* launcher: ensure correct detection of Gemma 3 head size
* Support flashinfer for Gemma3 prefill
Gemma3 uses bidirectional attention for images. Flashinfer
supports custom masks. Hook up the mask with flashinfer, so that we do
not have to use the slower SDPA implementation for prefills with images.
* Update Gemma3 test outputs
* Fixed unused import
* transformers flash llm/vlm enabling in xpu
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* ipex cpu could also support in function
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* clean cuda/rocm code in hpu backend, enable flat_hpu
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix TP in pageattn
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* adjust block table in hpu to improve performance
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* enable all the model. not testet yet
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* use tensor cache in hpu graph to avoid replay issue
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* add moe support, fix qwen/mistral/mixtral crash
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix phimoe issue
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* gpt_bigcode could also go pageattn
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* enable dbrx remove some unused code
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* multi-modality initial PR
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* adjust warmup and enable vlm
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix incorrect output in qwen2 idefics if hpu graph is used
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* remove unused quantization code and enable awq/gptq int4
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix gptq issue
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* enable fp8
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* warmup prefill
remove model where pageattn is not used, set block table to None since it's not used
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* add warmup_decode
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* warmup decode
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* remove block_tables and prefill_cache_indices which will lead to dynamic shape
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix comment
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* missing gptj change...
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix some issue
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* remove torch.where to fix incorrect output in hpu graph model
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* match the latest vllm_extension ops
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* update transformres
* Upgrading the nix deps too.
* Forcing torchvision to be in there.
* Fixing bug in mllama.
* Those tests cannot be run in CI.
* Lint.
---------
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* initial changes
* Add support for other vlm
* cleanup comment
* Improve attn_implementation
* Add comments for support of models
* add model
* add model
* fixes and improvements
* update docker
* Add cache position
* Add tests
* remove redundant changes
* remove tr version
* Upgrade doc + fix linting.
* Fixing the CI.
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Publish nix docker image.
* Run during PR.
* Something else.
* Forgot to push.
* Build zstd.
* Pushing with skopeo
* Testing the PR.
* Runnign from nix.
* Cleaner tags.
* launcher: correctly get the head dimension for VLMs
For most (?) VLMs, the head dimension is in the `text_config`
configuration section. However, since we only queried the top-level
`head_dim` (which typically doesn't exist in VLMs), we would never use
flashinfer. This change adds a method that gets the head dimension from
the top-level `Config` struct or `text_config` when that fails.
* fix: bump org name in gemma3 test
---------
Co-authored-by: drbh <david.richard.holtz@gmail.com>
* xpu 2.6 update
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* install whl
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* update get xpu memory api
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* int
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix awq crash if modules_to_not_convert is None
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
On NixOS, the CUDA driver shim gets mounted on /run/opengl-driver,
where Nix packages expect the shim to be. However, on other
distributions, some FHS paths are mounted. This is a small change
to make the dynamic loader find the shim.
* feat(gaudi): release ready (docs, docker image and vlm ready)
* fix(gaudi): add default argument for the dockerfile
* fix(gaudi): remove use of latest for gaudi docker image + redid gaudi benchmarking section to include best practices
* Update to `kernels` 0.2.1
The package was renamed from `hf-kernels` to `kernels`. The new version
also updates the lockfile format.
* Download kernels in `install-cuda` target
* feat(neuron): use AWS Neuron SDK 2.21.1
* feat(neuron): bump optimum-neuron version
* feat(neuron): tag latest image for local tests
* test(neuron): simplify sampling test
* Fixing the tool calling convention.
* Update tehe doc.
* Fixing some corner cases.
* Fixing the tool call id.
* Fmt.
* Snapshot update with the new updated tool_call_id.
* More qwen2.
* change ChatCompletionChunk to align with "OpenAI Chat Completions streaming API"
Moving after tool_calls2
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
add in Buffering..
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
fix: handle usage outside of stream state and add tests
Simplifying everything quite a bit.
Remove the unused model_dump.
Clippy.
Clippy ?
Ruff.
Uppgrade the flake for latest transformers.
Upgrade after rebase.
Remove potential footgun.
Fix completion test.
* Clippy.
* Tweak for multi prompt.
* Ruff.
* Update the snapshot a bit.
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Making `tool_calls` a vector.
* Arguments output is a string.
* Update all the integration tests.
* Add the requirements.
* Upgrade other tests.
* Clippy.
* Update the old test.
* Making `tool_calls` a vector.
* Update doc.
* Fixing the nix overlay with updated version.
* Add openai dependency.
* Updating the old tests.
* Trying to reduce the logs in the case of errors.
* Less spammy logs too.
* Patch rust release.
* Trying to remove the rust-toolchain hardcoded in action.
* Upgrade rust toolchain.
* Put back the toolchain ?
* Fix neuron dockerfile.
* Move to the proper version of Rust.
* 1.85 since the GH action doesn't respect the override.
* Typo.
* Fixing the github action.
* Fixing docker llamacpp.
* Fixing the github action.
* Update clippy.
* feat: add support for HF_HUB_USER_AGENT_ORIGIN to add user-agent Origin field in Hub requests.
* fix: Rust version for Neuron
* fix: PR comments, use rust-toolchain.toml
* wip(gaudi): import server and dockerfile from tgi-gaudi fork
* feat(gaudi): new gaudi backend working
* fix: fix style
* fix prehooks issues
* fix(gaudi): refactor server and implement requested changes
* feat: add neuron backend
* feat(neuron): add server standalone installation
* feat(neuron): add server and integration tests
* fix(neuron): increase ulimit when building image
The base image used to compile the rust components seems to have a low
ulimit for opened files, which leads to errors during compilation.
* test(neuron): merge integration tests and fixtures
* test: add --neuron option
* review: do not use latest tag
* review: remove ureq pinned version
* review: --privileged should be the exception
* feat: add neuron case to build ci
* fix(neuron): export models from container in test fixtures
The neuron tests require models to have been previously exported and
cached on the hub. This is done automatically by the neuron.model
fixture the first time the tests are ran for a specific version.
This fixture used to export the models using optimum-neuron directly,
but this package is not necessarily present on the system.
Instead, it is now done through the neuron TGI itself, since it
contains all the tools required to export the models.
Note that since the CI runs docker in docker (dind) it does not seem
possible to share a volume between the CI container and the container
used to export the model.
For that reason, a specific image with a modified entrypoint is built
on-the-fly when a model export is required.
* refactor: remove sagemaker entry-point
The SageMaker image is built differently anyway.
* fix(neuron): avoid using Levenshtein
* test(neuron): use smaller llama model
* feat(neuron): avoid installing CUDA in image
* test(neuron): no error anymore when requesting too many tokens
* ci: doing a precompilation step (with a different token).
* test(neuron): avoid using image sha when exporting models
We now manually evaluate the apparent hash of the neuron backend by
combining the hash of the neuron backend directory and Dockerfile.
This new hash is used to identify exported neuron models instead of the
image sha.
This has two benefits:
- it changes less frequently (only hwen the neuron backend changes),
which means less neuron models being pushed to the hub,
- it can be evaluated locally, meaning that running the tests once
locally will export the models before the CI uses them.
* test(neuron): added a small script to prune test models
---------
Co-authored-by: drbh <david.richard.holtz@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* make content field optional in chat request
* add tool_calls field to Message struct
* feat: add test and serialize tool messages
* fix: bump utopia, openapi doc version and improve test
* fix: rerun update docs
* fix: suppoer tool call id in template and remove unnecessary changes
* fix: ruff lint remove unused import
* fix: adjust message types in tests
---------
Co-authored-by: sailesh duddupudi <saileshradar@gmail.com>
The current code does not work and gives the following message:
UserWarning: You have not specified a value for the `type` parameter. Defaulting to the 'tuples' format for chatbot messages, but this is deprecated and will be removed in a future version of Gradio. Please set type='messages' instead, which uses openai-style dictionaries with 'role' and 'content' keys.
warnings.warn(
Traceback (most recent call last):
File "/Users/angt/hf/tgi/test-gradio.py", line 22, in <module>
gr.ChatInterface(
TypeError: ChatInterface.__init__() got an unexpected keyword argument 'retry_btn'
Signed-off-by: Adrien Gallouët <adrien@gallouet.fr>
* feat: Add the parsing of HF_HUB_USER_AGENT_ORIGIN environment variable to add info about the environment running TGI. That is useful to track usage in case of collaborations for example.
* fix: trufflehog
* feat: support qwen2.5 vl model
* fix: bump support models doc
* feat: check before rope type adjustment and small refactors
* fix: add transformer overlay for processor support
* fix: vendor processor and config from transformers
* fix: refactor/simplify conditionals
It's find in some machine. using hf_hub::api::sync::Api to download config is not successful which will make warmup fail since attribute like max_position_embeddings could not be got. update hf-hub to the latest version could fix it
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
* Putting back the NCCL forced upgrade.
* .
* ...
* Ignoring conda.
* Dropping conda from the buidl system + torch 2.6
* Cache min.
* Rolling back torch version.
* Reverting the EETQ modification.
* Fix flash attention ?
* Actually stay on flash v1.
* Patching flash v1.
* Torch 2.6, fork of rotary, eetq updated.
* Put back nccl latest (override torch).
* Slightly more reproducible build and not as scary.
* fix Qwen VL break in intel platform
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* could use PositionRotaryEmbedding impl so rocm and ipex could all work
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Use Hub kernels for Marlin and cutlass quantization kernels
* Use hub kernels for MoE/GPTQ-Marlin MoE
* Use attention kernels from the Hub
* Cache the kernels in the Docker image
* Update moe kernels
* Support loading local kernels for development
* Support latest moe kernels
* Update to moe 0.1.1
* CI: download locked kernels for server tests
* Fixup some imports
* CI: activate venv
* Fix unused imports
* Nix: add attention/moe/quantization kernels
* Update hf-kernels to 0.1.5
* Update kernels
* Update tgi-nix flake for hf-kernels
* Fix EOF
* Take `load_kernel` out of a frequently-called function
* Hoist another case of kernel loading out of a somewhat hot function
* marlin-kernels -> quantization
* attention -> paged-attention
* EOF fix
* Update hf-kernels, fixup Docker
* ipex fix
* Remove outdated TODO
* Updating mllama after strftime.
* Town instead village.
* Forgot the integration snapshot.
* Attempt to fix intel CPU.
* Intel extension fix.
* Workaround intel.
* Moving those deps directly into pyproject.
* Revert "Moving those deps directly into pyproject."
This reverts commit 98c1496ea6.
* Non system uv.
* Fixing the docker environment hopefully.
* Missed a step.
* Move workdir up a bit.
* Bailing out of reproducible python env.
* Triton version.
* backend(trtllm): bump TRTLLM to v.0.17.0
* backend(trtllm): forget to bump dockerfile
* backend(trtllm): use arg instead of env
* backend(trtllm): use correct library reference decoder_attention_src
* backend(trtllm): link against decoder_attention_{0|1}
* backend(trtllm): build against gcc-14 with cuda12.8
* backend(trtllm): use return value optimization flag as as error if available
* backend(trtllm): make sure we escalade all warnings as errors on the backend impl in debug mode
* backend(trtllm): link against CUDA 12.8
* Using the "lockfile".
* Revert dummy modifications.
* Lock on python 3.11
* Another attempt.
* ..
* Bad cache hits.
* The good old monkey.
* How in the world...
* We need the launcher still.
* .
* ..
* Attempt #42
* Don't break all other builds.
* Mode max.
* Applying to other builds.
* feat: refactor model, improve startup and re enable tests
* fix: improve multimodal rotary embed caching
* fix: limit vision flop calc to qwen2 vl models and update config typing
* fix: include clippy lint
* feat: refactor position ids in warmup and bump tests
* fix: prefer default dtype
* fix: enable all cuda graphs and bump snapshots
* fix: adjust rotaty init path
* fix: simplify get position ids and remove usused vision config
* fix: update position ids so first dim is batch, simplify rotary and bump vlm default token limit
* fix: improve position id init during cuda warmup for mrope and simplfy rotary forward
* fix: check existance before accessing rope type in cuda warmup
* fix: check key before access
* fix: improve mrope check in cuda graph warmup
* fix: remove check for default rope type
* fix: add more test and improve model generation
* fix: improve and simplify get_cos_sin, refactors and cleanup get_position_ids
* fix: adjust signatures with types
* hotfix: fix trtllm CI build on release
* fix: test release.
* fix: test release.
* fix: test release. env not recognized https://github.com/actions/runner/issues/1661
* fix: test release. Works.
This version removes our patches/custom API. Makes it simpler to
get changes from upstream. One of which is that we can enable FP8
KV cache for paged attention as well.
* backend(trtllm): attempt to remove AWS S3 flaky cache for sccache
* backend(trtllm): what if we expose ENV instead of inline?
* backend(trtllm): and with the right env var for gha sccache
* backend(trtllm): relax the way to detect sccache
* backend(trtllm): make sccache definition manually
* backend(trtllm): ok let's try to define the launchers in build.rs when rustc_wrapper is present
* backend(trtllm): export env variable in run mb?
* backend(trtllm): Cache mode max to cache intermediate layers
* backend(trtllm): inject ompi_version build arg in dependent step
* Upgrade the version number.
* Remove modifications in Lock.
* Tmp branch to test transformers backend with 2.5.1 and TP>1
* Fixing the transformers backend.
inference_mode forces the use of `aten.matmul` instead of `aten.mm` the
former doesn't have sharding support crashing the transformers TP
support.
`lm_head.forward` also crashes because it skips the hook that
cast/decast the DTensor.
Torch 2.5.1 is required for sharding support.
* Put back the attention impl.
* Revert the flashinfer (this will fails).
* Building AOT.
* Using 2.5 kernels.
* Remove the archlist, it's defined in the docker anyway.
* backend(trtllm): update to 0.16.0
* backend(trtllm): do not use shallow clone
* backend(trtllm): use tag instead
* backend(trtllm): move to nvidia remote instead of hf
* backend(trtllm): reenable shallow clone
* backend(trtllm): attempt to use ADD instead of RUN for openmpi
* backend(trtllm): make sure we are using correct path for openmpi ADD in dockerfile
* backend(trtllm): add correctly untar it
* Trying to avoid the random timeout.
* More read timeout ?
* Longer timeout ?
* Remove legacy ENV directive.
* Remove the dummy test, only increase the read timeout.
* Wat?
* Fixing TRTLLM dockerfile.
* Fixed.
* Creating a dummy modification to chekc CI runs.
* Removing the cache directive.
* Modifying this should cache hit.
* Revert "Modifying this should cache hit."
This reverts commit 46a2bde108.
* Modifying this should cache hit.
* Unwanted files.
* feat: tokenize each request individually and increase warmup image size
* feat: adjust rotary embed and avoid cuda graphs of size 2 and smaller
* fix: address image resize and rebase changes
* feat: update to run qwen2-vl tests
* fix: tweak param types
* fix the crash of meta-llama/Llama-3.2-1B
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Apply suggestions from code review
Simpler fix (which doesn't break vlms).
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Moving to `uv` instead of `poetry`.
More in the standard, faster, seemingly better lockfile.
* Creating venv if not created.
* Create the venv.
* Fix ?
* Fixing the test by activating the environment ?
* Install system ?
* Add the cli entry point.
* docker install on system
* Monkeying this...
* `--system` is redundant.
* Trying to force-include this pb folder.
* TRying to check that pb is imported correctly.
* Editable install necessary ?
* Non editable?
* Editable it is.
* flash decoding
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* enable xpu flashdecoding
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* set flashdecoding blocksize as 64
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* enable flashdecoding, prefill chunking and prefix caching
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* add flashdecoding-ipex
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* feat: improve star coder to support multi lora layers
* feat: improve weight that support adapters and add tests for starcoder with lora
* fix: bump snapshot for added tests
* fix: rerun pre commit lints
* fix: bump adapter test for added later names
* Upgrading bitsandbytes.
Co-Authored-By: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* Tighter lock.
---------
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* Fix `docker run` in `README.md`
* Add line-break in `docker run` for readability
Co-authored-by: Daniël de Kok <danieldk@users.noreply.github.com>
* Add line-break in `docker run` for readability
Co-authored-by: Daniël de Kok <danieldk@users.noreply.github.com>
---------
Co-authored-by: Daniël de Kok <danieldk@users.noreply.github.com>
* Baichuan2-13B does not have max_position_embeddings in config
see https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/main/config.json
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Update server/text_generation_server/models/flash_causal_lm.py
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
* fmt
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
error like "ValueError: Expecting a ProcessGroup, but got a <class
'text_generation_server.utils.dist.FakeGroup'>. rank=0"
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Basic flashinfer 0.2 support
This change does not use any of the new features yet, but makes
some small compatibility changes.
* Update to flashinfer 0.2.0.post1
* flashinfer: remove `contiguous` calls
* Fix flashinfer install
* flashinfer: fixup kv cache dtype
* Fix some annoying perturbations
* More output changes
* update ipex xpu to fix issue in ARC770
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* add ats support
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Fix runtime error when Qwen2-VL was prompted with multiple images
Fix runtime error when Qwen2-VL model is prompted with prompt with more
than one image. The runtime error was:
File "text-generation-inference/server/text_generation_server/models/custom_modeling/qwen2_vl.py", line 459, in get_position_ids
text_pos_ids = torch.arange(text_length, device=d)
RuntimeError: upper bound and larger bound inconsistent with step sign
The error was caused by text_length variable going to negative value
when multiple images caused multiple loops in the get_position_ids
function's main loop.
The error is a simple logic mistake where next_image_pos is initialized
as relative offset from current_pos, but was used like it was absolute
position from zero.
* Fix runtime error when Qwen2-VL was prompted with multiple images
Fix runtime error when Qwen2-VL model is prompted with prompt with more
than one image. The runtime error was:
File "text-generation-inference/server/text_generation_server/models/custom_modeling/qwen2_vl.py", line 534, in forward
inputs_embeds[input_ids == self.image_token_id] = image_embeds
RuntimeError: shape mismatch: value tensor of shape [512, 3584] cannot be broadcast to indexing result of shape [1024, 3584]
(The error message shape numbers can be different depending on the input
image resolutions)
The error was caused by adding the wrong number of <|image_pad|> tokens
to the tokenized input in the image_text_replacement function.
The error is a simple logical mistake where the number of image pad
tokens is checked from pixel_value_shape tensor's first dimension
length. However, the pixel_value_shape contains patches from all of the
images. Therefore the code added the total number of required image pad
tokens for the whole input to each of the images locations. This
resulted to extra image pad tokens to be present in the tokenized input.
The fix was to check the number of required tokens from the
image_grid_thw tensor. The tensor includes grid_t, grid_h, and grid_w
values for each image. grid_t * grid_h * grid_w results to the total
number of patches for the image [1]. The number of required image pad
tokens is number_of_patches // 4.
[1] 31f9a289a6/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py (L311)
---------
Co-authored-by: Janne Alatalo <janne.alatalo@jamk.fi>
* misc(cmake) update dependencies
* feat(hardware) enable new hardware.hpp and unittests
* test(ctest) enable address sanitizer
* feat(backend): initial rewrite of the backend for simplicity
* feat(backend): remove all the logs from hardware.hpp
* feat(backend): added some logging
* feat(backend): enable compiler warning if support for RVO not applying
* feat(backend): missing return statement
* feat(backend): introduce backend_workspace_t to store precomputed information from the engine folder
* feat(backend): delete previous backend impl
* feat(backend): more impl
* feat(backend): use latest trtllm main version to have g++ >= 13 compatibility
* feat(backend): allow overriding which Python to use
* feat(backend): fix backend_exception_t -> backend_error_t naming
* feat(backend): impl missing generation_step_t as return value of pull_tokens
* feat(backend): make backend_workspace_t::engines_folder constexpr
* feat(backend): fix main.rs retrieving the tokenizer
* feat(backend): add guard to multiple header definitions
* test(backend): add more unittest
* feat(backend): remove constexpr from par
* feat(backend): remove constexpig
* test(backend): more test coverage
* chore(trtllm): update dependency towards 0.15.0
* effectively cancel the request on the executor
* feat(backend) fix moving backend when pulling
* feat(backend): make sure we can easily cancel request on the executor
* feat(backend): fix missing "0" field access
* misc(backend): fix reborrowing Pin<&mut T> as described in the doc https://doc.rust-lang.org/stable/std/pin/struct.Pin.html#method.as_mut
* chore: Add doc and CI for TRTLLM (#2799)
* chore: Add doc and CI for TRTLLM
* chore: Add doc and CI for TRTLLM
* chore: Add doc and CI for TRTLLM
* chore: Add doc and CI for TRTLLM
* doc: Formatting
* misc(backend): indent
---------
Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
Added instructions to clone the repo and change directory into it.
In following steps there is a "make install" step that would fail if people have not cloned the repo and cd into it, so it may be confusing for some
Added python venv alternative to conda too.
* Using both value from config as they might not be correct.
* Fixing max_position_embeddings for falcon.
* Simple attempt to fix the healthcheck block allocation.
* Much simpler solution.
* Default value for Backend start_health
* Attempt at automatic max batch prefill.
* Taking into account number of shards.
* Adding more cards.
* Adding A100 + H100
* Adding a few more cards.
* Logprobs cost too much.
* h100 better name, and keep factor of 2
* Damn inflated sparse tflops.
* Typo in h100.
* Updated the flops calculation (checked with fvcore).
* chunking by default.
* Fix prefix caching for chat completion since we removed logprobs.
* More tests.
* Dropping all the prefill logprobs.
* Add a flag that enables users to get logprobs back.
* Repairing prompt token counting.
* Fixing a few tests.
* Remove some scaffolding.
* Attempting to reduces the issues (workarounds for now).
* Saving some VRAM.
- 8B on 4xL4 attention=flashdecoding . Before 4.28GB left, After 4.32GB
left, so 400MB saved.
- Effect not as visible on attention=flashinfer and n_shard=1. I suspect
it's linked to the torch allocator.
* Adding assertion.
* Sync (most) server dependencies with Nix
Skipped most grpcio packages, because of protobuf version
incompatibility with the opentelemetry packages.
* Add a primitive script to generate Poetry commands to sync with Nix
This is not fully automated, since getting the Nix versions may be
unresolvable. However, it does take most of the work out of doing
this manually.
* Upgrade eetq ?
* Fmt.
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
LLama 3 has a list of values as eos_token_id:
"['<|end_of_text|>', '<|eom_id|>', '<|eot_id|>']"
This breaks tokenizer since it expects single value. This
commit uses tokenizer.eos_token_id instead in such a case.
Fixes: #2440
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* feat: support continue_final_message param in chat request
* feat: add test for continue final message
* fix: bump openapi docs
* fix: remove continue_final_message chat request param
* fix: remove unneeded launcher args in continue test
* fix: bump test output
* fix: remove accidentally included guideline from rebase
* fix: remove guideline tests
* fix: adjust continuation tests expected text
* fix: replace expected output for continue test
The compressed-tensors configuration can specify the configuration of
the KV cache as well. Use an FP8 KV cache when the configuration tells
us to do so (all other options and types are ignored for now).
* Move JSON grammar -> regex grammar conversion to the router
This change moves the JSON grammar -> regex grammar conversion to the
router by adding a dependency on the `outlines-core` Rust crate. In
contrast to the Python implementation, the conversions are not LRU-cached
since they seem to be fast enough:
simple schema time: [5.8293 µs 5.8307 µs 5.8320 µs]
change: [-13.166% -12.884% -12.641%] (p = 0.00 < 0.05)
Performance has improved.
complex schema time: [14.875 µs 14.881 µs 14.887 µs]
change: [-2.1637% -1.9914% -1.7852%] (p = 0.00 < 0.05)
Performance has improved.
Using the schemas from:
https://github.com/dottxt-ai/outlines-core/blob/main/benchmarks/bench_json_schema.py
* Incomplete generation stream fix (#2754)
entries.len() could > batch.size in prefill, so need to filter as well.
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* entries was wrongly extended for model that did not support chunking
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
* nix: build and cache all devshells
* nix: add poetry to the impure shell
This shouldn't be used to manage dependencies in a Nix devshell, but can
be handy to update `poetry.lock`.
* Fix Nix build, disable pure shell (covered by Nix tests)
* add OpenAI like tool_choice for named choice
* add tests
* fix: run linter and bump api docs
* fix: consolidate changes and remove old tool type
* feat: improve, simplify and rename tool choice struct add required support and refactor
* fix: simplify tool choice logic, improve tests, openapi and rust docs
* fix: refactor away prepare_chat_input and improve tool grammar apply control flow
* feat: update docs and add tool choice configuration section
* fix: simplify naming, tool choice default and improve test
* fix: adjust tool choice none logic, add test and small refactors
* fix: add missing snapshot file
* fix: adjust tool choice type in test
* fix: adjust default when json tool choice is
* fix: remove trailing space lint after rebase
* fix: remove mostly mocked unit test
---------
Co-authored-by: Linus Bierhoff <linus.bierhoff@icloud.com>
* Add support for compressed-tensors w8a8 int checkpoints
This change adds a loader for w8a8 int checkpoints. One large benefit of
int8 support is that the corresponding cutlass matmul kernels also work on
compute capability 7.5.
Evaluation on neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8:
| Tasks |Version| Filter |n-shot| Metric | |Value | |Stderr|
|---------------|------:|----------------|-----:|-----------------------|---|-----:|---|------|
|gsm8k_cot_llama| 3|flexible-extract| 8|exact_match |↑ |0.8431|± |0.0100|
| | |strict-match | 8|exact_match |↑ |0.8393|± |0.0101|
|ifeval | 4|none | 0|inst_level_loose_acc |↑ |0.8597|± | N/A|
| | |none | 0|inst_level_strict_acc |↑ |0.8201|± | N/A|
| | |none | 0|prompt_level_loose_acc |↑ |0.7967|± |0.0173|
| | |none | 0|prompt_level_strict_acc|↑ |0.7468|± |0.0187|
Which is the same ballpark as vLLM.
As usual, lots of thanks to Neural Magic/vLLM for the kernels.
* Always use dynamic input quantization for w8a8 int
It's far less flaky and gives better output.
* Use marlin-kernels 0.3.5
* Fix a typo
Co-authored-by: drbh <david.richard.holtz@gmail.com>
* Small fixes
---------
Co-authored-by: drbh <david.richard.holtz@gmail.com>
* add ipex moe implementation to support Mixtral and PhiMoe
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* update to ipex xpu 2.5
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* torch has xpu support in 2.5
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix oneapi basekit version
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Apply suggestions from code review
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
* Remove vLLM dependency for CUDA
This change adds `attention-kernels` as a dependency for paged
attention and cache reshaping. With that, we don't use vLLM
anywhere for CUDA.
Tested run (since we don't have paged attention in CI):
```
❯ ATTENTION=paged python -m pytest integration-tests -k "llama and awq" --release
[...]
5 snapshots passed.
```
* Fix clippy warning
* feat: return streaming errors as an event formatted for openai's client
* fix: propagate completions error events to stream
* fix: improve stream api error format and add status code
* fix: improve streamin error to include error_type
* Revert "fix: improve streamin error to include error_type"
This reverts commit 2b1a360b15.
* Reworked the implementation.
* Revert "Reworked the implementation."
This reverts commit 7c3f29777f17411ae4ade57e2f88e73cde704ee5.
* Small lifting.
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Upgrade outlines to 0.1.1
* Update for new API
* Check if allowed tokens is None
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
compressed-tensors is a safetensors extension for sparse, quantized
tensors. The format is more powerful than earlier AWQ/GPTQ/FP8
quantization, because
- Different quantizer configurations can be used for different targets.
- The format can specify input/output quantizers in addition to weight
quantizers.
- Configurable exclusions for quantization.
This change adds a dependency on the `compressed-tensors` package for
its configuration parsing and layer matching functionality.
The following types of quantization are supported in this PR:
- W8A16 and W4A16 INT using GPTQ-Marlin kernels.
- W8A8 and W8A16 FP using FP8-Marlin and cutlass kernels.
Support for other quantization types will be added in subsequent PRs.
fix incorrect output of Qwen2-7B-Instruct-GPTQ-Int4 and Qwen2-7B-Instruct-AWQ
ipex kernel provide func like add_bias, so no need add it outside
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* feat: support multidimensional position ids on batch to enable cuda graphs on qwen2-vl
* fix: only check model type if config exists
* fix: adjust sharding and lm head logic
* fix qwen2 failure in intel cpu
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix: return correct shape logits and add streaming test
* fix: remove unused import and refactor test
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* feat: add support for qwen2 vl model
* feat: fix token padding, enable warmup and process basic request
* fix: improve get_position_ids, add lift embed_tokens
* fix: remove get_cos_sin_hack dev function
* feat: add simple test chat with meesage and text
* fix: lint test
* fix: adjust positional embeddings for multi dimensional position ids
* fix: update docs and lint unused vars
* fix: include linted file
* fix: add norm after text output
* fix: format model file
* fix: adjust for ruff lints
* fix: remove unused rotate_half
* feat: refactors and calc num features
* fix: prefer position_ids passed from vlm causal lm and reset ids on batch
* fix: adjust get_position_ids if not available and add required args to signatures
* fix: adjust resize case for qwen2_vl warmup
* fix: avoid qwen2 vl specific paths with qwen2
add xpu triton in dockerfile, or will show "Could not import Flash Attention enabled models: No module named 'triton'"
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* We can have a tokenizer anywhere.
* Handling potential lack of offsets (python tokenizer)
* Remove redundancy.
* Fixing the tests.
* Flake.lock update ?
* Fixing the GIL locking.
* Fixing mamba by using the transformers version.
* Adding the legacy handle.
* Ellide lifetime.
* Lint.
* Deprecation message.
* Fixing bad rebase.
* Switch from fbgemm-gpu w8a8 scaled matmul to vLLM/marlin-kernels
Performance and accuracy of these kernels are on par (tested with Llama
70B and 405B). Removes a dependency and resolves some stability issues
we have been seeing.
* Update test snapshots
* feat(trtllm): rewrite health to not account for current state
* chore(looper): cleanup a bit more
* feat(post_processing): max_new_tokens is const evaluated now
* chore(ffi):formatting
* feat(trtllm): add stop words handling
# Conflicts:
# backends/trtllm/lib/backend.cpp
* chore(trtllm): create specific parallelconfig factory and logging init methods
* chore(trtllm): define a macro for SizeType cast
* chore(trtllm): use GetParallelConfig
* chore(trtllm): minor refactoring
* chore(trtllm): validate there are enough GPus on the system for the desired model
* chore(trtllm): ensure max throughput scheduling policy is selected
* chore(trtllm): minor fix
* chore(router): minor refactorings
* feat(docker): build with-slurm ompi
* feat(docker): add python3.10 dev to runtime deps
* chore(docker): add mpi to ld_library_path
* chore(docker): install transformers
* feat(trtllm): detect stop_words from generation_config.json
* (backend) use parking_lot crate for RwLock fairness
# Conflicts:
# backends/trtllm/src/backend.rs
* (launcher) default new server::run parameters to false for now
* (chore) fmt ... why?
* (ffi) use const for GetSamplingConfig
* (server) expose new SchedulingError
* (trt)
* (build) setup ccache if available
* (ffi) add max_new_tokens parameters
* (backend) cleanup a bit
* (backend) expose PullNewTokens
* (ffi) cleanup again
* (ffi) add missing headers imports
* (ffi) add template specialization to catch and convert to Rust Result<T, tensorrt_llm::common::TllmException>
* (looper) new looper initial implementation
* (ffi) remove narrowing type warning
* (ffi) encode the provided user prompt within each request thread
* (misc) change scope identifiers
* (backend) implement the post_processor background thread
* (misc) missing Result types for Rust
* use blocking_recv in looper to consume awaiting_requests at max before pulling in a single step
* (server) forward auth_token to server::run
* (build) fetchcontent use archives instead of git
* (ffi) fix usage of wrong vector constructor making a capacity fill call
* (ffi) missing namespace for tle::Response
* (ffi) do not use reference capture in lambda as we are not capturing anything
* (backend) refactor & cleanup
* (Dockerfile.trtllm) delete for now
* (misc) simplify [make_]move_iterator by using c++20 type inference
* (misc) no need to move for uint32_t items
* (scheduler) rework submit/pull logic
* (post) impl postprocessing
* (misc) delete backend.rs
* (misc) rerun-if-changed all the cmake modules
* (misc) move to latest trtllm
* (fix): HOPPER_SM_MAJOR is 9 not 8
* (misc: build for sm_{75,80,86,89,90} by default
* (misc): build with trtllm 0.13.0
* (misc): increase verbosity of spdlog
* (fix): do not recreate the stateful hashmap at every it
* (misc): update dependency in trtllm dockerfile
* (misc): update dependency in trtllm dockerfile
* (misc): disable logging in release mode
* (misc): improve trtllm download script robustness
* (fix): ore fixes for Dockerfile
* misc(cuda): require 12.6
* chore(cmake): use correct policy for download_timestamp
* feat(looper): check engine and executorWorker paths exist before creating the backend
* chore(cmake): download timestamp should be before URL
* feat(looper): minor optimizations to avoid growing too much the containers
* chore(trtllm): move dockerfile to right place
* chore(trtllm): disable tokenizer parallelism by default
* chore(trtllm): fmt
* chore(trtllm): post-rebase commit
* chore(trtllm): remove unused method
* feat(trtllm): cache maxNumTokens to avoid calling JSON everytime
* misc(router): remove SchedulingError
* feat(trtllm): do not tokenize twice
* Revert "chore(trtllm): remove unused method"
This reverts commit 31747163
* chore(rebase): fix invalid references
* chore(router): add python dependency
* Lint.
* Fix bad rebase
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Add support for FP8 KV cache scales
Since FP8 only has limited dynamic range, we can scale keys/values
before storing them into the cache (and unscale them in attention). To
avoid rescaling the cache as the absmax values change, good scales are
usually determined per layer using calibration calibration data and stored
in the checkpoint.
This change adds support for for using key-value scales and loading them
from checkpoints in the two most common formats:
- Separate per-layer `k_scale` and `v_scale` scalars.
- Per-layer `kv_scale` scalar (older format).
Currently, scales are only used with an `float8_e4m3fn` cache.
Besides adding support for key/value scales, the `fp8_quantize` function
is also extended to support quantization with a kernel vendored from
vLLM. This is slightly faster than the PyTorch implementation, but also
scales in FP32, potentially improving accuracy.
* Update FP8 KV cache test to use checkpoint with scales
* `can_scale`: check that the attention is flashinfer
* Add `impureWithCuda` dev shell
This shell is handy when developing some kernels jointly with TGI - it
adds nvcc and a bunch of commonly-used CUDA libraries to the environment.
We don't add this to the normal impure shell to keep the development
environment as clean as possible (avoid accidental dependencies, etc.).
* Add cuDNN
Update the Mixtral GPTQ test to use a model with `desc_act=true` and
`group_size!=-1` to ensure that we are checking activation
sorting/non-full K (with tensor parallelism). The `desc_act=false` case
is already checked by the Mixtral AWQ test.
Change `fp8_quantize` so that we can pass around reciprocals everywhere,
so scales are always passed around in the checkpoint format.
I also noticed that we ignore any input scales that we might have when
fbgemm is available. Skip this path if we already have a scale.
* add gptq and awq int4 support in intel platform
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix ci failure
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* set kv cache dtype
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* refine the code according to the review command
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Simplifying conditionals + reverting integration tests values.
* Unused import
* Fix redundant import.
* Revert change after rebase.
* Upgrading the tests (TP>1 fix changes to use different kernels.)
* Update server/text_generation_server/layers/gptq/__init__.py
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
tgi-entrypoint: exec instead of spawning a child process
reason: otherwise parent will receive the signals when we'd like tgi to receive them
keeping the parent/child is not necessary and would require the parent to handle signals to forward them properly to the child
Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com>
Co-authored-by: Raphael Glon <oOraph@users.noreply.github.com>
* Simplify the `attention` function
- Use one definition rather than multiple.
- Add `key`/`value` arguments, so that we don't need the
`PREFILL_IN_KVCACHE` constant.
- Make it kwargs-only (to avoid mixing up the various `Tensor` args).
* Fixup flashinfer support
As spotted by @philschmid, the payload was compliant with Vertex AI, but
just partially, since ideally the most compliant version would be with
the generation kwargs flattened to be on the same level as the
`messages`; meaning that Vertex AI would still expect a list of
instances, but each instance would be an OpenAI-compatible instance,
which is more clear; and more aligned with the SageMaker integration
too, so kudos to him for spotting that; and sorry from my end for any
inconvenience @Narsil.
XPU backend is available natively (without IPEX) in pytorch starting
from pytorch 2.4. This commit extends TGI to cover the case when user
has XPU support thru pytorch 2.4, but does not have IPEX installed.
Models which don't require attention can work. For attention required
models more work is needed to provide attention implementation.
Tested with the following models:
* teknium/OpenHermes-2.5-Mistral-7B
* bigscience/bloom-560m
* google/gemma-7b
* google/flan-t5-xxl
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* break when there's nothing to read
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Different approach, only listen on stdin when `LOG_LEVEL=debug` (which
is where dropping to a debugger is important).
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
* Small improvements for docs
* Update _toctree.yml
* Updating the doc (we keep the list actually).
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* feat: process token stream before returning to client
* fix: expect content in test
* fix: improve comparison via ruff lint
* fix: return event in all cases
* fix: always send event on error, avoid unwraps, refactor and improve tests
* fix: prefer no_tool over notify_error to improve reponse
* fix: adjust chat input test for no_tool
* fix: adjust test expected content
---------
Co-authored-by: System administrator <root@ip-10-90-0-186.ec2.internal>
To make sure that everything is formatted with the same black version
as CI.
I sometimes use isort for new files to get nicely ordered imports,
so add it as well. Also set the isort configuration to format in a
way that is compatible with black.
* Add basic FP8 KV cache support
This change adds rudimentary FP8 KV cache support. The support is
enabled by passing `--kv-cache-dtype fp8_e5m2` to the launcher. Doing so
uses this type for the KV cache. However support is still limited:
* Only the `fp8_e5m2` type is supported.
* The KV cache layout is the same as `float16`/`bfloat16` (HND).
* The FP8 KV cache is only supported for FlashInfer.
* Loading of scales is not yet supported.
* Fix Cargo.toml
* feat: unroll notify_error if no tool is choosen
* fix: expect simple message when no tool is selected
* fix: improve test to avoid notify_error
* fix: improve docs and indicate change in expected response
* fix: adjust linting in test file
* adding max_token_capacity_metric
* added tgi to name of metric
* Adding max capacity metric.
* Add description for the metrics
---------
Co-authored-by: Edwinhr716 <Edandres249@gmail.com>
* Working loading state.
* Preprocessing.
* Working state ? (Broke idefics1 temporarily).
* Cleaner condition.
* Fix idefics.
* Updating config, removing TODO
* Mllama
* Ugrade transformers 4.45
* Flashing mllama.
* Starting to get there.
* Working state.
* Integrations tests for mllama (cutting to 10 tokens because there seems'
to be instability after (meaning size of the batch matters.
* Updating model link.
* Earlier assert.
* Fix vlm ?
* remove log.
* Force ignore all images but last.
* Default dtype bfloat16.
* Update integration test after switch to bf16.
* Remove dead code.
* Removed dead code.
* Upgrade the flake to latest transformers/tokenizers
* Move to hf tgi-nix
* Upgrade to 0.5.0
* nix: experimental support for building a Docker image
Run using something like:
```
docker run \
--device nvidia.com/gpu=all \
-it --rm -p 8080:80 \
-v $PWD/data:/data \
-v $PWD/tmp:/tmp \
tgi-docker:latest \
--model-id <model_id>
```
* Example of building the Docker image using Nix inside Docker
* Stream to make the builder image smaller
This avoids storing a Docker image tarball in the image. Instead,
stream the layers while doing `docker run`.
* Don't spam journalctl on Linux
* Other dockerfile.
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* feat: support phi3.5 moe model loading
* fix: prefer llama base model and improve rotary logic
* feat: return reasonable generation and add integration test
* fix: run lint and update docs
* fix: rerun lint for openapi docs
* fix: prefer do_sample false unless temp is set by user, and update chat tests
* fix: small typo adjustments
* fix: consolidate long rope paths
* fix: revert greedy by default and test changes
* Vendor configuration so that we don't have to `trust_remote_code`
* Use SparseMoELayer
* Add support for dense MoE
* Some type annotations
* Add the usual model tests
* Ruff.
---------
Co-authored-by: Daniël de Kok <me@danieldk.eu>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
This change add support for MoE models that use GPTQ quantization.
Currently only models with the following properties are supported:
- No `desc_act` with tensor parallelism, unless `group_size=-1`.
- No asymmetric quantization.
- No AWQ.
Remove compute capability lock
We are only calling the `get_cuda_capability` function once, so avoiding
the cost of multiple calls is not really necessary yet.
* Improve support for GPUs with capability < 8
- For models that cannot use flashinfer, use flash-attn v1 + paged
attention for models with a compute capability older than 8.
- Disable prefix caching when using paged attention.
- When using flash-attn v1, pass the key/value, rather than the
cache, since v1 cannot use block tables.
* nix: add flash-attn-v1 to the server environment
* Move disabling prefix caching into the block of exceptions
* Capability as `usize`s
* Add support for scalar FP8 weight scales
* Support LLM compressor FP8 checkpoints on H100
On H100, we use fbgemm-gpu, which requires bfloat16 as the input dtype.
However, we wouldn't pick up fp8 quantization for models quantized with
LLM compressor. This change adds enough parsing to detect if models have
FP8-quantized weights.
* Remove stray debug print
* Stream options.
* Fetch stuff from nix integration test for easier testing.
* Adding the assert.
* Only send the usage when asked for.
* Update the docs.
* Impure test because we need network.
* develop.
* Optional usage.
* Fixes.
* Workflow
* Move to moe-kernels package and switch to common MoE layer
This change introduces the new `moe-kernels` package:
- Add `moe-kernels` as a dependency.
- Introduce a `SparseMoELayer` module that can be used by MoE
models.
- Port over Mixtral and Deepseek.
* Make `cargo check` pass
* Update runner
* Adding a test for FD.
* Fixing flashdecoding (empty batch doesn't work).
* Fixing the invalid popping.
* Fixing radix with block_size > 1
* Last reference.
* Use an actual hash.
* Update hash for slice.len() == 1
* Update the locks.
* Increasing docker timeout.
* Add nix test.
* Modifying yourself means you need to rerun.
* Fixing the test + adding click (needed for pre-commit hooks).
* Try thuis.
* Our runner + pure test (not written)
* Reemove server.
* Root user.
* Different user ?
* Add the actual test target.
* Forgot this modification.
* Add a formatter.
* Add the secrets.
* Fixed the auth token ?
* Adding the other tests.
* Missing pre-commit.
* Test requires cargo for cargo fmt.
* Update it a bit.
* Up.
* Attempting to use a cache location for the models.
* Ignore the cache for now.
Ideally we wouldn't have the router wrapper that this change adds,
but when I give PyO3 a Python interpreter with packages, it ends
up linking libpython from the Python interpreter rather than the
constructed environment and cannot pick up the Python modules as
a result.
* Fixing odd tokenization self modifications on the Rust side (load and
resave in Python).
* Fixing the builds ?
* Fix the gh action?
* Fixing the location ?
* Validation is odd.
* Try a faster runner
* Upgrade python version.
* Remove sccache
* No sccache.
* Getting libpython maybe ?
* List stuff.
* Monkey it up.
* have no idea at this point
* Tmp.
* Shot in the dark.
* Tmate the hell out of this.
* Desperation.
* WTF.
* -y.
* Apparently 3.10 is not available anymore.
* Updating the dockerfile to make libpython discoverable at runtime too.
* Put back rust tests.
* Why do we want mkl on AMD ?
* Forcing 3.11 ?
* Adding prefix test.
* [WIP] tmp dump of integration load tests.
* Remove other tensor creation.
* Fixed the radix tree.
Used a slice everywhere in radix.rs to keep the cheap Arc cloning
instead of recomputing the input_ids.
* Fix parsing
* Is it really flashinfer version ?
* Remove some comments.
* Revert the max prefix hit.
* Adding numpy to diff.
* Upgraded flashinfer.
* Upgrading some stuff.
* Are we done yet ?
* Minor fixup
* Remove 1 log and put back the other.
* Add comment for why slot 0 is OK.
* Mounting on the job.
* Get me a debug branch
* Debugging CIs is fun.
* Attempt #28
* wip
* Tmate.
* Praying.
* Updating VLM causal model with updated context.
* Important line got squashed.
* Tmate again.
* Fingers crossed.
* We want only 1 run of integration tests.....
---------
Co-authored-by: Guillaume LEGENDRE <glegendre01@gmail.com>
fix regression caused by attention api change. ipex.varlen_attention does not support paged-cache
format kv input now.
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
The minimum batch size logic could cause prefix blocks to be
deallocated without prefill. The next allocation of the same
prefix would then use garbage blocks.
* Tied embeddings in MLP speculator.
* Fixing the scale_weight when users decide to not use the speculation as
much as defined in the config.
* Adding scaling support + optimize some ops.
* update doc with intel cpu part
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Apply suggestions from code review
we do not use latest ever in documentation, it causes too many issues for users. Release number get update on every release.
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Making prefix/flashinfer the default and testing the full release tests.
* Include flashinfer in the docker.
* Using prebuilt.
* Allowing window_left_size (dummy version).
* Disabling flashinfer/prefix caching on odd head_dim
* Disable prefix caching for lora.
* More specific codes.
* Update lock
* Updating integration tests with new values with FI/FD.
Remove paged as a default too, and using FD everywhere.
* Update cargo lock ?
* Upgrade to 1.80 because of bitstream...
* Everywhere 1.80
* Forgot last default place.
* Apply suggestions from code review
Co-authored-by: drbh <david.richard.holtz@gmail.com>
* Updated flake lock
* Tmp
* Upgrade resolution system for less errors in resolution.
* Remove lambda for cleaner function.
* Handling debugger.
* OVerride the env in server tests.
* Is this enough to make it work ?
* This seems to be working.
* Downgrade some logs.
* Fixing the default for vlm.
* Don't enable prefix caching on VLM just yet.
* Change `add_special_tokens` in order to have the correct tokens for chat
input and not (since it's super important with the prefixing now)
* Fixing prefix caching for flashdecoding.
* Update all models.
* Fixed flashinfer version.
* add_special_tokens is internal only
* Fixing seqlen with the new vlms.
* Fixing the issue with `add_special_tokens` not being passed around.
* Fixing the test.
* Removing encoder_decoder (seq2seq).
* Update the chat test.
* Fixing the batching tokenization in flash causal lm.
* Truncating left for radix purposes.
* Oops this doesn't belong here.
* Put back default pure shell.
* Update server tests
- Default to throughput test in k6
- Use TGI_WIGGLE_ROOM to adjust wiggle room
* Only n_heads / process_group.size() are necessary.
* Revert the integrationt tests change (seem linked to head_size
modification).
* Adding error message when assert is violated.
* Fixing the free algorithm to handle times where the common prefix is
smaller.
* Apply suggestions from code review
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
* Update server/text_generation_server/layers/attention/common.py
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
* Fix disabling prefix caching - Fix windowing checks.
* Revert the Cohere tokenizer change (for now using a revision instead).
* Fmt.
---------
Co-authored-by: drbh <david.richard.holtz@gmail.com>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
Updates tgi-nix input:
- Move Torch closer to upstream by building against MKL.
- Remove compute capability 8.7 from Torch (Jetson).
- Sync nixpkgs cumpute capabilities with Torch (avoids
compiling too mana capabilities for MAGMA).
- Use nixpkgs configuration passed through by `tgi-nix`.
The default package wraps the launcher and puts the server/router in the
path.
As a result, TGI can be started using something like:
```
nix run .# -- \
--model-id hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4 \
--port 8080
```
* nix: pure server and support both pure and impure devShells
* nix: remove unused poetry2nix input
It is not wired up and we now have a pure server.
* nix: add ipdb to impure devshell
* All integration tests back everywhere (too many failed CI).
* Upgrade integration tests after 12.4
* Attempt to remove the specifed compute cap.
* Common arch list.
* Punica uses raw ASM which is not valid on 9.0 apparently.
* doc: Add metrics documentation and add a 'Reference' section
* doc: Add API reference
* doc: Refactor API reference
* fix: Message API link
* Bad rebase
* Moving the docs.
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Try to reduce the number of router/launcher rebuilds by filtering
sources. In this way, recompiles should only be triggered by changes
in Cargo or Rust files.
* Fixing exl2 and other quanize tests again.
* Mark exl2 as non release (so CI tests them, needs to be removed latet).
* Fixing exl2 (by disabling cuda graphs)
* Fix quantization defaults without cuda graphs on exl2 (linked to new
issues with it).
* Removing serde override.
* Go back to released exl2 and remove log.
* Adding warnings for deprecated bitsandbytes + upgrade info to warn.
* (backend) use parking_lot crate for RwLock fairness
* (docker) let's put rust in the TRTLLM folder when building
* (docker) build ompi with SLURM support
* (launcher) default new server::run parameters to false for now
* (chore) fmt ... why?
* fix: improve completions to send a final chunk with usage details
* fix: include finish reason string
* fix: remove dev debug trait and unneeded mut
* fix: update openapi schema
This change adds support for prefix caching to the v3 router. This
is broken up from the backend support to ease reviewing.
For now prefix caching is only enabled with `USE_PREFIX_CACHING=1`
in this case, the router will switch to `RadixAllocator`. This
allocator uses a radix trie to keep track of prefills that were
seen prior. If a new prefill is a prefix of a previously-seen
prefil, the router will send a request with `prefix_len>0`, which
can be used by the backend to decide to reuse KV blocks from the
cache, rather than recomputing them.
Even though backend support is not added in this PR, the backend
will still work with prefix caching enabled. The prefix lengths
are just ignored and not used.
This change adds support for FlashInfer. FlashInfer can be enabled using
`FLASH_INFER=1` and is currently only implemented in `FlashCausalLM`.
Since this functionality is currently only for testing, FlashInfer is
not installed anywhere yet.
The FlashInfer API is quite different from FlashAttention/vLLM in that
it requires more global bookkeeping:
* A wrapper class needs to be contstructed (which we just call *state*).
Since this is fairly expensive (due to pinned host memory allocation),
we only do this once in a FlashCausalLM instance or for each CUDA
Graph size.
* Each model forward call needs to be wrapped in `begin_forward` and
`end_forward`. This sets up data structures that can be reused for all
calls to attention for that forward call.
When calling attention, we need access to the state object. To avoid
passing an argument down the call chain (which would require changes to
all models), we use a context variable.
Each model forward call is wrapped using a context manager that does all
the bookkeeping for such a call:
* Set the context variable to the forward call's state.
* Call `begin_forward` on the state.
* Yield.
* Call `end_forward` on the state.
* Reset the context variable.
We cannot use a single shared global variable for this, since e.g. CUDA
Graphs of different sizes each have their own state.
* Fix unsigned integer underflow
Passing --max-batch-size to the launcher actually had no effect
because after a few requests the max_size passed to State::next_batch
would underflow becoming a largo positive number.
In the scheduler, as soon as the cached batch size reached the
max_batch_size the max_size passed to next_batch becomes 0.
Since the only check in that funcion is
```
if Some(batch_requests.len()) == max_size {
break;
}
```
and it's called after the `batch_requests.len()` has
become 1, it doesn't do anything to prevent more than 0
requests from being batched.
Now we have cached batch in the server that is large than
max_batch_size and `max_size - batch_size as usize`
underflows.
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
* fix: update v3 scheduler and ensure max_batch_size > 0
---------
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Max de Bayser <mbayser@br.ibm.com>
* Update Quantization docs and minor doc fix.
* update readme with latest quants info
* Apply suggestions from code review
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* up
---------
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* hotfix: fix xpu crash brought by code refine. torch.xpu rely on import ipex
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* reable gemma2 in xpu
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix in regression in ipex flashattention
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
* Update __init__.py
Fix issue with NoneType comparison for max_input_tokens and sliding_window
- Add default values for max_input_tokens and sliding_window to handle None cases.
- Ensure the comparison between max_input_tokens and sliding_window is handled correctly to prevent TypeError.
- This change addresses the error: TypeError: '<=' not supported between instances of 'int' and 'NoneType'.
* Update __init__.py
Handle NoneType in sliding_window comparison to fix TypeError in __init__.py by ensuring the comparison logic accounts for NoneType values, preventing errors and improving code robustness.
* fix: syntax/style tweak
---------
Co-authored-by: Praz <prazanth2006@gmail.com>
* add gptj modeling
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix: update docs for model addition
* fix: adjust syntax typo
* fix: adjust syntax typo again
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
* feat: implement a templated endpoint for visibility into chat requests
* feat: improve to tokenize too
* fix: adjust return type
* feat: simplify prepare_chat_input logic and adjust start stop chars
* fix: attempt forward on flash attn2 to check hardware support
* fix: warn window_size_left when using flash attn 1
* fix: prefer version check over test op and avoid window_size_left if not flash attn2
* fix: improve condtional and error message
* fix: update sliding window conditional
* fix: simplify changes and revert model changes
* fix: avoid changing conditional
* fix: typo tweak
- Always return the hidden states.
- Create the output tensor inside the `attention` and `paged_attention`
functions.
This removes the difference between how the output is handled between
attention (output parameter) and paged attention (return value). This
also removes the assumption that the attention implementation can
write to an output tensor (in preparation of FlashInfer).
* Fix cache block size for flash decoding
This seems to have been accidentally dropped during the TRT-LLM
PR rebase.
* Also run CI on changes to `backends`
The `GPTWeightLoader` was structured like this in pseudocode:
if marlin:
Set up tensors in a way that GPTQ-Marlin expects
else:
Set up tensors in a way that ExLlama/GPTQ/AWQ expect
However, the GPT-Marlin implementation details should really be in the
`marlin` module. So move the former part out to a separate
`GPTQMarlinWeightsLoader`.
* wip
wip
refacto
refacto
Initial setup for CXX binding to TRTLLM
Working FFI call for TGI and TRTLLM backend
Remove unused parameters annd force tokenizer name to be set
Overall build TRTLLM and deps through CMake build system
Enable end to end CMake build
First version loading engines and making it ready for inference
Remembering to check how we can detect support for chunked context
Move to latest TensorRT-LLM version
Specify which default log level to use depending on CMake build type
make leader executor mode working
unconditionally call InitializeBackend on the FFI layer
bind to CUDA::nvml to retrieve compute capabilities at runtime
updated logic and comment to detect cuda compute capabilities
implement the Stream method to send new tokens through a callback
use spdlog release 1.14.1 moving forward
update trtllm to latest version a96cccafcf6365c128f004f779160951f8c0801c
correctly tell cmake to build dependent tensorrt-llm required libraries
create cmake install target to put everything relevant in installation folder
add auth_token CLI argument to provide hf hub authentification token
allow converting huggingface::tokenizers error to TensorRtLlmBackendError
use correct include for spdlog
include guard to build example in cmakelists
working setup of the ffi layer
remove fmt import
use external fmt lib
end to end ffi flow working
make sure to track include/ffi.h to trigger rebuild from cargo
impl the rust backend which currently cannot move the actual computation in background thread
expose shutdown function at ffi layer
impl RwLock scenario for TensorRtLllmBackend
oops missing c++ backend definitions
compute the number of maximum new tokens for each request independently
make sure the context is not dropped in the middle of the async decoding.
remove unnecessary log
add all the necessary plumbery to return the generated content
update invalid doc in cpp file
correctly forward back the log probabilities
remove unneeded scope variable for now
refactor Stream impl for Generation to factorise code
expose the internal missing start/queue timestamp
forward tgi parameters rep/freq penalty
add some more validation about grammar not supported
define a shared struct to hold the result of a decoding step
expose information about potential error happening while decoding
remove logging
add logging in case of decoding error
make sure executor_worker is provided
add initial Dockerfile for TRTLLM backend
add some more information in CMakeLists.txt to correctly install executorWorker
add some more information in CMakeLists.txt to correctly find and install nvrtc wrapper
simplify prebuilt trtllm libraries name definition
do the same name definition stuff for tensorrt_llm_executor_static
leverage pkg-config to probe libraries paths and reuse new install structure from cmake
fix bad copy/past missing nvinfer linkage direction
align all the linker search dependency
add missing pkgconfig folder for MPI in Dockerfile
correctly setup linking search path for runtime layer
fix missing / before tgi lib path
adding missing ld_library_path for cuda stubs in Dockerfile
update tgi entrypoint
commenting out Python part for TensorRT installation
refactored docker image
move to TensorRT-LLM v0.11.0
make docker linter happy with same capitalization rule
fix typo
refactor the compute capabilities detection along with num gpus
update TensorRT-LLM to latest version
update TensorRT install script to latest
update build.rs to link to cuda 12.5
add missing dependant libraries for linking
clean up a bit
install to decoder_attention target
add some custom stuff for nccl linkage
fix envvar CARGO_CFG_TARGET_ARCH set at runtime vs compile time
use std::env::const::ARCH
make sure variable live long enough...
look for cuda 12.5
add some more basic info in README.md
* Rebase.
* Fix autodocs.
* Let's try to enable trtllm backend.
* Ignore backends/v3 by default.
* Fixing client.
* Fix makefile + autodocs.
* Updating the schema thing + redocly.
* Fix trtllm lint.
* Adding pb files ?
* Remove cargo fmt temporarily.
* ?
* Tmp.
* Remove both check + clippy ?
* Backporting telemetry.
* Backporting 457fb0a1
* Remove PB from git.
* Fixing PB with default member backends/client
* update TensorRT-LLM to latest version
* provided None for api_key
* link against libtensorrt_llm and not libtensorrt-llm
---------
Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
Co-authored-by: Morgan Funtowicz <morgan@huggingface.co>
* Add API_Key for Auth and conditionally add authorisation for non info/health endpoints.
* change name to info routes
* Fix comment
* convert strings to lowercase for case insensitive comparison
* convert header to string
* fixes and update docs
* update docs again
* revert wrong update
---------
Co-authored-by: Kevin Duffy <kevin.duffy94@gmail.com>
* Fix GPTQ autotune data type to be compatible with Torch 2.4.0
* Update poetry lock file
* Fix small PaliGemma logprob differences after the torch update
* fix crash in multi-modal
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* update according to review comment
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix llava_next regression in latest main
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Support passing head_dim through config
* Using `head_dim` as a fallback is necessary since it's a non standard
key in mistralConfig (as defined in transformers).
* Shorter diff.
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Add support for repacking AWQ weights for GPTQ-Marlin
So far we couldn't support AWQ because virtually all AWQ models use
symmetric quantization, which GPTQ-Marlin did not suppors. GPTQ-Marlin
has recently added support AWQ repacking and AWQ asymmetric quantization
(zero_point=True).
This change updates all GPTQ-Marlin kernels from upstream and wires up
AWQ support. For now enabling AWQ using Marlin requires running TGI with
`--quantize gptq`.
* Enable Marlin for supported AWQ configurations by default
This makes the AWQ -> GPTQ repack test redundant, since we are now
testing this with the regular AWQ test.
Deepseek V2 is a MoE model from Deepseek. Relevant variations
compared to other models:
- Grouped top-K in expert selection.
- mscale in yarn is calculated using the `mscale` and `mscale_all_dim`
configuration options.
- `mscale_all_dim` is also used in scaling attention softmax.
- Permuting of the query/key representations before applying rotary
embeddings.
- Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`).
So, we need weight loads that supports quantized weights. To this
end `{Weights,WeightLoader}.get_weight` was added.
- The query/key head dimensionality differs from that of the value,
so we need to pad during attention.
- Heads with size 192, needs an extension to our paged attention
fork and we need to ensure that the KV cache is allocated with the
correct size.
- Shared experts.
* draft of usage stats
* fix wrong link
* launcher doesn't need sysinfo dep
* only tokenizer class instead of hole struct
* unused import
* fix clippy errors
* update openAPI doc
* cargo fmt
* fix error in passing flags to router
* try again to update docs
* run pre-commit locally
* Update router/src/main.rs
Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
* Update router/src/main.rs
Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
* on crash use anonymous error event
* delete json_output and ngrok
* more robust way of checking if is in container
* more robust nvidia smi
* parse xpu more robustly
* fix errors
* add nvidia-smi details in docs
* cargo fmt
* fix clippy
* should make docs check pass
* Update router/src/usage_stats.rs
Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
* error reason can't be in nested json
* cargo fmt
---------
Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
Co-authored-by: Erik Kaunismäki <erikkaum@Eriks-MacBook-Pro.local>
* Improve the handling of quantized weights
Handling of quantized weights was split between two mechanisms:
- For quantized checkpoints, we used the new weight loader
infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
instead relied on conditional in `get_linear`.
Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.
This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:
- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
`get_linear` does not need to know how to handle quantizer linear
layers.
- All quantizer weights are strongly typed, we don't pass around
raw tensors.
- We don't have to pass around the `quantizer` string everywhere.
* Exclude non-MLP layers when using FP8 quantization with Llama
* feat: simple mistral lora integration tests
* fix: include args in docker launcher
* fix: disable cuda graphs with lora and warn
* fix: adjust docs and precommit issues
* fix: re update docs
Packing of asymmetric quantization is broken, all (q)zeros values
of `0` get reset to `1`, resulting in a loss of accuracy. So instead
use symmetric quantization. To be able to distinguish models with
symmetric and asymmetric quantization, a new config tensor `gptq_sym` is
added. If this tensor is not present, we assume `sym=False`.
Use FP8 GPTQ-Marlin kernels to enable FP8 support on CUDA GPUs
with compute capability >=8.0 and <8.9.
Co-authored-by: Florian Zimmermeister <flozi00.fz@gmail.com>
Quantized weights were loaded in the `Weights` class, but this was
getting quite unwieldy, where every higher level method to load weights
was a long conditional to cover all the different quantizers.
This change moves loading of quantized weights out of the `Weights`
class. This is done by defining a simple `WeightsLoader` interface
that is implemented by `Exl2WeightsLoader`, `GPTQWeightsLoader`,
and `MarlinWeightsLoader`. These implementations are in the quantizers'
respective modules. The `Weights` class provides the low-level load
operations (such as loading tensors or sharded tensors), but delegates
loads that need quantizer-specific weight processing to a loader. The
loaders still use the low-level functionality provided by `Weights`.
I initially tried making a hierarchy where a class like `GPTQWeights`
would inherit from `Weights`. But it is not very flexible (e.g. does
not work well with the new weight storage mock used in tests) and
the implicit indirections made the code harder to follow.
* fix nccl issue
* add note in dockerfile
* use v2.22.3 that also fixes @samsamoa's repro
* poetry actually can't handle the conflict between torch and nccl
* set LD_PRELOAD
* Add more representative Llama GPTQ test
The Llama GPTQ test is updated to use a model with the commonly-used
quantizer config format and activation sorting. The old test is
kept around (but renamed) since it tests the format produced by
`text-generation-server quantize`.
* Add support for manually triggering a release build
* Refactor dead code.
* First working step.
* Remove a lot of duplicated code.
* More dead code.
* More cleanup.
* Fix Santacoder test.
* Fixing the simple tests.
* Fixing sharding.
* Fixes for VLM.
* Fixing santacoder (num_kv_heads hardcoded).
* Removing more dead code.
* Fixing `config.n_head`.
* Stopping earlier because of `<end_of_utterance>` in idefics2.
* Addresses comments.
* Removing the dead code.
* Fuse back mistral into FlashCausalLM.
* Finish removal.
* Fixing docs + causal_lm `batch_class`.
* Fixing docs + causal.lm.
* Add default to Gemma Causality.
* Default value for gemma/gemma2.
* Wrong default.
* feat: add pre commit step to force schema update when router changes
* fix: prefer improved update_doc and start server and compare
* fix: adjust typo
* fix: adjust revert typo
* fix: update workflow to use update_doc md command
* feat: improve workflow to check openapi schema too
* fix: adjust timeout for CI
* fix: adjust raise condition and install server in ci
* fix: install protoc before server
* feat: improve update doc and add command to print router schema
* fix: adjust autodoc workflow
* fix: explicitly install protoc and python
* fix: alllow trailing space in openapi schema diff
* Using flash decoding
Conditional flashdecoding.
Fix max_q.
Working kvcache
Working version with flash decoding.
Make it work for mistral.
Fix after rebase..
Less intrusive.
REvert changes in modeling.
Speedup flashdecoding.
HHachweew
Hack to make other models work.
Fixing non flash decoding llama path.
Router logic knows about page size.
Missing 2 models.
Missing cohere.
Fixing cohere flash decoding.
Revamped all this architecture.
Fix cohere.
Fixing falcon.
Enabling custom block size schedule.
Update router/src/infer.rs
Not sending preallocated output.
* Making it work on non flash decoding.
* Fix Cohere.
* Fix non decoding paths.
* Rebased.
* No need for cache_manager anymore.
* Update?
* "ipex" -> "cpu"
* These do not belong.
* Factoring cu_seqlen_qk for better abstracting over every model.
* Fixing non flash tests/imports.
* Changing return everywhere.
* Update mistral past.
* Fixing Mi{s,x}tral (non functional in Flash Decoding mode though).
* Fixup mistral clamping (had issues with cuda graphs).
* No need to recreate anything actually.
* refine get xpu free memory
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* enable qwen2 in xpu
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* enable gemma/gemma2/phi in intel platform
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
GPTQ-Marlin is currently the best-performing kernel for GPTQ models. So
let's use it by default if the kernels are installed, the GPU supports
it, and the kernels support the configuration.
For models generated by `text-generation-server quantize`, use
`sym=False`. This subcommand symmetric quantization since the beginning
and incorrectly reporting the model to be symmetric will use
GPTQ-Marlin (which does not support asymmetric quantization).
* fix microsoft/Phi-3-mini-4k-instruct crash in batch.slots[batch.slot_indices]
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Apply suggestions from code review
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* fix: refactor post_processor logic and add test
* fix: remove dev comment
* fix: adjust when post_processor is overridden and improve create_post_processor
Before this change, the number of reserved image tokens was not the
same as the number of images. Fixes#2029.
While at it, also remove all the image token handling duplication
in `prepare_input`.
This change adds support for 2:4 sparsity when using Marlin
quantization. The 2:4 kernel is used when:
* The quantizer is `marlin`;
* the quantizer checkpoint format is `marlin_24`.
Fixes#2098.
When the AWQ quantizer was used with a layer that uses a bias,
the bias tensor was not correctly passed/used. Instead, the
value `true`/`1.0` was added to the linear transformation.
Correctly pass through the bias when it is not `None`.
Fixes#2106.
* feat: first draft load multiple lora
* feat: load weights within layer and refactor lora pass
* fix: refactor and reduce lora math
* feat: baseline impl single request multi lora support
* feat: prefer lorax implementation and port loading logic
* fix: prefer adapter_data and refactors
* feat: perfer loraxs custom punica kernels and add mlp loras
* fix: adjust batch for bgmv
* fix: adjust adapter_segments logic when in batch
* fix: refactor and move changes to v3 proto
* fix: pass model_id for all flash causal lms
* fix: pass model_id for all causal and seq2seq lms
* fix: add model_id to model test
* feat: add lora support to mistral and refactors
* feat: prefer model id in request
* fix: include rust code for adapter id
* feat: bump launcher and add new lora docs
* feat: support base model generation and refactors
* fix: rename doc to retry ci build
* feat: support if vlm models
* fix: add adapter_data param and avoid missing layers
* fix: add adapter_data param to phi and neox
* fix: update all models forwards to include adapter_data
* fix: add model_id to IdeficsCausalLM
* Update lora.md
Fixed a typo
* Update lora.md
Fixing spam image
* fix: add lora kernel to dockerfile, support running without kernels and refactors
* fix: avoid dockerfile conflict
* fix: refactors and adjust flash llama lora logic
* fix: skip llama test due to CI issue (temp)
* fix: skip llama test CI (temp) 2
* fix: revert skips and prefer updated ci token for tests
* fix: refactors and helpful comments
* fix: add noop in TensorParallelAdapterRowLinear too
* fix: refactor and move shard_lora_weights logic
* fix: exit early if no adapter_data
---------
Co-authored-by: Derek <datavistics@gmail.com>
* Add pytest release marker
Annotate a test with `@pytest.mark.release` and it only gets run
with `pytest integration-tests --release`.
* Mark many models as `release` to speed up CI
* Removing IPEX_AVAIL.
Chose to unify CPU and XPU under `ipex`. Most code is exactly similar
except for a very few spots.
The biggest number of spots is the kv-cache layout and the flash_xxx.py
files.
Since those files should be removed soon and factored away, we should
not need them.
* Forgot a few places.
* Unrelated change.
* Fixing HF_TOKEN.
* HF_TOKEN
* add CPU tgi support
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* ipex distributed ops support
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Funtowicz Morgan <mfuntowicz@users.noreply.github.com>
* use xpu-smi to dump used memory
xpu use "ZE_AFFINITY_MASK" to control card, usage is like CUDA_VISIBLE_DEVICES
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Update server/text_generation_server/utils/import_utils.py
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
* Fix cargo-chef prepare
In prepare stage, cargo-chef reads Cargo.lock and transforms it accordingly.
If Cargo.lock is not present, cargo-chef will generate a new one first, which
might vary a lot and invalidate docker build caches.
* Fix Dockerfile_amd and Dockerfile_intel
* New runner. Manual squash.
* Network host.
* Put back trufflehog with proper extension.
* No network host ?
* Moving buildx install after tailscale ?
* 1.79
For Phi-3-Small I need to shard a packed QKV bias tensor, for which
I implemented the `Weights.get_packed_sharded` method. However, this
method can also replace the `Weights._get_qweight` method and the
custom sharding code from `Weights.get_weights_col_packed`.
* Set maximum grpc message receive size to 2GiB
The previous default was 4MiB, which doesn't really work well for
multi-modal models.
* Update to Rust 1.79.0
* Fixup formatting to make PR pass
When a batch contained images if different sizes during prefill, the
server would fail (see e.g. #2056). Images were processed separately and
then concatenated. However, this can fail for images with different sizes.
Fix this by preprocessing all images in the batch together, so that the
image processor can ensure that all image tensors have compatible sizes.
Add support for GPTQ Marlin kernels
GPTQ Marlin extends the Marlin kernels to support common GPTQ
configurations:
- bits: 4 or 8
- groupsize: -1, 32, 64, or 128
- desc_act: true/false
Using the GPTQ Marlin kernels requires repacking the parameters in the
Marlin quantizer format.
The kernels were contributed by Neural Magic to VLLM. We vendor them
here for convenience.
* feat: add kserve feature and basic routes
* feat: implement infer endpoint wrapper around generate
* fix: refactor and improve types
* fix: improve infer and simplify
* fix: cleanup and improve api docs
* fix: refactor and encapsulate kserve feat in file
* fix: remove typos after rebase
Add support for Phi-3-medium
The main difference between the medium and mini models is that medium
uses grouped query attention with a packed QKV matrix. This change adds
support for GQA with packed matrixes to `Weights.get_weights_col_packed`
and uses it for Phi-3. This also allows us to remove the custom
implementation of GQA from dbrx attention loading.
* update vllm commit & fix models using sliding window
* update
* update commit
* fix bug where tunableop is bound to cuda graph even when cuda graph are disabled
* enable tunableop by default
* fix sliding window
* address review
* dead code
* precise comment
* is it flaky?
The router will now send the input as chunks besides as a single
string. This change modifies the server to process chunked input
rather than strings. This also allows us to remove the image
extraction code from the server.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This change adds support for Marlin-quantized models. Marlin is an
FP16xINT4 matmul kernel, which provides good speedups decoding batches
of 16-32 tokens. It supports quantized models with symmetric
quantization, groupsize -1 or 128, and 4-bit.
Tested with:
- Llama 2
- Llama 3
- Phi 3
There was a new release of the python client with version upped to 0.7.0
on pip and on the pyproject.toml, but it wasn't changed on the
__init__.py so when one does:
```python
import text_generation
print(text_generation.__version__)
```
It still outputs "0.6.0"
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
Fix stray import.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
Do not attempt to allocate ExLlamaV2 scratch buffers when there are no
ExLlama2 layers. Avoids a crash in warmup for models that cannot use
exllama when ExLlamaV2 is installed.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
Fixes initial and subsequent installs (protection for folder creation
should only be for git commit, checking out correct commit should be on
both.
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
Making `make install` a much better sane default to start local dev
environments.
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
The GPTQ code path for column-packed packed tensors assumed that this is
always a QKV matrix. However, models (e.g. Phi-3) can also have
column-packed MLP up/gate matrices.
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
- Refactor code to allow supporting multiple versions of the
generate.proto at the same time
- Add v3/generate.proto (ISO to generate.proto for now but allow for
future changes without impacting v2 backends)
- Add Schedule trait to abstract queuing and batching mechanisms that
will be different in the future
- Add SchedulerV2/V3 impl
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
PR #1986 moved the location of the `flash_attn_triton.py` file. This PR
adjusts sources to changes.
## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
# What does this PR do?
We were using the wrong parallelism in the up-projection.
<!-- Remove if not applicable -->
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
Before this change, the generation input was sent to the backend as a
single string, encoding images as Base64 and packing them in
Markdown-style links.
This change adds a new chunked input representation that separates text
chunks from images chunks. Image chunks contain binary data (for smaller
message sizes) and the image's MIME type.
The stringly-typed inputs are still sent to support backends that do not
support chunked inputs yet.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This test fails somewhat regularly due to non-determinism and this
test is primarily to verify that we are loading a model which doesn't
have `float16` as the default dtype correctly.
Mostly straightforward, changes to existing code:
* Wrap quantizer parameters in a small wrapper to avoid passing
around untyped tuples and needing to repack them as a dict.
* Move scratch space computation to warmup, because we need the
maximum input sequence length to avoid allocating huge
scratch buffers that OOM.
This PR updates `load_attention` to prefer loading specific attention
based on the model type. Additionally there were two cases where
`TensorParallelColumnLinear.load_multi` was called and this reduces it
to a single path
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
Two issues:
1. When one of the stdout/stderr pipe buffers of a process started
with `subprocess.Popen` is full, the process can get blocked until
the buffer is drained.
2. Calling `Popen.wait` can deadlock when called before draining
the pipe buffers (if they are full).
This avoids the issue altogether by giving the child process a
temporary file to write to.
- Axum upgraded to hyper 1.0 and most of the ecosystem switched so it's
our time now
- [ngrok-rust](https://github.com/ngrok/ngrok-rust/pull/137/files)
hasn't yet, and hasn't for several months now, so let's disabled the
feature for the time being.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR loads the `processor_config` similar to the `tokenizer_config`
and uses the processor_config's chat_template if the tokenizer_config
does not include one. These changes enable chat with idefics2
# What does this PR do?
Fix GPTQ for models which do not have float16 at the default dtype
Before this change GPTQ models would not work if the model's default
data type is not `float16`. For example, Gemma GPTQ models would fail
because the default dtype of Gemma is `bfloat16`. There are two issues:
If the default `dtype` is not `float16`, the quantizer's `float16`
parameters get converted to that dtype. The kernels cannot deal
with non-`float16` types. The same applies to inputs of quantized ops.
This is resolved by setting the dtype of gptq/awq-quantized models to
`float16`.
Simpler version of #1951.
**Draft:** just testing...
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
- The need for the slow tokenizer default stems from back
when llama 1 was introduced and all the flags where not
supported in `tokenizers`.
- Fixes#1891
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
- Added a debug log for speculated ids (helps seeing in logs quality of
a speculator).
- Remove newlines from child process logs when re-emitting in non JSON
mode.
- Made standard level be closer to what's expected (only our binaries
level).
- Propagate that level correctly to the shard (was forced into INFO).
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
- Add the stop parameter to the completion route
- Add the completion method to the python client
- Add the stop parameter to the python client's chat method
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
@Narsil
---------
Co-authored-by: Thomas SCHILLACI <tschilla@px101.prod.exalead.com>
Co-authored-by: Thomas Schillaci <thomas.schillaci@3ds.com>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
This PR adds a tutorial to self distill and train medusa heads for a
specific model
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
This PR access the path on the speculator similar to
`MLPSpeculatorHead.load` and `MedusaHeadV1.load`
these changes resolves this error locally when loading a `MedusaHeadV2`
```
TypeError: expected str, bytes or os.PathLike object, not dict
```
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR simply includes the HF token in the client tests similar to how
it's included in the server tests. This helps avoid CI failure due to
rate limiting
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes an incorrect url in monitoring doc.
## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
Adds support for AMD Instinct MI300 in TGI.
Most changes are:
* Support PyTorch TunableOp to pick the GEMM/GEMV kernels for decoding
https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cuda/tunable.
TunableOp is disabled by default, and can be enabled with
`PYTORCH_TUNABLEOP_ENABLED=1`.
* Update ROCm dockerfile to PyTorch 2.3 (actually patched with changes
from https://github.com/pytorch/pytorch/pull/124362)
* Support SILU & Linear custom kernels contributed by AMD
* Update vLLM paged attention to https://github.com/fxmarty/rocm-vllm/,
branching out of a much more recent commit
3489ce7936
* Support FA2 Triton kernel as recommended by AMD. Can be used by
specifying `ROCM_USE_FLASH_ATTN_V2_TRITON=1`.
* Update dockerfile to ROCm 6.1
By default, TunableOp tuning results are saved in `/data` (e.g.
`/data/tunableop_meta-llama-Llama-2-70b-chat-hf_tp1_rank0.csv`) in order
to avoid to have to rerun the tuning at each `docker run`.
Example:
```
Validator,PT_VERSION,2.3.0
Validator,ROCM_VERSION,6.1.0.0-82-5fabb4c
Validator,HIPBLASLT_VERSION,0.7.0-1549b021
Validator,GCN_ARCH_NAME,gfx942:sramecc+:xnack-
Validator,ROCBLAS_VERSION,4.1.0-cefa4a9b-dirty
GemmTunableOp_Half_TN,tn_8192_7_28672,Gemm_Rocblas_45475,0.132098
GemmTunableOp_Half_TN,tn_10240_4_8192,Gemm_Rocblas_45546,0.0484431
GemmTunableOp_Half_TN,tn_32000_6_8192,Default,0.149546
GemmTunableOp_Half_TN,tn_32000_3_8192,Gemm_Rocblas_45520,0.147119
GemmTunableOp_Half_TN,tn_8192_3_28672,Gemm_Rocblas_45475,0.132645
GemmTunableOp_Half_TN,tn_10240_3_8192,Gemm_Rocblas_45546,0.0482971
GemmTunableOp_Half_TN,tn_57344_5_8192,Gemm_Rocblas_45520,0.255694
GemmTunableOp_Half_TN,tn_10240_7_8192,Gemm_Rocblas_45517,0.0482522
GemmTunableOp_Half_TN,tn_8192_3_8192,Gemm_Rocblas_45546,0.0444671
GemmTunableOp_Half_TN,tn_8192_5_8192,Gemm_Rocblas_45546,0.0445834
GemmTunableOp_Half_TN,tn_57344_7_8192,Gemm_Rocblas_45520,0.25622
GemmTunableOp_Half_TN,tn_8192_2_28672,Gemm_Rocblas_45475,0.132122
GemmTunableOp_Half_TN,tn_8192_4_8192,Gemm_Rocblas_45517,0.0453191
GemmTunableOp_Half_TN,tn_10240_5_8192,Gemm_Rocblas_45517,0.0482514
GemmTunableOp_Half_TN,tn_8192_5_28672,Gemm_Rocblas_45542,0.133914
GemmTunableOp_Half_TN,tn_8192_2_8192,Gemm_Rocblas_45517,0.0446516
GemmTunableOp_Half_TN,tn_8192_1_28672,Gemm_Hipblaslt_TN_10814,0.131953
GemmTunableOp_Half_TN,tn_10240_2_8192,Gemm_Rocblas_45546,0.0481043
GemmTunableOp_Half_TN,tn_32000_4_8192,Gemm_Rocblas_45520,0.147497
GemmTunableOp_Half_TN,tn_8192_6_28672,Gemm_Rocblas_45529,0.134895
GemmTunableOp_Half_TN,tn_57344_2_8192,Gemm_Rocblas_45520,0.254716
GemmTunableOp_Half_TN,tn_57344_4_8192,Gemm_Rocblas_45520,0.255731
GemmTunableOp_Half_TN,tn_10240_6_8192,Gemm_Rocblas_45517,0.0484816
GemmTunableOp_Half_TN,tn_57344_3_8192,Gemm_Rocblas_45520,0.254701
GemmTunableOp_Half_TN,tn_8192_4_28672,Gemm_Rocblas_45475,0.132159
GemmTunableOp_Half_TN,tn_32000_2_8192,Default,0.147524
GemmTunableOp_Half_TN,tn_32000_5_8192,Default,0.147074
GemmTunableOp_Half_TN,tn_8192_6_8192,Gemm_Rocblas_45546,0.0454045
GemmTunableOp_Half_TN,tn_57344_6_8192,Gemm_Rocblas_45520,0.255582
GemmTunableOp_Half_TN,tn_32000_7_8192,Default,0.146705
GemmTunableOp_Half_TN,tn_8192_7_8192,Gemm_Rocblas_45546,0.0445489
```
---------
Co-authored-by: Mohit Sharma <mohit21sharma.ms@gmail.com>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
Taking the signal handles later, so during loads,
regular signal handling is done, we only need to handle SIGINT and
SIGTERM during real loads to get more graceful shutdowns when queries
are in flight.
Fixes#1842
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR adds paligemma modeling code
Blog post: https://huggingface.co/blog/paligemma
Transformers PR: https://github.com/huggingface/transformers/pull/30814
install the latest changes and run with
```bash
# get the weights
# text-generation-server download-weights gv-hf/PaliGemma-base-224px-hf
# run TGI
text-generation-launcher --model-id gv-hf/PaliGemma-base-224px-hf
```
basic example sending various requests
```python
from huggingface_hub import InferenceClient
client = InferenceClient("http://127.0.0.1:3000")
images = [
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png",
]
prompts = [
"What animal is in this image?",
"Name three colors in this image.",
"What are 10 colors in this image?",
"Where is the cow standing?",
"answer en Where is the cow standing?",
"Is there a bird in the image?",
"Is ther a cow in the image?",
"Is there a rabbit in the image?",
"how many birds are in the image?",
"how many rabbits are in the image?",
]
for img in images:
print(f"\nImage: {img.split('/')[-1]}")
for prompt in prompts:
inputs = f"{prompt}\n"
json_data = {
"inputs": inputs,
"parameters": {
"max_new_tokens": 30,
"do_sample": False,
},
}
generated_output = client.text_generation(prompt, max_new_tokens=30, stream=False)
print([f"{prompt}\n{generated_output}"])
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
This change adds `FlashGPT2ForCausalLM` and wires it up. The model
itself is pretty straightforward, the main difference from other models
is that it uses trained position embeddings and that all weight matrices
are transposed compared to other models (due to the use of Conv1D in the
upstream model).
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [x] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [x] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
@Narsil
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Joshua Rosenkranz <joshua.rosenkranz@gmail.com>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Add's support for the Falcon2 11B model architecture.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: oOraph <13552058+oOraph@users.noreply.github.com>
Co-authored-by: Raphael Glon <oOraph@users.noreply.github.com>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
Co-authored-by: abhishek thakur <1183441+abhishekkrthakur@users.noreply.github.com>
Co-authored-by: Dong Shin <d0104.shin@gmail.com>
Co-authored-by: Christof Weickhardt <christof@weickhardt.ch>
Co-authored-by: Ikko Eltociear Ashimine <eltociear@gmail.com>
Co-authored-by: drbh <david.richard.holtz@gmail.com>
Co-authored-by: Lucain <lucain@huggingface.co>
Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: Moritz Laurer <41862082+MoritzLaurer@users.noreply.github.com>
Co-authored-by: dr3s <dr3s@users.noreply.github.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Maziyar Panahi <maziyar.panahi@iscpif.fr>
Co-authored-by: Brandon Royal <2762697+brandonroyal@users.noreply.github.com>
Co-authored-by: Mishig <mishig.davaadorj@coloradocollege.edu>
Co-authored-by: Martin Iglesias Goyanes <martinigoyanes@hotmail.com>
Co-authored-by: martini <martin.iglesiasgoyanes@adyen.com>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
Add `router` key in `/info` endpoint and set it to
`env!("CARGO_PKG_NAME")` => so always set to `"text-generation-router"`
in TGI. Happy to change the naming if you think of a better one
(framework? package_name?)
The goal is to use this information in `InferenceClient` to know the
model is served with TGI. At the moment we can use
https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2/info
to infer it is TGI-served because it returns information but having a
proper key would be better.
For context, a transformers-served model is only outputting `{"ok":
"ok"}` (see
[here](https://api-inference.huggingface.co/models/microsoft/DialoGPT-large/info)).
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR allows for messages to be formatted as simple strings, or as an
array of objects including image urls. This is done by formatting
content arrays into a simple string.
Example using `llava-hf/llava-v1.6-mistral-7b-hf`
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"
}
}
]
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
is equivlant to this more simple request
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": "Whats in this image?\n"
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
output
```
# {"id":"","object":"text_completion","created":1714406985,"model":"llava-hf/llava-v1.6-mistral-7b-hf","system_fingerprint":"2.0.1-native","choices":[{"index":0,"message":{"role":"assistant","content":" This is an illustration of an anthropomorphic rabbit in a spacesuit, standing on what"},"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":2945,"completion_tokens":20,"total_tokens":2965}}%
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Thank you so much for the work you are doing, this is my little
contribution to this great thing you have built. I hope it is useful and
helpful, please don't hesitate to discuss any matters that are not
clear!
I am basing my implementation of frequency penalty on OpenAI's
implementation:
https://platform.openai.com/docs/guides/text-generation/parameter-details
The problem I see with TGI's current implementation is that is not
taking into account the frequency of tokens which have already been
sampled in the current generation stream. Also, the scaling is of the
adjusted token logits is done differently for positive and negative
logits. While in OpenAI's implementation token frequency is taking into
account and the scaling is always done with a subtraction (if penalty is
positive) or add operation (if penalty is negative).
This leads to corrupt generations as I mentioned in issue #1810 .
Moreover, after my tests, other issues are also gone like the one about
some request's with ``penalty_frequency = 1.0`` overruling other
requests (with ``frequency_penalty = 0.0``) in the same batch and
therefore corrupting all generations in the batch. Basically, padding
does not affect this implementation so I believe this ``score *=
input_ids.ne(0)`` is not needed anymore.
Frequency penalty | -1.0 | 0.0 | 1.0
-- | -- | -- | --
Before my change | https://paste.mozilla.org/JxqGJkWY |
https://paste.mozilla.org/hrztJ56h | https://paste.mozilla.org/pBSEH2zw
After my change | https://paste.mozilla.org/7gXCi7zo |
https://paste.mozilla.org/ZR9rJ92g | https://paste.mozilla.org/gHaD2YnC
---------
Co-authored-by: martini <martin.iglesiasgoyanes@adyen.com>
This PR adds a short "how it works" section to guidance and includes a
mention to the outlines library that enables grammars/tools
*and a small formatting change
---------
Co-authored-by: Mishig <mishig.davaadorj@coloradocollege.edu>
# What does this PR do?
Just unifying some branches and making intentions clearer (no cuda graph
when 0 all the way in the launcher)
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
This PR adds the missing `tool_prompt` parameter in Python client
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [x] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
@Narsil
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
This should enable more aggressive by default stacking, meaning better
throughput (in throughput constrained environements).
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
# What does this PR do?
On TPU (and probably inferentia). The model needs to know right off the
bat about BATCH_SIZE and MAX_TOTAL_TOKENS (since the entire cache will
be determined by both).
This PR sends that information to the shards to they can allocate
accordingly. Should be no-op for other backends.
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR resolves an issue with the penalty processors during batched
generation where extra padding tokens incorrectly impact the penalty
scores.
generation is impacted in the case where at least one item in the batch
includes a `frequency_penalty`
reproduction script below
```python
import requests
from concurrent import futures
import time
headers = {
"Content-Type": "application/json",
}
json_data = {
"inputs": "[INST] Whats the capitol of France? [/INST]",
"parameters": {
"max_new_tokens": 100,
"seed": 20,
"do_sample": False,
},
}
json_data2 = {
"inputs": "<s>[INST]Write a mind bending story: I saw a puppy a cat a rat and a raccoon during my bike ride in the park[/INST]",
"parameters": {
"max_new_tokens": 100,
"seed": 2,
"do_sample": False,
# OFFENDING LINE
"frequency_penalty": 1.05,
},
}
base_url = "http://localhost:3000/generate"
def req():
response = requests.post(base_url, headers=headers, json=json_data)
print("[req ]", response.json())
def req2():
response = requests.post(base_url, headers=headers, json=json_data2)
print("[req2]", response.json())
n = 1
for i in range(0, 3):
print(f"- {n} threads -")
with futures.ThreadPoolExecutor(max_workers=n) as executor:
executor.submit(req)
for i in range(3):
executor.submit(req2)
n += 1
# - 1 threads -
# [req ] {'generated_text': ' The capital of France is Paris.'}
# [req2] {'generated_text': " As you were riding your bicycle through Central Park, enjoying some fresh air on an otherwise gloomy day. You couldn't help but notice that it was eerily quiet for this time of year - usually there would be hordes"}
# [req2] {'generated_text': " As you were riding your bicycle through Central Park, enjoying some fresh air on an otherwise gloomy day. You couldn't help but notice that it was eerily quiet for this time of year - usually there would be hordes"}
# [req2] {'generated_text': " As you were riding your bicycle through Central Park, enjoying some fresh air on an otherwise gloomy day. You couldn't help but notice that it was eerily quiet for this time of year - usually there would be hordes"}
# - 2 threads -
# [req ] {'generated_text': ' The capital city'}
# [req2] {'generated_text': ' As""%\n================'}
# [req2] {'generated_text': ' As""%%$\n================'}
# [req2] {'generated_text': " As you were riding your bicycle through Central Park, enjoying some fresh air on an otherwise gloomy day. You couldn't help but notice that it was eerily quiet for this time of year - usually there would be hordes"}
# output with this PR's changes:
# - 1 threads -
# [req ] {'generated_text': ' The capital of France is Paris.'}
# [req2] {'generated_text': " As you were riding your bicycle through Central Park, enjoying some fresh air on an otherwise gloomy day. You couldn't help but notice that it was eerily quiet for this time of year - usually there would be hordes"}
# [req2] {'generated_text': " As you were riding your bicycle through Central Park, enjoying some fresh air on an otherwise gloomy day. You couldn't help but notice that it was eerily quiet for this time of year - usually there would be hordes"}
# [req2] {'generated_text': " As you were riding your bicycle through Central Park, enjoying some fresh air on an otherwise gloomy day. You couldn't help but notice that it was eerily quiet for this time of year - usually there would be hordes"}
# - 2 threads -
# [req ] {'generated_text': ' The capital city'}
# [req2] {'generated_text': " As you were riding your bicycle through Central Park, enjoying some fresh air on an otherwise gloomy day. You couldn't help but notice that it was eerily quiet for this time of year - usually there would be hordes"}
# [req2] {'generated_text': " As you were riding your bicycle through Central Park, enjoying some fresh air on an otherwise gloomy day. You couldn't help but notice that it was eerily quiet for this time of year - usually there would be hordes"}
# [req2] {'generated_text': " As you were riding your bicycle through Central Park, enjoying some fresh air on an otherwise gloomy day. You couldn't help but notice that it was eerily quiet for this time of year - usually there would be hordes"}
```
**divergence from expected generation is easier to reproduce with
batched grammar requests as they are more sensitive to unexpected
outputs.
this PR resolves the issue by setting the penalty score to 0 where input
ids are padding tokens (0).
---------
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR bumps the client tests from `google/flan-t5-xxl` to
`meta-llama/Llama-2-7b-chat-hf` to resolve issues when calling the
endpoint and `google/flan-t5-xxl` is not available
run with
```bash
make python-client-tests
clients/python/tests/test_client.py .............. [ 43%]
clients/python/tests/test_errors.py .......... [ 75%]
clients/python/tests/test_inference_api.py ...... [ 93%]
clients/python/tests/test_types.py .. [100%]
```
**note `google/flan-t5-xxl` function is currently unused but still
included in the `conftest.py`
`/v1/chat/completions` and `/v1/completions` have different output types
depending on the `stream` parameter. This PR aims at fixing the
inconsistency in the auto-generated
[openapi.json](https://huggingface.github.io/text-generation-inference/openapi.json)
specs.
cc @OlivierDehaene @drbh I reused what had been done for the `/`
endpoint but haven't tested anything myself. Could you confirm this is
the correct way of handling things?
Also, should I update the openapi.json file manually? If yes, how can I
do it?
This PR makes tool calling aware of the name of the function selected.
Fixes:
https://github.com/huggingface/text-generation-inference/issues/1657
Thank you @puppetm4st3r for the helpful snippets, large parts of this PR
are simply refactors of the code shared 🙏
**opening draft PR because small tweaks are needed before merging
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
compliation -> compilation
## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
- Renamed `max_input_length` into `max_input_tokens` for consistency
(backward compatible change, will yell if both are set.)
- Will now use the config for `max_input_tokens` `max_total_token` and
`max_batch_total_tokens`.
- Capping the values to 16k in order to save VRAM on behalf of users
(overriddable by simply setting the values).
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
I have suggested similar changes over at
https://github.com/huggingface/text-embeddings-inference/pull/201.
Here being my additional question, why `debug` is enabled during release
building? (hence I didn't add the flag to script things)
Applying the following optimizations:
- `lto` (link time optimizations) over all code (including dependencies)
- Using a single `codegen-unit` to apply optimizations within 1 code
unit at build time
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
@OlivierDehaene OR @Narsil
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Dong Shin <d0104.shin@gmail.com>
wrap text-generation-launcher in docker image
mask ldconfig failures to user (no need in most cases anyway)
---------
Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com>
Co-authored-by: Raphael Glon <oOraph@users.noreply.github.com>
# What does this PR do?
- Changed all models to extract `embed_tokens` in order to enable llava
to separately call the embeddings and the core model layers.
- Added VlmCausalLM to inherit from FlashMistral in order to be
maximally supported. The only added logics sits on top and parses images
into pixel values, preallocates input_ids space for the image
embeddings, and passes them for the model.
- Added Clip for the vision tower.
- Didn't add flash for the vision tower since there's no padding anyway.
- Added heuristic (potentially incomplete) to calculate number of
features *before* calculating the clip patches (allows for easier logic
reuse of the LLM under the hood).
Still needs to be done:
- [x] Implement the image parsing in the controller side, to avoid
downloading n times per TP shard and also refusing requests too large
early and avoid issues where the truncation actually truncates the
image.
- [ ] Make sure it works with quantization properly.
- [x] Make sure it works with TP>1
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
```
text-generation-launcher --model-id XXX # Uses cuda graphs by default
text-generation-launcher --model-id XXX --cuda-graphs "1,2" #Restrict the number of cuda graphs which saves VRAM
text-generation-launcher --model-id XXX --cuda-graphs "0" # Disabling it entirely
```
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR correctly handles batches with a mixture of constrained and non
constrained generations.
Currently if batch contains mixed generations the generation will throw
an error because it will incorrectly attempt to constrain a request with
an empty grammar.
We now handled `None` grammars and only apply the mask if needed
Fixes:
https://github.com/huggingface/text-generation-inference/issues/1643
# What does this PR do?
A few cases where you're using a mistral structure or mixtral structure
but not a llama tokenizer, why not make it to call the AutoTokenizer in
exception handling.
Similar PR #619
@Narsil
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR resolves a couple
- [X] adjusts the tool response to align with openai's tools response
type
- [X] bumps pydantic to `2.6.4` in all apps (resolves dependency issue
when running tests)
- [X] bump `outlines` version and fix import for new name
This PR adds `force_downcast_after` to `FastRMSNorm.forward` which is
used in the Gemma model. References
https://github.com/huggingface/transformers/pull/29402 and
https://github.com/huggingface/transformers/pull/29729
Setting `force_downcast_after=True` will perform the `hidden_states *
weight` multiplication in f32 and then downcast to half. This differs
slightly from the current implementation which first casts the
`hidden_states` to a half and then multiples.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
Signed-off-by: Sachin Varghese <sachin.mathew31@gmail.com>
Fix a small inconsistency compared the OpenAI's chat-completion behavior
(introduced in
https://github.com/huggingface/text-generation-inference/pull/1427 cc
@drbh). When using `stream=True`, each chunk has an `index` value in
`ChatCompletionChoice`. This index is not meant to be the index of the
generated token but the index of the choice, which is always 0 (since
TGI always return a single choice).
See https://platform.openai.com/docs/api-reference/chat/object:
> index _integer_
> The index of the choice in the list of choices.
---
So instead of
```js
data:{"id":"","object":"text_completion","created":1710508199,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-sha-e6bb3ff","choices":[{"index":1,"delta":{"role":"assistant","content":"I"},"logprobs":null,"finish_reason":null}]}
data:{"id":"","object":"text_completion","created":1710508199,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-sha-e6bb3ff","choices":[{"index":2,"delta":{"role":"assistant","content":"'"},"logprobs":null,"finish_reason":null}]}
data:{"id":"","object":"text_completion","created":1710508199,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-sha-e6bb3ff","choices":[{"index":3,"delta":{"role":"assistant","content":"m"},"logprobs":null,"finish_reason":"length"}]}
```
if should return
```js
data:{"id":"","object":"text_completion","created":1710508199,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-sha-e6bb3ff","choices":[{"index":0,"delta":{"role":"assistant","content":"I"},"logprobs":null,"finish_reason":null}]}
data:{"id":"","object":"text_completion","created":1710508199,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-sha-e6bb3ff","choices":[{"index":0,"delta":{"role":"assistant","content":"'"},"logprobs":null,"finish_reason":null}]}
data:{"id":"","object":"text_completion","created":1710508199,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-sha-e6bb3ff","choices":[{"index":0,"delta":{"role":"assistant","content":"m"},"logprobs":null,"finish_reason":"length"}]}
```
**EDIT:** I also edited ToolCall.index to be always `0` (instead of the
generated token index) but for this one I'm actually unsure. It might be
the index of the tool in the array of tools? OpenAI's documentation
doesn't provide any information about it:
> index _integer_
---
I also noticed that in OpenAI's example, the last chunk doesn't have a
delta and is the only one that has a `finish_reason` returning. TGI is
slightly different since the last chunk has both the last delta (i.e.
the last generated token) + the finish reason. I don't think this is
worth fixing since it is not a requirement according to the docs/specs
(at least not that I know of).
# What does this PR do?
Fix the following carsh when build the docker on Ubuntu22.04
```
error[E0432]: unresolved import `nix::sys::signal::Signal`
--> launcher/src/main.rs:2:30
|
2 | use nix::sys::signal::{self, Signal};
| ^^^^^^ no `Signal` in `sys::signal`
|
= help: consider importing this type alias instead:
ctrlc::Signal
error[E0432]: unresolved import `nix::unistd::Pid`
--> launcher/src/main.rs:3:5
|
3 | use nix::unistd::Pid;
| ^^^^^^^^^^^^^^^^ no `Pid` in `unistd`
|
note: found an item that was configured out
--> /usr/local/cargo/registry/src/index.crates.io-6f17d22bba15001f/nix-0.27.1/src/unistd.rs:183:12
|
183 | pub struct Pid(pid_t);
| ^^^
= note: the item is gated behind the `process` feature
error[E0425]: cannot find function `kill` in module `signal`
```
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Signed-off-by: yuanwu <yuan.wu@intel.com>
Co-authored-by: drbh <david.richard.holtz@gmail.com>
Falcon models are long superseded by better models like Zephyr and
OpenHermes. This PR updates the docs accordingly
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR fixes parallel grammar requests, currently grammar states are
not concatenated correctly when a new request is added to the batch and
this results in incorrect generation. This PR updates the `concatenate`
function to correctly include the previous states.
fixes: #1601
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
It was meant to be in seconds float
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This work in progress PR begins to add support for tools. Tools relies
on grammar support and still has some unsolved challenges. Opening the
PR for visibility and feedback
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
Literally just adds the name field to the Message class.
I verified this change by building a new docker container (using the
`Dockerfile` in the repo) and trialing with a `chat_template` that uses
the `name` field.
Here's the previous behavior:
Input messages:
```
{
"messages": [
{"role": "system", "content": "You are a succinct but helpful AI Assistant listening to a chat server. Address everyone by @<username>"},
{"role": "user", "name": "Aaron", "content": "Hello There!"},
{"role": "assistant", "content": " Hello @Aaron! How can I assist you today?"},
{"role": "user", "name": "Sally", "content": "Hiya everyone. Is @Aaron is this room?"}
],
"model": "meta-llama/Llama-2-7b-chat-hf"
}
```
Response before the modification:
```
Hello @Aaron! Yes, you are in the chat room. How can I assist you today? 😊
Hiya everyone! *waves* It's great to see you all here. Is there something on your mind that you'd like to talk about or ask? I'm here to listen and help in any way I can. 🤖
```
Response after my modification:
```
Hello @Sally! Yes, @Aaron is currently in the chat room. How may I assist you today?
```
Fixes#1558
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
@Narsil
---------
Co-authored-by: Aaron Mihalik <aaron.mihalik@parsons.us>
Co-authored-by: drbh <david.richard.holtz@gmail.com>
Using a single `os.getenv` statement instead of multiple.
Should make truthful values easier to catch
In the end didn't move towards full CLI because modifying globals in
Python is error prone (depends on code import order).
Added an error when mamba is launched with TP.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
- Move float16 to bfloat16, which has less imprecisions (load test are
failing with the update kernels + f16, all working under bf16).
Another note, is that we are not respecting the layer norm in f32
defined in the configuration (this is OK in my book, but that could
impact the f16 precision)
- Moved to update kernels. Triton overhead is super high, removed by
switching to cuda graphs works great (update cuda graph is available
in TRT-LLM if needed, seems *exactly* like the regular ssm kernel.
- Moved inference_params struct in order to make only 2 tensors, to
reduce the overhead of copying back and forth to the cuda graphs.
- Left over overhead seems entirely in the tokenization bit. (Still 4
copies are paid before launching the graph)
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR adds a simple custom `deserialize_with` function that parses a
string or an object with a content property. This should help support
more token configuration files stored on the hub
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
This PR adds the possibility to run AWQ models with Exllama/GPTQ
kernels, specifically for ROCm devices that support Exllama kernels but
not AWQ's GEMM.
This is done by :
- un-packing, reordering and re-packing AWQ weights when `--quantize
gptq` but the model's `quant_method=awq`.
- avoiding overflows when adding 1 to zeros in exllama and triton.
Ref: https://github.com/casper-hansen/AutoAWQ/pull/313
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
This PR bumps the rust toolchain in CI to resolve the CI build issue
```bash
Downloaded crossbeam-utils v0.8.19
Downloaded crc32fast v1.3.2
error: failed to compile `text-generation-router v1.4.0 (/home/runner/work/text-generation-inference/text-generation-inference/router)`, intermediate artifacts can be found at `/home/runner/work/text-generation-inference/text-generation-inference/target`
Caused by:
package `clap_lex v0.7.0` cannot be built because it requires rustc 1.74 or newer, while the currently active rustc version is 1.71.0
Either upgrade to rustc 1.74 or newer, or use
cargo update -p clap_lex@0.7.0 --precise ver
where `ver` is the latest version of `clap_lex` supporting rustc 1.71.0
make: *** [Makefile:12: install-router] Error 101
```
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [x] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [x] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [x] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
@OlivierDehaene OR @Narsil
This draft PR is a work in progress implementation of the mamba model.
This PR currently loads weights, and produces correct logits after a
single pass.
This PR still needs to correctly integrate this model so it produces
tokens as expected, and apply optimization to avoid all copies during
runtime/unnecessary operations.
#### Helpful resources
[Mamba: Linear-Time Sequence Modeling with Selective State Spaces
(Albert Gu and Tri Dao)](https://arxiv.org/abs/2312.00752)
https://github.com/johnma2006/mamba-minimalhttps://github.com/huggingface/candle/blob/main/candle-examples/examples/mamba-minimal/model.rshttps://github.com/huggingface/transformers/pull/28094
Notes: this dev work is currently targeting `state-spaces/mamba-130m`,
so if you want to test please use that model. Additionally when starting
the router the prefill needs to be limited: `cargo run --
--max-batch-prefill-tokens 768 --max-input-length 768`
## Update / Current State
Integration tests have been added and basic functionality such as model
loading is supported.
```bash
cd integration-tests
pytest -vv models/test_fused_kernel_mamba.py
```
- [x] add tests
- [x] load model
- [x] make simple request
- [ ] resolve warmup issue
- [ ] resolve output issues
fetching models tested during dev
```bash
text-generation-server download-weights state-spaces/mamba-130m
text-generation-server download-weights state-spaces/mamba-1.4b
text-generation-server download-weights state-spaces/mamba-2.8b
```
The server can be run
```bash
cd server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 python text_generation_server/cli.py serve state-spaces/mamba-2.8b
```
router
```bash
cargo run
```
make a request
```bash
curl -s localhost:3000/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json' | jq
```
response
```json
{
"generated_text": "\n\nDeep learning is a machine learning technique that uses a deep neural network to learn from data."
}
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
This PR adds support to read the `add_generation_prompt` from the config
and use it in the chat template. If `add_generation_prompt` does not
exist we default to false
update messages api docs and add Hugging Face Inference Endpoints
integrations section/instructions
---------
Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR fixes the issue with loading a local tokenizer config.
Previously the default functionality would look in the current working
directory. Now if a local model path is specified we will check that
directory for the tokenizer_config.
## Examples of valid commands
uses tokenizer_config from hub
```
text-generation-launcher --model-id HuggingFaceH4/zephyr-7b-beta
```
use tokenizer_config from local model path
```
text-generation-launcher \
--model-id ~/.cache/huggingface/hub/models--HuggingFaceH4--zephyr-7b-beta/snapshots/dc24cabd13eacd3ae3a5fe574bd645483a335a4a/
```
use specific tokenizer_config file
```
text-generation-launcher \
--model-id ~/.cache/huggingface/hub/models--HuggingFaceH4--zephyr-7b-beta/snapshots/dc24cabd13eacd3ae3a5fe574bd645483a335a4a/ \
--tokenizer-config-path ~/.cache/huggingface/hub/models--HuggingFaceH4--zephyr-7b-beta/snapshots/dc24cabd13eacd3ae3a5fe574bd645483a335a4a/tokenizer_config.json
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Add TensorRT-LLM weight-only GEMV kernel support. We extract GEMV kernel
from
[TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM/tree/main/cpp/tensorrt_llm/kernels/weightOnlyBatchedGemv)
to accelerate the decode speed of EETQ when batch_size is smaller or
equal to 4.
- Features
1. There is almost no loss of quantization accuracy.
2. The speed of decoding is 13% - 27% faster than original EETQ which
utilizes GEMM kernel.
- Test
Below is our test on 3090. Environment: torch=2.0.1, cuda=11.8, nvidia
driver: 525.78.01
prompt=1024, max_new_tokens=50


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
Sending compute type from the environment instead of hardcoded string
Using env is slow, therefore getting it from global state instead.
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
Superseeds #1459
The fix works as follows.
We updated next_token_chooser to return all logprbs, then
batch_top_n_tokens, now also gets accepted_ids + speculated_length (so
it knows how to interpret the flat logprobs).
We then update the code to return lists ot `Tokens` that it expects.
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
fixes launcher doc typos
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
@OlivierDehaene OR @Narsil
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Choon Meng Tan <choonmeng@aisingapore.org>
Co-authored-by: David Ong Tat-Wee <13075447+ongtw@users.noreply.github.com>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Andres Restrepo <andres@thelinuxkid.com>
This PR adds basic modeling for phi-2
run
```bash
text-generation-server \
serve \
microsoft/phi-2 \
--revision 834565c23f9b28b96ccbeabe614dd906b6db551a
```
test
```bash
curl -s localhost:3000/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json' | jq .
# {
# "generated_text": "\nDeep learning is a subset of machine learning that uses artificial neural networks to learn from data. These"
# }
```
notes
- recently (~1 day ago) the Phi weights and model were updated to
accommodate adding [GQA/MQA attention to the
model.](https://github.com/huggingface/transformers/pull/28163) This
impl expects the original model format so a fixed revision is required
at the moment.
- this PR only includes a basic implementation of the model and can
later be extended for support Flash and Sharded versions as well as make
use of better optimization
# What does this PR do?
Ideally this is done client side, but this is a recurring request,
therefore we implemented it.
- Runs only if rust tokenizer is present (not encumbering the main
inference pipeline is important).
- Returns simple results, ID, text (gotten with offsets from the
original string) and offsets (so users can do things like highlighting
text).
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR adds a new page to the docs that describes the Messages API and
how to use it.
Additionally this page will contain cloud provider specific information
for enabling and using this feature. This PR includes a SageMaker
example/information.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR makes some minor tweaks to the new OpenAI-compatible chat
endpoint #1427 in `GenerateParameters`:
- Disables `decoder_input_details` when streaming is enabled. This was
causing all streaming chat requests to fail before, since
[`decoder_input_details`==true is not enabled when streaming
tokens](98e5faff9d/router/src/validation.rs (L406)).
- Passes through `temperature` and `top_p` hyperparameters from the API
request to `GenerateParameters`
## Testing
```bash
curl localhost:8080/v1/chat/completions \
-X POST \
-d '{
"model": "",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
Should work correctly. Currently, most recent release from `main`
returns error:
```
data:{"error":"Input validation error: `decoder_input_details` == true is not supported when streaming tokens","error_type":"validation"}
```
It's my first time contributing to this project, so I could be missing
something. Would especially appreciate @drbh's eyes on this one
This PR adds support for reading the `OAI_ENABLED` env var which will
changes the function called when the `/invocations` is called.
If `OAI_ENABLED=true` the `chat_completions` method is used otherwise it
defaults to `compat_generate`.
example running the router
```bash
OAI_ENABLED=true \
cargo run -- \
--tokenizer-name mistralai/Mistral-7B-Instruct-v0.2
```
example request
```bash
curl localhost:3000/invocations \
-X POST \
-d '{ "model": "tgi", "messages": [ { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": false, "max_tokens": 20, "logprobs": true, "seed": 0 }' \
-H 'Content-Type: application/json' | jq
```
**please let me know if any naming changes are needed or if any other
routes need similar functionality.
This PR just bumps the latest rust version and makes clippy happy
```bash
cargo clippy --all -- -D warnings
# Finished dev [unoptimized + debuginfo] target(s) in 0.10s
```
This PR adds support to handle the custom jinja function
`raise_exception` and passes the `bos` and `eos` tokens into the
template
Additionally this PR adds 3 tests to validate and show examples of what
can and cannot be parsed currently.
```bash
cargo test --package text-generation-router --lib -- infer::tests --nocapture
# Finished test [unoptimized + debuginfo] target(s) in 7.82s
# Running unittests src/lib.rs (target/debug/deps/text_generation_router-18a0bbf99c2ca1b4)
# running 3 tests
# test infer::tests::test_chat_template_valid_with_raise ... ok
# test infer::tests::test_chat_template ... ok
# test infer::tests::test_chat_template_invalid_with_raise ... ok
# test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 15 filtered out; finished in 0.00s
```
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
# What does this PR do?
Fixes#637
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Close#1418Close#1415
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
local directory overloaded still needs the directory to locate the
weights files correctly.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
Works by removing adapter_model.safetensors from being detected as the
core model file (which skips the real peft detection).
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR adds support for AMD Instinct MI210 & MI250 GPUs, with paged
attention and FAv2 support.
Remaining items to discuss, on top of possible others:
* Should we have a
`ghcr.io/huggingface/text-generation-inference:1.1.0+rocm` hosted image,
or is it too early?
* Should we set up a CI on MI210/MI250? I don't have access to the
runners of TGI though.
* Are we comfortable with those changes being directly in TGI, or do we
need a fork?
---------
Co-authored-by: Felix Marty <felix@hf.co>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
Co-authored-by: Your Name <you@example.com>
# What does this PR do?
See #1165
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Florian Zimmermeister <flozi00.fz@gmail.com>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-24-153.ec2.internal>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
This forces the use of `bfloat16` for IDEFICS. The issue is that with
`float16` the 80b model gives garbage output. Let me know if this
solution is not appropriate and I'll adjust accordingly. For the details
see below.
The current behaviour:
```sh
$ curl 127.0.0.1:8080/generate -X POST -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' -H 'Content-Type: application/json'
{"generated_text":""}
```
On closer inspection with:
```python
import requests
headers = { "Content-Type": "application/json"}
query = "What is Deep Learning?"
data = {
"inputs": query,
"parameters": {
"max_new_tokens": 10,
"return_full_text": True,
"decoder_input_details": True,
"do_sample": False,
},
}
api_url = "http://127.0.0.1:8080"
response = requests.post(api_url + "/generate", headers=headers, json=data).json()
for i in ['prefill', 'tokens']:
print(f'### {i}')
print(repr(''.join([t['text'] for t in response['details'][i]])))
```
Prints:
```
### prefill
'<s>WhatisDeepLearning?'
### tokens
'<unk><unk><unk><unk><unk><unk><unk><unk><unk><unk>'
########
```
With the change in this PR it prints:
```
### prefill
'<s>WhatisDeepLearning?'
### tokens
'\n\nDeep Learning is a subset of machine'
```
Note, using the Transformers implementation (with
`IdeficsForVisionText2Text.from_pretrained`) produces the latter
(correct) output as well.
This only happens with the 80b model, the 9b model is not as sensitive
to the dtype (as also mentioned in the code).
The reason for "forcing" this in the IDEFICS init method, is because if
quantization is used, then the dtype cannot be set explicitly. And since
it's left as `None`, it's set to `float16` by default
[here](96a982ad8f/server/text_generation_server/models/__init__.py (L90)).
I.e. there's no other way to manually change the dtype if someone is
using quantization:
```sh
$ docker run .... ghcr.io/huggingface/text-generation-inference:latest --model-id HuggingFaceM4/idefics-80b-instruct --dtype bfloat16 --quantize bitsandbytes-nf4
.....
2023-10-31T12:42:26.710401Z INFO shard-manager: text_generation_launcher: Starting shard rank=0
2023-10-31T12:42:30.315734Z ERROR shard-manager: text_generation_launcher: Shard complete standard error output:
Traceback (most recent call last):
File "/opt/conda/bin/text-generation-server", line 8, in <module>
sys.exit(app())
File "/opt/conda/lib/python3.9/site-packages/text_generation_server/cli.py", line 80, in serve
raise RuntimeError(
RuntimeError: Only 1 can be set between `dtype` and `quantize`, as they both decide how goes the final model.
rank=0
Error: ShardCannotStart
2023-10-31T12:42:30.414010Z ERROR text_generation_launcher: Shard 0 failed to start
2023-10-31T12:42:30.414044Z INFO text_generation_launcher: Shutting down shards
```
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
@Narsil what do you think?
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
# What does this PR do?
Enables PEFT weights to be loaded from a local directory, as opposed to
a hf hub repository. It is a continuation of the work in PR
https://github.com/huggingface/text-generation-inference/pull/762
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes#1259
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section? **Yes but I don't know how to run the tests for
this repo, and it doesn't look like this code is covered anyway**
- [x] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case. **Yes, @Narsil asked for a PR in [this
comment](https://github.com/huggingface/text-generation-inference/pull/762#issuecomment-1728089505)**
- [x] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
**I didn't see any documentation added to the [original
PR](https://github.com/huggingface/text-generation-inference/pull/762),
and am not sure where this belongs. Let me know and I can add some**
- [x] Did you write any new necessary tests? **I didn't see any existing
test coverage for this python module**
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
@Narsil
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@Narsil
-->
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
stale-issue-message:'This issue is stale because it has been open 30 days with no activity. Remove stale label or comment or this will be closed in 5 days.'
Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Contribute to text-generation-inference
Everyone is welcome to contribute, and we value everybody's contribution. Code
contributions are not the only way to help the community. Answering questions, helping
others, and improving the documentation are also immensely valuable.
It also helps us if you spread the word! Reference the library in blog posts
about the awesome projects it made possible, shout out on Twitter every time it has
helped you, or simply ⭐️ the repository to say thank you.
However you choose to contribute, please be mindful and respect our
[code of conduct](https://github.com/huggingface/text-generation-inference/blob/main/CODE_OF_CONDUCT.md).
**This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md).**
## Ways to contribute
There are several ways you can contribute to text-generation-inference.
* Fix outstanding issues with the existing code.
* Submit issues related to bugs or desired new features.
* Contribute to the examples or to the documentation.
> All contributions are equally valuable to the community. 🥰
## Fixing outstanding issues
If you notice an issue with the existing code and have a fix in mind, feel free to [start contributing](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request) and open
a Pull Request!
## Submitting a bug-related issue or feature request
Do your best to follow these guidelines when submitting a bug-related issue or a feature
request. It will make it easier for us to come back to you quickly and with good
feedback.
### Did you find a bug?
The text-generation-inference library is robust and reliable thanks to users who report the problems they encounter.
Before you report an issue, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the
library itself, and not your code.
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so
we can quickly resolve it:
* Your **OS type and version**, as well as your environment versions (versions of rust, python, and dependencies).
* A short, self-contained, code snippet that allows us to reproduce the bug.
* The *full* traceback if an exception is raised.
* Attach any other additional information, like screenshots, you think may help.
To get the OS and software versions automatically, you can re-run the launcher with the `--env` flag:
```bash
text-generation-launcher --env
```
This will precede the launch of the model with the information relative to your environment. We recommend pasting
that in your issue report.
### Do you want a new feature?
If there is a new feature you'd like to see in text-generation-inference, please open an issue and describe:
1. What is the *motivation* behind this feature? Is it related to a problem or frustration with the library? Is it
a feature related to something you need for a project? Is it something you worked on and think it could benefit
the community?
Whatever it is, we'd love to hear about it!
2. Describe your requested feature in as much detail as possible. The more you can tell us about it, the better
we'll be able to help you.
3. Provide a *code snippet* that demonstrates the feature's usage.
4. If the feature is related to a paper, please include a link.
If your issue is well written we're already 80% of the way there by the time you create it.
We have added [templates](https://github.com/huggingface/text-generation-inference/tree/main/.github/ISSUE_TEMPLATE)
to help you get started with your issue.
## Do you want to implement a new model?
New models are constantly released and if you want to implement a new model, please provide the following information:
* A short description of the model and a link to the paper.
* Link to the implementation if it is open-sourced.
* Link to the model weights if they are available.
If you are willing to contribute the model yourself, let us know so we can help you add it to text-generation-inference!
## Do you want to add documentation?
We're always looking for improvements to the documentation that make it more clear and accurate. Please let us know
how the documentation can be improved such as typos and any content that is missing, unclear or inaccurate. We'll be
happy to make the changes or help you make a contribution if you're interested!
## I want to become a maintainer of the project. How do I get there?
TGI is a project led and managed by Hugging Face as it powers our internal services. However, we are happy to have
motivated individuals from other organizations join us as maintainers with the goal of making TGI the best inference
service.
If you are such an individual (or organization), please reach out to us and let's collaborate.
FROM nvidia/cuda:12.4.1-devel-ubuntu22.04 AS pytorch-install
WORKDIR /usr/src/
# NOTE: When updating PyTorch version, beware to remove `pip install nvidia-nccl-cu12==2.22.3` below in the Dockerfile. Context: https://github.com/huggingface/text-generation-inference/pull/2099
ARGPYTORCH_VERSION=2.6
ARGPYTHON_VERSION=3.11
ARGPYTORCH_VERSION=2.0.1
ARGPYTHON_VERSION=3.9
# Keep in sync with `server/pyproject.toml
ARGCUDA_VERSION=11.8
ARGMAMBA_VERSION=23.1.0-1
ARGCUDA_CHANNEL=nvidia
ARGINSTALL_CHANNEL=pytorch
# Automatically set by buildx
ARG TARGETPLATFORM
ENV PATH /opt/conda/bin:$PATH
RUN apt-get update &&DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
RUN cargo chef cook --profile release-opt --recipe-path recipe.json
ARG GIT_SHA
ARG DOCKER_LABEL
COPY Cargo.lock Cargo.lock
COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto
COPY benchmark benchmark
COPY router router
COPY backends backends
COPY launcher launcher
RUN cargo build --profile release-opt --frozen
# Text Generation Inference base image for Intel
FROM intel/oneapi-basekit:2025.0.1-0-devel-ubuntu22.04 AS xpu
USER root
ARG MAMBA_VERSION=23.1.0-1
ARG PYTHON_VERSION='3.11.10'
# Automatically set by buildx
ARG TARGETPLATFORM
ENV PATH=/opt/conda/bin:$PATH
# TGI seem to require libssl.so.1.1 instead of libssl.so.3 so we can't use ubuntu 22.04. Ubuntu 20.04 has python==3.8, and TGI requires python>=3.9, hence the need for miniconda.
# Install mamba
# translating Docker's TARGETPLATFORM into mamba arches
# libssl.so.1.1 is not installed on Ubuntu 22.04 by default, install it
RUN wget http://nz2.archive.ubuntu.com/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2_amd64.deb && \
dpkg -i ./libssl1.1_1.1.1f-1ubuntu2_amd64.deb
RUN wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB \
| gpg --dearmor | tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null && echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | tee /etc/apt/sources.list.d/oneAPI.list
RUN echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/intel-for-pytorch-gpu-dev all main" > /tmp/intel-for-pytorch-gpu-dev.list
RUN mv /tmp/intel-for-pytorch-gpu-dev.list /etc/apt/sources.list.d
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/oneccl_bind_pt-2.6.0%2Bxpu-cp311-cp311-linux_x86_64.whl
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.6.10%2Bxpu-cp311-cp311-linux_x86_64.whl
# Text Generation Inference base image for Intel-cpu
FROM ubuntu:22.04 AS cpu
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
curl \
ca-certificates \
make \
g++-12 \
gcc-12 \
git \
wget \
cmake \
libnuma-dev
RUN update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-12 12
RUN update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 12
RUN update-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30
RUN update-alternatives --set cc /usr/bin/gcc
RUN update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++ 30
RUN update-alternatives --set c++ /usr/bin/g++
ENV HUGGINGFACE_HUB_CACHE=/data \
HF_HUB_ENABLE_HF_TRANSFER=1 \
PORT=80
ARG MAMBA_VERSION=23.1.0-1
ARG PYTHON_VERSION='3.11.10'
# Automatically set by buildx
ARG TARGETPLATFORM
ENV PATH=/opt/conda/bin:$PATH
# TGI seem to require libssl.so.1.1 instead of libssl.so.3 so we can't use ubuntu 22.04. Ubuntu 20.04 has python==3.8, and TGI requires python>=3.9, hence the need for miniconda.
# Install mamba
# translating Docker's TARGETPLATFORM into mamba arches
RUN pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cpu
RUN pip install triton==3.1.0 py-libnuma
WORKDIR /usr/src
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/cpu/intel_extension_for_pytorch-2.6.0%2Bcpu-cp311-cp311-linux_x86_64.whl
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/cpu/oneccl_bind_pt-2.6.0%2Bcpu-cp311-cp311-linux_x86_64.whl
if["$$BUILD_EXTENSIONS"="True"];thencd server/custom_kernels && python setup.py install;elseecho"Custom kernels are disabled, you need to set the BUILD_EXTENSIONS environment variable to 'True' in order to build them. (Please read the docs, kernels might not work on all hardware)";fi
install-integration-tests:
cd integration-tests && pip install -r requirements.txt
Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as:
@ -41,16 +43,34 @@ Text Generation Inference (TGI) is a toolkit for deploying and serving Large Lan
- Tensor Parallelism for faster inference on multiple GPUs
- Token streaming using Server-Sent Events (SSE)
- Continuous batching of incoming requests for increased total throughput
- [Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) compatible with Open AI Chat Completion API
- Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [GPT-Q](https://arxiv.org/abs/2210.17323)
- [Guidance/JSON](https://huggingface.co/docs/text-generation-inference/conceptual/guidance). Specify output format to speed up inference and make sure the output is valid according to some specs..
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance
@ -59,22 +79,49 @@ Text Generation Inference (TGI) is a toolkit for deploying and serving Large Lan
For a detailed starting guide, please see the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour). The easiest way of getting started is using the official Docker container:
```shell
model=tiiuae/falcon-7b-instruct
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
model=HuggingFaceH4/zephyr-7b-beta
# share a volume with the Docker container to avoid downloading weights every run
volume=$PWD/data
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.1.1 --model-id $model
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json'
```
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
You can also use [TGI's Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) to obtain Open AI Chat Completion API compatible responses.
```bash
curl localhost:8080/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.3-rocm --model-id $model` instead of the command above.
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
```
@ -88,29 +135,30 @@ The Swagger UI is also available at: [https://huggingface.github.io/text-generat
### Using a private or gated model
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
You have the option to utilize the `HF_TOKEN` environment variable for configuring the token employed by
`text-generation-inference`. This allows you to gain access to protected resources.
For example, if you want to serve the gated Llama V2 model variants:
Detailed blogpost by Adyen on TGI inner workings: [LLM inference at scale with TGI (Martin Iglesias Goyanes - Adyen, 2024)](https://www.adyen.com/knowledge-hub/llm-inference-at-scale-with-tgi)
### Local install
You can also opt to install `text-generation-inference` locally.
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
Python 3.9, e.g. using `conda`:
First clone the repository and change directory into it:
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
@ -187,16 +250,48 @@ make run-falcon-7b-instruct
sudo apt-get install libssl-dev gcc -y
```
### CUDA Kernels
### Local install (Nix)
The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove
the kernels by using the `DISABLE_CUSTOM_KERNELS=True` environment variable.
Another option is to install `text-generation-inference` locally using [Nix](https://nixos.org). Currently,
we only support Nix on x86_64 Linux with CUDA GPUs. When using Nix, all dependencies can
be pulled from a binary cache, removing the need to build them locally.
Be aware that the official Docker image has them enabled by default.
First follow the instructions to [install Cachix and enable the TGI cache](https://app.cachix.org/cache/text-generation-inference).
Setting up the cache is important, otherwise Nix will build many of the dependencies
locally, which can take hours.
After that you can run TGI with `nix run`:
```shell
cd text-generation-inference
nix run --extra-experimental-features nix-command --extra-experimental-features flakes . -- --model-id meta-llama/Llama-3.1-8B-Instruct
```
**Note:** when you are using Nix on a non-NixOS system, you have to [make some symlinks](https://danieldk.eu/Nix-CUDA-on-non-NixOS-systems#make-runopengl-driverlib-and-symlink-the-driver-library)
to make the CUDA driver libraries visible to Nix packages.
For TGI development, you can use the `impure` dev shell:
```shell
nix develop .#impure
# Only needed the first time the devshell is started or after updating the protobuf.
find text_generation_server/pb/ -type f -name "*.py" -print0 -exec sed -i -e 's/^\(import.*pb2\)/from . \1/g' {} \;
touch text_generation_server/pb/__init__.py
)
```
All development dependencies (cargo, Python, Torch), etc. are available in this
dev shell.
## Optimized architectures
TGI works out of the box to serve optimized models in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).
TGI works out of the box to serve optimized models for all modern models. They can be found in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).
Other architectures are supported on a best-effort basis using:
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.
Read more about quantization in the [Quantization documentation](https://huggingface.co/docs/text-generation-inference/en/conceptual/quantization).
This page gives a list of examples of docker run commands for some of the most popular models.
> **Note:** The parameters are chosen for Gaudi2 hardware to maximize performance on this given hardware, please adjust the parameters based on your hardware. For example, if you are using Gaudi3, you may want to increase the batch size.
## Default Precision (BF16)
### Llama3.1-8B on 1 card (BF16)
```bash
model=meta-llama/Meta-Llama-3.1-8B-Instruct
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
Please refer to the [FP8 Precision](https://huggingface.co/docs/text-generation-inference/backends/gaudi_new#how-to-use-different-precision-formats) section for more details. You need to measure the statistics of the model first before running the model in FP8 precision.
## Llama3.1-8B on 1 Card (FP8)
```bash
model=meta-llama/Meta-Llama-3.1-8B-Instruct
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
# The "args" config is not optimized for speed but only check that the inference is working for the different models architectures
TEST_CONFIGS={
"meta-llama/Llama-3.1-8B-Instruct-shared":{
"model_id":"meta-llama/Llama-3.1-8B-Instruct",
"input":"What is Deep Learning?",
"expected_greedy_output":" A Beginner’s Guide\nDeep learning is a subset of machine learning that involves the use",
"expected_batch_output":" A Beginner’s Guide\nDeep learning is a subset of machine learning that involves the use",
"args":[
"--sharded",
"true",
"--num-shard",
"8",
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"8",
"--max-batch-prefill-tokens",
"2048",
],
},
"meta-llama/Llama-3.1-8B-Instruct":{
"model_id":"meta-llama/Llama-3.1-8B-Instruct",
"input":"What is Deep Learning?",
"expected_greedy_output":" A Beginner’s Guide\nDeep learning is a subset of machine learning that involves the use of artificial neural networks to analyze and interpret data. It is a type of",
"expected_batch_output":" A Beginner’s Guide\nDeep learning is a subset of machine learning that involves the use of artificial neural networks to analyze and interpret data. It is a type of",
"env_config":{},
"args":[
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
"--max-batch-prefill-tokens",
"2048",
],
},
"meta-llama/Llama-2-7b-chat-hf":{
"model_id":"meta-llama/Llama-2-7b-chat-hf",
"input":"What is Deep Learning?",
"expected_greedy_output":"\n\nDeep learning (also known as deep structured learning) is part of a broader family of machine learning techniques based on artificial neural networks\u2014specific",
"expected_batch_output":"\n\nDeep learning (also known as deep structured learning) is part of a broader family of machine learning techniques based on artificial neural networks\u2014specific",
"args":[
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
"--max-batch-prefill-tokens",
"2048",
],
},
"mistralai/Mistral-7B-Instruct-v0.3":{
"model_id":"mistralai/Mistral-7B-Instruct-v0.3",
"input":"What is Deep Learning?",
"expected_greedy_output":"\n\nDeep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured",
"expected_batch_output":"\n\nDeep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured",
"args":[
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
"--max-batch-prefill-tokens",
"2048",
],
},
"bigcode/starcoder2-3b":{
"model_id":"bigcode/starcoder2-3b",
"input":"What is Deep Learning?",
"expected_greedy_output":"\n\nDeep learning is a subset of machine learning that uses artificial neural networks to perform tasks.\n\nNeural networks are a type of machine learning algorithm that",
"expected_batch_output":"\n\nDeep learning is a subset of machine learning that uses artificial neural networks to perform tasks.\n\nNeural networks are a type of machine learning algorithm that",
"args":[
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
"--max-batch-prefill-tokens",
"2048",
],
},
"google/gemma-7b-it":{
"model_id":"google/gemma-7b-it",
"input":"What is Deep Learning?",
"expected_greedy_output":"\n\nDeep learning is a subset of machine learning that uses artificial neural networks to learn from large amounts of data. Neural networks are inspired by the structure and function of",
"expected_batch_output":"\n\nDeep learning is a subset of machine learning that uses artificial neural networks to learn from large amounts of data. Neural networks are inspired by the structure and function of",
"args":[
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
"--max-batch-prefill-tokens",
"2048",
],
},
"Qwen/Qwen2-0.5B-Instruct":{
"model_id":"Qwen/Qwen2-0.5B-Instruct",
"input":"What is Deep Learning?",
"expected_greedy_output":" Deep Learning is a type of machine learning that is based on the principles of artificial neural networks. It is a type of machine learning that is used to train models",
"expected_batch_output":" Deep Learning is a type of machine learning that is based on the principles of artificial neural networks. It is a type of machine learning that is used to train models",
"args":[
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
"--max-batch-prefill-tokens",
"2048",
],
},
"tiiuae/falcon-7b-instruct":{
"model_id":"tiiuae/falcon-7b-instruct",
"input":"What is Deep Learning?",
"expected_greedy_output":"\nDeep learning is a branch of machine learning that uses artificial neural networks to learn and make decisions. It is based on the concept of hierarchical learning, where a",
"expected_batch_output":"\nDeep learning is a branch of machine learning that uses artificial neural networks to learn and make decisions. It is based on the concept of hierarchical learning, where a",
"args":[
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
],
},
"microsoft/phi-1_5":{
"model_id":"microsoft/phi-1_5",
"input":"What is Deep Learning?",
"expected_greedy_output":"\n\nDeep Learning is a subfield of Machine Learning that focuses on building neural networks with multiple layers of interconnected nodes. These networks are designed to learn from large",
"expected_batch_output":"\n\nDeep Learning is a subfield of Machine Learning that focuses on building neural networks with multiple layers of interconnected nodes. These networks are designed to learn from large",
"args":[
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
],
},
"openai-community/gpt2":{
"model_id":"openai-community/gpt2",
"input":"What is Deep Learning?",
"expected_greedy_output":"\n\nDeep learning is a new field of research that has been around for a long time. It is a new field of research that has been around for a",
"expected_batch_output":"\n\nDeep learning is a new field of research that has been around for a long time. It is a new field of research that has been around for a",
"args":[
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
],
},
"facebook/opt-125m":{
"model_id":"facebook/opt-125m",
"input":"What is Deep Learning?",
"expected_greedy_output":"\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout",
"expected_batch_output":"\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout",
"args":[
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
],
},
"EleutherAI/gpt-j-6b":{
"model_id":"EleutherAI/gpt-j-6b",
"input":"What is Deep Learning?",
"expected_greedy_output":"\n\nDeep learning is a subset of machine learning that is based on the idea of neural networks. Neural networks are a type of artificial intelligence that is inspired by",
"expected_batch_output":"\n\nDeep learning is a subset of machine learning that is based on the idea of neural networks. Neural networks are a type of artificial intelligence that is inspired by",
accelerate==0.33.0 ; python_version >= "3.9" and python_version < "3.13"
annotated-types==0.7.0 ; python_version >= "3.9" and python_version < "3.13"
attrs==25.3.0 ; python_version >= "3.9" and python_version < "3.13"
certifi==2025.1.31 ; python_version >= "3.9" and python_version < "3.13"
charset-normalizer==3.4.1 ; python_version >= "3.9" and python_version < "3.13"
click==8.1.8 ; python_version >= "3.9" and python_version < "3.13"
cloudpickle==3.1.1 ; python_version >= "3.9" and python_version < "3.13"
colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Windows" or python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32"
deprecated==1.2.18 ; python_version >= "3.9" and python_version < "3.13"
diffusers==0.31.0 ; python_version >= "3.9" and python_version < "3.13"
diskcache==5.6.3 ; python_version >= "3.9" and python_version < "3.13"
filelock==3.18.0 ; python_version >= "3.9" and python_version < "3.13"
fsspec==2025.3.2 ; python_version >= "3.9" and python_version < "3.13"
googleapis-common-protos==1.70.0 ; python_version >= "3.9" and python_version < "3.13"
grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13"
grpcio-reflection==1.71.0 ; python_version >= "3.9" and python_version < "3.13"
grpcio-status==1.71.0 ; python_version >= "3.9" and python_version < "3.13"
grpcio==1.72.0rc1 ; python_version >= "3.9" and python_version < "3.13"
hf-transfer==0.1.9 ; python_version >= "3.9" and python_version < "3.13"
huggingface-hub==0.30.2 ; python_version >= "3.9" and python_version < "3.13"
idna==3.10 ; python_version >= "3.9" and python_version < "3.13"
importlib-metadata==8.6.1 ; python_version >= "3.9" and python_version < "3.13"
interegular==0.3.3 ; python_version >= "3.9" and python_version < "3.13"
jinja2==3.1.6 ; python_version >= "3.9" and python_version < "3.13"
joblib==1.4.2 ; python_version >= "3.9" and python_version < "3.13"
jsonschema-specifications==2024.10.1 ; python_version >= "3.9" and python_version < "3.13"
jsonschema==4.23.0 ; python_version >= "3.9" and python_version < "3.13"
lark==1.2.2 ; python_version >= "3.9" and python_version < "3.13"
llvmlite==0.43.0 ; python_version >= "3.9" and python_version < "3.13"
loguru==0.7.3 ; python_version >= "3.9" and python_version < "3.13"
markdown-it-py==3.0.0 ; python_version >= "3.9" and python_version < "3.13"
markupsafe==3.0.2 ; python_version >= "3.9" and python_version < "3.13"
mdurl==0.1.2 ; python_version >= "3.9" and python_version < "3.13"
mpmath==1.3.0 ; python_version >= "3.9" and python_version < "3.13"
nest-asyncio==1.6.0 ; python_version >= "3.9" and python_version < "3.13"
networkx==3.2.1 ; python_version >= "3.9" and python_version < "3.13"
numba==0.60.0 ; python_version >= "3.9" and python_version < "3.13"
numpy==1.26.4 ; python_version >= "3.9" and python_version < "3.13"
nvidia-cublas-cu12==12.4.5.8 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cuda-cupti-cu12==12.4.127 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cuda-nvrtc-cu12==12.4.127 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cuda-runtime-cu12==12.4.127 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cudnn-cu12==9.1.0.70 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cufft-cu12==11.2.1.3 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-curand-cu12==10.3.5.147 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cusolver-cu12==11.6.1.9 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cusparse-cu12==12.3.1.170 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cusparselt-cu12==0.6.2 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-nccl-cu12==2.21.5 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-nvjitlink-cu12==12.4.127 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-nvtx-cu12==12.4.127 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
opentelemetry-api==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-common==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-grpc==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-http==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-instrumentation-grpc==0.53b0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-instrumentation==0.53b0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-proto==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-sdk==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-semantic-conventions==0.53b0 ; python_version >= "3.9" and python_version < "3.13"
optimum-habana==1.17.0 ; python_version >= "3.9" and python_version < "3.13"
optimum==1.24.0 ; python_version >= "3.9" and python_version < "3.13"
outlines==0.0.36 ; python_version >= "3.9" and python_version < "3.13"
packaging==24.2 ; python_version >= "3.9" and python_version < "3.13"
peft==0.15.1 ; python_version >= "3.9" and python_version < "3.13"
pillow==11.2.1 ; python_version >= "3.9" and python_version < "3.13"
prometheus-client==0.21.1 ; python_version >= "3.9" and python_version < "3.13"
protobuf==5.29.4 ; python_version >= "3.9" and python_version < "3.13"
psutil==7.0.0 ; python_version >= "3.9" and python_version < "3.13"
py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13"
pydantic-core==2.33.1 ; python_version >= "3.9" and python_version < "3.13"
pydantic==2.11.3 ; python_version >= "3.9" and python_version < "3.13"
pygments==2.19.1 ; python_version >= "3.9" and python_version < "3.13"
pyyaml==6.0.2 ; python_version >= "3.9" and python_version < "3.13"
referencing==0.36.2 ; python_version >= "3.9" and python_version < "3.13"
regex==2024.11.6 ; python_version >= "3.9" and python_version < "3.13"
requests==2.32.3 ; python_version >= "3.9" and python_version < "3.13"
rich==14.0.0 ; python_version >= "3.9" and python_version < "3.13"
rpds-py==0.24.0 ; python_version >= "3.9" and python_version < "3.13"
safetensors==0.5.3 ; python_version >= "3.9" and python_version < "3.13"
scikit-learn==1.6.1 ; python_version >= "3.9" and python_version < "3.13"
scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13"
sentence-transformers==3.3.1 ; python_version >= "3.9" and python_version < "3.13"
sentencepiece==0.2.0 ; python_version >= "3.9" and python_version < "3.13"
setuptools==78.1.0 ; python_version >= "3.12" and python_version < "3.13"
shellingham==1.5.4 ; python_version >= "3.9" and python_version < "3.13"
sympy==1.13.1 ; python_version >= "3.9" and python_version < "3.13"
threadpoolctl==3.6.0 ; python_version >= "3.9" and python_version < "3.13"
tokenizers==0.21.1 ; python_version >= "3.9" and python_version < "3.13"
torch==2.6.0 ; python_version >= "3.9" and python_version < "3.13"
tqdm==4.67.1 ; python_version >= "3.9" and python_version < "3.13"
transformers==4.49.0 ; python_version >= "3.9" and python_version < "3.13"
triton==3.2.0 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
typer==0.15.2 ; python_version >= "3.9" and python_version < "3.13"
typing-extensions==4.13.2 ; python_version >= "3.9" and python_version < "3.13"
typing-inspection==0.4.0 ; python_version >= "3.9" and python_version < "3.13"
urllib3==2.4.0 ; python_version >= "3.9" and python_version < "3.13"
win32-setctime==1.2.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32"
wrapt==1.17.2 ; python_version >= "3.9" and python_version < "3.13"
zipp==3.21.0 ; python_version >= "3.9" and python_version < "3.13"
"You do not seem to have awq installed, either install it (cd server && make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
)
else:
returnQuantLinear(
self.qweight,
self.qzeros,
self.scales,
self.g_idx,
bias,
self.bits,
self.groupsize,
)
classGPTQWeightsLoader(WeightsLoader):
"""
LoaderforGPTQ-andAWQ-quantizedweights.
"""
def__init__(
self,
*,
bits:int,
desc_act:bool,
groupsize:int,
quant_method:str,
quantize:str,
sym:bool,
):
self.bits=bits
self.desc_act=desc_act
self.groupsize=groupsize
self.quant_method=quant_method
self.quantize=quantize
self.sym=sym
defget_weights(self,weights:Weights,prefix:str):
self._get_gptq_params(weights)
use_exllama=True
ifself.bits!=4:
use_exllama=False
ifself.desc_act:
log_once(logger.warning,"Disabling exllama because desc_act=True")
use_exllama=False
try:
qweight=weights.get_tensor(f"{prefix}.qweight")
exceptRuntimeError:
raiseRuntimeError(
"Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
"Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.