Spdk/test/nvme/reset/reset.c

694 lines
15 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2015 Intel Corporation.
* All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk/nvme.h"
#include "spdk/env.h"
#include "spdk/string.h"
#include "spdk/pci_ids.h"
struct ctrlr_entry {
struct spdk_nvme_ctrlr *ctrlr;
TAILQ_ENTRY(ctrlr_entry) link;
char name[1024];
};
struct ns_entry {
struct spdk_nvme_ns *ns;
struct spdk_nvme_ctrlr *ctrlr;
TAILQ_ENTRY(ns_entry) link;
uint32_t io_size_blocks;
uint64_t size_in_ios;
char name[1024];
};
struct ns_worker_ctx {
struct ns_entry *entry;
struct spdk_nvme_qpair *qpair;
uint64_t io_completed;
uint64_t io_completed_error;
uint64_t io_submitted;
uint64_t current_queue_depth;
uint64_t offset_in_ios;
bool is_draining;
TAILQ_ENTRY(ns_worker_ctx) link;
};
struct reset_task {
struct ns_worker_ctx *ns_ctx;
void *buf;
};
struct worker_thread {
TAILQ_HEAD(, ns_worker_ctx) ns_ctx;
unsigned lcore;
};
static struct spdk_mempool *task_pool;
static TAILQ_HEAD(, ctrlr_entry) g_controllers = TAILQ_HEAD_INITIALIZER(g_controllers);
static TAILQ_HEAD(, ns_entry) g_namespaces = TAILQ_HEAD_INITIALIZER(g_namespaces);
static int g_num_namespaces = 0;
static struct worker_thread *g_worker = NULL;
static bool g_qemu_ssd_found = false;
static uint64_t g_tsc_rate;
static int g_io_size_bytes;
static int g_rw_percentage;
static int g_is_random;
static int g_queue_depth;
static int g_time_in_sec;
#define TASK_POOL_NUM 8192
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
if (!spdk_nvme_ns_is_active(ns)) {
printf("Skipping inactive NS %u\n", spdk_nvme_ns_get_id(ns));
return;
}
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
entry->ns = ns;
entry->ctrlr = ctrlr;
entry->size_in_ios = spdk_nvme_ns_get_size(ns) /
g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / spdk_nvme_ns_get_sector_size(ns);
snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
g_num_namespaces++;
TAILQ_INSERT_TAIL(&g_namespaces, entry, link);
}
static void
register_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
int nsid;
struct spdk_nvme_ns *ns;
struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry));
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
entry->ctrlr = ctrlr;
TAILQ_INSERT_TAIL(&g_controllers, entry, link);
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); nsid != 0;
nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
if (ns == NULL) {
continue;
}
register_ns(ctrlr, ns);
}
}
static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion);
static __thread unsigned int seed = 0;
static void
submit_single_io(struct ns_worker_ctx *ns_ctx)
{
struct reset_task *task = NULL;
uint64_t offset_in_ios;
int rc;
struct ns_entry *entry = ns_ctx->entry;
task = spdk_mempool_get(task_pool);
if (!task) {
fprintf(stderr, "Failed to get task from task_pool\n");
exit(1);
}
task->buf = spdk_zmalloc(g_io_size_bytes, 0x200, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (!task->buf) {
spdk_free(task->buf);
fprintf(stderr, "task->buf spdk_zmalloc failed\n");
exit(1);
}
task->ns_ctx = ns_ctx;
if (g_is_random) {
offset_in_ios = rand_r(&seed) % entry->size_in_ios;
} else {
offset_in_ios = ns_ctx->offset_in_ios++;
if (ns_ctx->offset_in_ios == entry->size_in_ios) {
ns_ctx->offset_in_ios = 0;
}
}
if ((g_rw_percentage == 100) ||
(g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) {
rc = spdk_nvme_ns_cmd_read(entry->ns, ns_ctx->qpair, task->buf,
offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, task, 0);
} else {
rc = spdk_nvme_ns_cmd_write(entry->ns, ns_ctx->qpair, task->buf,
offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, task, 0);
}
if (rc != 0) {
fprintf(stderr, "starting I/O failed\n");
} else {
ns_ctx->current_queue_depth++;
ns_ctx->io_submitted++;
}
}
static void
task_complete(struct reset_task *task, const struct spdk_nvme_cpl *completion)
{
struct ns_worker_ctx *ns_ctx;
ns_ctx = task->ns_ctx;
ns_ctx->current_queue_depth--;
if (spdk_nvme_cpl_is_error(completion)) {
ns_ctx->io_completed_error++;
} else {
ns_ctx->io_completed++;
}
spdk_free(task->buf);
spdk_mempool_put(task_pool, task);
/*
* is_draining indicates when time has expired for the test run
* and we are just waiting for the previously submitted I/O
* to complete. In this case, do not submit a new I/O to replace
* the one just completed.
*/
if (!ns_ctx->is_draining) {
submit_single_io(ns_ctx);
}
}
static void
io_complete(void *ctx, const struct spdk_nvme_cpl *completion)
{
task_complete((struct reset_task *)ctx, completion);
}
static void
check_io(struct ns_worker_ctx *ns_ctx)
{
spdk_nvme_qpair_process_completions(ns_ctx->qpair, 0);
}
static void
submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth)
{
while (queue_depth-- > 0) {
submit_single_io(ns_ctx);
}
}
static void
drain_io(struct ns_worker_ctx *ns_ctx)
{
ns_ctx->is_draining = true;
while (ns_ctx->current_queue_depth > 0) {
check_io(ns_ctx);
}
}
static int
work_fn(void *arg)
{
uint64_t tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
struct worker_thread *worker = (struct worker_thread *)arg;
struct ns_worker_ctx *ns_ctx = NULL;
bool did_reset = false;
printf("Starting thread on core %u\n", worker->lcore);
/* Submit initial I/O for each namespace. */
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
ns_ctx->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_ctx->entry->ctrlr, NULL, 0);
if (ns_ctx->qpair == NULL) {
fprintf(stderr, "spdk_nvme_ctrlr_alloc_io_qpair() failed on core %u\n", worker->lcore);
return -1;
}
submit_io(ns_ctx, g_queue_depth);
}
while (1) {
if (!did_reset && ((tsc_end - spdk_get_ticks()) / g_tsc_rate) > (uint64_t)g_time_in_sec / 2) {
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
if (spdk_nvme_ctrlr_reset(ns_ctx->entry->ctrlr) < 0) {
fprintf(stderr, "nvme reset failed.\n");
return -1;
}
}
did_reset = true;
}
/*
* Check for completed I/O for each controller. A new
* I/O will be submitted in the io_complete callback
* to replace each I/O that is completed.
*/
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
check_io(ns_ctx);
}
if (spdk_get_ticks() > tsc_end) {
break;
}
}
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
drain_io(ns_ctx);
spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair);
}
return 0;
}
static void
usage(char *program_name)
{
printf("%s options", program_name);
printf("\n");
printf("\t[-q io depth]\n");
printf("\t[-o io size in bytes]\n");
printf("\t[-w io pattern type, must be one of\n");
printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n");
printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n");
printf("\t[-t time in seconds(should be larger than 15 seconds)]\n");
printf("\t\t(default:0 - unlimited)\n");
}
static int
print_stats(void)
{
uint64_t io_completed, io_submitted, io_completed_error;
uint64_t total_completed_io, total_submitted_io, total_completed_err_io;
struct worker_thread *worker;
struct ns_worker_ctx *ns_ctx;
total_completed_io = 0;
total_submitted_io = 0;
total_completed_err_io = 0;
worker = g_worker;
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
io_completed = ns_ctx->io_completed;
io_submitted = ns_ctx->io_submitted;
io_completed_error = ns_ctx->io_completed_error;
total_completed_io += io_completed;
total_submitted_io += io_submitted;
total_completed_err_io += io_completed_error;
}
printf("========================================================\n");
printf("%16" PRIu64 " IO completed successfully\n", total_completed_io);
printf("%16" PRIu64 " IO completed with error\n", total_completed_err_io);
printf("--------------------------------------------------------\n");
printf("%16" PRIu64 " IO completed total\n", total_completed_io + total_completed_err_io);
printf("%16" PRIu64 " IO submitted\n", total_submitted_io);
if (total_submitted_io != (total_completed_io + total_completed_err_io)) {
fprintf(stderr, "Some IO are missing......\n");
return -1;
}
return 0;
}
static int
parse_args(int argc, char **argv)
{
const char *workload_type;
int op;
bool mix_specified = false;
long int val;
/* default value */
g_queue_depth = 0;
g_io_size_bytes = 0;
workload_type = NULL;
g_time_in_sec = 0;
g_rw_percentage = -1;
while ((op = getopt(argc, argv, "o:q:t:w:M:")) != -1) {
if (op == 'w') {
workload_type = optarg;
} else if (op == '?') {
usage(argv[0]);
return -EINVAL;
} else {
val = spdk_strtol(optarg, 10);
if (val < 0) {
fprintf(stderr, "Converting a string to integer failed\n");
return val;
}
switch (op) {
case 'q':
g_queue_depth = val;
break;
case 'o':
g_io_size_bytes = val;
break;
case 't':
g_time_in_sec = val;
break;
case 'M':
g_rw_percentage = val;
mix_specified = true;
break;
default:
usage(argv[0]);
return -EINVAL;
}
}
}
if (!g_queue_depth) {
usage(argv[0]);
return 1;
}
if (!g_io_size_bytes) {
usage(argv[0]);
return 1;
}
if (!workload_type) {
usage(argv[0]);
return 1;
}
if (!g_time_in_sec) {
usage(argv[0]);
return 1;
}
if (strcmp(workload_type, "read") &&
strcmp(workload_type, "write") &&
strcmp(workload_type, "randread") &&
strcmp(workload_type, "randwrite") &&
strcmp(workload_type, "rw") &&
strcmp(workload_type, "randrw")) {
fprintf(stderr,
"io pattern type must be one of\n"
"(read, write, randread, randwrite, rw, randrw)\n");
return 1;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread")) {
g_rw_percentage = 100;
}
if (!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
g_rw_percentage = 0;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
if (mix_specified) {
fprintf(stderr, "Ignoring -M option... Please use -M option"
" only when using rw or randrw.\n");
}
}
if (!strcmp(workload_type, "rw") ||
!strcmp(workload_type, "randrw")) {
if (g_rw_percentage < 0 || g_rw_percentage > 100) {
fprintf(stderr,
"-M must be specified to value from 0 to 100 "
"for rw or randrw.\n");
return 1;
}
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "rw")) {
g_is_random = 0;
} else {
g_is_random = 1;
}
return 0;
}
static int
register_worker(void)
{
struct worker_thread *worker;
worker = malloc(sizeof(struct worker_thread));
if (worker == NULL) {
perror("worker_thread malloc");
return -1;
}
memset(worker, 0, sizeof(struct worker_thread));
TAILQ_INIT(&worker->ns_ctx);
worker->lcore = spdk_env_get_current_core();
g_worker = worker;
return 0;
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
opts->disable_error_logging = true;
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
struct spdk_pci_device *dev = spdk_nvme_ctrlr_get_pci_device(ctrlr);
/* QEMU emulated SSDs can't handle this test, so we will skip
* them. QEMU NVMe SSDs report themselves as VID == Intel. So we need
* to check this specific 0x5845 device ID to know whether it's QEMU
* or not.
*/
if (spdk_pci_device_get_vendor_id(dev) == SPDK_PCI_VID_INTEL &&
spdk_pci_device_get_device_id(dev) == 0x5845) {
g_qemu_ssd_found = true;
printf("Skipping QEMU NVMe SSD at %s\n", trid->traddr);
return;
}
}
register_ctrlr(ctrlr);
}
static int
register_controllers(void)
{
printf("Initializing NVMe Controllers\n");
if (spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n");
return 1;
}
return 0;
}
static void
unregister_controllers(void)
{
struct ctrlr_entry *entry, *tmp;
struct spdk_nvme_detach_ctx *detach_ctx = NULL;
TAILQ_FOREACH_SAFE(entry, &g_controllers, link, tmp) {
TAILQ_REMOVE(&g_controllers, entry, link);
spdk_nvme_detach_async(entry->ctrlr, &detach_ctx);
free(entry);
}
if (detach_ctx) {
spdk_nvme_detach_poll(detach_ctx);
}
}
static int
associate_workers_with_ns(void)
{
struct ns_entry *entry = TAILQ_FIRST(&g_namespaces);
struct worker_thread *worker = g_worker;
struct ns_worker_ctx *ns_ctx;
int i, count;
count = g_num_namespaces;
for (i = 0; i < count; i++) {
if (entry == NULL) {
break;
}
ns_ctx = malloc(sizeof(struct ns_worker_ctx));
if (!ns_ctx) {
return -1;
}
memset(ns_ctx, 0, sizeof(*ns_ctx));
printf("Associating %s with lcore %d\n", entry->name, worker->lcore);
ns_ctx->entry = entry;
TAILQ_INSERT_TAIL(&worker->ns_ctx, ns_ctx, link);
entry = TAILQ_NEXT(entry, link);;
if (entry == NULL) {
entry = TAILQ_FIRST(&g_namespaces);
}
}
return 0;
}
static void
unregister_worker(void)
{
struct ns_worker_ctx *ns_ctx, *tmp;
assert(g_worker != NULL);
TAILQ_FOREACH_SAFE(ns_ctx, &g_worker->ns_ctx, link, tmp) {
TAILQ_REMOVE(&g_worker->ns_ctx, ns_ctx, link);
free(ns_ctx);
}
free(g_worker);
g_worker = NULL;
}
static int
run_nvme_reset_cycle(void)
{
struct worker_thread *worker = g_worker;
struct ns_worker_ctx *ns_ctx;
if (work_fn(worker) != 0) {
return -1;
}
if (print_stats() != 0) {
return -1;
}
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
ns_ctx->io_completed = 0;
ns_ctx->io_completed_error = 0;
ns_ctx->io_submitted = 0;
ns_ctx->is_draining = false;
}
return 0;
}
static void
free_tasks(void)
{
if (spdk_mempool_count(task_pool) != TASK_POOL_NUM) {
fprintf(stderr, "task_pool count is %zu but should be %d\n",
spdk_mempool_count(task_pool), TASK_POOL_NUM);
}
spdk_mempool_free(task_pool);
}
int
main(int argc, char **argv)
{
int rc;
int i;
struct spdk_env_opts opts;
rc = parse_args(argc, argv);
if (rc != 0) {
return rc;
}
spdk_env_opts_init(&opts);
opts.name = "reset";
opts.core_mask = "0x1";
opts.shm_id = 0;
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
return 1;
}
if (register_controllers() != 0) {
return 1;
}
if (TAILQ_EMPTY(&g_controllers)) {
printf("No NVMe controller found, %s exiting\n", argv[0]);
return g_qemu_ssd_found ? 0 : 1;
}
task_pool = spdk_mempool_create("task_pool", TASK_POOL_NUM,
sizeof(struct reset_task),
64, SPDK_ENV_SOCKET_ID_ANY);
if (!task_pool) {
fprintf(stderr, "Cannot create task pool\n");
return 1;
}
g_tsc_rate = spdk_get_ticks_hz();
if (register_worker() != 0) {
return 1;
}
if (associate_workers_with_ns() != 0) {
rc = 1;
goto cleanup;
}
printf("Initialization complete. Launching workers.\n");
for (i = 2; i >= 0; i--) {
rc = run_nvme_reset_cycle();
if (rc != 0) {
goto cleanup;
}
}
cleanup:
unregister_controllers();
unregister_worker();
free_tasks();
if (rc != 0) {
fprintf(stderr, "%s: errors occurred\n", argv[0]);
}
return rc;
}