mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 13:52:07 +00:00
doc: Update TRTLLM deployment doc. (#2960)
* doc: Update TRTLLM deployment doc. Update TRTLLM CI to allow release builds when tagging TGI. * doc: Update TRTLLM deployment doc. Update TRTLLM CI to allow release builds when tagging TGI. * fix: PR comments
This commit is contained in:
parent
cb747b33da
commit
065aabb13d
18
.github/workflows/build.yaml
vendored
18
.github/workflows/build.yaml
vendored
@ -64,7 +64,7 @@ jobs:
|
||||
export runs_on="aws-g6-12xl-plus-priv-cache"
|
||||
export platform=""
|
||||
export extra_pytest=""
|
||||
export target="nil"
|
||||
export target=""
|
||||
;;
|
||||
cuda-trtllm)
|
||||
export dockerfile="Dockerfile_trtllm"
|
||||
@ -74,7 +74,13 @@ jobs:
|
||||
export runs_on="ubuntu-latest"
|
||||
export platform=""
|
||||
export extra_pytest=""
|
||||
export build_type="dev"
|
||||
if [[ "${GITHUB_REF}" == "refs/tags/*" ]]; then
|
||||
export build_type="release";
|
||||
export target="";
|
||||
else
|
||||
export build_type="dev";
|
||||
export target="ci-runtime";
|
||||
fi
|
||||
;;
|
||||
rocm)
|
||||
export dockerfile="Dockerfile_amd"
|
||||
@ -85,7 +91,7 @@ jobs:
|
||||
export runs_on="ubuntu-latest"
|
||||
export platform=""
|
||||
export extra_pytest="-k test_flash_gemma_gptq_load"
|
||||
export target="nil"
|
||||
export target=""
|
||||
;;
|
||||
intel-xpu)
|
||||
export dockerfile="Dockerfile_intel"
|
||||
@ -95,7 +101,7 @@ jobs:
|
||||
export runs_on="ubuntu-latest"
|
||||
export platform="xpu"
|
||||
export extra_pytest=""
|
||||
export target="nil"
|
||||
export target=""
|
||||
;;
|
||||
intel-cpu)
|
||||
export dockerfile="Dockerfile_intel"
|
||||
@ -106,7 +112,7 @@ jobs:
|
||||
export runs_on="aws-highmemory-32-plus-priv"
|
||||
export platform="cpu"
|
||||
export extra_pytest="-k test_flash_gemma_simple"
|
||||
export target="nil"
|
||||
export target=""
|
||||
;;
|
||||
esac
|
||||
echo $dockerfile
|
||||
@ -193,7 +199,7 @@ jobs:
|
||||
sccache_gha_enabled=on
|
||||
actions_cache_url=${{ env.ACTIONS_CACHE_URL }}
|
||||
actions_runtime_token=${{ env.ACTIONS_RUNTIME_TOKEN }}
|
||||
|
||||
target: ${{ env.TARGET }}
|
||||
tags: ${{ steps.meta.outputs.tags || steps.meta-pr.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels || steps.meta-pr.outputs.labels }}
|
||||
cache-from: type=s3,region=us-east-1,bucket=ci-docker-buildx-cache,name=text-generation-inference-cache${{ env.LABEL }},mode=min,access_key_id=${{ secrets.S3_CI_DOCKER_BUILDX_CACHE_ACCESS_KEY_ID }},secret_access_key=${{ secrets.S3_CI_DOCKER_BUILDX_CACHE_SECRET_ACCESS_KEY }},mode=max
|
||||
|
@ -123,15 +123,6 @@ COPY --from=trt-builder /usr/local/tensorrt /usr/local/tensorrt
|
||||
COPY --from=tgi-builder /usr/local/tgi /usr/local/tgi
|
||||
COPY --from=tgi-builder /usr/src/text-generation-inference/target/release/text-generation-backends-trtllm /usr/local/tgi/bin/text-generation-launcher
|
||||
|
||||
FROM runtime
|
||||
|
||||
LABEL co.huggingface.vendor="Hugging Face Inc."
|
||||
LABEL org.opencontainers.image.authors="hardware@hf.co"
|
||||
LABEL org.opencontainers.title="Text-Generation-Inference TensorRT-LLM Backend"
|
||||
|
||||
ENTRYPOINT ["./text-generation-launcher"]
|
||||
CMD ["--executor-worker", "/usr/local/tgi/bin/executorWorker"]
|
||||
|
||||
# This is used only for the CI/CD
|
||||
FROM nvidia/cuda:12.6.3-cudnn-runtime-ubuntu24.04 AS ci-runtime
|
||||
RUN apt update && apt install -y libasan8 libubsan1 libucx0 pipx python3-minimal python3-dev python3-pip python3-venv && \
|
||||
@ -152,3 +143,13 @@ COPY --from=tgi-builder /usr/local/tgi /usr/local/tgi
|
||||
|
||||
# Basically we copy from target/debug instead of target/release
|
||||
COPY --from=tgi-builder /usr/src/text-generation-inference/target/debug/text-generation-backends-trtllm /usr/local/tgi/bin/text-generation-launcher
|
||||
|
||||
# This is the final image
|
||||
FROM runtime
|
||||
|
||||
LABEL co.huggingface.vendor="Hugging Face Inc."
|
||||
LABEL org.opencontainers.image.authors="hardware@hf.co"
|
||||
LABEL org.opencontainers.title="Text-Generation-Inference TensorRT-LLM Backend"
|
||||
|
||||
ENTRYPOINT ["./text-generation-launcher"]
|
||||
CMD ["--executor-worker", "/usr/local/tgi/bin/executorWorker"]
|
||||
|
@ -4,8 +4,13 @@ The NVIDIA TensorRT-LLM (TRTLLM) backend is a high-performance backend for LLMs
|
||||
that uses NVIDIA's TensorRT library for inference acceleration.
|
||||
It makes use of specific optimizations for NVIDIA GPUs, such as custom kernels.
|
||||
|
||||
To use the TRTLLM backend you need to compile `engines` for the models you want to use.
|
||||
Each `engine` must be compiled on the same GPU architecture that you will use for inference.
|
||||
To use the TRTLLM backend **you need to compile** `engines` for the models you want to use.
|
||||
Each `engine` must be compiled for a given set of:
|
||||
- GPU architecture that you will use for inference (e.g. A100, L40, etc.)
|
||||
- Maximum batch size
|
||||
- Maximum input length
|
||||
- Maximum output length
|
||||
- Maximum beams width
|
||||
|
||||
## Supported models
|
||||
|
||||
@ -19,63 +24,159 @@ want to use.
|
||||
|
||||
```bash
|
||||
MODEL_NAME="meta-llama/Llama-3.1-8B-Instruct"
|
||||
|
||||
# Install huggingface_cli
|
||||
python -m pip install huggingface-cli[hf_transfer]
|
||||
|
||||
# Login to the Hugging Face Hub
|
||||
huggingface-cli login
|
||||
|
||||
# Create a directory to store the model
|
||||
mkdir -p /tmp/models/$MODEL_NAME
|
||||
|
||||
# Create a directory to store the compiled engine
|
||||
mkdir -p /tmp/engines/$MODEL_NAME
|
||||
|
||||
# Download the model
|
||||
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download --local-dir /tmp/models/$MODEL_NAME $MODEL_NAME
|
||||
|
||||
DESTINATION="/tmp/engines/$MODEL_NAME"
|
||||
HF_TOKEN="hf_xxx"
|
||||
# Compile the engine using Optimum-NVIDIA
|
||||
# This will create a compiled engine in the /tmp/engines/meta-llama/Llama-3.1-8B-Instruct
|
||||
# directory for 1 GPU
|
||||
docker run \
|
||||
--rm \
|
||||
-it \
|
||||
--gpus=1 \
|
||||
-v /tmp/models/$MODEL_NAME:/model \
|
||||
-v /tmp/engines/$MODEL_NAME:/engine \
|
||||
huggingface/optimum-nvidia \
|
||||
optimum-cli export trtllm \
|
||||
--shm-size=1g \
|
||||
-v "$DESTINATION":/engine \
|
||||
-e HF_TOKEN=$HF_TOKEN \
|
||||
-e HF_HUB_ENABLE_HF_TRANSFER=1 \
|
||||
huggingface/optimum-nvidia:v0.1.0b9-py310 \
|
||||
bash -c "optimum-cli export trtllm \
|
||||
--tp=1 \
|
||||
--pp=1 \
|
||||
--max-batch-size=128 \
|
||||
--max-batch-size=64 \
|
||||
--max-input-length 4096 \
|
||||
--max-output-length 8192 \
|
||||
--max-beams-width=1 \
|
||||
--destination /engine \
|
||||
$MODEL_NAME
|
||||
--destination /tmp/engine \
|
||||
$MODEL_NAME && cp -rL /tmp/engine/* /engine/"
|
||||
```
|
||||
|
||||
Your compiled engine will be saved in the `/tmp/engines/$MODEL_NAME` directory.
|
||||
Your compiled engine will be saved in the `/tmp/engines/$MODEL_NAME` directory, in a subfolder named after the GPU used to compile the model.
|
||||
|
||||
## Using the TRTLLM backend
|
||||
|
||||
Run TGI-TRTLLM Docker image with the compiled engine:
|
||||
|
||||
```bash
|
||||
MODEL_NAME="meta-llama/Llama-3.1-8B-Instruct"
|
||||
DESTINATION="/tmp/engines/$MODEL_NAME"
|
||||
HF_TOKEN="hf_xxx"
|
||||
docker run \
|
||||
--gpus 1 \
|
||||
--shm-size=1g \
|
||||
-it \
|
||||
--rm \
|
||||
-p 3000:3000 \
|
||||
-e MODEL=$MODEL_NAME \
|
||||
-e PORT=3000 \
|
||||
-e HF_TOKEN='hf_XXX' \
|
||||
-v /tmp/engines/$MODEL_NAME:/data \
|
||||
-e HF_TOKEN=$HF_TOKEN \
|
||||
-v "$DESTINATION"/<YOUR_GPU_ARCHITECTURE>/engines:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:latest-trtllm \
|
||||
--executor-worker executorWorker \
|
||||
--model-id /data/$MODEL_NAME
|
||||
--model-id /data/ \
|
||||
--tokenizer-name $MODEL_NAME
|
||||
```
|
||||
|
||||
## Development
|
||||
|
||||
To develop TRTLLM backend, you can use [dev containers](https://containers.dev/) located in
|
||||
`.devcontainer` directory.
|
||||
To develop TRTLLM backend, you can use [dev containers](https://containers.dev/) with the following `.devcontainer.json` file:
|
||||
```json
|
||||
{
|
||||
"name": "CUDA",
|
||||
"build": {
|
||||
"dockerfile": "Dockerfile_trtllm",
|
||||
"context": ".."
|
||||
},
|
||||
"remoteEnv": {
|
||||
"PATH": "${containerEnv:PATH}:/usr/local/cuda/bin",
|
||||
"LD_LIBRARY_PATH": "$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64",
|
||||
"XLA_FLAGS": "--xla_gpu_cuda_data_dir=/usr/local/cuda"
|
||||
},
|
||||
"customizations" : {
|
||||
"jetbrains" : {
|
||||
"backend" : "CLion"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
and `Dockerfile_trtllm`:
|
||||
|
||||
```Dockerfile
|
||||
ARG cuda_arch_list="75-real;80-real;86-real;89-real;90-real"
|
||||
ARG build_type=release
|
||||
ARG ompi_version=4.1.7
|
||||
|
||||
# CUDA dependent dependencies resolver stage
|
||||
FROM nvidia/cuda:12.6.3-cudnn-devel-ubuntu24.04 AS cuda-builder
|
||||
|
||||
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y \
|
||||
build-essential \
|
||||
cmake \
|
||||
curl \
|
||||
gcc-14 \
|
||||
g++-14 \
|
||||
git \
|
||||
git-lfs \
|
||||
lld \
|
||||
libssl-dev \
|
||||
libucx-dev \
|
||||
libasan8 \
|
||||
libubsan1 \
|
||||
ninja-build \
|
||||
pkg-config \
|
||||
pipx \
|
||||
python3 \
|
||||
python3-dev \
|
||||
python3-setuptools \
|
||||
tar \
|
||||
wget --no-install-recommends && \
|
||||
pipx ensurepath
|
||||
|
||||
ENV TGI_INSTALL_PREFIX=/usr/local/tgi
|
||||
ENV TENSORRT_INSTALL_PREFIX=/usr/local/tensorrt
|
||||
|
||||
# Install OpenMPI
|
||||
FROM cuda-builder AS mpi-builder
|
||||
WORKDIR /opt/src/mpi
|
||||
|
||||
ARG ompi_version
|
||||
ENV OMPI_VERSION=${ompi_version}
|
||||
ENV OMPI_TARBALL_FILENAME=openmpi-${OMPI_VERSION}.tar.bz2
|
||||
ADD --checksum=sha256:54a33cb7ad81ff0976f15a6cc8003c3922f0f3d8ceed14e1813ef3603f22cd34 \
|
||||
https://download.open-mpi.org/release/open-mpi/v4.1/${OMPI_TARBALL_FILENAME} .
|
||||
|
||||
RUN tar --strip-components=1 -xf ${OMPI_TARBALL_FILENAME} &&\
|
||||
./configure --prefix=/usr/local/mpi --with-cuda=/usr/local/cuda --with-slurm && \
|
||||
make -j all && \
|
||||
make install && \
|
||||
rm -rf ${OMPI_TARBALL_FILENAME}/..
|
||||
|
||||
# Install TensorRT
|
||||
FROM cuda-builder AS trt-builder
|
||||
COPY backends/trtllm/scripts/install_tensorrt.sh /opt/install_tensorrt.sh
|
||||
RUN chmod +x /opt/install_tensorrt.sh && \
|
||||
/opt/install_tensorrt.sh
|
||||
|
||||
# Build Backend
|
||||
FROM cuda-builder AS tgi-builder
|
||||
WORKDIR /usr/src/text-generation-inference
|
||||
|
||||
# Scoped global args reuse
|
||||
ARG cuda_arch_list
|
||||
ARG build_type
|
||||
ARG sccache_gha_enabled
|
||||
ARG actions_cache_url
|
||||
ARG actions_runtime_token
|
||||
|
||||
# Install Rust
|
||||
ENV PATH="/root/.cargo/bin:$PATH"
|
||||
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | bash -s -- -y && \
|
||||
chmod -R a+w /root/.rustup && \
|
||||
chmod -R a+w /root/.cargo && \
|
||||
cargo install sccache --locked
|
||||
|
||||
ENV LD_LIBRARY_PATH="/usr/local/mpi/lib:$LD_LIBRARY_PATH"
|
||||
ENV PKG_CONFIG_PATH="/usr/local/mpi/lib/pkgconfig"
|
||||
ENV CMAKE_PREFIX_PATH="/usr/local/mpi:/usr/local/tensorrt"
|
||||
|
||||
ENV USE_LLD_LINKER=ON
|
||||
ENV CUDA_ARCH_LIST=${cuda_arch_list}
|
||||
```
|
Loading…
Reference in New Issue
Block a user