Spdk/test/nvme/reset/reset.c
paul luse a6dbe3721e update Intel copyright notices
per Intel policy to include file commit date using git cmd
below.  The policy does not apply to non-Intel (C) notices.

git log --follow -C90% --format=%ad --date default <file> | tail -1

and then pull just the 4 digit year from the result.

Intel copyrights were not added to files where Intel either had
no contribution ot the contribution lacked substance (ie license
header updates, formatting changes, etc).  Contribution date used
"--follow -C95%" to get the most accurate date.

Note that several files in this patch didn't end the license/(c)
block with a blank comment line so these were added as the vast
majority of files do have this last blank line.  Simply there for
consistency.

Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: Id5b7ce4f658fe87132f14139ead58d6e285c04d4
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15192
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Community-CI: Mellanox Build Bot
2022-11-10 08:28:53 +00:00

694 lines
15 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2015 Intel Corporation.
* All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk/nvme.h"
#include "spdk/env.h"
#include "spdk/string.h"
#include "spdk/pci_ids.h"
struct ctrlr_entry {
struct spdk_nvme_ctrlr *ctrlr;
TAILQ_ENTRY(ctrlr_entry) link;
char name[1024];
};
struct ns_entry {
struct spdk_nvme_ns *ns;
struct spdk_nvme_ctrlr *ctrlr;
TAILQ_ENTRY(ns_entry) link;
uint32_t io_size_blocks;
uint64_t size_in_ios;
char name[1024];
};
struct ns_worker_ctx {
struct ns_entry *entry;
struct spdk_nvme_qpair *qpair;
uint64_t io_completed;
uint64_t io_completed_error;
uint64_t io_submitted;
uint64_t current_queue_depth;
uint64_t offset_in_ios;
bool is_draining;
TAILQ_ENTRY(ns_worker_ctx) link;
};
struct reset_task {
struct ns_worker_ctx *ns_ctx;
void *buf;
};
struct worker_thread {
TAILQ_HEAD(, ns_worker_ctx) ns_ctx;
unsigned lcore;
};
static struct spdk_mempool *task_pool;
static TAILQ_HEAD(, ctrlr_entry) g_controllers = TAILQ_HEAD_INITIALIZER(g_controllers);
static TAILQ_HEAD(, ns_entry) g_namespaces = TAILQ_HEAD_INITIALIZER(g_namespaces);
static int g_num_namespaces = 0;
static struct worker_thread *g_worker = NULL;
static bool g_qemu_ssd_found = false;
static uint64_t g_tsc_rate;
static int g_io_size_bytes;
static int g_rw_percentage;
static int g_is_random;
static int g_queue_depth;
static int g_time_in_sec;
#define TASK_POOL_NUM 8192
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
if (!spdk_nvme_ns_is_active(ns)) {
printf("Skipping inactive NS %u\n", spdk_nvme_ns_get_id(ns));
return;
}
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
entry->ns = ns;
entry->ctrlr = ctrlr;
entry->size_in_ios = spdk_nvme_ns_get_size(ns) /
g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / spdk_nvme_ns_get_sector_size(ns);
snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
g_num_namespaces++;
TAILQ_INSERT_TAIL(&g_namespaces, entry, link);
}
static void
register_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
int nsid;
struct spdk_nvme_ns *ns;
struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry));
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
entry->ctrlr = ctrlr;
TAILQ_INSERT_TAIL(&g_controllers, entry, link);
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); nsid != 0;
nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
if (ns == NULL) {
continue;
}
register_ns(ctrlr, ns);
}
}
static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion);
static __thread unsigned int seed = 0;
static void
submit_single_io(struct ns_worker_ctx *ns_ctx)
{
struct reset_task *task = NULL;
uint64_t offset_in_ios;
int rc;
struct ns_entry *entry = ns_ctx->entry;
task = spdk_mempool_get(task_pool);
if (!task) {
fprintf(stderr, "Failed to get task from task_pool\n");
exit(1);
}
task->buf = spdk_zmalloc(g_io_size_bytes, 0x200, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (!task->buf) {
spdk_free(task->buf);
fprintf(stderr, "task->buf spdk_zmalloc failed\n");
exit(1);
}
task->ns_ctx = ns_ctx;
if (g_is_random) {
offset_in_ios = rand_r(&seed) % entry->size_in_ios;
} else {
offset_in_ios = ns_ctx->offset_in_ios++;
if (ns_ctx->offset_in_ios == entry->size_in_ios) {
ns_ctx->offset_in_ios = 0;
}
}
if ((g_rw_percentage == 100) ||
(g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) {
rc = spdk_nvme_ns_cmd_read(entry->ns, ns_ctx->qpair, task->buf,
offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, task, 0);
} else {
rc = spdk_nvme_ns_cmd_write(entry->ns, ns_ctx->qpair, task->buf,
offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, task, 0);
}
if (rc != 0) {
fprintf(stderr, "starting I/O failed\n");
} else {
ns_ctx->current_queue_depth++;
ns_ctx->io_submitted++;
}
}
static void
task_complete(struct reset_task *task, const struct spdk_nvme_cpl *completion)
{
struct ns_worker_ctx *ns_ctx;
ns_ctx = task->ns_ctx;
ns_ctx->current_queue_depth--;
if (spdk_nvme_cpl_is_error(completion)) {
ns_ctx->io_completed_error++;
} else {
ns_ctx->io_completed++;
}
spdk_free(task->buf);
spdk_mempool_put(task_pool, task);
/*
* is_draining indicates when time has expired for the test run
* and we are just waiting for the previously submitted I/O
* to complete. In this case, do not submit a new I/O to replace
* the one just completed.
*/
if (!ns_ctx->is_draining) {
submit_single_io(ns_ctx);
}
}
static void
io_complete(void *ctx, const struct spdk_nvme_cpl *completion)
{
task_complete((struct reset_task *)ctx, completion);
}
static void
check_io(struct ns_worker_ctx *ns_ctx)
{
spdk_nvme_qpair_process_completions(ns_ctx->qpair, 0);
}
static void
submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth)
{
while (queue_depth-- > 0) {
submit_single_io(ns_ctx);
}
}
static void
drain_io(struct ns_worker_ctx *ns_ctx)
{
ns_ctx->is_draining = true;
while (ns_ctx->current_queue_depth > 0) {
check_io(ns_ctx);
}
}
static int
work_fn(void *arg)
{
uint64_t tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
struct worker_thread *worker = (struct worker_thread *)arg;
struct ns_worker_ctx *ns_ctx = NULL;
bool did_reset = false;
printf("Starting thread on core %u\n", worker->lcore);
/* Submit initial I/O for each namespace. */
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
ns_ctx->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_ctx->entry->ctrlr, NULL, 0);
if (ns_ctx->qpair == NULL) {
fprintf(stderr, "spdk_nvme_ctrlr_alloc_io_qpair() failed on core %u\n", worker->lcore);
return -1;
}
submit_io(ns_ctx, g_queue_depth);
}
while (1) {
if (!did_reset && ((tsc_end - spdk_get_ticks()) / g_tsc_rate) > (uint64_t)g_time_in_sec / 2) {
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
if (spdk_nvme_ctrlr_reset(ns_ctx->entry->ctrlr) < 0) {
fprintf(stderr, "nvme reset failed.\n");
return -1;
}
}
did_reset = true;
}
/*
* Check for completed I/O for each controller. A new
* I/O will be submitted in the io_complete callback
* to replace each I/O that is completed.
*/
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
check_io(ns_ctx);
}
if (spdk_get_ticks() > tsc_end) {
break;
}
}
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
drain_io(ns_ctx);
spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair);
}
return 0;
}
static void
usage(char *program_name)
{
printf("%s options", program_name);
printf("\n");
printf("\t[-q io depth]\n");
printf("\t[-o io size in bytes]\n");
printf("\t[-w io pattern type, must be one of\n");
printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n");
printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n");
printf("\t[-t time in seconds(should be larger than 15 seconds)]\n");
printf("\t\t(default:0 - unlimited)\n");
}
static int
print_stats(void)
{
uint64_t io_completed, io_submitted, io_completed_error;
uint64_t total_completed_io, total_submitted_io, total_completed_err_io;
struct worker_thread *worker;
struct ns_worker_ctx *ns_ctx;
total_completed_io = 0;
total_submitted_io = 0;
total_completed_err_io = 0;
worker = g_worker;
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
io_completed = ns_ctx->io_completed;
io_submitted = ns_ctx->io_submitted;
io_completed_error = ns_ctx->io_completed_error;
total_completed_io += io_completed;
total_submitted_io += io_submitted;
total_completed_err_io += io_completed_error;
}
printf("========================================================\n");
printf("%16" PRIu64 " IO completed successfully\n", total_completed_io);
printf("%16" PRIu64 " IO completed with error\n", total_completed_err_io);
printf("--------------------------------------------------------\n");
printf("%16" PRIu64 " IO completed total\n", total_completed_io + total_completed_err_io);
printf("%16" PRIu64 " IO submitted\n", total_submitted_io);
if (total_submitted_io != (total_completed_io + total_completed_err_io)) {
fprintf(stderr, "Some IO are missing......\n");
return -1;
}
return 0;
}
static int
parse_args(int argc, char **argv)
{
const char *workload_type;
int op;
bool mix_specified = false;
long int val;
/* default value */
g_queue_depth = 0;
g_io_size_bytes = 0;
workload_type = NULL;
g_time_in_sec = 0;
g_rw_percentage = -1;
while ((op = getopt(argc, argv, "o:q:t:w:M:")) != -1) {
if (op == 'w') {
workload_type = optarg;
} else if (op == '?') {
usage(argv[0]);
return -EINVAL;
} else {
val = spdk_strtol(optarg, 10);
if (val < 0) {
fprintf(stderr, "Converting a string to integer failed\n");
return val;
}
switch (op) {
case 'q':
g_queue_depth = val;
break;
case 'o':
g_io_size_bytes = val;
break;
case 't':
g_time_in_sec = val;
break;
case 'M':
g_rw_percentage = val;
mix_specified = true;
break;
default:
usage(argv[0]);
return -EINVAL;
}
}
}
if (!g_queue_depth) {
usage(argv[0]);
return 1;
}
if (!g_io_size_bytes) {
usage(argv[0]);
return 1;
}
if (!workload_type) {
usage(argv[0]);
return 1;
}
if (!g_time_in_sec) {
usage(argv[0]);
return 1;
}
if (strcmp(workload_type, "read") &&
strcmp(workload_type, "write") &&
strcmp(workload_type, "randread") &&
strcmp(workload_type, "randwrite") &&
strcmp(workload_type, "rw") &&
strcmp(workload_type, "randrw")) {
fprintf(stderr,
"io pattern type must be one of\n"
"(read, write, randread, randwrite, rw, randrw)\n");
return 1;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread")) {
g_rw_percentage = 100;
}
if (!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
g_rw_percentage = 0;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
if (mix_specified) {
fprintf(stderr, "Ignoring -M option... Please use -M option"
" only when using rw or randrw.\n");
}
}
if (!strcmp(workload_type, "rw") ||
!strcmp(workload_type, "randrw")) {
if (g_rw_percentage < 0 || g_rw_percentage > 100) {
fprintf(stderr,
"-M must be specified to value from 0 to 100 "
"for rw or randrw.\n");
return 1;
}
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "rw")) {
g_is_random = 0;
} else {
g_is_random = 1;
}
return 0;
}
static int
register_worker(void)
{
struct worker_thread *worker;
worker = malloc(sizeof(struct worker_thread));
if (worker == NULL) {
perror("worker_thread malloc");
return -1;
}
memset(worker, 0, sizeof(struct worker_thread));
TAILQ_INIT(&worker->ns_ctx);
worker->lcore = spdk_env_get_current_core();
g_worker = worker;
return 0;
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
opts->disable_error_logging = true;
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
struct spdk_pci_device *dev = spdk_nvme_ctrlr_get_pci_device(ctrlr);
/* QEMU emulated SSDs can't handle this test, so we will skip
* them. QEMU NVMe SSDs report themselves as VID == Intel. So we need
* to check this specific 0x5845 device ID to know whether it's QEMU
* or not.
*/
if (spdk_pci_device_get_vendor_id(dev) == SPDK_PCI_VID_INTEL &&
spdk_pci_device_get_device_id(dev) == 0x5845) {
g_qemu_ssd_found = true;
printf("Skipping QEMU NVMe SSD at %s\n", trid->traddr);
return;
}
}
register_ctrlr(ctrlr);
}
static int
register_controllers(void)
{
printf("Initializing NVMe Controllers\n");
if (spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n");
return 1;
}
return 0;
}
static void
unregister_controllers(void)
{
struct ctrlr_entry *entry, *tmp;
struct spdk_nvme_detach_ctx *detach_ctx = NULL;
TAILQ_FOREACH_SAFE(entry, &g_controllers, link, tmp) {
TAILQ_REMOVE(&g_controllers, entry, link);
spdk_nvme_detach_async(entry->ctrlr, &detach_ctx);
free(entry);
}
if (detach_ctx) {
spdk_nvme_detach_poll(detach_ctx);
}
}
static int
associate_workers_with_ns(void)
{
struct ns_entry *entry = TAILQ_FIRST(&g_namespaces);
struct worker_thread *worker = g_worker;
struct ns_worker_ctx *ns_ctx;
int i, count;
count = g_num_namespaces;
for (i = 0; i < count; i++) {
if (entry == NULL) {
break;
}
ns_ctx = malloc(sizeof(struct ns_worker_ctx));
if (!ns_ctx) {
return -1;
}
memset(ns_ctx, 0, sizeof(*ns_ctx));
printf("Associating %s with lcore %d\n", entry->name, worker->lcore);
ns_ctx->entry = entry;
TAILQ_INSERT_TAIL(&worker->ns_ctx, ns_ctx, link);
entry = TAILQ_NEXT(entry, link);;
if (entry == NULL) {
entry = TAILQ_FIRST(&g_namespaces);
}
}
return 0;
}
static void
unregister_worker(void)
{
struct ns_worker_ctx *ns_ctx, *tmp;
assert(g_worker != NULL);
TAILQ_FOREACH_SAFE(ns_ctx, &g_worker->ns_ctx, link, tmp) {
TAILQ_REMOVE(&g_worker->ns_ctx, ns_ctx, link);
free(ns_ctx);
}
free(g_worker);
g_worker = NULL;
}
static int
run_nvme_reset_cycle(void)
{
struct worker_thread *worker = g_worker;
struct ns_worker_ctx *ns_ctx;
if (work_fn(worker) != 0) {
return -1;
}
if (print_stats() != 0) {
return -1;
}
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
ns_ctx->io_completed = 0;
ns_ctx->io_completed_error = 0;
ns_ctx->io_submitted = 0;
ns_ctx->is_draining = false;
}
return 0;
}
static void
free_tasks(void)
{
if (spdk_mempool_count(task_pool) != TASK_POOL_NUM) {
fprintf(stderr, "task_pool count is %zu but should be %d\n",
spdk_mempool_count(task_pool), TASK_POOL_NUM);
}
spdk_mempool_free(task_pool);
}
int
main(int argc, char **argv)
{
int rc;
int i;
struct spdk_env_opts opts;
rc = parse_args(argc, argv);
if (rc != 0) {
return rc;
}
spdk_env_opts_init(&opts);
opts.name = "reset";
opts.core_mask = "0x1";
opts.shm_id = 0;
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
return 1;
}
if (register_controllers() != 0) {
return 1;
}
if (TAILQ_EMPTY(&g_controllers)) {
printf("No NVMe controller found, %s exiting\n", argv[0]);
return g_qemu_ssd_found ? 0 : 1;
}
task_pool = spdk_mempool_create("task_pool", TASK_POOL_NUM,
sizeof(struct reset_task),
64, SPDK_ENV_SOCKET_ID_ANY);
if (!task_pool) {
fprintf(stderr, "Cannot create task pool\n");
return 1;
}
g_tsc_rate = spdk_get_ticks_hz();
if (register_worker() != 0) {
return 1;
}
if (associate_workers_with_ns() != 0) {
rc = 1;
goto cleanup;
}
printf("Initialization complete. Launching workers.\n");
for (i = 2; i >= 0; i--) {
rc = run_nvme_reset_cycle();
if (rc != 0) {
goto cleanup;
}
}
cleanup:
unregister_controllers();
unregister_worker();
free_tasks();
if (rc != 0) {
fprintf(stderr, "%s: errors occurred\n", argv[0]);
}
return rc;
}