvme_ctrlr_depopulate_namespace(struct nvme_bdev_ctrlr *ctrlr, struct nvme_bdev_ns *nvme_ns)
{
g_depopulate_namespace_fn[nvme_ns->type](nvme_ns);
}
void
nvme_ctrlr_populate_namespace_done(struct nvme_async_probe_ctx *ctx,
struct nvme_bdev_ns *nvme_ns, int rc)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = nvme_ns->ctrlr;
assert(nvme_bdev_ctrlr != NULL);
if (rc == 0) {
pthread_mutex_lock(&nvme_bdev_ctrlr->mutex);
nvme_bdev_ctrlr->ref++;
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
} else {
memset(nvme_ns, 0, sizeof(*nvme_ns));
}
if (ctx) {
ctx->populates_in_progress--;
if (ctx->populates_in_progress == 0) {
nvme_ctrlr_populate_namespaces_done(nvme_bdev_ctrlr, ctx);
}
}
}
static void
nvme_ctrlr_populate_namespaces(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_async_probe_ctx *ctx)
{
struct spdk_nvme_ctrlr *ctrlr = nvme_bdev_ctrlr->ctrlr;
struct nvme_bdev_ns *nvme_ns;
struct spdk_nvme_ns *ns;
struct nvme_bdev *bdev;
uint32_t i;
int rc;
uint64_t num_sectors;
bool ns_is_active;
if (ctx) {
/* Initialize this count to 1 to handle the populate functions
* calling nvme_ctrlr_populate_namespace_done() immediately.
*/
ctx->populates_in_progress = 1;
}
for (i = 0; i < nvme_bdev_ctrlr->num_ns; i++) {
uint32_t nsid = i + 1;
nvme_ns = nvme_bdev_ctrlr->namespaces[i];
ns_is_active = spdk_nvme_ctrlr_is_active_ns(ctrlr, nsid);
if (nvme_ns->populated && ns_is_active && nvme_ns->type == NVME_BDEV_NS_STANDARD) {
/* NS is still there but attributes may have changed */
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
num_sectors = spdk_nvme_ns_get_num_sectors(ns);
bdev = nvme_ns->bdev;
assert(bdev != NULL);
if (bdev->disk.blockcnt != num_sectors) {
SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
nsid,
bdev->disk.name,
bdev->disk.blockcnt,
num_sectors);
rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
if (rc != 0) {
SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
bdev->disk.name, rc);
}
}
}
if (!nvme_ns->populated && ns_is_active) {
nvme_ns->id = nsid;
nvme_ns->ctrlr = nvme_bdev_ctrlr;
if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
nvme_ns->type = NVME_BDEV_NS_OCSSD;
} else {
nvme_ns->type = NVME_BDEV_NS_STANDARD;
}
nvme_ns->bdev = NULL;
if (ctx) {
ctx->populates_in_progress++;
}
nvme_ctrlr_populate_namespace(nvme_bdev_ctrlr, nvme_ns, ctx);
}
if (nvme_ns->populated && !ns_is_active) {
nvme_ctrlr_depopulate_namespace(nvme_bdev_ctrlr, nvme_ns);
}
}
if (ctx) {
/* Decrement this count now that the loop is over to account
* for the one we started with. If the count is then 0, we
* know any populate_namespace functions completed immediately,
* so we'll kick the callback here.
*/
ctx->populates_in_progress--;
if (ctx->populates_in_progress == 0) {
nvme_ctrlr_populate_namespaces_done(nvme_bdev_ctrlr, ctx);
}
}
}
static void
nvme_ctrlr_depopulate_namespaces(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr)
{
uint32_t i;
struct nvme_bdev_ns *nvme_ns;
for (i = 0; i < nvme_bdev_ctrlr->num_ns; i++) {
uint32_t nsid = i + 1;
nvme_ns = nvme_bdev_ctrlr->namespaces[nsid - 1];
if (nvme_ns->populated) {
assert(nvme_ns->id == nsid);
nvme_ctrlr_depopulate_namespace(nvme_bdev_ctrlr, nvme_ns);
}
}
}
static void
aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = arg;
union spdk_nvme_async_event_completion event;
if (spdk_nvme_cpl_is_error(cpl)) {
SPDK_WARNLOG("AER request execute failed");
return;
}
event.raw = cpl->cdw0;
if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
(event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
nvme_ctrlr_populate_namespaces(nvme_bdev_ctrlr, NULL);
} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_VENDOR) &&
(event.bits.log_page_identifier == SPDK_OCSSD_LOG_CHUNK_NOTIFICATION) &&
spdk_nvme_ctrlr_is_ocssd_supported(nvme_bdev_ctrlr->ctrlr)) {
bdev_ocssd_handle_chunk_notification(nvme_bdev_ctrlr);
}
}
static void
populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
{
if (ctx->cb_fn) {
ctx->cb_fn(ctx->cb_ctx, count, rc);
}
ctx->namespaces_populated = true;
if (ctx->probe_done) {
/* The probe was already completed, so we need to free the context
* here. This can happen for cases like OCSSD, where we need to
* send additional commands to the SSD after attach.
*/
free(ctx);
}
}
static int
_nvme_bdev_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
const char *name,
const struct spdk_nvme_transport_id *trid,
uint32_t prchk_flags,
struct nvme_bdev_ctrlr **_nvme_bdev_ctrlr)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr;
struct nvme_bdev_ctrlr_trid *trid_entry;
uint32_t i;
int rc;
nvme_bdev_ctrlr = calloc(1, sizeof(*nvme_bdev_ctrlr));
if (nvme_bdev_ctrlr == NULL) {
SPDK_ERRLOG("Failed to allocate device struct\n");
return -ENOMEM;
}
rc = pthread_mutex_init(&nvme_bdev_ctrlr->mutex, NULL);
if (rc != 0) {
goto err_init_mutex;
}
TAILQ_INIT(&nvme_bdev_ctrlr->trids);
nvme_bdev_ctrlr->num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
if (nvme_bdev_ctrlr->num_ns != 0) {
nvme_bdev_ctrlr->namespaces = calloc(nvme_bdev_ctrlr->num_ns, sizeof(struct nvme_bdev_ns *));
if (!nvme_bdev_ctrlr->namespaces) {
SPDK_ERRLOG("Failed to allocate block namespaces pointer\n");
rc = -ENOMEM;
goto err_alloc_namespaces;
}
}
trid_entry = calloc(1, sizeof(*trid_entry));
if (trid_entry == NULL) {
SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
rc = -ENOMEM;
goto err_alloc_trid;
}
trid_entry->trid = *trid;
for (i = 0; i < nvme_bdev_ctrlr->num_ns; i++) {
nvme_bdev_ctrlr->namespaces[i] = calloc(1, sizeof(struct nvme_bdev_ns));
if (nvme_bdev_ctrlr->namespaces[i] == NULL) {
SPDK_ERRLOG("Failed to allocate block namespace struct\n");
rc = -ENOMEM;
goto err_alloc_namespace;
}
}
nvme_bdev_ctrlr->thread = spdk_get_thread();
nvme_bdev_ctrlr->adminq_timer_poller = NULL;
nvme_bdev_ctrlr->ctrlr = ctrlr;
bdev/nvme: Ensure ctrlr->destruct is set only once Checking if destruct is false and setting destruct to true are separated by mutex in remove_cb() and bdev_nvme_library_fini(). It was possible that multiple threads called nvme_bdev_ctrlr_destruct() because the caller could call nvme_bdev_ctrlr_destruct() before setting destruct to true after knowing it was false. This patch ensures that nvme_bdev_ctrlr_destruct() is called only once. Set ctrlr->destruct to true without releasing mutex after checking if ctrlr->destruct is false. If destruct is set to true before calling nvme_ctrlr_depopulate_namespaces(), nvme_ctrlr_depopulate_namespace_done() may call nvme_bdev_ctrlr_destruct() because it is likely that reference count is zero and destruct is true. In this case, remove_cb() or bdev_nvme_library_fini() cannot call nvme_bdev_destruct() after returning from nvme_ctrlr_depopulate_namespaces(). On the other hand, if a controller has no namespace, nvme_ctrlr_depopulate_namespaces() does nothing and nvme_ctrlr_depopulate_namespace_done() is not called. Hence remove_cb() or bdev_nvme_library_fini() has to call nvme_bdev_destruct() after returning nvme_ctrlr_depopulate_namespaces(). To unify both cases, initialize reference count to one as a sentinel value and remove_cb() and bdev_nvme_library_fini() decrement reference count and then calls nvme_bdev_ctrlr_destruct() if reference count is zero after returning from nvme_ctrlr_depopulate_namespaces(). Additionally, add assert to check if reference count is not negative to find bug in future. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: I8a617b5aa4d0a9faff832e63c2ed4b353341dd6b Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/4817 Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Changpeng Liu <changpeng.liu@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com> Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2020-10-21 21:10:57 +00:00
nvme_bdev_ctrlr->ref = 1;
nvme_bdev_ctrlr->connected_trid = &trid_entry->trid;
nvme_bdev_ctrlr->name = strdup(name);
if (nvme_bdev_ctrlr->name == NULL) {
rc = -ENOMEM;
goto err_alloc_name;
}
if (spdk_nvme_ctrlr_is_ocssd_supported(nvme_bdev_ctrlr->ctrlr)) {
rc = bdev_ocssd_init_ctrlr(nvme_bdev_ctrlr);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("Unable to initialize OCSSD controller\n");
goto err_init_ocssd;
}
}
nvme_bdev_ctrlr->prchk_flags = prchk_flags;
spdk_io_device_register(nvme_bdev_ctrlr, bdev_nvme_create_cb, bdev_nvme_destroy_cb,
sizeof(struct nvme_io_channel),
name);
nvme_bdev_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_bdev_ctrlr,
g_opts.nvme_adminq_poll_period_us);
TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nvme_bdev_ctrlr, tailq);
if (g_opts.timeout_us > 0) {
spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
timeout_cb, nvme_bdev_ctrlr);
}
spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_bdev_ctrlr);
spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_bdev_ctrlr);
if (spdk_nvme_ctrlr_get_flags(nvme_bdev_ctrlr->ctrlr) &
SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
nvme_bdev_ctrlr->opal_dev = spdk_opal_dev_construct(nvme_bdev_ctrlr->ctrlr);
if (nvme_bdev_ctrlr->opal_dev == NULL) {
SPDK_ERRLOG("Failed to initialize Opal\n");
}
}
TAILQ_INSERT_HEAD(&nvme_bdev_ctrlr->trids, trid_entry, link);
if (_nvme_bdev_ctrlr != NULL) {
*_nvme_bdev_ctrlr = nvme_bdev_ctrlr;
}
return 0;
err_init_ocssd:
free(nvme_bdev_ctrlr->name);
err_alloc_name:
err_alloc_namespace:
for (; i > 0; i--) {
free(nvme_bdev_ctrlr->namespaces[i - 1]);
}
free(trid_entry);
err_alloc_trid:
free(nvme_bdev_ctrlr->namespaces);
err_alloc_namespaces:
pthread_mutex_destroy(&nvme_bdev_ctrlr->mutex);
err_init_mutex:
free(nvme_bdev_ctrlr);
return rc;
}
static void
nvme_bdev_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
const char *name,
const struct spdk_nvme_transport_id *trid,
uint32_t prchk_flags,
struct nvme_async_probe_ctx *ctx)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = NULL;
int rc;
rc = _nvme_bdev_ctrlr_create(ctrlr, name, trid, prchk_flags, &nvme_bdev_ctrlr);
if (rc != 0) {
SPDK_ERRLOG("Failed to create new NVMe controller\n");
goto err;
}
nvme_ctrlr_populate_namespaces(nvme_bdev_ctrlr, ctx);
return;
err:
if (ctx != NULL) {
populate_namespaces_cb(ctx, 0, rc);
}
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct nvme_probe_ctx *ctx = cb_ctx;
char *name = NULL;
uint32_t prchk_flags = 0;
size_t i;
if (ctx) {
for (i = 0; i < ctx->count; i++) {
if (spdk_nvme_transport_id_compare(trid, &ctx->trids[i]) == 0) {
prchk_flags = ctx->prchk_flags[i];
name = strdup(ctx->names[i]);
break;
}
}
} else {
name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
}
if (!name) {
SPDK_ERRLOG("Failed to assign name to NVMe device\n");
return;
}
SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
nvme_bdev_ctrlr_create(ctrlr, name, trid, prchk_flags, NULL);
free(name);
}
static void
_nvme_bdev_ctrlr_destruct(void *ctx)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = ctx;
nvme_ctrlr_depopulate_namespaces(nvme_bdev_ctrlr);
nvme_bdev_ctrlr_destruct(nvme_bdev_ctrlr);
}
static int
_bdev_nvme_delete(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, bool hotplug)
{
struct nvme_probe_skip_entry *entry;
pthread_mutex_lock(&nvme_bdev_ctrlr->mutex);
/* The controller's destruction was already started */
if (nvme_bdev_ctrlr->destruct) {
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
return 0;
}
if (!hotplug &&
nvme_bdev_ctrlr->connected_trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
entry = calloc(1, sizeof(*entry));
if (!entry) {
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
return -ENOMEM;
}
entry->trid = *nvme_bdev_ctrlr->connected_trid;
TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
}
nvme_bdev_ctrlr->destruct = true;
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
_nvme_bdev_ctrlr_destruct(nvme_bdev_ctrlr);
return 0;
}
static void
remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = cb_ctx;
_bdev_nvme_delete(nvme_bdev_ctrlr, true);
}
static int
bdev_nvme_hotplug_probe(void *arg)
{
if (g_hotplug_probe_ctx == NULL) {
spdk_poller_unregister(&g_hotplug_probe_poller);
return SPDK_POLLER_IDLE;
}
if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
g_hotplug_probe_ctx = NULL;
spdk_poller_unregister(&g_hotplug_probe_poller);
}
return SPDK_POLLER_BUSY;
}
static int
bdev_nvme_hotplug(void *arg)
{
struct spdk_nvme_transport_id trid_pcie;
if (g_hotplug_probe_ctx) {
return SPDK_POLLER_BUSY;
}
memset(&trid_pcie, 0, sizeof(trid_pcie));
spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
hotplug_probe_cb, attach_cb, NULL);
if (g_hotplug_probe_ctx) {
assert(g_hotplug_probe_poller == NULL);
g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
}
return SPDK_POLLER_BUSY;
}
void
bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
{
*opts = g_opts;
}
int
bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
{
if (g_bdev_nvme_init_thread != NULL) {
if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
return -EPERM;
}
}
g_opts = *opts;
return 0;
}
struct set_nvme_hotplug_ctx {
uint64_t period_us;
bool enabled;
spdk_msg_fn fn;
void *fn_ctx;
};
static void
set_nvme_hotplug_period_cb(void *_ctx)
{
struct set_nvme_hotplug_ctx *ctx = _ctx;
spdk_poller_unregister(&g_hotplug_poller);
if (ctx->enabled) {
g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
}
g_nvme_hotplug_poll_period_us = ctx->period_us;
g_nvme_hotplug_enabled = ctx->enabled;
if (ctx->fn) {
ctx->fn(ctx->fn_ctx);
}
free(ctx);
}
int
bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
{
struct set_nvme_hotplug_ctx *ctx;
if (enabled == true && !spdk_process_is_primary()) {
return -EPERM;
}
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
return -ENOMEM;
}
period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
ctx->enabled = enabled;
ctx->fn = cb;
ctx->fn_ctx = cb_ctx;
spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
return 0;
}
static void
nvme_ctrlr_populate_namespaces_done(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_async_probe_ctx *ctx)
{
struct nvme_bdev_ns *nvme_ns;
struct nvme_bdev *nvme_bdev;
uint32_t i, nsid;
size_t j;
assert(nvme_bdev_ctrlr != NULL);
/*
* Report the new bdevs that were created in this call.
* There can be more than one bdev per NVMe controller.
*/
j = 0;
for (i = 0; i < nvme_bdev_ctrlr->num_ns; i++) {
nsid = i + 1;
nvme_ns = nvme_bdev_ctrlr->namespaces[nsid - 1];
if (!nvme_ns->populated) {
continue;
}
assert(nvme_ns->id == nsid);
nvme_bdev = nvme_ns->bdev;
if (nvme_bdev == NULL) {
assert(nvme_ns->type == NVME_BDEV_NS_OCSSD);
continue;
}
if (j < ctx->count) {
ctx->names[j] = nvme_bdev->disk.name;
j++;
} else {
SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
ctx->count);
populate_namespaces_cb(ctx, 0, -ERANGE);
return;
}
}
populate_namespaces_cb(ctx, j, 0);
}
static int
bdev_nvme_compare_trids(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct spdk_nvme_ctrlr *new_ctrlr,
struct spdk_nvme_transport_id *trid)
{
struct nvme_bdev_ctrlr_trid *tmp_trid;
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
SPDK_ERRLOG("PCIe failover is not supported.\n");
return -ENOTSUP;
}
/* Currently we only support failover to the same transport type. */
if (nvme_bdev_ctrlr->connected_trid->trtype != trid->trtype) {
return -EINVAL;
}
/* Currently we only support failover to the same NQN. */
if (strncmp(trid->subnqn, nvme_bdev_ctrlr->connected_trid->subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
return -EINVAL;
}
/* Skip all the other checks if we've already registered this path. */
TAILQ_FOREACH(tmp_trid, &nvme_bdev_ctrlr->trids, link) {
if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
return -EEXIST;
}
}
return 0;
}
static bool
bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
{
const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
nsdata1 = spdk_nvme_ns_get_data(ns1);
nsdata2 = spdk_nvme_ns_get_data(ns2);
return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid));
}
static int
bdev_nvme_compare_namespaces(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct spdk_nvme_ctrlr *new_ctrlr)
{
uint32_t i, nsid;
struct nvme_bdev_ns *nvme_ns;
struct spdk_nvme_ns *new_ns;
if (spdk_nvme_ctrlr_get_num_ns(new_ctrlr) != nvme_bdev_ctrlr->num_ns) {
return -EINVAL;
}
for (i = 0; i < nvme_bdev_ctrlr->num_ns; i++) {
nsid = i + 1;
nvme_ns = nvme_bdev_ctrlr->namespaces[i];
if (!nvme_ns->populated) {
continue;
}
new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nsid);
assert(new_ns != NULL);
if (bdev_nvme_compare_ns(nvme_ns->ns, new_ns) != 0) {
return -EINVAL;
}
}
return 0;
}
static int
_bdev_nvme_add_secondary_trid(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct spdk_nvme_transport_id *trid)
{
struct nvme_bdev_ctrlr_trid *new_trid, *tmp_trid;
new_trid = calloc(1, sizeof(*new_trid));
if (new_trid == NULL) {
return -ENOMEM;
}
new_trid->trid = *trid;
new_trid->is_failed = false;
TAILQ_FOREACH(tmp_trid, &nvme_bdev_ctrlr->trids, link) {
if (tmp_trid->is_failed) {
TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
return 0;
}
}
TAILQ_INSERT_TAIL(&nvme_bdev_ctrlr->trids, new_trid, link);
return 0;
}
/* This is the case that a secondary path is added to an existing
* nvme_bdev_ctrlr for failover. After checking if it can access the same
* namespaces as the primary path, it is disconnected until failover occurs.
*/
static void
bdev_nvme_add_secondary_trid(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct spdk_nvme_ctrlr *new_ctrlr,
struct spdk_nvme_transport_id *trid,
struct nvme_async_probe_ctx *ctx)
{
int rc;
assert(nvme_bdev_ctrlr != NULL);
pthread_mutex_lock(&nvme_bdev_ctrlr->mutex);
rc = bdev_nvme_compare_trids(nvme_bdev_ctrlr, new_ctrlr, trid);
if (rc != 0) {
goto exit;
}
rc = bdev_nvme_compare_namespaces(nvme_bdev_ctrlr, new_ctrlr);
if (rc != 0) {
goto exit;
}
rc = _bdev_nvme_add_secondary_trid(nvme_bdev_ctrlr, trid);
exit:
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
spdk_nvme_detach(new_ctrlr);
if (ctx != NULL) {
populate_namespaces_cb(ctx, 0, rc);
}
}
static void
connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr;
struct nvme_async_probe_ctx *ctx;
ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, opts);
ctx->ctrlr_attached = true;
nvme_bdev_ctrlr = nvme_bdev_ctrlr_get_by_name(ctx->base_name);
if (nvme_bdev_ctrlr) {
bdev_nvme_add_secondary_trid(nvme_bdev_ctrlr, ctrlr, &ctx->trid, ctx);
return;
}
nvme_bdev_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx->prchk_flags, ctx);
}
static int
bdev_nvme_async_poll(void *arg)
{
struct nvme_async_probe_ctx *ctx = arg;
int rc;
rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
if (spdk_unlikely(rc != -EAGAIN)) {
ctx->probe_done = true;
spdk_poller_unregister(&ctx->poller);
if (!ctx->ctrlr_attached) {
/* The probe is done, but no controller was attached.
* That means we had a failure, so report -EIO back to
* the caller (usually the RPC). populate_namespaces_cb()
* will take care of freeing the nvme_async_probe_ctx.
*/
populate_namespaces_cb(ctx, 0, -EIO);
} else if (ctx->namespaces_populated) {
/* The namespaces for the attached controller were all
* populated and the response was already sent to the
* caller (usually the RPC). So free the context here.
*/
free(ctx);
}
}
return SPDK_POLLER_BUSY;
}
int
bdev_nvme_create(struct spdk_nvme_transport_id *trid,
struct spdk_nvme_host_id *hostid,
const char *base_name,
const char **names,
uint32_t count,
const char *hostnqn,
uint32_t prchk_flags,
spdk_bdev_create_nvme_fn cb_fn,
void *cb_ctx,
struct spdk_nvme_ctrlr_opts *opts)
{
struct nvme_probe_skip_entry *entry, *tmp;
struct nvme_async_probe_ctx *ctx;
/* TODO expand this check to include both the host and target TRIDs.
* Only if both are the same should we fail.
*/
if (nvme_bdev_ctrlr_get(trid) != NULL) {
SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
return -EEXIST;
}
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
return -ENOMEM;
}
ctx->base_name = base_name;
ctx->names = names;
ctx->count = count;
ctx->cb_fn = cb_fn;
ctx->cb_ctx = cb_ctx;
ctx->prchk_flags = prchk_flags;
ctx->trid = *trid;
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
free(entry);
break;
}
}
}
if (opts) {
memcpy(&ctx->opts, opts, sizeof(*opts));
} else {
spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->opts, sizeof(ctx->opts));
}
ctx->opts.transport_retry_count = g_opts.retry_count;
ctx->opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
if (hostnqn) {
snprintf(ctx->opts.hostnqn, sizeof(ctx->opts.hostnqn), "%s", hostnqn);
}
if (hostid->hostaddr[0] != '\0') {
snprintf(ctx->opts.src_addr, sizeof(ctx->opts.src_addr), "%s", hostid->hostaddr);
}
if (hostid->hostsvcid[0] != '\0') {
snprintf(ctx->opts.src_svcid, sizeof(ctx->opts.src_svcid), "%s", hostid->hostsvcid);
}
ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->opts, connect_attach_cb);
if (ctx->probe_ctx == NULL) {
SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
free(ctx);
return -ENODEV;
}
ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
return 0;
}
static int
bdev_nvme_delete_secondary_trid(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
const struct spdk_nvme_transport_id *trid)
{
struct nvme_bdev_ctrlr_trid *ctrlr_trid, *tmp_trid;
if (!spdk_nvme_transport_id_compare(trid, nvme_bdev_ctrlr->connected_trid)) {
return -EBUSY;
}
TAILQ_FOREACH_SAFE(ctrlr_trid, &nvme_bdev_ctrlr->trids, link, tmp_trid) {
if (!spdk_nvme_transport_id_compare(&ctrlr_trid->trid, trid)) {
TAILQ_REMOVE(&nvme_bdev_ctrlr->trids, ctrlr_trid, link);
free(ctrlr_trid);
return 0;
}
}
return -ENXIO;
}
int
bdev_nvme_delete(const char *name, const struct spdk_nvme_transport_id *trid)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr;
struct nvme_bdev_ctrlr_trid *ctrlr_trid;
if (name == NULL) {
return -EINVAL;
}
nvme_bdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
if (nvme_bdev_ctrlr == NULL) {
SPDK_ERRLOG("Failed to find NVMe controller\n");
return -ENODEV;
}
/* case 1: remove the controller itself. */
if (trid == NULL) {
return _bdev_nvme_delete(nvme_bdev_ctrlr, false);
}
/* case 2: we are currently using the path to be removed. */
if (!spdk_nvme_transport_id_compare(trid, nvme_bdev_ctrlr->connected_trid)) {
ctrlr_trid = TAILQ_FIRST(&nvme_bdev_ctrlr->trids);
assert(nvme_bdev_ctrlr->connected_trid == &ctrlr_trid->trid);
/* case 2A: the current path is the only path. */
if (!TAILQ_NEXT(ctrlr_trid, link)) {
return _bdev_nvme_delete(nvme_bdev_ctrlr, false);
}
/* case 2B: there is an alternative path. */
return bdev_nvme_failover(nvme_bdev_ctrlr, true);
}
/* case 3: We are not using the specified path. */
return bdev_nvme_delete_secondary_trid(nvme_bdev_ctrlr, trid);
}
static int
bdev_nvme_library_init(void)
{
g_bdev_nvme_init_thread = spdk_get_thread();
spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_poll_group_create_cb,
bdev_nvme_poll_group_destroy_cb,
sizeof(struct nvme_bdev_poll_group), "bdev_nvme_poll_groups");
return 0;
}
static void
bdev_nvme_library_fini(void)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, *tmp;
struct nvme_probe_skip_entry *entry, *entry_tmp;
spdk_poller_unregister(&g_hotplug_poller);
free(g_hotplug_probe_ctx);
g_hotplug_probe_ctx = NULL;
TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
free(entry);
}
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH_SAFE(nvme_bdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq, tmp) {
pthread_mutex_lock(&nvme_bdev_ctrlr->mutex);
if (nvme_bdev_ctrlr->destruct) {
/* This controller's destruction was already started
* before the application started shutting down
*/
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
continue;
}
bdev/nvme: Ensure ctrlr->destruct is set only once Checking if destruct is false and setting destruct to true are separated by mutex in remove_cb() and bdev_nvme_library_fini(). It was possible that multiple threads called nvme_bdev_ctrlr_destruct() because the caller could call nvme_bdev_ctrlr_destruct() before setting destruct to true after knowing it was false. This patch ensures that nvme_bdev_ctrlr_destruct() is called only once. Set ctrlr->destruct to true without releasing mutex after checking if ctrlr->destruct is false. If destruct is set to true before calling nvme_ctrlr_depopulate_namespaces(), nvme_ctrlr_depopulate_namespace_done() may call nvme_bdev_ctrlr_destruct() because it is likely that reference count is zero and destruct is true. In this case, remove_cb() or bdev_nvme_library_fini() cannot call nvme_bdev_destruct() after returning from nvme_ctrlr_depopulate_namespaces(). On the other hand, if a controller has no namespace, nvme_ctrlr_depopulate_namespaces() does nothing and nvme_ctrlr_depopulate_namespace_done() is not called. Hence remove_cb() or bdev_nvme_library_fini() has to call nvme_bdev_destruct() after returning nvme_ctrlr_depopulate_namespaces(). To unify both cases, initialize reference count to one as a sentinel value and remove_cb() and bdev_nvme_library_fini() decrement reference count and then calls nvme_bdev_ctrlr_destruct() if reference count is zero after returning from nvme_ctrlr_depopulate_namespaces(). Additionally, add assert to check if reference count is not negative to find bug in future. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: I8a617b5aa4d0a9faff832e63c2ed4b353341dd6b Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/4817 Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Changpeng Liu <changpeng.liu@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com> Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2020-10-21 21:10:57 +00:00
nvme_bdev_ctrlr->destruct = true;
pthread_mutex_unlock(&nvme_bdev_ctrlr->mutex);
spdk_thread_send_msg(nvme_bdev_ctrlr->thread, _nvme_bdev_ctrlr_destruct,
nvme_bdev_ctrlr);
}
g_bdev_nvme_module_finish = true;
if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
spdk_bdev_module_finish_done();
return;
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
}
static void
bdev_nvme_verify_pi_error(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_dif_ctx dif_ctx;
struct spdk_dif_error err_blk = {};
int rc;
rc = spdk_dif_ctx_init(&dif_ctx,
bdev->blocklen, bdev->md_len, bdev->md_interleave,
bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0);
if (rc != 0) {
SPDK_ERRLOG("Initialization of DIF context failed\n");
return;
}
if (bdev->md_interleave) {
rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
} else {
struct iovec md_iov = {
.iov_base = bdev_io->u.bdev.md_buf,
.iov_len = bdev_io->u.bdev.num_blocks * bdev->md_len,
};
rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
&md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
}
if (rc != 0) {
SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
err_blk.err_type, err_blk.err_offset);
} else {
SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
}
}
static void
bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
if (spdk_nvme_cpl_is_success(cpl)) {
/* Run PI verification for read data buffer. */
bdev_nvme_verify_pi_error(bdev_io);
}
/* Return original completion status */
spdk_bdev_io_complete_nvme_status(bdev_io, bio->cpl.cdw0, bio->cpl.status.sct,
bio->cpl.status.sc);
}
static void
bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
struct nvme_io_channel *nvme_ch;
struct nvme_bdev_ns *nvme_ns;
struct spdk_nvme_qpair *qpair;
int ret;
if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Save completion status to use after verifying PI error. */
bio->cpl = *cpl;
nvme_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
if (spdk_likely(bdev_nvme_find_io_path(nbdev, nvme_ch, &nvme_ns, &qpair))) {
/* Read without PI checking to verify PI error. */
ret = bdev_nvme_no_pi_readv(nvme_ns->ns,
qpair,
bio,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks);
if (ret == 0) {
return;
}
}
}
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
}
static void
bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx((struct nvme_bdev_io *)ref);
if (spdk_nvme_cpl_is_pi_error(cpl)) {
SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Run PI verification for write data buffer if PI error is detected. */
bdev_nvme_verify_pi_error(bdev_io);
}
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
}
static void
bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx((struct nvme_bdev_io *)ref);
/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
* Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
*/
bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
if (spdk_nvme_cpl_is_pi_error(cpl)) {
SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Run PI verification for zone append data buffer if PI error is detected. */
bdev_nvme_verify_pi_error(bdev_io);
}
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
}
static void
bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx((struct nvme_bdev_io *)ref);
if (spdk_nvme_cpl_is_pi_error(cpl)) {
SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Run PI verification for compare data buffer if PI error is detected. */
bdev_nvme_verify_pi_error(bdev_io);
}
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
}
static void
bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
/* Compare operation completion */
if ((cpl->cdw0 & 0xFF) == SPDK_NVME_OPC_COMPARE) {
/* Save compare result for write callback */
bio->cpl = *cpl;
return;
}
/* Write operation completion */
if (spdk_nvme_cpl_is_error(&bio->cpl)) {
/* If bio->cpl is already an error, it means the compare operation failed. In that case,
* complete the IO with the compare operation's status.
*/
if (!spdk_nvme_cpl_is_error(cpl)) {
SPDK_ERRLOG("Unexpected write success after compare failure.\n");
}
spdk_bdev_io_complete_nvme_status(bdev_io, bio->cpl.cdw0, bio->cpl.status.sct, bio->cpl.status.sc);
} else {
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
}
}
static void
bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx((struct nvme_bdev_io *)ref);
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
}
static int
fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
{
switch (desc->zs) {
case SPDK_NVME_ZONE_STATE_EMPTY:
info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
break;
case SPDK_NVME_ZONE_STATE_IOPEN:
info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
break;
case SPDK_NVME_ZONE_STATE_EOPEN:
info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
break;
case SPDK_NVME_ZONE_STATE_CLOSED:
info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
break;
case SPDK_NVME_ZONE_STATE_RONLY:
info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
break;
case SPDK_NVME_ZONE_STATE_FULL:
info->state = SPDK_BDEV_ZONE_STATE_FULL;
break;
case SPDK_NVME_ZONE_STATE_OFFLINE:
info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
break;
default:
SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
return -EIO;
}
info->zone_id = desc->zslba;
info->write_pointer = desc->wp;
info->capacity = desc->zcap;
return 0;
}
static void
bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
struct spdk_io_channel *ch = spdk_bdev_io_get_io_channel(bdev_io);
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
enum spdk_bdev_io_status status;
uint64_t max_zones_per_buf, i;
uint32_t zone_report_bufsize;
struct nvme_bdev_ns *nvme_ns;
struct spdk_nvme_qpair *qpair;
int ret;
if (spdk_nvme_cpl_is_error(cpl)) {
goto out_complete_io_nvme_cpl;
}
if (!bdev_nvme_find_io_path(nbdev, nvme_ch, &nvme_ns, &qpair)) {
status = SPDK_BDEV_IO_STATUS_FAILED;
goto out_complete_io_status;
}
zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(nvme_ns->ns);
max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
sizeof(bio->zone_report_buf->descs[0]);
if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
status = SPDK_BDEV_IO_STATUS_FAILED;
goto out_complete_io_status;
}
if (!bio->zone_report_buf->nr_zones) {
status = SPDK_BDEV_IO_STATUS_FAILED;
goto out_complete_io_status;
}
for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
ret = fill_zone_from_report(&info[bio->handled_zones],
&bio->zone_report_buf->descs[i]);
if (ret) {
status = SPDK_BDEV_IO_STATUS_FAILED;
goto out_complete_io_status;
}
bio->handled_zones++;
}
if (bio->handled_zones < zones_to_copy) {
uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(nvme_ns->ns);
uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
memset(bio->zone_report_buf, 0, zone_report_bufsize);
ret = spdk_nvme_zns_report_zones(nvme_ns->ns, qpair,
bio->zone_report_buf, zone_report_bufsize,
slba, SPDK_NVME_ZRA_LIST_ALL, true,
bdev_nvme_get_zone_info_done, bio);
if (!ret) {
return;
} else if (ret == -ENOMEM) {
status = SPDK_BDEV_IO_STATUS_NOMEM;
goto out_complete_io_status;
} else {
status = SPDK_BDEV_IO_STATUS_FAILED;
goto out_complete_io_status;
}
}
out_complete_io_nvme_cpl:
free(bio->zone_report_buf);
bio->zone_report_buf = NULL;
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
return;
out_complete_io_status:
free(bio->zone_report_buf);
bio->zone_report_buf = NULL;
spdk_bdev_io_complete(bdev_io, status);
}
static void
bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx((struct nvme_bdev_io *)ref);
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
}
static void
bdev_nvme_admin_passthru_completion(void *ctx)
{
struct nvme_bdev_io *bio = ctx;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
spdk_bdev_io_complete_nvme_status(bdev_io,
bio->cpl.cdw0, bio->cpl.status.sct, bio->cpl.status.sc);
}
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
static void
bdev_nvme_abort_completion(void *ctx)
{
struct nvme_bdev_io *bio = ctx;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
} else {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
static void
bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
bio->cpl = *cpl;
spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_completion, bio);
}
static void
bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
bio->cpl = *cpl;
spdk_thread_send_msg(bio->orig_thread, bdev_nvme_admin_passthru_completion, bio);
}
static void
bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
bio->iov_offset = sgl_offset;
for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
iov = &bio->iovs[bio->iovpos];
if (bio->iov_offset < iov->iov_len) {
break;
}
bio->iov_offset -= iov->iov_len;
}
}
static int
bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
assert(bio->iovpos < bio->iovcnt);
iov = &bio->iovs[bio->iovpos];
*address = iov->iov_base;
*length = iov->iov_len;
if (bio->iov_offset) {
assert(bio->iov_offset <= iov->iov_len);
*address += bio->iov_offset;
*length -= bio->iov_offset;
}
bio->iov_offset += *length;
if (bio->iov_offset == iov->iov_len) {
bio->iovpos++;
bio->iov_offset = 0;
}
return 0;
}
static void
bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
bio->fused_iov_offset = sgl_offset;
for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
iov = &bio->fused_iovs[bio->fused_iovpos];
if (bio->fused_iov_offset < iov->iov_len) {
break;
}
bio->fused_iov_offset -= iov->iov_len;
}
}
static int
bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
assert(bio->fused_iovpos < bio->fused_iovcnt);
iov = &bio->fused_iovs[bio->fused_iovpos];
*address = iov->iov_base;
*length = iov->iov_len;
if (bio->fused_iov_offset) {
assert(bio->fused_iov_offset <= iov->iov_len);
*address += bio->fused_iov_offset;
*length -= bio->fused_iov_offset;
}
bio->fused_iov_offset += *length;
if (bio->fused_iov_offset == iov->iov_len) {
bio->fused_iovpos++;
bio->fused_iov_offset = 0;
}
return 0;
}
static int
bdev_nvme_no_pi_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
bdev_nvme_no_pi_readv_done, bio, 0,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
if (iovcnt == 1) {
rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba,
lba_count,
bdev_nvme_readv_done, bio,
flags,
0, 0);
} else {
rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
bdev_nvme_readv_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
}
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("readv failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
if (iovcnt == 1) {
rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba,
lba_count,
bdev_nvme_writev_done, bio,
flags,
0, 0);
} else {
rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_writev_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
}
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("writev failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_zone_appendv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t zslba,
uint32_t flags)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
lba_count, zslba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
if (iovcnt == 1) {
rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
lba_count,
bdev_nvme_zone_appendv_done, bio,
flags,
0, 0);
} else {
rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
bdev_nvme_zone_appendv_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
}
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_comparev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_comparev_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_comparev_and_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
struct iovec *write_iov, int write_iovcnt,
void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
int rc;
SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = cmp_iov;
bio->iovcnt = cmp_iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
bio->fused_iovs = write_iov;
bio->fused_iovcnt = write_iovcnt;
bio->fused_iovpos = 0;
bio->fused_iov_offset = 0;
if (bdev_io->num_retries == 0) {
bio->first_fused_submitted = false;
}
if (!bio->first_fused_submitted) {
flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
memset(&bio->cpl, 0, sizeof(bio->cpl));
rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_comparev_and_writev_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
if (rc == 0) {
bio->first_fused_submitted = true;
flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
} else {
if (rc != -ENOMEM) {
SPDK_ERRLOG("compare failed: rc = %d\n", rc);
}
return rc;
}
}
flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_comparev_and_writev_done, bio, flags,
bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("write failed: rc = %d\n", rc);
rc = 0;
}
return rc;
}
static int
bdev_nvme_unmap(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
uint64_t offset_blocks,
uint64_t num_blocks)
{
struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
struct spdk_nvme_dsm_range *range;
uint64_t offset, remaining;
uint64_t num_ranges_u64;
uint16_t num_ranges;
int rc;
num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
return -EINVAL;
}
num_ranges = (uint16_t)num_ranges_u64;
offset = offset_blocks;
remaining = num_blocks;
range = &dsm_ranges[0];
/* Fill max-size ranges until the remaining blocks fit into one range */
while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
range->attributes.raw = 0;
range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
range->starting_lba = offset;
offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
range++;
}
/* Final range describes the remaining blocks */
range->attributes.raw = 0;
range->length = remaining;
range->starting_lba = offset;
rc = spdk_nvme_ns_cmd_dataset_management(ns, qpair,
SPDK_NVME_DSM_ATTR_DEALLOCATE,
dsm_ranges, num_ranges,
bdev_nvme_queued_done, bio);
return rc;
}
static int
bdev_nvme_get_zone_info(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
struct spdk_bdev_zone_info *info)
{
uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
if (zone_id % zone_size != 0) {
return -EINVAL;
}
if (num_zones > total_zones || !num_zones) {
return -EINVAL;
}
assert(!bio->zone_report_buf);
bio->zone_report_buf = calloc(1, zone_report_bufsize);
if (!bio->zone_report_buf) {
return -ENOMEM;
}
bio->handled_zones = 0;
return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
bdev_nvme_get_zone_info_done, bio);
}
static int
bdev_nvme_zone_management(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, uint64_t zone_id,
enum spdk_bdev_zone_action action)
{
switch (action) {
case SPDK_BDEV_ZONE_CLOSE:
return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
case SPDK_BDEV_ZONE_FINISH:
return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
case SPDK_BDEV_ZONE_OPEN:
return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
case SPDK_BDEV_ZONE_RESET:
return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
case SPDK_BDEV_ZONE_OFFLINE:
return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
default:
return -EINVAL;
}
}
static int
bdev_nvme_admin_passthru(struct nvme_io_channel *nvme_ch, struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr;
uint32_t max_xfer_size;
if (!bdev_nvme_find_admin_path(nvme_ch, &nvme_bdev_ctrlr)) {
return -EINVAL;
}
max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_bdev_ctrlr->ctrlr);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
bio->orig_thread = spdk_get_thread();
return spdk_nvme_ctrlr_cmd_admin_raw(nvme_bdev_ctrlr->ctrlr, cmd, buf,
(uint32_t)nbytes, bdev_nvme_admin_passthru_done, bio);
}
static int
bdev_nvme_io_passthru(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
{
uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
/*
* Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
* so fill it out automatically.
*/
cmd->nsid = spdk_nvme_ns_get_id(ns);
return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
(uint32_t)nbytes, bdev_nvme_queued_done, bio);
}
static int
bdev_nvme_io_passthru_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len)
{
size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
SPDK_ERRLOG("invalid meta data buffer size\n");
return -EINVAL;
}
/*
* Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
* so fill it out automatically.
*/
cmd->nsid = spdk_nvme_ns_get_id(ns);
return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
}
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
static void
bdev_nvme_abort_admin_cmd(void *ctx)
{
struct nvme_bdev_io *bio = ctx;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
struct nvme_io_channel *nvme_ch;
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
struct nvme_bdev_io *bio_to_abort;
int rc;
nvme_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
bio_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ch->ctrlr->ctrlr,
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
NULL,
bio_to_abort,
bdev_nvme_abort_done, bio);
if (rc == -ENOENT) {
/* If no admin command was found in admin qpair, complete the abort
* request with failure.
*/
bio->cpl.cdw0 |= 1U;
bio->cpl.status.sc = SPDK_NVME_SC_SUCCESS;
bio->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_completion, bio);
}
}
static int
bdev_nvme_abort(struct nvme_io_channel *nvme_ch, struct nvme_bdev_io *bio,
struct nvme_bdev_io *bio_to_abort)
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
{
int rc;
bio->orig_thread = spdk_get_thread();
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ch->ctrlr->ctrlr,
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
nvme_ch->qpair,
bio_to_abort,
bdev_nvme_abort_done, bio);
if (rc == -ENOENT) {
/* If no command was found in I/O qpair, the target command may be
* admin command. Only a single thread tries aborting admin command
* to clean I/O flow.
*/
spdk_thread_send_msg(nvme_ch->ctrlr->thread,
bdev/nvme: Support abort IO by using spdk_nvme_ctrlr_cmd_abort_ext() Change NVMe bdev module to enable abort as IO type. Change _bdev_nvme_submit_request() to process abort request when the IO type is abort. The current thread tries aborting I/O command in the I/O qpair first. If no I/O command to abort was found, send message to the thread which is registered when creating controller. The controller thread tries aborting admin command in the admin qpair next. If no admin command to abort was found, complete the abort request with failure. spdk_nvme_ctrlr_cmd_abort_ext() is used to try aborting command whose cb_arg matches. qpair is set to NULL when trying to abort admin command. Before calling spdk_nvme_ctrlr_cmd_abort_ext(), save the current thread to process admin command completion correctly. spdk_bdev_abort() supports any bdev module other than NVMe bdev module and does not check CDW0 but checks only if the completion status is success or failure. So add bdev_nvme_abort_done() and converts the NVMe completion status to the bdev completion status. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6aebae0ba2f6c5834ee926e161af9c4d825f341 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2040 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI Community-CI: Mellanox Build Bot Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-07-08 08:03:49 +00:00
bdev_nvme_abort_admin_cmd, bio);
rc = 0;
}
return rc;
}
static void
nvme_ctrlr_config_json_standard_namespace(struct spdk_json_write_ctx *w,
struct nvme_bdev_ns *nvme_ns)
{
/* nop */
}
static void
nvme_namespace_config_json(struct spdk_json_write_ctx *w, struct nvme_bdev_ns *nvme_ns)
{
g_config_json_namespace_fn[nvme_ns->type](w, nvme_ns);
}
static void
bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
{
const char *action;
if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
action = "reset";
} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
action = "abort";
} else {
action = "none";
}
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "action_on_timeout", action);
spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
spdk_json_write_named_uint32(w, "retry_count", g_opts.retry_count);
spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
static void
nvme_bdev_ctrlr_config_json(struct spdk_json_write_ctx *w,
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr)
{
struct spdk_nvme_transport_id *trid;
trid = nvme_bdev_ctrlr->connected_trid;
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "name", nvme_bdev_ctrlr->name);
nvme_bdev_dump_trid_json(trid, w);
spdk_json_write_named_bool(w, "prchk_reftag",
(nvme_bdev_ctrlr->prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
spdk_json_write_named_bool(w, "prchk_guard",
(nvme_bdev_ctrlr->prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
static void
bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
{
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
static int
bdev_nvme_config_json(struct spdk_json_write_ctx *w)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr;
uint32_t nsid;
bdev_nvme_opts_config_json(w);
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(nvme_bdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
nvme_bdev_ctrlr_config_json(w, nvme_bdev_ctrlr);
for (nsid = 0; nsid < nvme_bdev_ctrlr->num_ns; ++nsid) {
if (!nvme_bdev_ctrlr->namespaces[nsid]->populated) {
continue;
}
nvme_namespace_config_json(w, nvme_bdev_ctrlr->namespaces[nsid]);
}
}
/* Dump as last parameter to give all NVMe bdevs chance to be constructed
* before enabling hotplug poller.
*/
bdev_nvme_hotplug_config_json(w);
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return 0;
}
struct spdk_nvme_ctrlr *
bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
{
if (!bdev || bdev->module != &nvme_if) {
return NULL;
}
return SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk)->nvme_ns->ctrlr->ctrlr;
}
SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)