Spdk/test/lib/nvme/reset/reset.c

706 lines
16 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <pciaccess.h>
#include <rte_config.h>
#include <rte_cycles.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_lcore.h>
#include "spdk/file.h"
#include "spdk/nvme.h"
#include "spdk/pci.h"
#include "spdk/string.h"
struct ctrlr_entry {
struct nvme_controller *ctrlr;
struct ctrlr_entry *next;
char name[1024];
};
struct ns_entry {
struct nvme_namespace *ns;
struct ns_entry *next;
uint32_t io_size_blocks;
uint64_t size_in_ios;
char name[1024];
};
struct ns_worker_ctx {
struct ns_entry *entry;
struct ctrlr_entry *ctr_entry;
uint64_t io_completed;
uint64_t io_completed_error;
uint64_t io_submitted;
uint64_t current_queue_depth;
uint64_t offset_in_ios;
bool is_draining;
struct ns_worker_ctx *next;
};
struct reset_task {
struct ns_worker_ctx *ns_ctx;
void *buf;
};
struct worker_thread {
struct ns_worker_ctx *ns_ctx;
unsigned lcore;
};
struct rte_mempool *request_mempool;
static struct rte_mempool *task_pool;
static struct ctrlr_entry *g_controllers = NULL;
static struct ns_entry *g_namespaces = NULL;
static int g_num_namespaces = 0;
static struct worker_thread *g_workers = NULL;
static uint64_t g_tsc_rate;
static int g_io_size_bytes;
static int g_rw_percentage;
static int g_is_random;
static int g_queue_depth;
static int g_time_in_sec;
static void
register_ns(struct nvme_controller *ctrlr, struct pci_device *pci_dev, struct nvme_namespace *ns)
{
struct ns_entry *entry;
const struct nvme_controller_data *cdata;
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
cdata = nvme_ctrlr_get_data(ctrlr);
entry->ns = ns;
entry->size_in_ios = nvme_ns_get_size(ns) /
g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / nvme_ns_get_sector_size(ns);
snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
g_num_namespaces++;
entry->next = g_namespaces;
g_namespaces = entry;
}
static void
register_ctrlr(struct nvme_controller *ctrlr, struct pci_device *pci_dev)
{
int nsid, num_ns;
struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry));
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
entry->ctrlr = ctrlr;
entry->next = g_controllers;
g_controllers = entry;
num_ns = nvme_ctrlr_get_num_ns(ctrlr);
for (nsid = 1; nsid <= num_ns; nsid++) {
register_ns(ctrlr, pci_dev, nvme_ctrlr_get_ns(ctrlr, nsid));
}
}
static void task_ctor(struct rte_mempool *mp, void *arg, void *__task, unsigned id)
{
struct reset_task *task = __task;
task->buf = rte_malloc(NULL, g_io_size_bytes, 0x200);
if (task->buf == NULL) {
fprintf(stderr, "task->buf rte_malloc failed\n");
exit(1);
}
}
static void io_complete(void *ctx, const struct nvme_completion *completion);
static __thread unsigned int seed = 0;
static void
submit_single_io(struct ns_worker_ctx *ns_ctx)
{
struct reset_task *task = NULL;
uint64_t offset_in_ios;
int rc;
struct ns_entry *entry = ns_ctx->entry;
if (rte_mempool_get(task_pool, (void **)&task) != 0) {
fprintf(stderr, "task_pool rte_mempool_get failed\n");
exit(1);
}
task->ns_ctx = ns_ctx;
task->ns_ctx->io_submitted++;
if (g_is_random) {
offset_in_ios = rand_r(&seed) % entry->size_in_ios;
} else {
offset_in_ios = ns_ctx->offset_in_ios++;
if (ns_ctx->offset_in_ios == entry->size_in_ios) {
ns_ctx->offset_in_ios = 0;
}
}
if ((g_rw_percentage == 100) ||
(g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) {
rc = nvme_ns_cmd_read(entry->ns, task->buf, offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, task);
} else {
rc = nvme_ns_cmd_write(entry->ns, task->buf, offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, task);
}
if (rc != 0) {
fprintf(stderr, "starting I/O failed\n");
}
ns_ctx->current_queue_depth++;
}
static void
task_complete(struct reset_task *task, const struct nvme_completion *completion)
{
struct ns_worker_ctx *ns_ctx;
ns_ctx = task->ns_ctx;
ns_ctx->current_queue_depth--;
if (nvme_completion_is_error(completion)) {
ns_ctx->io_completed_error++;
} else {
ns_ctx->io_completed++;
}
rte_mempool_put(task_pool, task);
/*
* is_draining indicates when time has expired for the test run
* and we are just waiting for the previously submitted I/O
* to complete. In this case, do not submit a new I/O to replace
* the one just completed.
*/
if (!ns_ctx->is_draining) {
submit_single_io(ns_ctx);
}
}
static void
io_complete(void *ctx, const struct nvme_completion *completion)
{
task_complete((struct reset_task *)ctx, completion);
}
static void
check_io(struct ns_worker_ctx *ns_ctx)
{
nvme_ctrlr_process_io_completions(ns_ctx->ctr_entry->ctrlr, 0);
}
static void
submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth)
{
while (queue_depth-- > 0) {
submit_single_io(ns_ctx);
}
}
static void
drain_io(struct ns_worker_ctx *ns_ctx)
{
ns_ctx->is_draining = true;
while (ns_ctx->current_queue_depth > 0) {
check_io(ns_ctx);
}
}
static int
work_fn(void *arg)
{
uint64_t tsc_end = rte_get_timer_cycles() + g_time_in_sec * g_tsc_rate;
struct worker_thread *worker = (struct worker_thread *)arg;
struct ns_worker_ctx *ns_ctx = NULL;
printf("Starting thread on core %u\n", worker->lcore);
if (nvme_register_io_thread() != 0) {
fprintf(stderr, "nvme_register_io_thread() failed on core %u\n", worker->lcore);
return -1;
}
/* Submit initial I/O for each namespace. */
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
submit_io(ns_ctx, g_queue_depth);
ns_ctx = ns_ctx->next;
}
while (1) {
/*
* Check for completed I/O for each controller. A new
* I/O will be submitted in the io_complete callback
* to replace each I/O that is completed.
*/
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
check_io(ns_ctx);
ns_ctx = ns_ctx->next;
}
if (((tsc_end - rte_get_timer_cycles()) / g_tsc_rate) > (uint64_t)g_time_in_sec / 5 &&
((tsc_end - rte_get_timer_cycles()) / g_tsc_rate) < (uint64_t)(g_time_in_sec / 5 + 10)) {
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
if (nvme_ctrlr_reset(ns_ctx->ctr_entry->ctrlr) < 0) {
fprintf(stderr, "nvme reset failed.\n");
return -1;
}
ns_ctx = ns_ctx->next;
}
}
if (rte_get_timer_cycles() > tsc_end) {
break;
}
}
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
drain_io(ns_ctx);
ns_ctx = ns_ctx->next;
}
nvme_unregister_io_thread();
return 0;
}
static void usage(char *program_name)
{
printf("%s options", program_name);
printf("\n");
printf("\t[-q io depth]\n");
printf("\t[-s io size in bytes]\n");
printf("\t[-w io pattern type, must be one of\n");
printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n");
printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n");
printf("\t[-t time in seconds(should be larger than 15 seconds)]\n");
printf("\t[-m max completions per poll]\n");
printf("\t\t(default:0 - unlimited)\n");
}
static int
print_stats(void)
{
uint64_t io_completed, io_submitted, io_completed_error;
uint64_t total_completed_io, total_submitted_io, total_completed_err_io;
struct worker_thread *worker;
struct ns_worker_ctx *ns_ctx;
total_completed_io = 0;
total_submitted_io = 0;
total_completed_err_io = 0;
worker = g_workers;
ns_ctx = worker->ns_ctx;
while (ns_ctx) {
io_completed = ns_ctx->io_completed;
io_submitted = ns_ctx->io_submitted;
io_completed_error = ns_ctx->io_completed_error;
total_completed_io += io_completed;
total_submitted_io += io_submitted;
total_completed_err_io += io_completed_error;
ns_ctx = ns_ctx->next;
}
printf("========================================================\n");
printf("%16lu IO completed successfully\n", total_completed_io);
printf("%16lu IO completed with error\n", total_completed_err_io);
printf("--------------------------------------------------------\n");
printf("%16lu IO completed total\n", total_completed_io + total_completed_err_io);
printf("%16lu IO submitted\n", total_submitted_io);
if (total_submitted_io != (total_completed_io + total_completed_err_io)) {
fprintf(stderr, "Some IO are missing......\n");
return -1;
}
return 0;
}
static int
parse_args(int argc, char **argv)
{
const char *workload_type;
int op;
bool mix_specified = false;
/* default value*/
g_queue_depth = 0;
g_io_size_bytes = 0;
workload_type = NULL;
g_time_in_sec = 0;
g_rw_percentage = -1;
while ((op = getopt(argc, argv, "m:q:s:t:w:M:")) != -1) {
switch (op) {
case 'q':
g_queue_depth = atoi(optarg);
break;
case 's':
g_io_size_bytes = atoi(optarg);
break;
case 't':
g_time_in_sec = atoi(optarg);
break;
case 'w':
workload_type = optarg;
break;
case 'M':
g_rw_percentage = atoi(optarg);
mix_specified = true;
break;
default:
usage(argv[0]);
return 1;
}
}
if (!g_queue_depth) {
usage(argv[0]);
return 1;
}
if (!g_io_size_bytes) {
usage(argv[0]);
return 1;
}
if (!workload_type) {
usage(argv[0]);
return 1;
}
if (!g_time_in_sec) {
usage(argv[0]);
return 1;
}
if (strcmp(workload_type, "read") &&
strcmp(workload_type, "write") &&
strcmp(workload_type, "randread") &&
strcmp(workload_type, "randwrite") &&
strcmp(workload_type, "rw") &&
strcmp(workload_type, "randrw")) {
fprintf(stderr,
"io pattern type must be one of\n"
"(read, write, randread, randwrite, rw, randrw)\n");
return 1;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread")) {
g_rw_percentage = 100;
}
if (!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
g_rw_percentage = 0;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
if (mix_specified) {
fprintf(stderr, "Ignoring -M option... Please use -M option"
" only when using rw or randrw.\n");
}
}
if (!strcmp(workload_type, "rw") ||
!strcmp(workload_type, "randrw")) {
if (g_rw_percentage < 0 || g_rw_percentage > 100) {
fprintf(stderr,
"-M must be specified to value from 0 to 100 "
"for rw or randrw.\n");
return 1;
}
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "rw")) {
g_is_random = 0;
} else {
g_is_random = 1;
}
optind = 1;
return 0;
}
static int
register_workers(void)
{
struct worker_thread *worker;
worker = malloc(sizeof(struct worker_thread));
if (worker == NULL) {
perror("worker_thread malloc");
return -1;
}
memset(worker, 0, sizeof(struct worker_thread));
worker->lcore = rte_get_master_lcore();
g_workers = worker;
return 0;
}
static int
register_controllers(void)
{
struct pci_device_iterator *pci_dev_iter;
struct pci_device *pci_dev;
struct pci_id_match match;
int rc;
printf("Initializing NVMe Controllers\n");
pci_system_init();
match.vendor_id = PCI_MATCH_ANY;
match.subvendor_id = PCI_MATCH_ANY;
match.subdevice_id = PCI_MATCH_ANY;
match.device_id = PCI_MATCH_ANY;
match.device_class = NVME_CLASS_CODE;
match.device_class_mask = 0xFFFFFF;
pci_dev_iter = pci_id_match_iterator_create(&match);
rc = 0;
while ((pci_dev = pci_device_next(pci_dev_iter))) {
struct nvme_controller *ctrlr;
if (pci_device_has_non_null_driver(pci_dev)) {
fprintf(stderr, "non-null kernel driver attached to nvme\n");
fprintf(stderr, " controller at pci bdf %d:%d:%d\n",
pci_dev->bus, pci_dev->dev, pci_dev->func);
fprintf(stderr, " skipping...\n");
continue;
}
pci_device_probe(pci_dev);
ctrlr = nvme_attach(pci_dev);
if (ctrlr == NULL) {
fprintf(stderr, "nvme_attach failed for controller at pci bdf %d:%d:%d\n",
pci_dev->bus, pci_dev->dev, pci_dev->func);
rc = 1;
continue;
}
register_ctrlr(ctrlr, pci_dev);
}
pci_iterator_destroy(pci_dev_iter);
return rc;
}
static void
unregister_controllers(void)
{
struct ctrlr_entry *entry = g_controllers;
while (entry) {
struct ctrlr_entry *next = entry->next;
nvme_detach(entry->ctrlr);
free(entry);
entry = next;
}
}
static int
associate_workers_with_ns(void)
{
struct ns_entry *entry = g_namespaces;
struct ctrlr_entry *controller_entry = g_controllers;
struct worker_thread *worker = g_workers;
struct ns_worker_ctx *ns_ctx;
int i, count;
count = g_num_namespaces;
for (i = 0; i < count; i++) {
ns_ctx = malloc(sizeof(struct ns_worker_ctx));
if (!ns_ctx) {
return -1;
}
memset(ns_ctx, 0, sizeof(*ns_ctx));
printf("Associating %s with lcore %d\n", entry->name, worker->lcore);
ns_ctx->entry = entry;
ns_ctx->ctr_entry = controller_entry;
ns_ctx->next = worker->ns_ctx;
worker->ns_ctx = ns_ctx;
worker = g_workers;
controller_entry = controller_entry->next;
entry = entry->next;
if (entry == NULL) {
entry = g_namespaces;
}
}
return 0;
}
static int
run_nvme_reset_cycle(int retry_count)
{
struct worker_thread *worker;
struct ns_worker_ctx *ns_ctx;
nvme_retry_count = retry_count;
if (work_fn(g_workers) != 0) {
return -1;
}
if (print_stats() != 0) {
return -1;
}
worker = g_workers;
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
ns_ctx->io_completed = 0;
ns_ctx->io_completed_error = 0;
ns_ctx->io_submitted = 0;
ns_ctx->is_draining = false;
ns_ctx = ns_ctx->next;
}
return 0;
}
static char *ealargs[] = {
"reset",
"-c 0x1",
"-n 4",
};
int main(int argc, char **argv)
{
int rc;
int i;
rc = parse_args(argc, argv);
if (rc != 0) {
return rc;
}
rc = rte_eal_init(sizeof(ealargs) / sizeof(ealargs[0]), ealargs);
if (rc < 0) {
fprintf(stderr, "could not initialize dpdk\n");
return 1;
}
request_mempool = rte_mempool_create("nvme_request", 8192,
nvme_request_size(), 128, 0,
NULL, NULL, NULL, NULL,
SOCKET_ID_ANY, 0);
if (request_mempool == NULL) {
fprintf(stderr, "could not initialize request mempool\n");
return 1;
}
task_pool = rte_mempool_create("task_pool", 8192,
sizeof(struct reset_task),
64, 0, NULL, NULL, task_ctor, NULL,
SOCKET_ID_ANY, 0);
g_tsc_rate = rte_get_timer_hz();
if (register_workers() != 0) {
return 1;
}
if (register_controllers() != 0) {
return 1;
}
if (associate_workers_with_ns() != 0) {
rc = 1;
goto cleanup;
}
printf("Initialization complete. Launching workers.\n");
for (i = 2; i >= 0; i--) {
rc = run_nvme_reset_cycle(i);
if (rc != 0) {
goto cleanup;
}
}
cleanup:
unregister_controllers();
if (rc != 0) {
fprintf(stderr, "%s: errors occured\n", argv[0]);
}
return rc;
}