[gaudi] Perf optimization (#3256)

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
This commit is contained in:
Wang, Yi 2025-06-11 21:00:21 +08:00 committed by GitHub
parent 79183d1647
commit 839477670a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
24 changed files with 229 additions and 66 deletions

View File

@ -11,6 +11,7 @@ from .hpu import (
attention,
paged_attention,
paged_attention_mla,
set_block_mapping,
)
@ -22,6 +23,7 @@ __all__ = [
"get_kv_scales",
"paged_attention",
"paged_attention_mla",
"set_block_mapping",
"SUPPORTS_WINDOWING",
"KVCache",
"KVCompressCache",

View File

@ -8,6 +8,7 @@ from habana_frameworks.torch.hpex.kernels import FusedSDPA
from vllm_hpu_extension.utils import ModuleFusedSDPA
import os
from text_generation_server.models.globals import BLOCK_SIZE
import math
SUPPORTS_WINDOWING = False
@ -106,6 +107,21 @@ def attention(
return attn_output
def set_block_mapping(hpu_attention_meta: HPUPagedAttentionMetadata, batch_size):
block_mapping = torch.nn.functional.one_hot(
hpu_attention_meta.block_groups, num_classes=batch_size
)
dtype = hpu_attention_meta.block_usage.dtype
device = hpu_attention_meta.block_usage.device
mask = torch.arange(0, BLOCK_SIZE, device=device, dtype=torch.int32).unsqueeze(0)
mask = mask >= hpu_attention_meta.block_usage.unsqueeze(-1)
attn_bias = torch.zeros_like(mask, dtype=dtype).masked_fill_(mask, -math.inf)
hpu_attention_meta = hpu_attention_meta._replace(
attn_bias=attn_bias, block_mapping=block_mapping.to(dtype)
)
return hpu_attention_meta
def paged_attention(
query: torch.Tensor,
kv_cache: KVCache,
@ -176,4 +192,10 @@ def paged_attention_mla(
return output.view(batch_size, head_num, -1)
__all__ = ["SUPPORTS_WINDOWING", "attention", "paged_attention", "paged_attention_mla"]
__all__ = [
"SUPPORTS_WINDOWING",
"attention",
"paged_attention",
"paged_attention_mla",
"set_block_mapping",
]

View File

@ -28,6 +28,7 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -415,6 +416,10 @@ class FlashCohereModel(torch.nn.Module):
seqlen: torch.Tensor,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward

View File

@ -26,6 +26,7 @@ from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -678,6 +679,10 @@ class DbrxModel(torch.nn.Module):
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward

View File

@ -33,6 +33,7 @@ from text_generation_server.layers.attention import (
Seqlen,
attention,
paged_attention,
set_block_mapping,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers.attention.kv_cache import KVCache, get_kv_scales
@ -569,6 +570,10 @@ class DeepseekV2Model(torch.nn.Module):
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward

View File

@ -34,6 +34,7 @@ from text_generation_server.layers.attention import (
Seqlen,
attention,
paged_attention_mla,
set_block_mapping,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers.attention.kv_cache import KVCache, get_kv_scales
@ -645,6 +646,10 @@ class DeepseekV3Model(torch.nn.Module):
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward

View File

@ -28,6 +28,7 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -466,6 +467,10 @@ class FlashGemma2Model(torch.nn.Module):
adapter_data: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
# Get rotary cos and sin for this forward

View File

@ -28,6 +28,7 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -388,6 +389,10 @@ class FlashGemmaModel(torch.nn.Module):
adapter_data: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
# Get rotary cos and sin for this forward

View File

@ -27,6 +27,7 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -383,6 +384,10 @@ class FlashGPT2Model(torch.nn.Module):
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
residual = None

View File

@ -28,6 +28,7 @@ from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -324,6 +325,10 @@ class FlashGPTJModel(torch.nn.Module):
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.wte(input_ids)
# Get rotary cos and sin for this forward

View File

@ -43,6 +43,7 @@ from text_generation_server.layers.layernorm import FastRMSNorm
from text_generation_server.layers.attention import (
KVCache,
paged_attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -548,6 +549,10 @@ class Llama4TextModel(nn.Module):
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
bs = seqlen.input_lengths.shape[0]

View File

@ -35,6 +35,7 @@ from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoE
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -549,6 +550,11 @@ class FlashLlamaModel(torch.nn.Module):
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
cross_attention_states=None,
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
# Get rotary cos and sin for this forward

View File

@ -30,6 +30,7 @@ from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -396,6 +397,10 @@ class MistralModel(torch.nn.Module):
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
adapter_data: Optional[torch.Tensor] = None,
):
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
# Get rotary cos and sin for this forward
# Avoid to index in each layer

View File

@ -37,6 +37,7 @@ from text_generation_server.layers.attention import (
Seqlen,
attention,
paged_attention,
set_block_mapping,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers.attention.kv_cache import get_kv_scales
@ -446,6 +447,10 @@ class MixtralModel(torch.nn.Module):
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward
@ -505,7 +510,6 @@ class FlashMixtralForCausalLM(torch.nn.Module):
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.model(
input_ids,
position_ids,

View File

@ -29,6 +29,7 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -354,6 +355,10 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_in(input_ids)
# Get rotary cos and sin for this forward

View File

@ -9,6 +9,7 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -347,6 +348,10 @@ class FlashPhiModel(torch.nn.Module):
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward

View File

@ -8,6 +8,7 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -288,6 +289,10 @@ class Qwen2Model(torch.nn.Module):
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
@ -359,7 +364,6 @@ class Qwen2ForCausalLM(torch.nn.Module):
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = self.model(

View File

@ -18,6 +18,7 @@ import habana_frameworks.torch as htorch
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -266,7 +267,10 @@ class Qwen3Model(nn.Module):
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
@ -334,7 +338,6 @@ class Qwen3ForCausalLM(nn.Module):
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
inputs_embeds = self.embed_tokens(input_ids)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
hidden_states = self.model(

View File

@ -18,6 +18,7 @@ from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.attention import (
attention,
paged_attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -628,6 +629,10 @@ class FlashRWModel(FlashRWPreTrainedModel):
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.word_embeddings(input_ids)
# Get rotary cos and sin for this forward

View File

@ -8,6 +8,7 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -437,6 +438,10 @@ class FlashSantacoderModel(nn.Module):
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.wte(input_ids) + self.wpe(position_ids)
if self.process_group.size() > 1:

View File

@ -29,6 +29,7 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
@ -511,6 +512,10 @@ class Starcoder2Model(torch.nn.Module):
adapter_data,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward
@ -584,7 +589,6 @@ class FlashStarcoder2ForCausalLM(torch.nn.Module):
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.model(
input_ids,
position_ids,

View File

@ -153,19 +153,14 @@ def prepare_for_decode(
block_list_device = _async_h2d_tensor_copy(block_list)
block_groups_device = _async_h2d_tensor_copy(block_groups)
block_usage_device = _async_h2d_tensor_copy(block_usage)
block_mapping = torch.nn.functional.one_hot(
block_groups_device, num_classes=batch_size
)
mask = torch.arange(0, BLOCK_SIZE, device=device, dtype=torch.int32).unsqueeze(0)
mask = mask >= block_usage_device.unsqueeze(-1)
attn_bias = torch.zeros_like(mask, dtype=dtype).masked_fill_(mask, -math.inf)
return trim_attn_metadata(
HPUPagedAttentionMetadata(
block_list=block_list_device,
block_groups=block_groups_device,
block_usage=block_usage_device,
block_mapping=block_mapping.to(dtype),
attn_bias=attn_bias,
block_mapping=None,
attn_bias=None,
)
)
@ -428,10 +423,8 @@ class FlashCausalLMBatch(Batch):
for i, input_ids in enumerate(all_input_ids):
all_input_ids_tensor[i, : len(input_ids)] = input_ids
# Create tensors on device
all_input_ids_tensor = torch.tensor(
all_input_ids_tensor, dtype=torch.int64, device=device
)
# put on cpu temporarily, move to hpu in prepare_for_prefill
all_input_ids_tensor = torch.tensor(all_input_ids_tensor, dtype=torch.int64)
top_n_tokens_tensor = torch.tensor(top_n_tokens, dtype=torch.int64)
@ -701,7 +694,9 @@ class FlashCausalLMBatch(Batch):
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
def concatenate(
cls, batches: List["FlashCausalLMBatch"], padded_total_bs: int = 0
) -> "FlashCausalLMBatch":
# Batch attributes
requests = []
requests_idx_mapping = {}
@ -750,7 +745,10 @@ class FlashCausalLMBatch(Batch):
adapter_meta = None
adapter_segment_builder = None
else:
input_ids = batches[0].input_ids.new_empty(total_batch_size)
if padded_total_bs == batches[0].input_ids.shape[0]:
input_ids = batches[0].input_ids
else:
input_ids = batches[0].input_ids.new_empty(total_batch_size)
if (
batches[0].position_ids is not None
and batches[0].position_ids.dim() == 2
@ -784,9 +782,7 @@ class FlashCausalLMBatch(Batch):
block_tables_tensor = batches[0].block_tables_tensor.new_zeros(
(total_batch_size, max_blocks)
)
all_input_ids_tensor = batches[0].all_input_ids_tensor.new_zeros(
(total_batch_size, max_length)
)
all_input_ids_tensor = batches[0].all_input_ids_tensor
top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
total_batch_size,
)
@ -829,9 +825,12 @@ class FlashCausalLMBatch(Batch):
index = torch.tensor(list(range(start_index, end_index)), device="cpu")
top_n_tokens_tensor.index_copy_(0, index, batch.top_n_tokens_tensor)
all_input_ids_tensor[
start_index:end_index, : batch.all_input_ids_tensor.shape[1]
] = batch.all_input_ids_tensor[:valid_bsize, :max_length]
if i > 0:
all_input_ids_tensor.index_copy_(
0,
index.to(batch.all_input_ids_tensor.device),
batch.all_input_ids_tensor[:valid_bsize, :],
)
block_tables_tensor[
start_index:end_index, : batch.block_tables_tensor.shape[1]
@ -851,9 +850,10 @@ class FlashCausalLMBatch(Batch):
)
if not prefilling:
input_ids.index_copy_(
0, index.to(input_ids.device), batch.input_ids[:valid_bsize]
)
if padded_total_bs != batches[0].input_ids.shape[0] or i > 0:
input_ids.index_copy_(
0, index.to(input_ids.device), batch.input_ids[:valid_bsize]
)
position_ids.index_copy_(0, index, batch.position_ids[:valid_bsize])
slot_indices.index_copy_(
0, index, batch.slot_indices + cumulative_slots
@ -987,7 +987,6 @@ class FlashCausalLMBatch(Batch):
else:
padded_bs = self.input_ids.shape[0]
slots = self.slots[self.slot_indices]
extra_pad = padded_bs - self.input_ids.shape[0]
self.hpu_attn_meta = prepare_for_decode(
dtype,
@ -998,17 +997,20 @@ class FlashCausalLMBatch(Batch):
padded_bs,
bucketing_ctx,
)
self.input_ids = F.pad(self.input_ids, (0, extra_pad), value=0)
self.position_ids = F.pad(self.position_ids, (0, extra_pad), value=1)
self.input_ids = F.pad(
self.input_ids, (0, padded_bs - self.input_ids.shape[0]), value=0
)
self.position_ids = F.pad(
self.position_ids, (0, padded_bs - self.position_ids.shape[0]), value=1
)
self.input_lengths_tensor = F.pad(
self.input_lengths_tensor, (0, extra_pad), value=0
self.input_lengths_tensor,
(0, padded_bs - self.input_lengths_tensor.shape[0]),
value=0,
)
self.cache_lengths_tensor = F.pad(
self.cache_lengths_tensor, (0, extra_pad), value=0
)
self.all_input_ids_tensor = F.pad(
self.all_input_ids_tensor,
(0, 0, 0, extra_pad),
self.cache_lengths_tensor,
(0, padded_bs - self.cache_lengths_tensor.shape[0]),
value=0,
)
next_token_chooser_parameters = []
@ -1028,7 +1030,9 @@ class FlashCausalLMBatch(Batch):
fsm_grammar_states,
)
def prepare_for_prefill(self, max_padded_input_len, max_padded_bs):
def prepare_for_prefill(
self, max_padded_input_len, max_padded_bs, max_total_tokens
):
# Prepare values if we need to continue prefilling
# Speculation must be ignored while we prefill even with chunking
# it simplifies everything
@ -1044,7 +1048,7 @@ class FlashCausalLMBatch(Batch):
# need extra pad to match warmup seq
extra_pad = max_padded_input_len - self.max_input_length
extra_pad_bs = max_padded_bs - len(self)
device = self.all_input_ids_tensor.device
device = "hpu"
if isinstance(self.input_ids, list) and len(self) > 1:
input_ids_padded_length = []
input_ids = []
@ -1288,12 +1292,17 @@ class FlashCausalLMBatch(Batch):
self.prefill_next_token_indices = (
self.prefill_next_token_indices + input_ids_padded_length_tensor
)
self.all_input_ids_tensor = F.pad(
self.all_input_ids_tensor,
(0, 0, 0, extra_pad_bs),
value=0,
all_input_ids_tensor = torch.zeros(
(max_padded_bs, max(max_total_tokens, self.all_input_ids_tensor.shape[-1])),
dtype=torch.int64,
device="hpu",
)
for i in range(len(self)):
all_input_ids_tensor[i, : self.all_input_ids_tensor.shape[-1]] = (
self.all_input_ids_tensor[i]
)
self.all_input_ids_tensor = all_input_ids_tensor
next_token_chooser_parameters = []
next_token_chooser_parameters.extend([r.parameters for r in self.requests])
pad_next_token_chooser_parameters(next_token_chooser_parameters, max_padded_bs)
@ -1459,6 +1468,8 @@ class FlashCausalLM(Model):
self.kv_cache = []
self.kv_cache_dtype = dtype if kv_cache_dtype is None else kv_cache_dtype
self.bucketing_ctx = None
self.max_total_tokens = None
self.max_input_tokens = None
htorch.core.hpu_set_env()
if htorch.utils.internal.is_lazy():
htorch.hpu.wrap_in_hpu_graph(model, disable_tensor_cache=True)
@ -1564,6 +1575,14 @@ class FlashCausalLM(Model):
logger.info,
f"Free memory on device {self.device}: {format_bytes(free_memory)} used_for_graph: {format_bytes(mem_used_from_graph)} ratio {graph_reserved_mem} reserved_for_runtime: {format_bytes(self.mem_reserved)}",
)
if max_total_tokens is None:
max_total_tokens = sum(batch.input_lengths)
if max_input_tokens is None:
max_input_tokens = max_total_tokens - 1
self.max_total_tokens = max_total_tokens
self.max_input_tokens = max_input_tokens
try:
self.init_kv_cache(
batch.num_blocks,
@ -1597,11 +1616,6 @@ class FlashCausalLM(Model):
)
log_master(logger.info, f"KV-cache blocks: {num_blocks}, size: {BLOCK_SIZE}")
if max_total_tokens is None:
max_total_tokens = sum(batch.input_lengths)
if max_input_tokens is None:
max_input_tokens = max_total_tokens - 1
self.kv_cache = []
empty_cache()
@ -2017,7 +2031,9 @@ class FlashCausalLM(Model):
accepted_ids,
speculative_ids,
) = batch.next_token_chooser(
batch.all_input_ids_tensor[:, : batch.max_current_length],
batch.all_input_ids_tensor[
: batch.next_token_logits.shape[0], : batch.max_current_length
],
batch.next_token_logits,
speculate,
batch.speculative_ids,
@ -2031,14 +2047,29 @@ class FlashCausalLM(Model):
accepted_ids,
)
if batch.valid_indices is not None:
next_token_logprobs = next_token_logprobs.cpu()
accepted_ids = accepted_ids.cpu()
batch.all_input_ids_tensor = batch.all_input_ids_tensor[
batch.valid_indices
]
next_input_ids = next_input_ids[batch.valid_indices]
next_token_logprobs = next_token_logprobs[batch.valid_indices]
accepted_ids = accepted_ids[batch.valid_indices]
# TODO speculative decoding handling missing
index = torch.arange(
0,
len(batch.valid_indices),
device=batch.all_input_ids_tensor.device,
)
batch.all_input_ids_tensor.index_copy_(
0, index, batch.all_input_ids_tensor[batch.valid_indices]
)
padded_total_bs = self.bucketing_ctx.get_padded_decode_batch_size(
len(batch.valid_indices)
)
next_input_ids.index_copy_(
0, index, next_input_ids[batch.valid_indices]
)
next_input_ids = next_input_ids[:padded_total_bs]
next_token_logprobs.index_copy_(
0, index, next_token_logprobs[batch.valid_indices]
)
accepted_ids.index_copy_(
0, index, accepted_ids[batch.valid_indices]
)
if speculative_ids is not None:
speculative_ids = speculative_ids[batch.valid_indices]
batch.top_n_tokens_tensor = batch.top_n_tokens_tensor[
@ -2106,10 +2137,13 @@ class FlashCausalLM(Model):
batch.slot_indices += accepted_ids[: len(batch)]
else:
index = batch.cache_lengths_tensor + batch.input_lengths_tensor
index = F.pad(
index, (0, next_input_ids.shape[0] - index.shape[0]), value=0
)
index = index.to(batch.all_input_ids_tensor.device)
batch_idx = torch.arange(
0,
batch.all_input_ids_tensor.shape[0],
index.shape[0],
dtype=torch.long,
device=batch.all_input_ids_tensor.device,
)
@ -2197,7 +2231,18 @@ class FlashCausalLM(Model):
htorch.core.mark_step()
# Stage 2. Prepare new batch for speculative scheduling
if len(batches) > 1:
batch = self.batch_type.concatenate(batches)
if self.bucketing_ctx is not None:
total_batch_size = 0
for b in batches:
total_batch_size += len(b)
padded_total_bs = self.bucketing_ctx.get_padded_decode_batch_size(
total_batch_size
)
batch = self.batch_type.concatenate(
batches, padded_total_bs=padded_total_bs
)
else:
batch = self.batch_type.concatenate(batches)
else:
batch = batches[0]
prefill = batch.prefilling
@ -2208,9 +2253,12 @@ class FlashCausalLM(Model):
batch.max_input_length
),
self.bucketing_ctx.get_padded_prompt_batch_size(len(batch)),
self.max_total_tokens,
)
else:
batch.prepare_for_prefill(batch.max_input_length, len(batch))
batch.prepare_for_prefill(
batch.max_input_length, len(batch), self.max_total_tokens
)
else:
batch.prepare_for_decode(
self.dtype, self.use_contiguous_pa, self.bucketing_ctx

View File

@ -262,8 +262,8 @@ class FlashVlmCausalLMBatch(FlashCausalLMBatch):
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches):
batch = super(FlashVlmCausalLMBatch, cls).concatenate(batches)
def concatenate(cls, batches, padded_total_bs: int = 0):
batch = super(FlashVlmCausalLMBatch, cls).concatenate(batches, padded_total_bs)
batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None

View File

@ -48,8 +48,8 @@ class FlashMllamaCausalLMBatch(FlashVlmCausalLMBatch):
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches):
batch = super().concatenate(batches)
def concatenate(cls, batches, padded_total_bs: int = 0):
batch = super().concatenate(batches, padded_total_bs)
batch.pixel_values = None
batch.pixel_attention_mask = None