mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-06-13 04:42:07 +00:00
Add Qwen3 for Gaudi backend (#3229)
Signed-off-by: yuanwu <yuan.wu@intel.com>
This commit is contained in:
parent
f58d7cf50e
commit
1883a62a94
@ -109,6 +109,9 @@ try:
|
||||
from text_generation_server.models.custom_modeling.flash_qwen2_modeling import (
|
||||
Qwen2ForCausalLM,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_qwen3_modeling import (
|
||||
Qwen3ForCausalLM,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
|
||||
FlashMistralForCausalLM,
|
||||
)
|
||||
@ -293,6 +296,12 @@ class ModelType(enum.Enum):
|
||||
"name": "Qwen 2.5 VL",
|
||||
"url": "https://huggingface.co/collections/Qwen/qwen25-66e81a666513e518adb90d9e",
|
||||
}
|
||||
QWEN3 = {
|
||||
"type": "qwen3",
|
||||
"name": "Qwen 3",
|
||||
"url": "https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f",
|
||||
}
|
||||
|
||||
GALACTICA = {
|
||||
"type": "galactica",
|
||||
"name": "Galactica",
|
||||
@ -791,6 +800,18 @@ def get_model(
|
||||
config_class=Qwen2_5_VLConfig,
|
||||
processor_class=Qwen2_5_VLProcessor,
|
||||
)
|
||||
elif model_type == QWEN3:
|
||||
return FlashCausalLM(
|
||||
model_id=model_id,
|
||||
model_class=Qwen3ForCausalLM,
|
||||
revision=revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=dtype,
|
||||
kv_cache_dtype=kv_cache_dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
lora_adapter_ids=lora_adapter_ids,
|
||||
)
|
||||
elif model_type == MLLAMA:
|
||||
return FlashMllamaCausalLM(
|
||||
model_id=model_id,
|
||||
|
@ -22,6 +22,7 @@ import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import habana_frameworks.torch as htorch
|
||||
from transformers.cache_utils import Cache
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
||||
@ -567,6 +568,9 @@ class Llama4TextModel(nn.Module):
|
||||
)
|
||||
|
||||
freqs_ci = self.rotary_emb(hidden_states, position_ids.view(bs, -1))
|
||||
lazy_mode = htorch.utils.internal.is_lazy()
|
||||
if lazy_mode:
|
||||
htorch.core.mark_step()
|
||||
|
||||
for i, layer in enumerate(self.layers):
|
||||
hidden_states = layer(
|
||||
@ -582,6 +586,8 @@ class Llama4TextModel(nn.Module):
|
||||
position_ids=position_ids,
|
||||
hpu_attention_meta=hpu_attention_meta,
|
||||
)
|
||||
if lazy_mode:
|
||||
htorch.core.mark_step()
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states)
|
||||
|
||||
|
@ -0,0 +1,356 @@
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Optional, Tuple, List
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import habana_frameworks.torch as htorch
|
||||
from text_generation_server.layers.attention import (
|
||||
paged_attention,
|
||||
attention,
|
||||
Seqlen,
|
||||
HPUPagedAttentionMetadata,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.layers import (
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
SpeculativeHead,
|
||||
)
|
||||
|
||||
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastRMSNorm,
|
||||
)
|
||||
from .flash_qwen2_modeling import Qwen2MLP
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding
|
||||
|
||||
|
||||
class Qwen3Attention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
def __init__(self, config, prefix, weights, layer_idx):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer_idx = layer_idx
|
||||
self.head_dim = getattr(
|
||||
config, "head_dim", config.hidden_size // config.num_attention_heads
|
||||
)
|
||||
self.num_key_value_groups = (
|
||||
config.num_attention_heads // config.num_key_value_heads
|
||||
)
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.attention_dropout = config.attention_dropout
|
||||
self.softmax_scale = self.head_dim**-0.5
|
||||
self.rotary_emb = PositionRotaryEmbedding.static(
|
||||
config=config,
|
||||
dim=self.head_dim,
|
||||
base=config.rope_theta,
|
||||
device=weights.device,
|
||||
)
|
||||
|
||||
if self.num_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
|
||||
f"and `num_shards`: {weights.process_group.size()}"
|
||||
)
|
||||
self.num_heads = self.num_heads // weights.process_group.size()
|
||||
self.num_key_value_heads = (
|
||||
config.num_key_value_heads // weights.process_group.size()
|
||||
)
|
||||
self.query_key_value = TensorParallelColumnLinear.load_multi(
|
||||
config,
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
dim=0,
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
self.o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.num_groups = self.num_heads // self.num_key_value_heads
|
||||
self.kv_head_mapping = torch.arange(
|
||||
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
|
||||
).repeat_interleave(self.num_groups)
|
||||
|
||||
self.max_past = (
|
||||
config.sliding_window if config.sliding_window is not None else -1
|
||||
)
|
||||
|
||||
self.q_norm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.q_norm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
self.k_norm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.k_norm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
self.sliding_window = config.sliding_window
|
||||
if not (
|
||||
self.config.use_sliding_window
|
||||
and getattr(self.config, "sliding_window", None) is not None
|
||||
and self.layer_idx >= self.config.max_window_layers
|
||||
):
|
||||
self.sliding_window = None
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
slots,
|
||||
seqlen,
|
||||
hpu_attention_meta,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
hidden_shape = (*input_shape, -1, self.head_dim)
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
query_states, key_states, value_states = qkv.split(
|
||||
[
|
||||
self.head_dim * self.num_heads,
|
||||
self.head_dim * self.num_key_value_heads,
|
||||
self.head_dim * self.num_key_value_heads,
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
query_states, _ = self.q_norm(query_states.view(hidden_shape))
|
||||
key_states, _ = self.k_norm(key_states.view(hidden_shape))
|
||||
value_states = value_states.view(hidden_shape)
|
||||
self.rotary_emb(query_states, key_states, cos, sin)
|
||||
|
||||
kv_cache.store(
|
||||
key=key_states,
|
||||
value=value_states,
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
# sdpa
|
||||
attn_output = attention(
|
||||
query=query_states,
|
||||
key=key_states,
|
||||
value=value_states,
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
softmax_scale=self.softmax_scale,
|
||||
window_size_left=self.max_past,
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
attn_output = paged_attention(
|
||||
query_states,
|
||||
kv_cache,
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
seqlen,
|
||||
kv_scales=self.kv_scales,
|
||||
hpu_attention_meta=hpu_attention_meta,
|
||||
)
|
||||
|
||||
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
||||
return self.o_proj(attn_output)
|
||||
|
||||
|
||||
class Qwen3DecoderLayer(nn.Module):
|
||||
def __init__(self, config, prefix, weights, layer_idx: int):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.self_attn = Qwen3Attention(
|
||||
config=config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
weights=weights,
|
||||
layer_idx=layer_idx,
|
||||
)
|
||||
self.mlp = Qwen2MLP(config=config, prefix=f"{prefix}.mlp", weights=weights)
|
||||
self.input_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
self.post_attention_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.post_attention_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
slots,
|
||||
seqlen,
|
||||
hpu_attention_meta,
|
||||
) -> torch.Tensor:
|
||||
residual = hidden_states
|
||||
hidden_states, _ = self.input_layernorm(hidden_states)
|
||||
|
||||
# Self Attention
|
||||
hidden_states = self.self_attn(
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
slots,
|
||||
seqlen,
|
||||
hpu_attention_meta,
|
||||
)
|
||||
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states, _ = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Qwen3Model(nn.Module):
|
||||
def __init__(self, config, prefix: str, weights):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
Qwen3DecoderLayer(
|
||||
config=config,
|
||||
prefix=f"{prefix}.layers.{layer_idx}",
|
||||
weights=weights,
|
||||
layer_idx=layer_idx,
|
||||
)
|
||||
for layer_idx in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.norm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
inputs_embeds: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
|
||||
) -> torch.Tensor:
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# create position embeddings to be shared across the decoder layers
|
||||
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
|
||||
position_ids,
|
||||
)
|
||||
|
||||
residual = None
|
||||
lazy_mode = htorch.utils.internal.is_lazy()
|
||||
if lazy_mode:
|
||||
htorch.core.mark_step()
|
||||
|
||||
for i, decoder_layer in enumerate(self.layers):
|
||||
hidden_states = decoder_layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache[i],
|
||||
slots,
|
||||
seqlen,
|
||||
hpu_attention_meta,
|
||||
)
|
||||
if lazy_mode:
|
||||
htorch.core.mark_step()
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Qwen3ForCausalLM(nn.Module):
|
||||
|
||||
def __init__(self, prefix: str, config, weights):
|
||||
super().__init__()
|
||||
self.model = Qwen3Model(config=config, prefix="model", weights=weights)
|
||||
self.vocab_size = config.vocab_size
|
||||
if config.tie_word_embeddings:
|
||||
suffix = "model.embed_tokens"
|
||||
else:
|
||||
suffix = "lm_head"
|
||||
|
||||
self.lm_head = SpeculativeHead.load(
|
||||
config,
|
||||
prefix=f"{prefix}.{suffix}" if prefix else suffix,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix=f"{prefix}.embed_tokens" if prefix else "model.embed_tokens",
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
adapter_data: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
hidden_states = self.model(
|
||||
inputs_embeds,
|
||||
position_ids,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
slots,
|
||||
seqlen,
|
||||
hpu_attention_meta,
|
||||
)
|
||||
|
||||
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
||||
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
return logits
|
@ -1412,6 +1412,7 @@ class FlashCausalLM(Model):
|
||||
aliases=aliases,
|
||||
weights_loader=weights_loader,
|
||||
)
|
||||
print(f"weights: {weights}")
|
||||
|
||||
prefix = None
|
||||
model = model_class(prefix, config, weights)
|
||||
|
@ -10,8 +10,8 @@ fi
|
||||
# Check if ATTENTION environment variable is set to paged
|
||||
if [[ "$ATTENTION" == "paged" ]]; then
|
||||
# Check if Llama-4 is in the command line arguments
|
||||
if [[ "$*" == *"Llama-4"* ]]; then
|
||||
echo 'ATTENTION=paged and Llama-4 detected'
|
||||
if [[ "$*" == *"Llama-4"* || "$*" == *"Qwen3"* ]]; then
|
||||
echo 'ATTENTION=paged and Llama-4 or Qwen3 detected'
|
||||
pip install git+https://github.com/huggingface/transformers.git@29338949
|
||||
fi
|
||||
fi
|
||||
|
Loading…
Reference in New Issue
Block a user