Compare commits

..

70 Commits
v3.2.3 ... main

Author SHA1 Message Date
Wang, Yi
24c2bff659
Gaudi gptq gidx support (#3297)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-07-17 16:00:12 +02:00
Yuan Wu
fc2405c549
[gaudi] Fix the CI test errors (#3286)
Signed-off-by: yuanwu <yuan.wu@intel.com>
2025-07-07 11:32:07 +02:00
Wang, Yi
ebb26f0ccd
[gaudi] Deepseek v2 mla and add ep to unquantized moe (#3287)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-07-07 11:29:39 +02:00
Wang, Yi
778b61c0da
[gaudi] Remove unnecessary reinitialize to HeterogeneousNextTokenChooser to make sampling output correct (#3284)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
2025-07-03 10:03:16 +02:00
David Corvoysier
3d2e7c8fce
Optimum neuron 0.2.2 (#3281)
* chore(neuron): use optimum-neuron 0.2.1

* test(neuron): adjust expectations

Since the latest optimum-neuron uses a new modeling for granite and
qwen, the greedy outputs are slighly different.

* test(neuron): add phi3 and qwen3 tests

* chore(neuron): use optimum-neuron 0.2.2
2025-07-03 07:59:25 +02:00
Wang, Yi
f6005d6813
xpu lora support (#3232)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-07-02 17:54:25 +02:00
Wang, Yi
429dcd9c64
[gaudi] Gemma3 sliding window support (#3280)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-07-01 10:06:01 +02:00
Baptiste Colle
9f38d93051
Gaudi: add CI (#3160)
Co-authored-by: Pauline Bailly-Masson <155966238+paulinebm@users.noreply.github.com>
2025-06-24 18:51:09 +02:00
Wang, Yi
719907410b
[gaudi] Refine rope memory, do not need to keep sin/cos cache per layer (#3274) 2025-06-23 11:15:39 +02:00
David Corvoysier
238fbd4d50
Neuron backend fix and patch version 3.3.4 (#3273)
* fix(neuron): wrong assertion when batch_size==1

* chore: prepare 3.3.4
2025-06-19 10:52:41 +02:00
Wang, Yi
14ee6e7804
[gaudi] gemma3 text and vlm model intial support. need to add sliding window support later (#3270)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-06-19 09:32:34 +02:00
David Corvoysier
bd1bdebb47
doc: fix README (#3271) 2025-06-18 12:35:36 +02:00
regisss
f13e28c98d
[gaudi] Refine logging for Gaudi warmup (#3222)
* Refine logging for Gaudi warmup

* Make style

* Make style 2

* Flash causal LM case

* Add log_master & VLM cases

* Black
2025-06-18 12:34:00 +02:00
David Corvoysier
b4d17f18ff
chore: prepare release 3.3.3 (#3269) 2025-06-18 11:55:26 +02:00
Wang, Yi
0627983c17
[Gaudi] use pad_token_id to pad input id (#3268)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-06-17 09:07:25 +02:00
Yuan Wu
3752143b39
[Gaudi] Fix the integration-test issues (#3265)
Signed-off-by: yuanwu <yuan.wu@intel.com>
2025-06-13 14:47:06 +02:00
Yuan Wu
ded4cb52ac
[Gaudi] Enable Qwen3_moe model (#3244)
Signed-off-by: yuanwu <yuan.wu@intel.com>
2025-06-13 12:03:24 +02:00
Wang, Yi
a220e57f45
[gaudi] HuggingFaceM4/idefics2-8b issue fix (#3264)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-06-13 12:00:08 +02:00
Yuan Wu
e07056ab3f
[Gaudi] Remove optimum-habana (#3261)
Signed-off-by: yuanwu <yuan.wu@intel.com>
2025-06-12 22:35:36 +02:00
Yuan Wu
25fdc5f03c
[gaudi] Move the _update_cos_sin_cache into get_cos_sin (#3254)
Signed-off-by: yuanwu <yuan.wu@intel.com>
2025-06-12 22:31:11 +02:00
Wang, Yi
613b8dd647
[gaudi] Vlm rebase and issue fix in benchmark test (#3263)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-06-12 22:26:37 +02:00
Wang, Yi
839477670a
[gaudi] Perf optimization (#3256)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-06-11 15:00:21 +02:00
David Corvoysier
79183d1647
Bump neuron SDK version (#3260)
* chore(neuron): bump version to 0.2.0

* refactor(neuron): use named parameters in inputs helpers

This allows to hide the differences between the two backends in terms of
input parameters.

* refactor(neuron): remove obsolete code paths

* fix(neuron): use neuron_config whenever possible

* fix(neuron): use new cache import path

* fix(neuron): neuron config is not stored in config anymore

* fix(nxd): adapt model retrieval to new APIs

* fix(generator): emulate greedy in sampling parameters

When on-device sampling is enabled, we need to emulate the greedy
behaviour using top-k=1, top-p=1, temperature=1.

* test(neuron): update models and expectations

* feat(neuron): support on-device sampling

* fix(neuron): adapt entrypoint

* tests(neuron): remove obsolete models

* fix(neuron): adjust test expectations for llama on nxd
2025-06-10 17:56:25 +02:00
Yuan Wu
1ff9d185d5
Remove useless packages (#3253)
Signed-off-by: yuanwu <yuan.wu@intel.com>
2025-06-03 13:42:29 +02:00
Daniël de Kok
249189d96e
Prepare for 3.3.2 (#3249) 2025-05-30 16:16:36 +02:00
Yuan Wu
6b6e30a6f6
[gaudi] Fix the Llama-4-Maverick-17B-128E crash issue (#3246)
Signed-off-by: yuanwu <yuan.wu@intel.com>
2025-05-29 11:38:44 +02:00
Yuan Wu
70217ac345
[Gaudi] Fix the OOM issue of Llama-4-Scout-17B-16E-Instruct (#3245)
Signed-off-by: yuanwu <yuan.wu@intel.com>
2025-05-29 09:58:24 +02:00
Wang, Yi
f14044009a
fp8 compressed tensors w8a8 support for Gaudi backend (#3242)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-05-28 14:54:20 +02:00
Yuan Wu
1883a62a94
Add Qwen3 for Gaudi backend (#3229)
Signed-off-by: yuanwu <yuan.wu@intel.com>
2025-05-23 08:58:35 +02:00
Daniël de Kok
f58d7cf50e
Nix: switch to hf-nix (#3240)
* Nix: switch to hf-nix

* Remove outdated local overrides
2025-05-22 17:09:15 +02:00
Wang, Yi
f08b44ade5
Upgrade to new vllm extension ops for Gaudi backend (fix issue in exponential bucketing) (#3239)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-05-22 15:29:16 +02:00
Daniël de Kok
674c514d44
Prepare for 3.3.1 (#3238) 2025-05-22 09:43:55 +02:00
Wang, Yi
9e7e546923
Move input_ids to hpu and remove disposal of adapter_meta (#3237)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-05-22 09:21:31 +02:00
Daniël de Kok
e32528792c
Switch to punica-sgmv kernel from the Hub (#3236)
* Switch to punica-sgmv kernel from the Hub

This also switches (temporarily) to the tgi-nix/kernel-builder merge
branch, bumping up to CUDA 12.8 (same as non-Nix Torch).

* nix: client depends on aiohttp

This probably worked before the nixpkgs bump because a dependency
propagated aiohttp.
2025-05-21 15:44:15 +02:00
Wang, Yi
43b1b07fb9
Fix the crash in default ATTENTION path for Gaudi backend (#3235)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-05-20 14:02:32 +02:00
Wang, Yi
000e313a92
Refine warmup and upgrade to synapse AI 1.21.0 (#3234)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-05-20 10:22:43 +02:00
Wang, Yi
d658b5def3
Deepseek R1 for Gaudi backend (#3211)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-05-19 16:36:39 +02:00
drbh
58934c8b61
fix: count gpu uuids if NVIDIA_VISIBLE_DEVICES env set to all (#3230) 2025-05-16 11:48:58 -04:00
Yuan Wu
18cbecfb38
Enable Llama4 for Gaudi backend (#3223)
Signed-off-by: yuanwu <yuan.wu@intel.com>
2025-05-15 14:35:37 +02:00
Daniël de Kok
7e531f413d
Update to Torch 2.7.0 (#3221)
* Update to Torch 2.7.0

* Try to fix typer/click issue

* Pin click to fix incompatibility with typer

* Fix some test outputs with slight deviations

* Attempt again to sync with CI

* Mamba too

* Fixup mllama

Also switch to `unsloth/Llama-3.2-11B-Vision-Instruct` for testing
from the EU :).
2025-05-15 11:48:33 +02:00
kaixuanliu
535ce23827
Adjust the round_up_seq logic in Gaudi backend (#3224)
Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
2025-05-12 09:58:43 +02:00
kaixuanliu
c94f415af4
Change HPU warmup logic: seq length should be with exponential growth (#3217)
Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
2025-05-10 15:41:18 +02:00
Daniël de Kok
56c8189467
Prepare for 3.3.0 (#3220) 2025-05-09 15:50:29 +02:00
Mohit Sharma
329f612e55
Chunked Prefill VLM (#3188)
* add logic

* working

* add encoder cache free

* fixes

* fix idefics

* update pixel_values

* add improvements

* add improvements

* improve

* nit

* fix inputs_embeds

* nit

* optimizations

* add prometheus port

* rename vars

* rename vars

* nit

* disable chunking for qwen

* review comments

* remove port

* improve headdim

* remove kwargs and redundant args

* fix qwen2_5

* fix config image_token_id error

* fix test

* update paligemma

* fix paligemma text

* minor fix

* fix qwen test

* fix qwen test
2025-05-06 18:01:59 +02:00
Wang, Yi
533eee50dc
forward and tokenize chooser use the same shape (#3196)
* forward and tokenize chooser use the same shape
concate or filter happened to cpu tensor to avoid dynamic shape in hpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* use hpu set seed

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-05-06 10:49:32 +02:00
Wang, Yi
51a0b9d11c
IPEX support FP8 kvcache/softcap/slidingwindow (#3144)
* IPEX support FP8 kvcache

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add kvcache dtype

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add softcap and slidingwindow

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* kv scale in pageattn

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* remove triton installation, will be installed with torch

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* install xelink lib

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* softcap default -1.0

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* softcap default -1.0

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-05-06 10:49:24 +02:00
regisss
f208ba6afc
Fix HF_HUB_OFFLINE=1 for Gaudi backend (#3193)
* Fix `HF_HUB_OFFLINE=1` for Gaudi backend

* Fix HF cache default value in server.rs

* Format
2025-05-06 10:47:53 +02:00
Julien Chaumond
7253be349a
Update client SDK snippets (#3207)
* Update client SDK snippets

* good catch from copilot
2025-05-01 17:10:51 +02:00
drbh
d303c1e37e
fix: bump snaps for mllama (#3202) 2025-05-01 10:20:45 -04:00
drbh
12ea8d74c7
Pr 2982 ci branch (#3046)
* Add json_schema alias for GrammarType

* Add tests for all aliases

* fix: various linter adjustments

* fix: end-of-file-fixer lint

* fix: add test snapshots and avoid docs change

* fix: another end-of-file-fixer lint

* feat: support json_schema grammar constraining and add tests

* fix: bump openapi doc with new grammar option

* fix: adjust test payload

* fix: bump test snaps

---------

Co-authored-by: Alex Weston <alexw@alkymi.io>
2025-05-01 10:17:16 -04:00
Julien Chaumond
6afe4307ab
doc typo (#3206)
typo
2025-05-01 14:31:48 +02:00
Alvaro Bartolome
40dfce644a
Skip {% generation %} and {% endgeneration %} template handling (#3204)
* Add `.DS_Store` file to `.gitignore`

* Skip `{% generation %}` and `{% endgeneration %}`

Custom syntax within the chat template for the Phi4 Reasoning models
e.g. https://huggingface.co/microsoft/Phi-4-reasoning-plus, which is
AFAIK not handled natively yet, so skipping for now

* Update explanation on `{% generation %}` and `{% endgeneration %}` removal

* Revert "Add `.DS_Store` file to `.gitignore`"

This reverts commit d64d6d2f7f.
2025-05-01 12:13:17 +02:00
Nicolas Patry
e7329fec18
Fixing the router + template for Qwen3. (#3200) 2025-04-29 16:29:26 +02:00
Nicolas Patry
39cfe232fd
Put more wiggle room. (#3189)
* Put more wiggle room.

* Fixing the makefile by using lockfile.

* Pre commit
2025-04-24 17:23:32 +02:00
Wang, Yi
375802948d
Warmup gaudi backend (#3172)
* clean cuda/rocm code in hpu backend, enable flat_hpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix TP in pageattn

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* adjust block table in hpu to improve performance

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable all the model. not testet yet

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* use tensor cache in hpu graph to avoid replay issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add moe support, fix qwen/mistral/mixtral crash

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix phimoe issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* gpt_bigcode could also go pageattn

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable dbrx remove some unused code

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* multi-modality initial PR

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* adjust warmup and enable vlm

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix incorrect output in qwen2 idefics if hpu graph is used

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* remove unused quantization code and enable awq/gptq int4

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix gptq issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable fp8

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* warmup prefill

remove model where pageattn is not used, set block table to None since it's not used

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add warmup_decode

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* warmup decode

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* remove block_tables and prefill_cache_indices which will lead to dynamic shape

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* missing gptj change...

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix some issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* remove torch.where to fix incorrect output in hpu graph model

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* LLM warmup logic

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* multi-modality warmup

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* optimize code

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* refine log and fix some issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix warmup issue for mllama

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* pingpong optimization

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* match the latest vllm_extension ops

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* work with the latest vllm extension ops

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* remove block_scales which is not needed anymore

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* improve performance

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* prefill bypass graph

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* pingpong optimization issue fix

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-04-24 09:57:08 +02:00
Mohit Sharma
02715dc53f
Add option to configure prometheus port (#3187)
* add prometheus port

* fix doc

* add port for trtllm and llamacpp

* Fixing format after rebase.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2025-04-23 20:43:25 +05:30
Nicolas Patry
8f8819795f
Fixing CI (#3184) 2025-04-18 13:07:18 +02:00
Alvaro Bartolome
95ccba3705
Bump sccache to 0.10.0 (#3179)
* Ensure that `sccache` version is 0.10.0 or higher

* Rename `ACTIONS_CACHE_URL` to `ACTIONS_RESULTS_URL`
2025-04-18 12:45:32 +02:00
Hyeongchan Kim
b400c275e4
Get opentelemetry trace id from request headers instead of creating a new trace (#2648)
feature: get trace id from req headers

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2025-04-18 09:06:41 +02:00
Daniël de Kok
84ab88d843
Support flashinfer for Gemma3 prefill (#3167)
* launcher: ensure correct detection of Gemma 3 head size

* Support flashinfer for Gemma3 prefill

Gemma3 uses bidirectional attention for images. Flashinfer
supports custom masks. Hook up the mask with flashinfer, so that we do
not have to use the slower SDPA implementation for prefills with images.

* Update Gemma3 test outputs

* Fixed unused import
2025-04-17 18:07:41 +02:00
Nicolas Patry
4645678ff0
Hotfix gaudi2 with newer transformers. (#3176) 2025-04-15 12:39:28 +02:00
Nicolas Patry
ad765cd06b
Hotfixing gaudi deps. (#3174) 2025-04-15 11:55:28 +02:00
Nicolas Patry
16b4b7974a
Upgrading the dependencies in Gaudi backend. (#3170)
* Upgrading the dependencies in Gaudi backend.

* Upgrading transformers version.
2025-04-15 11:49:06 +02:00
Wang, Yi
459fbdebe3
transformers flash llm/vlm enabling in ipex (#3152)
* transformers flash llm/vlm enabling in xpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* ipex cpu could also support in function

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-04-15 11:08:01 +02:00
Nicolas Patry
449cee49ca
setuptools <= 70.0 is vulnerable: CVE-2024-6345 (#3171) 2025-04-15 10:09:37 +02:00
Mohit Sharma
73e797528d
L4 fixes (#3161)
add fix
2025-04-14 22:13:53 +05:30
Nicolas Patry
fe56f760df
Upgrading the python client deps (still deprecated, but used for
integration-tests)
2025-04-14 17:18:43 +02:00
Wang, Yi
d62c941c56
Gaudi: clean cuda/rocm code in hpu backend, enable flat_hpu (#3113)
* clean cuda/rocm code in hpu backend, enable flat_hpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix TP in pageattn

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* adjust block table in hpu to improve performance

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable all the model. not testet yet

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* use tensor cache in hpu graph to avoid replay issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add moe support, fix qwen/mistral/mixtral crash

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix phimoe issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* gpt_bigcode could also go pageattn

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable dbrx remove some unused code

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* multi-modality initial PR

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* adjust warmup and enable vlm

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix incorrect output in qwen2 idefics if hpu graph is used

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* remove unused quantization code and enable awq/gptq int4

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix gptq issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable fp8

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* warmup prefill

remove model where pageattn is not used, set block table to None since it's not used

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add warmup_decode

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* warmup decode

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* remove block_tables and prefill_cache_indices which will lead to dynamic shape

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* missing gptj change...

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix some issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* remove torch.where to fix incorrect output in hpu graph model

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* match the latest vllm_extension ops

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-04-14 15:58:13 +02:00
Nicolas Patry
9a8d0462e1
Fixing tokenization like https://github.com/huggingface/text-embeddin… (#3156)
Fixing tokenization like https://github.com/huggingface/text-embeddings-inference/issues/525
2025-04-09 18:42:25 +02:00
Nicolas Patry
5861da1ad7
Fixing Qwen 2.5 VL (32B). (#3157)
Reduce the config constraints, and use common ground between the 8B and
32B.
2025-04-09 17:07:30 +02:00
249 changed files with 22770 additions and 27574 deletions

View File

@ -45,7 +45,7 @@ jobs:
uses: actions/github-script@v7
with:
script: |
core.exportVariable('ACTIONS_CACHE_URL', process.env.ACTIONS_CACHE_URL || '');
core.exportVariable('ACTIONS_RESULTS_URL', process.env.ACTIONS_RESULTS_URL || '');
core.exportVariable('ACTIONS_RUNTIME_TOKEN', process.env.ACTIONS_RUNTIME_TOKEN || '');
- name: Extract TensorRT-LLM version
@ -129,9 +129,9 @@ jobs:
export label_extension="-gaudi"
export docker_volume="/mnt/cache"
export docker_devices=""
export runs_on="ubuntu-latest"
export runs_on="itac-bm-emr-gaudi3-dell-2gaudi"
export platform=""
export extra_pytest=""
export extra_pytest="--gaudi"
export target=""
esac
echo $dockerfile
@ -223,7 +223,7 @@ jobs:
PLATFORM=${{ env.PLATFORM }}
build_type=${{ env.BUILD_TYPE }}
sccache_gha_enabled=on
actions_cache_url=${{ env.ACTIONS_CACHE_URL }}
actions_results_url=${{ env.ACTIONS_RESULTS_URL }}
actions_runtime_token=${{ env.ACTIONS_RUNTIME_TOKEN }}
target: ${{ env.TARGET }}
tags: ${{ steps.meta.outputs.tags || steps.meta-pr.outputs.tags }}

View File

@ -21,7 +21,7 @@ jobs:
nix_path: nixpkgs=channel:nixos-unstable
- uses: cachix/cachix-action@v14
with:
name: text-generation-inference
name: huggingface
# If you chose signing key for write access
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
env:

View File

@ -20,7 +20,7 @@ jobs:
nix_path: nixpkgs=channel:nixos-unstable
- uses: cachix/cachix-action@v14
with:
name: text-generation-inference
name: huggingface
# If you chose signing key for write access
authToken: "${{ secrets.CACHIX_AUTH_TOKEN }}"
env:

View File

@ -25,7 +25,7 @@ jobs:
nix_path: nixpkgs=channel:nixos-unstable
- uses: cachix/cachix-action@v14
with:
name: text-generation-inference
name: huggingface
# If you chose signing key for write access
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
env:

16
Cargo.lock generated
View File

@ -4650,7 +4650,7 @@ dependencies = [
[[package]]
name = "text-generation-backends-trtllm"
version = "3.2.3"
version = "3.3.4-dev0"
dependencies = [
"async-trait",
"clap 4.5.32",
@ -4671,7 +4671,7 @@ dependencies = [
[[package]]
name = "text-generation-benchmark"
version = "3.2.3"
version = "3.3.4-dev0"
dependencies = [
"average",
"clap 4.5.32",
@ -4691,7 +4691,7 @@ dependencies = [
[[package]]
name = "text-generation-client"
version = "3.2.3"
version = "3.3.4-dev0"
dependencies = [
"async-trait",
"base64 0.22.1",
@ -4709,7 +4709,7 @@ dependencies = [
[[package]]
name = "text-generation-launcher"
version = "3.2.3"
version = "3.3.4-dev0"
dependencies = [
"clap 4.5.32",
"ctrlc",
@ -4730,7 +4730,7 @@ dependencies = [
[[package]]
name = "text-generation-router"
version = "3.2.3"
version = "3.3.4-dev0"
dependencies = [
"anyhow",
"async-stream",
@ -4782,7 +4782,7 @@ dependencies = [
[[package]]
name = "text-generation-router-llamacpp"
version = "3.2.3"
version = "3.3.4-dev0"
dependencies = [
"async-trait",
"bindgen 0.71.1",
@ -4800,7 +4800,7 @@ dependencies = [
[[package]]
name = "text-generation-router-v2"
version = "3.2.3"
version = "3.3.4-dev0"
dependencies = [
"async-stream",
"async-trait",
@ -4849,7 +4849,7 @@ dependencies = [
[[package]]
name = "text-generation-router-v3"
version = "3.2.3"
version = "3.3.4-dev0"
dependencies = [
"async-stream",
"async-trait",

View File

@ -21,7 +21,7 @@ default-members = [
resolver = "2"
[workspace.package]
version = "3.2.3"
version = "3.3.4-dev0"
edition = "2021"
authors = ["Olivier Dehaene"]
homepage = "https://github.com/huggingface/text-generation-inference"

View File

@ -48,7 +48,7 @@ FROM nvidia/cuda:12.4.1-devel-ubuntu22.04 AS pytorch-install
WORKDIR /usr/src/
# NOTE: When updating PyTorch version, beware to remove `pip install nvidia-nccl-cu12==2.22.3` below in the Dockerfile. Context: https://github.com/huggingface/text-generation-inference/pull/2099
ARG PYTORCH_VERSION=2.6
ARG PYTORCH_VERSION=2.7
ARG PYTHON_VERSION=3.11
# Keep in sync with `server/pyproject.toml
@ -121,13 +121,6 @@ COPY server/Makefile-awq Makefile
# Build specific version of transformers
RUN . .venv/bin/activate && make build-awq
# Build Lorax Punica kernels
FROM kernel-builder AS lorax-punica-builder
WORKDIR /usr/src
COPY server/Makefile-lorax-punica Makefile
# Build specific version of transformers
RUN . .venv/bin/activate && TORCH_CUDA_ARCH_LIST="8.0;8.6+PTX" make build-lorax-punica
# Build Transformers CUDA kernels
FROM kernel-builder AS custom-kernels-builder
WORKDIR /usr/src
@ -210,8 +203,6 @@ COPY --from=exllama-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-311
COPY --from=exllamav2-kernels-builder /usr/src/exllamav2/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
# Copy build artifacts from awq kernels builder
COPY --from=awq-kernels-builder /usr/src/llm-awq/awq/kernels/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
# Copy build artifacts from lorax punica kernels builder
COPY --from=lorax-punica-builder /usr/src/lorax-punica/server/punica_kernels/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
# Copy build artifacts from mamba builder
COPY --from=mamba-builder /usr/src/mamba/build/lib.linux-x86_64-cpython-311/ /usr/src/.venv/lib/python3.11/site-packages
COPY --from=mamba-builder /usr/src/causal-conv1d/build/lib.linux-x86_64-cpython-311/ /usr/src/.venv/lib/python3.11/site-packages

View File

@ -5,7 +5,7 @@ RUN mkdir -p /tgi
# Fetch the optimum-neuron sources directly to avoid relying on pypi deployments
FROM alpine AS optimum-neuron
RUN mkdir -p /optimum-neuron
ADD https://github.com/huggingface/optimum-neuron/archive/refs/tags/v0.1.0.tar.gz /optimum-neuron/sources.tar.gz
ADD https://github.com/huggingface/optimum-neuron/archive/refs/tags/v0.2.2.tar.gz /optimum-neuron/sources.tar.gz
RUN tar -C /optimum-neuron -xf /optimum-neuron/sources.tar.gz --strip-components=1
# Build cargo components (adapted from TGI original Dockerfile)
@ -108,10 +108,10 @@ RUN wget -qO - https://apt.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEU
# Install neuronx packages
RUN apt-get update -y \
&& apt-get install -y --no-install-recommends \
aws-neuronx-dkms=2.19.64.0 \
aws-neuronx-collectives=2.23.135.0-3e70920f2 \
aws-neuronx-runtime-lib=2.23.112.0-9b5179492 \
aws-neuronx-tools=2.20.204.0 \
aws-neuronx-dkms=2.20.28.0 \
aws-neuronx-collectives=2.24.59.0-838c7fc8b \
aws-neuronx-runtime-lib=2.24.53.0-f239092cc \
aws-neuronx-tools=2.22.61.0 \
libxml2 \
&& rm -rf /var/lib/apt/lists/* \
&& apt-get clean
@ -125,11 +125,10 @@ RUN pip3 install \
--index-url https://download.pytorch.org/whl/cpu
RUN pip3 install \
neuronx-cc==2.16.372.0 \
torch-neuronx==2.5.1.2.4.0 \
transformers-neuronx==0.13.322 \
neuronx-distributed==0.10.1 \
libneuronxla==2.1.681.0 \
neuronx-cc==2.17.194.0 \
torch-neuronx==2.5.1.2.6.0 \
neuronx-distributed==0.11.0 \
libneuronxla==2.2.1630.0 \
--extra-index-url=https://pip.repos.neuron.amazonaws.com
# Install HuggingFace packages
@ -160,7 +159,7 @@ RUN pip install dist/text_generation_server*.tar.gz
# Final image
FROM neuron
COPY backends/neuron/tgi_env.py /tgi_env.py
COPY backends/neuron/tgi_entry_point.py /tgi_entry_point.py
COPY backends/neuron/tgi-entrypoint.sh /tgi-entrypoint.sh
RUN chmod +x /tgi-entrypoint.sh

View File

@ -6,7 +6,7 @@
FROM nixos/nix:2.18.8 AS builder
RUN echo "experimental-features = nix-command flakes" >> /etc/nix/nix.conf
RUN nix profile install nixpkgs#cachix
RUN cachix use text-generation-inference
RUN cachix use huggingface
WORKDIR /root
ADD . .
RUN nix build .

View File

@ -1,5 +1,5 @@
# Those arguments are required to build the image
ARG HABANA_VERSION=1.20.0
ARG HABANA_VERSION=1.21.0
ARG PYTORCH_VERSION=2.6.0
# Rust builder
@ -57,9 +57,12 @@ ARG PYTORCH_VERSION
FROM vault.habana.ai/gaudi-docker/${HABANA_VERSION}/ubuntu22.04/habanalabs/pytorch-installer-${PYTORCH_VERSION}:latest AS base
ENV ATTENTION=default
ENV ATTENTION=paged
ENV PREFIX_CACHING=0
ENV PREFILL_CHUNKING=0
ENV PT_HPU_LAZY_MODE=1
ENV PT_HPU_WEIGHT_SHARING=0
ENV VLLM_EXPONENTIAL_BUCKETING=true
# Text Generation Inference base env
ENV HF_HOME=/data \
@ -92,9 +95,9 @@ RUN cd server && \
make gen-server && \
pip install --no-deps -r requirements.txt && \
bash ./dill-0.3.8-patch.sh && \
pip install "git+https://github.com/HabanaAI/DeepSpeed.git@${HABANA_VERSION}" && \
BUILD_CUDA_EXT=0 pip install git+https://github.com/AutoGPTQ/AutoGPTQ.git@097dd04e --no-build-isolation && \
pip install . --no-cache-dir
RUN pip install git+https://github.com/sywangyi/vllm-hpu-extension.git@bmax_fix
RUN pip install compressed-tensors==0.9.1
# Install benchmarker
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
@ -115,9 +118,9 @@ ENTRYPOINT ["./entrypoint.sh"]
# Final image
FROM base
ENV HF_HUB_ENABLE_HF_TRANSFER 1
ENV HABANA_VISIBLE_DEVICES all
ENV OMPI_MCA_btl_vader_single_copy_mechanism NONE
ENV HF_HUB_ENABLE_HF_TRANSFER=1
ENV HABANA_VISIBLE_DEVICES=all
ENV OMPI_MCA_btl_vader_single_copy_mechanism=NONE
COPY backends/gaudi/tgi-entrypoint.sh /tgi-entrypoint.sh
RUN chmod +x /tgi-entrypoint.sh

View File

@ -87,7 +87,7 @@ RUN echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https:/
RUN mv /tmp/intel-for-pytorch-gpu-dev.list /etc/apt/sources.list.d
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt install -y xpu-smi cmake ninja-build pciutils intel-ocloc
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt install -y xpu-smi cmake ninja-build pciutils intel-ocloc libnl-genl-3-200
# Text Generation Inference base env
ENV HF_HOME=/data \
@ -98,9 +98,8 @@ ENV HF_HOME=/data \
WORKDIR /usr/src
RUN pip install torch==2.6.0 --index-url https://download.pytorch.org/whl/test/xpu
RUN pip install triton-xpu==3.2.0b1 --no-cache-dir
RUN pip install torch==2.7.0 torchvision==0.22.0 --index-url https://download.pytorch.org/whl/xpu
# Install server
COPY proto proto
@ -118,8 +117,8 @@ ENV TORCH_LLM_ALLREDUCE=1
ENV CCL_TOPO_FABRIC_VERTEX_CONNECTION_CHECK=0
ENV TORCH_DEVICE_BACKEND_AUTOLOAD=0
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/oneccl_bind_pt-2.6.0%2Bxpu-cp311-cp311-linux_x86_64.whl
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.6.10%2Bxpu-cp311-cp311-linux_x86_64.whl
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/oneccl_bind_pt-2.7.0%2Bxpu-cp311-cp311-linux_x86_64.whl
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.7.10%2Bxpu-cp311-cp311-linux_x86_64.whl
# Install benchmarker
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router
@ -182,13 +181,13 @@ RUN case ${TARGETPLATFORM} in \
RUN conda install -c conda-forge gperftools mkl
RUN pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cpu
RUN pip install triton==3.1.0 py-libnuma
RUN pip install torch==2.7.0 torchvision==0.22.0 torchaudio==2.7.0 --index-url https://download.pytorch.org/whl/cpu
RUN pip install triton==3.2.0 py-libnuma
WORKDIR /usr/src
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/cpu/intel_extension_for_pytorch-2.6.0%2Bcpu-cp311-cp311-linux_x86_64.whl
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/cpu/oneccl_bind_pt-2.6.0%2Bcpu-cp311-cp311-linux_x86_64.whl
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/cpu/intel_extension_for_pytorch-2.7.0%2Bcpu-cp311-cp311-linux_x86_64.whl
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/cpu/oneccl_bind_pt-2.7.0%2Bcpu-cp311-cp311-linux_x86_64.whl
ENV LD_PRELOAD=/opt/conda/lib/libtcmalloc.so

View File

@ -3,10 +3,9 @@ ARG cuda_base=12.8.0
ARG build_type=release
ARG ompi_version=4.1.7
ARG sccache_gha_enabled=off
ARG actions_cache_url=""
ARG actions_results_url=""
ARG actions_runtime_token=""
# CUDA dependent dependencies resolver stage
FROM nvidia/cuda:${cuda_base}-cudnn-devel-ubuntu24.04 AS cuda-builder
@ -66,7 +65,7 @@ WORKDIR /usr/src/text-generation-inference
ARG cuda_arch_list
ARG build_type
ARG sccache_gha_enabled
ARG actions_cache_url
ARG actions_results_url
ARG actions_runtime_token
# Install Rust
@ -74,7 +73,7 @@ ENV PATH="/root/.cargo/bin:$PATH"
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- --default-toolchain 1.85.1 --profile minimal -y && \
chmod -R a+w /root/.rustup && \
chmod -R a+w /root/.cargo && \
cargo install sccache --locked
cargo install sccache --version ">=0.10.0" --locked
ENV LD_LIBRARY_PATH="/usr/local/mpi/lib:$LD_LIBRARY_PATH"
ENV PKG_CONFIG_PATH="/usr/local/mpi/lib/pkgconfig"
@ -85,7 +84,7 @@ ENV CUDA_ARCH_LIST=${cuda_arch_list}
# SCCACHE Specifics args - before finding a better, more generic, way...
ENV SCCACHE_GHA_ENABLED=${sccache_gha_enabled}
ENV ACTIONS_CACHE_URL=${actions_cache_url}
ENV ACTIONS_RESULTS_URL=${actions_results_url}
ENV ACTIONS_RUNTIME_TOKEN=${actions_runtime_token}
COPY Cargo.lock Cargo.lock

View File

@ -14,7 +14,7 @@
</a>
A Rust, Python and gRPC server for text generation inference. Used in production at [Hugging Face](https://huggingface.co)
to power Hugging Chat, the Inference API and Inference Endpoint.
to power Hugging Chat, the Inference API and Inference Endpoints.
</div>
@ -84,7 +84,7 @@ model=HuggingFaceH4/zephyr-7b-beta
volume=$PWD/data
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.2.3 --model-id $model
ghcr.io/huggingface/text-generation-inference:3.3.4 --model-id $model
```
And then you can make requests like
@ -121,7 +121,7 @@ curl localhost:8080/v1/chat/completions \
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.3-rocm --model-id $model` instead of the command above.
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.3.4-rocm --model-id $model` instead of the command above.
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
```
@ -152,7 +152,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
token=<your cli READ token>
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.2.3 --model-id $model
ghcr.io/huggingface/text-generation-inference:3.3.4 --model-id $model
```
### A note on Shared Memory (shm)
@ -256,7 +256,7 @@ Another option is to install `text-generation-inference` locally using [Nix](htt
we only support Nix on x86_64 Linux with CUDA GPUs. When using Nix, all dependencies can
be pulled from a binary cache, removing the need to build them locally.
First follow the instructions to [install Cachix and enable the TGI cache](https://app.cachix.org/cache/text-generation-inference).
First follow the instructions to [install Cachix and enable the Hugging Face cache](https://app.cachix.org/cache/huggingface).
Setting up the cache is important, otherwise Nix will build many of the dependencies
locally, which can take hours.

View File

@ -2,13 +2,13 @@ mkfile_path := $(abspath $(lastword $(MAKEFILE_LIST)))
mkfile_dir := $(dir $(mkfile_path))
root_dir := ${mkfile_dir}/../..
HABANA_VERSION := 1.20.0
HABANA_VERSION := 1.21.0
PYTORCH_VERSION := 2.6.0
.PHONY: image run-local-dev-container install-dependencies install-server install-router install-launcher local-dev-install
image:
docker build -t tgi-gaudi -f ${root_dir}/Dockerfile_gaudi ${root_dir} --build-arg HABANA_VERSION=$(HABANA_VERSION) --build-arg PYTORCH_VERSION=$(PYTORCH_VERSION)
docker build --ulimit nofile=4096 -t tgi-gaudi -f ${root_dir}/Dockerfile_gaudi ${root_dir} --build-arg HABANA_VERSION=$(HABANA_VERSION) --build-arg PYTORCH_VERSION=$(PYTORCH_VERSION)
run-local-dev-container:
docker run -it \
@ -50,13 +50,18 @@ local-dev-install: install-dependencies
# In order to run the integration tests, you need to first build the image (make -C backends/gaudi image)
run-integration-tests:
uv pip install -r ${root_dir}/backends/gaudi/server/integration-tests/requirements.txt
DOCKER_VOLUME=${root_dir}/data \
HF_TOKEN=`cat ${HOME}/.cache/huggingface/token` \
uv run pytest --durations=0 -sv ${root_dir}/backends/gaudi/server/integration-tests
pytest --durations=0 -s -vv ${root_dir}/integration-tests --gaudi
run-integration-tests-with-all-models:
DOCKER_VOLUME=${root_dir}/data \
HF_TOKEN=`cat ${HOME}/.cache/huggingface/token` \
pytest --durations=0 -s -vv ${root_dir}/integration-tests --gaudi --gaudi-all-models
# This is used to capture the expected outputs for the integration tests offering an easy way to add more models to the integration tests
capture-expected-outputs-for-integration-tests:
pip install -U pip uv
DOCKER_VOLUME=${root_dir}/data \
HF_TOKEN=`cat ${HOME}/.cache/huggingface/token` \
uv run pytest --durations=0 -sv ${root_dir}/backends/gaudi/server/integration-tests/capture_expected_outputs.py

View File

@ -99,16 +99,26 @@ curl 127.0.0.1:8080/generate \
### Integration tests
Install the dependencies:
```bash
pip install -r integration-tests/requirements.txt
```
To run the integration tests, you need to first build the image:
```bash
make -C backends/gaudi image
```
Then run the following command to run the integration tests:
Then run the following command to run the integration tests (CI tests):
```bash
make -C backends/gaudi run-integration-tests
```
To run the integration tests with all models, you can run the following command:
```bash
make -C backends/gaudi run-integration-tests-with-all-models
```
To capture the expected outputs for the integration tests, you can run the following command:
```bash
make -C backends/gaudi capture-expected-outputs-for-integration-tests

View File

@ -19,11 +19,7 @@ docker run -p 8080:80 \
--ipc=host \
-v $volume:/data \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e PREFILL_BATCH_BUCKET_SIZE=2 \
-e BATCH_BUCKET_SIZE=32 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
ghcr.io/huggingface/text-generation-inference:3.3.4-gaudi \
--model-id $model \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 --max-batch-size 32 \
@ -43,60 +39,7 @@ docker run -p 8080:80 \
--ipc=host \
-v $volume:/data \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 4096 --max-batch-size 256 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512
```
### Llama2-7B on 1 Card (BF16)
```bash
model=meta-llama/Llama-2-7b-chat-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e PREFILL_BATCH_BUCKET_SIZE=2 \
-e BATCH_BUCKET_SIZE=32 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 --max-batch-size 32 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64
```
### Llama2-70B on 8 cards (BF16)
```bash
model=meta-llama/Llama-2-70b-chat-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
ghcr.io/huggingface/text-generation-inference:3.3.4-gaudi \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-tokens 1024 --max-total-tokens 2048 \
@ -115,9 +58,7 @@ docker run -p 8080:80 \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-e PREFILL_BATCH_BUCKET_SIZE=1 \
-e BATCH_BUCKET_SIZE=1 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
ghcr.io/huggingface/text-generation-inference:3.3.4-gaudi \
--model-id $model \
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
--max-total-tokens 8192 --max-batch-size 4
@ -125,12 +66,12 @@ docker run -p 8080:80 \
## FP8 Precision
Please refer to the [FP8 Precision](https://huggingface.co/docs/text-generation-inference/backends/gaudi_new#how-to-use-different-precision-formats) section for more details. You need to measure the statistics of the model first before running the model in FP8 precision.
You could also set kv cache dtype to FP8 when launching the server, fp8_e4m3fn is supported in Gaudi
## Llama3.1-8B on 1 Card (FP8)
## Llama3-8B on 1 Card (FP8)
```bash
model=meta-llama/Meta-Llama-3.1-8B-Instruct
model=RedHatAI/Meta-Llama-3-8B-Instruct-FP8-KV
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
@ -139,25 +80,19 @@ docker run -p 8080:80 \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e PREFILL_BATCH_BUCKET_SIZE=2 \
-e BATCH_BUCKET_SIZE=32 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
ghcr.io/huggingface/text-generation-inference:3.3.4-gaudi \
--model-id $model \
--kv-cache-dtype fp8_e4m3fn \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 --max-batch-size 32 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64
```
## Llama3.1-70B on 8 cards (FP8)
## Llama3-70B on 8 cards (FP8)
```bash
model=meta-llama/Meta-Llama-3.1-70B-Instruct
model=RedHatAI/Meta-Llama-3-70B-Instruct-FP8
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
@ -166,118 +101,12 @@ docker run -p 8080:80 \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
ghcr.io/huggingface/text-generation-inference:3.3.4-gaudi \
--model-id $model \
--kv-cache-dtype fp8_e4m3fn \
--sharded true --num-shard 8 \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 4096 --max-batch-size 256 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512
```
## Llama2-7B on 1 Card (FP8)
```bash
model=meta-llama/Llama-2-7b-chat-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e PREFILL_BATCH_BUCKET_SIZE=2 \
-e BATCH_BUCKET_SIZE=32 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 --max-batch-size 32 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64
```
## Llama2-70B on 8 Cards (FP8)
```bash
model=meta-llama/Llama-2-70b-chat-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 4096 --max-batch-size 256 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512
```
## Llava-v1.6-Mistral-7B on 1 Card (FP8)
```bash
model=llava-hf/llava-v1.6-mistral-7b-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e PREFILL_BATCH_BUCKET_SIZE=1 \
-e BATCH_BUCKET_SIZE=1 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
--max-total-tokens 8192 --max-batch-size 4
```
## Llava-v1.6-Mistral-7B on 8 Cards (FP8)
```bash
model=llava-hf/llava-v1.6-mistral-7b-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e PREFILL_BATCH_BUCKET_SIZE=1 \
-e BATCH_BUCKET_SIZE=1 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
--max-total-tokens 8192 --max-batch-size 4
```

View File

@ -1,2 +0,0 @@
[pytest]
asyncio_mode = auto

View File

@ -1,7 +0,0 @@
pytest >= 8.3.5
pytest-asyncio >= 0.26.0
docker >= 7.1.0
Levenshtein >= 0.27.1
loguru >= 0.7.3
aiohttp >= 3.11.14
text-generation

File diff suppressed because it is too large Load Diff

View File

@ -9,30 +9,29 @@ text-generation-server = 'text_generation_server.cli:app'
[tool.poetry.dependencies]
python = ">=3.9,<3.13"
protobuf = "^3.20.3"
grpcio = "^1.51.1"
protobuf = "^5.0"
grpcio = "^1.71.1"
grpcio-status = "*"
grpcio-reflection = "*"
grpc-interceptor = "^0.15.0"
typer = "^0.7.0"
loguru = "^0.6.0"
opentelemetry-api = "^1.15.0"
opentelemetry-exporter-otlp = "^1.15.0"
opentelemetry-instrumentation-grpc = "^0.36b0"
hf-transfer = "^0.1.2"
sentencepiece = "^0.1.97"
peft = "^0.10"
optimum-habana = "1.16.0"
transformers = "4.45.2"
numpy = "1.26.4"
accelerate = "0.33.0"
typer = "^0.15.0"
loguru = "^0.7.3"
opentelemetry-api = "^1.32.0"
opentelemetry-exporter-otlp = "^1.32.0"
opentelemetry-instrumentation-grpc = "^0.53b0"
hf-transfer = "^0.1.9"
sentencepiece = "^0.2.0"
peft = "^0.15"
transformers = "^4.52.4"
numpy = "^1.26"
accelerate = "^1.7.0"
outlines= { version = "^0.0.36", optional = true }
prometheus-client = "^0.20.0"
prometheus-client = "^0.21.1"
py-cpuinfo = "^9.0.0"
[tool.poetry.group.dev.dependencies]
grpcio-tools = "*"
pytest = "^7.3.0"
pytest = "^8.3.5"
[tool.pytest.ini_options]
markers = ["private: marks tests as requiring an admin hf token (deselect with '-m \"not private\"')"]
@ -40,3 +39,6 @@ markers = ["private: marks tests as requiring an admin hf token (deselect with '
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
[tool.poetry.requires-plugins]
poetry-plugin-export = ">=1.8"

View File

@ -1,104 +1,86 @@
accelerate==0.33.0 ; python_version >= "3.9" and python_version < "3.13"
aiohappyeyeballs==2.4.3 ; python_version >= "3.9" and python_version < "3.13"
aiohttp==3.10.10 ; python_version >= "3.9" and python_version < "3.13"
aiosignal==1.3.1 ; python_version >= "3.9" and python_version < "3.13"
async-timeout==4.0.3 ; python_version >= "3.9" and python_version < "3.11"
attrs==24.2.0 ; python_version >= "3.9" and python_version < "3.13"
backoff==2.2.1 ; python_version >= "3.9" and python_version < "3.13"
certifi==2024.8.30 ; python_version >= "3.9" and python_version < "3.13"
charset-normalizer==3.4.0 ; python_version >= "3.9" and python_version < "3.13"
click==8.1.7 ; python_version >= "3.9" and python_version < "3.13"
colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows")
coloredlogs==15.0.1 ; python_version >= "3.9" and python_version < "3.13"
datasets==3.0.1 ; python_version >= "3.9" and python_version < "3.13"
deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13"
diffusers==0.31.0 ; python_version >= "3.9" and python_version < "3.13"
dill==0.3.7 ; python_version >= "3.9" and python_version < "3.13"
filelock==3.16.1 ; python_version >= "3.9" and python_version < "3.13"
frozenlist==1.4.1 ; python_version >= "3.9" and python_version < "3.13"
fsspec==2024.6.1 ; python_version >= "3.9" and python_version < "3.13"
fsspec[http]==2024.6.1 ; python_version >= "3.9" and python_version < "3.13"
googleapis-common-protos==1.65.0 ; python_version >= "3.9" and python_version < "3.13"
grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13"
grpcio-reflection==1.48.2 ; python_version >= "3.9" and python_version < "3.13"
grpcio-status==1.48.2 ; python_version >= "3.9" and python_version < "3.13"
grpcio==1.67.0 ; python_version >= "3.9" and python_version < "3.13"
hf-transfer==0.1.8 ; python_version >= "3.9" and python_version < "3.13"
huggingface-hub==0.26.1 ; python_version >= "3.9" and python_version < "3.13"
humanfriendly==10.0 ; python_version >= "3.9" and python_version < "3.13"
idna==3.10 ; python_version >= "3.9" and python_version < "3.13"
importlib-metadata==8.5.0 ; python_version >= "3.9" and python_version < "3.13"
jinja2==3.1.4 ; python_version >= "3.9" and python_version < "3.13"
joblib==1.4.2 ; python_version >= "3.9" and python_version < "3.13"
loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13"
markupsafe==3.0.2 ; python_version >= "3.9" and python_version < "3.13"
mpmath==1.3.0 ; python_version >= "3.9" and python_version < "3.13"
multidict==6.1.0 ; python_version >= "3.9" and python_version < "3.13"
multiprocess==0.70.15 ; python_version >= "3.9" and python_version < "3.13"
networkx==3.2.1 ; python_version >= "3.9" and python_version < "3.13"
numpy==1.26.4 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-api==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-grpc==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-http==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-instrumentation-grpc==0.36b0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-instrumentation==0.36b0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-proto==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-sdk==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-semantic-conventions==0.36b0 ; python_version >= "3.9" and python_version < "3.13"
optimum-habana==1.16.0 ; python_version >= "3.9" and python_version < "3.13"
optimum==1.23.2 ; python_version >= "3.9" and python_version < "3.13"
packaging==24.1 ; python_version >= "3.9" and python_version < "3.13"
pandas==2.2.3 ; python_version >= "3.9" and python_version < "3.13"
peft==0.10.0 ; python_version >= "3.9" and python_version < "3.13"
pillow==11.0.0 ; python_version >= "3.9" and python_version < "3.13"
prometheus-client==0.20.0 ; python_version >= "3.9" and python_version < "3.13"
propcache==0.2.0 ; python_version >= "3.9" and python_version < "3.13"
protobuf==3.20.3 ; python_version >= "3.9" and python_version < "3.13"
psutil==6.1.0 ; python_version >= "3.9" and python_version < "3.13"
py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13"
pyarrow==17.0.0 ; python_version >= "3.9" and python_version < "3.13"
pyreadline3==3.5.4 ; sys_platform == "win32" and python_version >= "3.9" and python_version < "3.13"
python-dateutil==2.9.0.post0 ; python_version >= "3.9" and python_version < "3.13"
pytz==2024.2 ; python_version >= "3.9" and python_version < "3.13"
pyyaml==6.0.2 ; python_version >= "3.9" and python_version < "3.13"
regex==2024.9.11 ; python_version >= "3.9" and python_version < "3.13"
requests==2.32.3 ; python_version >= "3.9" and python_version < "3.13"
safetensors==0.4.5 ; python_version >= "3.9" and python_version < "3.13"
scikit-learn==1.5.2 ; python_version >= "3.9" and python_version < "3.13"
scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13"
sentence-transformers[train]==3.2.1 ; python_version >= "3.9" and python_version < "3.13"
sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13"
setuptools==75.2.0 ; python_version >= "3.9" and python_version < "3.13"
six==1.16.0 ; python_version >= "3.9" and python_version < "3.13"
sympy==1.12.1 ; python_version >= "3.9" and python_version < "3.13"
threadpoolctl==3.5.0 ; python_version >= "3.9" and python_version < "3.13"
tokenizers==0.20.1 ; python_version >= "3.9" and python_version < "3.13"
tqdm==4.66.5 ; python_version >= "3.9" and python_version < "3.13"
transformers==4.45.2 ; python_version >= "3.9" and python_version < "3.13"
transformers[sentencepiece]==4.45.2 ; python_version >= "3.9" and python_version < "3.13"
triton==3.0.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version < "3.13" and python_version >= "3.9"
typer==0.7.0 ; python_version >= "3.9" and python_version < "3.13"
typing-extensions==4.12.2 ; python_version >= "3.9" and python_version < "3.13"
tzdata==2024.2 ; python_version >= "3.9" and python_version < "3.13"
urllib3==2.2.3 ; python_version >= "3.9" and python_version < "3.13"
win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32"
wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13"
xxhash==3.5.0 ; python_version >= "3.9" and python_version < "3.13"
yarl==1.16.0 ; python_version >= "3.9" and python_version < "3.13"
zipp==3.20.2 ; python_version >= "3.9" and python_version < "3.13"
outlines==0.0.34 ; python_version >= "3.9" and python_version < "3.13"
interegular==0.3.3 ; python_version >= "3.9" and python_version < "3.13"
lark==1.2.2 ; python_version >= "3.9" and python_version < "3.13"
cloudpickle==3.1.0 ; python_version >= "3.9" and python_version < "3.13"
diskcache==5.6.3 ; python_version >= "3.9" and python_version < "3.13"
numba==0.60.0 ; python_version >= "3.9" and python_version < "3.13"
llvmlite==0.43.0 ; python_version >= "3.9" and python_version < "3.13"
jsonschema==4.23.0 ; python_version >= "3.9" and python_version < "3.13"
accelerate==1.7.0 ; python_version >= "3.9" and python_version < "3.13"
annotated-types==0.7.0 ; python_version >= "3.9" and python_version < "3.13"
attrs==25.3.0 ; python_version >= "3.9" and python_version < "3.13"
certifi==2025.1.31 ; python_version >= "3.9" and python_version < "3.13"
charset-normalizer==3.4.1 ; python_version >= "3.9" and python_version < "3.13"
click==8.1.8 ; python_version >= "3.9" and python_version < "3.13"
cloudpickle==3.1.1 ; python_version >= "3.9" and python_version < "3.13"
colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Windows" or python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32"
deprecated==1.2.18 ; python_version >= "3.9" and python_version < "3.13"
diffusers==0.31.0 ; python_version >= "3.9" and python_version < "3.13"
diskcache==5.6.3 ; python_version >= "3.9" and python_version < "3.13"
filelock==3.18.0 ; python_version >= "3.9" and python_version < "3.13"
fsspec==2025.3.2 ; python_version >= "3.9" and python_version < "3.13"
googleapis-common-protos==1.70.0 ; python_version >= "3.9" and python_version < "3.13"
grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13"
grpcio-reflection==1.71.0 ; python_version >= "3.9" and python_version < "3.13"
grpcio-status==1.71.0 ; python_version >= "3.9" and python_version < "3.13"
grpcio==1.72.0rc1 ; python_version >= "3.9" and python_version < "3.13"
hf-transfer==0.1.9 ; python_version >= "3.9" and python_version < "3.13"
huggingface-hub==0.30.2 ; python_version >= "3.9" and python_version < "3.13"
idna==3.10 ; python_version >= "3.9" and python_version < "3.13"
importlib-metadata==8.6.1 ; python_version >= "3.9" and python_version < "3.13"
interegular==0.3.3 ; python_version >= "3.9" and python_version < "3.13"
jinja2==3.1.6 ; python_version >= "3.9" and python_version < "3.13"
joblib==1.4.2 ; python_version >= "3.9" and python_version < "3.13"
jsonschema-specifications==2024.10.1 ; python_version >= "3.9" and python_version < "3.13"
nest-asyncio==1.6.0; python_version >= "3.9" and python_version < "3.13"
pydantic==2.10.6; python_version >= "3.9" and python_version < "3.13"
pydantic-core==2.27.2 ; python_version >= "3.9" and python_version < "3.13"
jsonschema==4.23.0 ; python_version >= "3.9" and python_version < "3.13"
lark==1.2.2 ; python_version >= "3.9" and python_version < "3.13"
llvmlite==0.43.0 ; python_version >= "3.9" and python_version < "3.13"
loguru==0.7.3 ; python_version >= "3.9" and python_version < "3.13"
markdown-it-py==3.0.0 ; python_version >= "3.9" and python_version < "3.13"
markupsafe==3.0.2 ; python_version >= "3.9" and python_version < "3.13"
mdurl==0.1.2 ; python_version >= "3.9" and python_version < "3.13"
mpmath==1.3.0 ; python_version >= "3.9" and python_version < "3.13"
nest-asyncio==1.6.0 ; python_version >= "3.9" and python_version < "3.13"
networkx==3.2.1 ; python_version >= "3.9" and python_version < "3.13"
numba==0.60.0 ; python_version >= "3.9" and python_version < "3.13"
numpy==1.26.4 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-api==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-common==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-grpc==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-http==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-instrumentation-grpc==0.53b0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-instrumentation==0.53b0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-proto==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-sdk==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-semantic-conventions==0.53b0 ; python_version >= "3.9" and python_version < "3.13"
optimum==1.24.0 ; python_version >= "3.9" and python_version < "3.13"
outlines==0.0.36 ; python_version >= "3.9" and python_version < "3.13"
packaging==24.2 ; python_version >= "3.9" and python_version < "3.13"
peft==0.15.1 ; python_version >= "3.9" and python_version < "3.13"
pillow==11.2.1 ; python_version >= "3.9" and python_version < "3.13"
prometheus-client==0.21.1 ; python_version >= "3.9" and python_version < "3.13"
protobuf==5.29.4 ; python_version >= "3.9" and python_version < "3.13"
psutil==7.0.0 ; python_version >= "3.9" and python_version < "3.13"
py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13"
pydantic-core==2.33.1 ; python_version >= "3.9" and python_version < "3.13"
pydantic==2.11.3 ; python_version >= "3.9" and python_version < "3.13"
pygments==2.19.1 ; python_version >= "3.9" and python_version < "3.13"
pyyaml==6.0.2 ; python_version >= "3.9" and python_version < "3.13"
referencing==0.36.2 ; python_version >= "3.9" and python_version < "3.13"
rpds-py==0.22.3 ; python_version >= "3.9" and python_version < "3.13"
regex==2024.11.6 ; python_version >= "3.9" and python_version < "3.13"
requests==2.32.3 ; python_version >= "3.9" and python_version < "3.13"
rich==14.0.0 ; python_version >= "3.9" and python_version < "3.13"
rpds-py==0.24.0 ; python_version >= "3.9" and python_version < "3.13"
safetensors==0.5.3 ; python_version >= "3.9" and python_version < "3.13"
scikit-learn==1.6.1 ; python_version >= "3.9" and python_version < "3.13"
scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13"
sentence-transformers==3.3.1 ; python_version >= "3.9" and python_version < "3.13"
sentencepiece==0.2.0 ; python_version >= "3.9" and python_version < "3.13"
setuptools==78.1.0 ; python_version >= "3.12" and python_version < "3.13"
shellingham==1.5.4 ; python_version >= "3.9" and python_version < "3.13"
sympy==1.13.1 ; python_version >= "3.9" and python_version < "3.13"
threadpoolctl==3.6.0 ; python_version >= "3.9" and python_version < "3.13"
tokenizers==0.21.1 ; python_version >= "3.9" and python_version < "3.13"
tqdm==4.67.1 ; python_version >= "3.9" and python_version < "3.13"
transformers==4.52.4 ; python_version >= "3.9" and python_version < "3.13"
triton==3.2.0 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
typer==0.15.2 ; python_version >= "3.9" and python_version < "3.13"
typing-extensions==4.13.2 ; python_version >= "3.9" and python_version < "3.13"
typing-inspection==0.4.0 ; python_version >= "3.9" and python_version < "3.13"
urllib3==2.4.0 ; python_version >= "3.9" and python_version < "3.13"
win32-setctime==1.2.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32"
wrapt==1.17.2 ; python_version >= "3.9" and python_version < "3.13"
zipp==3.21.0 ; python_version >= "3.9" and python_version < "3.13"

View File

@ -1,6 +1,4 @@
import os
import psutil
import signal
import sys
import typer
@ -16,15 +14,10 @@ app = typer.Typer()
class Quantization(str, Enum):
bitsandbytes = "bitsandbytes"
bitsandbytes_nf4 = "bitsandbytes-nf4"
bitsandbytes_fp4 = "bitsandbytes-fp4"
gptq = "gptq"
awq = "awq"
eetq = "eetq"
exl2 = "exl2"
fp8 = "fp8"
marlin = "marlin"
compressed_tensors = "compressed-tensors"
class Dtype(str, Enum):
@ -32,6 +25,11 @@ class Dtype(str, Enum):
bloat16 = "bfloat16"
class KVCacheDtype(str, Enum):
fp8_e4m3fn = "fp8_e4m3fn"
fp8_e5m2 = "fp8_e5m2"
@app.command()
def serve(
model_id: str,
@ -40,6 +38,7 @@ def serve(
quantize: Optional[Quantization] = None,
speculate: Optional[int] = None,
dtype: Optional[Dtype] = None,
kv_cache_dtype: Optional[KVCacheDtype] = None,
trust_remote_code: bool = False,
uds_path: Path = "/tmp/text-generation-server",
logger_level: str = "INFO",
@ -99,77 +98,21 @@ def serve(
# Downgrade enum into str for easier management later on
quantize = None if quantize is None else quantize.value
dtype = "bfloat16" if dtype is None else dtype.value
logger.info(f"quantize={quantize}")
kv_cache_dtype = None if kv_cache_dtype is None else kv_cache_dtype.value
logger.info(f"quantize={quantize} kv_cache_dtype={kv_cache_dtype}")
if dtype is not None and quantize not in {
None,
"bitsandbytes",
"bitsandbytes-nf4",
"bitsandbytes-fp4",
"gptq",
"awq",
"fp8",
"compressed-tensors",
}:
raise RuntimeError(
"Only 1 can be set between `dtype` and `quantize`, as they both decide how goes the final model."
)
logger.info("CLI SHARDED = {} DTYPE = {}".format(sharded, dtype))
if sharded:
tgi_file = Path(__file__).resolve().parent / "tgi_service.py"
num_shard = int(os.getenv("WORLD_SIZE", "1"))
logger.info("CLI SHARDED = {}".format(num_shard))
import subprocess
cmd = (
f"deepspeed --num_nodes 1 --num_gpus {num_shard} --no_local_rank {tgi_file}"
)
cmd += f" --model_id {model_id} --revision {revision} --sharded {sharded}"
cmd += f" --dtype {dtype} --trust_remote_code {trust_remote_code} --uds_path {uds_path}"
cmd += f" --quantize {quantize} --max_input_tokens {max_input_tokens}"
if speculate is not None:
cmd += f"--speculate {speculate}"
logger.info("CLI server start deepspeed ={} ".format(cmd))
sys.stdout.flush()
sys.stderr.flush()
with subprocess.Popen(cmd, shell=True, executable="/bin/bash") as proc:
do_terminate = False
current_handler = signal.getsignal(signal.SIGTERM)
def terminate_handler(sig, frame):
nonlocal do_terminate
do_terminate = True
if callable(current_handler):
current_handler(sig, frame)
signal.signal(signal.SIGTERM, terminate_handler)
finished = False
while not finished:
try:
if do_terminate:
parent = psutil.Process(proc.pid)
all_procs = parent.children(recursive=True) + [parent]
for p in all_procs:
try:
p.terminate()
except psutil.NoSuchProcess:
pass
_, alive = psutil.wait_procs(all_procs, timeout=30)
for p in alive:
p.kill()
do_terminate = False
proc.wait(timeout=3)
except subprocess.TimeoutExpired:
pass
else:
finished = True
sys.stdout.flush()
sys.stderr.flush()
if proc.returncode != 0:
logger.error(f"{cmd} exited with status = {proc.returncode}")
return proc.returncode
else:
server.serve(
model_id,
lora_adapters,
@ -178,6 +121,7 @@ def serve(
quantize,
speculate,
dtype,
kv_cache_dtype,
trust_remote_code,
uds_path,
max_input_tokens,

View File

@ -1,53 +0,0 @@
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
import os
import habana_frameworks.torch as htorch
quant_config = os.getenv("QUANT_CONFIG", "")
is_quantization_enabled = quant_config != ""
if is_quantization_enabled:
os.environ.setdefault("ENABLE_EXPERIMENTAL_FLAGS", "true")
os.environ.setdefault("USE_DEFAULT_QUANT_PARAM", "true")
os.environ.setdefault("UPDATE_GRAPH_OUTPUT_MME", "false")
os.environ.setdefault("ENABLE_CALC_DYNAMIC_RANGE", "false")
os.environ.setdefault("UPDATE_MME_OUTPUT_PRECISION_FILTER", "v_proj,matmul_av")
os.environ.setdefault("EXPERIMENTAL_WEIGHT_SHARING", "FALSE")
def patch_scoped_linear_all_reduce(model):
from deepspeed.module_inject.layers import LinearAllreduce
from optimum.habana.transformers.models.modeling_all_models import (
ScopedLinearAllReduce,
)
for name, module in model.named_children():
if type(module) is LinearAllreduce:
SL = ScopedLinearAllReduce(mod=module)
setattr(model, name, SL)
patch_scoped_linear_all_reduce(module)
def setup_quantization(model):
if is_quantization_enabled:
htorch.core.quantization._mark_params_as_const(model)
htorch.core.quantization._check_params_as_const(model)
htorch.core.hpu_initialize(model)
return model
def prepare_model_for_quantization(model):
if is_quantization_enabled:
if model.config.model_type in [
"llama",
"falcon",
"qwen2",
"starcoder2",
"gemma",
]:
patch_scoped_linear_all_reduce(model)
from neural_compressor.torch.quantization import FP8Config, convert
config = FP8Config.from_json_file(quant_config)
model = convert(model, config)
return model

View File

@ -12,6 +12,7 @@ from text_generation_server.layers.speculative import SpeculativeHead
# Just to add the `load` methods.
from text_generation_server.layers.layernorm import load_layer_norm
from text_generation_server.layers.conv import load_conv2d
from text_generation_server.layers.fp8 import Fp8Linear
from text_generation_server.layers.lora import (
LoraLinear,
@ -27,6 +28,7 @@ __all__ = [
"TensorParallelEmbedding",
"SpeculativeHead",
"LoraLinear",
"Fp8Linear",
"TensorParallelMultiAdapterLinear",
"TensorParallelAdapterRowLinear",
"load_layer_norm",

View File

@ -1,43 +1,35 @@
from text_generation_server.utils.import_utils import SYSTEM
import os
from .common import (
Seqlen,
HPUPagedAttentionMetadata,
trim_attn_metadata,
trim_seqlen_metadata,
_async_h2d_tensor_copy,
)
from .common import Seqlen
if os.getenv("USE_FLASH_ATTENTION", "true").lower() == "false":
raise ImportError("`USE_FLASH_ATTENTION` is false.")
if SYSTEM == "cuda":
from .cuda import (
from .hpu import (
SUPPORTS_WINDOWING,
attention,
paged_attention,
reshape_and_cache,
SUPPORTS_WINDOWING,
PREFILL_IN_KV_CACHE,
)
elif SYSTEM == "rocm":
from .rocm import (
attention,
paged_attention,
reshape_and_cache,
PREFILL_IN_KV_CACHE,
SUPPORTS_WINDOWING,
)
elif SYSTEM == "ipex":
from .ipex import (
attention,
paged_attention,
reshape_and_cache,
PREFILL_IN_KV_CACHE,
SUPPORTS_WINDOWING,
)
else:
raise ImportError(f"System {SYSTEM} doesn't support flash/paged attention")
paged_attention_mla,
set_block_mapping,
)
# KVCache needs `reshape_and_cache`, so ensure that it is defined already.
from .kv_cache import KVCache, get_kv_scales, KVCompressCache
__all__ = [
"attention",
"get_kv_scales",
"paged_attention",
"reshape_and_cache",
"PREFILL_IN_KV_CACHE",
"paged_attention_mla",
"set_block_mapping",
"SUPPORTS_WINDOWING",
"KVCache",
"KVCompressCache",
"Seqlen",
"HPUPagedAttentionMetadata",
"trim_seqlen_metadata",
"trim_attn_metadata",
"_async_h2d_tensor_copy",
]

View File

@ -1,72 +1,186 @@
from dataclasses import dataclass
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.models.globals import ATTENTION
import torch
from typing import Optional
from typing import Optional, List, Dict
import collections
import torch.nn.functional as F
_TYPE_CACHE = {}
if ATTENTION in {"flashinfer", "flashdecoding"}:
@dataclass
class HPUPagedAttentionMetadata:
"""Metadata for PagedAttention."""
@dataclass
class Seqlen:
block_list: Optional[torch.Tensor]
block_mapping: Optional[torch.Tensor]
block_usage: Optional[torch.Tensor]
block_groups: Optional[torch.Tensor]
attn_bias: Optional[torch.Tensor]
slots_in_window_mask: Optional[torch.Tensor] = None
block_list_in_window: Optional[torch.Tensor] = None
block_mapping_in_window: Optional[torch.Tensor] = None
block_usage_in_window: Optional[torch.Tensor] = None
block_groups_in_window: Optional[torch.Tensor] = None
attn_bias_in_window: Optional[torch.Tensor] = None
def subtuple(
obj: object,
typename: str,
to_copy: List[str],
to_override: Optional[Dict[str, object]] = None,
):
if obj is None:
return None
if to_override is None:
to_override = {}
fields = set(to_copy) | set(to_override.keys())
if isinstance(obj, dict):
values = {key: obj[key] for key in fields if key in obj}
else:
values = {f: to_override.get(f, getattr(obj, f)) for f in fields}
if typename not in _TYPE_CACHE:
_TYPE_CACHE[typename] = collections.namedtuple(typename, " ".join(fields))
return _TYPE_CACHE[typename](**values)
def trim_attn_metadata(metadata: HPUPagedAttentionMetadata) -> object:
# NOTE(kzawora): To anyone working on this in the future:
# Trimming metadata is required when using HPUGraphs.
# Attention metadata is going to be hashed by PT bridge, and
# appropriate HPUGraphs will be matched based on all inputs' hash.
# Before you put more keys in here, make sure you know their
# value type and make sure you know how it's going to be hashed.
# You can find that information in input_hash function
# in habana_frameworks/torch/hpu/graphs.py. You can also hash
# it manually with torch.hpu.graphs.input_hash(attention_metadata)
# If you use primitive types here - they will get hashed based
# on their value. You *will* get lots of excessive graph captures
# (and an OOM eventually) if you decide to put something like
# seq_len int here.
# If you absolutely need a scalar, put it in a tensor. Tensors
# get hashed using their metadata, not their values:
# input_hash(torch.tensor(123)) == input_hash(torch.tensor(321))
# input_hash(123) != input_hash(321)
# input_hash("abc") != input_hash("cba")
attention_metadata = subtuple(
metadata,
"TrimmedAttentionMetadata",
[
"block_list",
"block_mapping",
"block_usage",
"block_groups",
"attn_bias",
"slots_in_window_mask",
"block_list_in_window",
"block_mapping_in_window",
"block_usage_in_window",
"block_groups_in_window",
"attn_bias_in_window",
],
)
return attention_metadata
@dataclass
class Seqlen:
input_lengths: torch.Tensor
prefix_lengths: torch.Tensor
cu_seqlen_q: Optional[torch.Tensor]
cu_seqlen_k: Optional[torch.Tensor]
max_q: int
max_k: int
attn_mask: Optional[torch.Tensor] = None
def __init__(
self,
input_lengths,
prefix_lengths,
cu_seqlen_q=None,
max_q=None,
max_k=None,
):
self.input_lengths = input_lengths
self.prefix_lengths = prefix_lengths
device = self.input_lengths.device
shape = self.input_lengths.shape
if cu_seqlen_q is None:
cu_seqlen_q = torch.arange(
shape[0] + 1,
device=device,
dtype=torch.int32,
)
max_q = 1
else:
assert max_q is not None
assert max_k is not None
cu_seqlen_k = torch.zeros(shape[-1] + 1, device=device, dtype=torch.int32)
# cuda graphs don't like this and this is necessary to clamp within mistral
# Although FA2 might not want the clamping
# cu_seqlen_k[0] = 0
total = self.input_lengths + self.prefix_lengths
torch.cumsum(total, -1, out=cu_seqlen_k[1:])
self.cu_seqlen_q = cu_seqlen_q
self.cu_seqlen_k = cu_seqlen_k
self.max_q = max_q
self.max_k = max_k
def clamp(self, max):
# Flash decoding doesn't need to clamp
return self
else:
def make_sliding_window_bias(
self,
seq_lens: List[int],
window_size: Optional[int],
dtype: torch.dtype,
padded_input_len: Optional[int],
padded_bs: Optional[int],
) -> List[torch.Tensor]:
attn_biases = []
for seq_len in seq_lens:
if seq_len != 0:
tensor = torch.full(
(1, seq_len, seq_len),
dtype=dtype,
fill_value=1,
)
shift = 0
mask = torch.tril(tensor, diagonal=shift).to(dtype) # type: ignore
if window_size is not None:
mask = torch.triu(mask, diagonal=shift - window_size + 1)
mask = F.pad(
mask,
(
padded_input_len - seq_len,
0,
padded_input_len - seq_len,
0,
0,
0,
),
value=0,
)
else:
mask = torch.full(
(1, padded_input_len, padded_input_len),
dtype=dtype,
fill_value=0,
)
attn_biases.append(mask)
attn_biases = torch.stack(attn_biases, dim=0)
return attn_biases.to(torch.bool)
@dataclass
class Seqlen:
input_lengths: torch.Tensor
prefix_lengths: torch.Tensor
cu_seqlen_q: torch.Tensor
max_q: int
max_k: int
def clamp(self, max):
if SYSTEM == "rocm":
return self
raise NotImplementedError("Not implemented seqlen for paged")
return Seqlen(torch.clamp(self.input_lengths, max=max))
def _async_h2d_tensor_copy(source, device="hpu"):
if source is None:
return None
if source.device.type == "hpu":
return source
assert source.device.type == "cpu", "Source tensor is not present in host memory!"
target = torch.empty(source.shape, dtype=source.dtype, device=device)
target.copy_(source, non_blocking=True)
return target
def trim_seqlen_metadata(metadata: Seqlen) -> object:
# NOTE(kzawora): To anyone working on this in the future:
# Trimming metadata is required when using HPUGraphs.
# Attention metadata is going to be hashed by PT bridge, and
# appropriate HPUGraphs will be matched based on all inputs' hash.
# Before you put more keys in here, make sure you know their
# value type and make sure you know how it's going to be hashed.
# You can find that information in input_hash function
# in habana_frameworks/torch/hpu/graphs.py. You can also hash
# it manually with torch.hpu.graphs.input_hash(attention_metadata)
# If you use primitive types here - they will get hashed based
# on their value. You *will* get lots of excessive graph captures
# (and an OOM eventually) if you decide to put something like
# seq_len int here.
# If you absolutely need a scalar, put it in a tensor. Tensors
# get hashed using their metadata, not their values:
# input_hash(torch.tensor(123)) == input_hash(torch.tensor(321))
# input_hash(123) != input_hash(321)
# input_hash("abc") != input_hash("cba")
attention_metadata = subtuple(
metadata,
"TrimmedSeqlen",
[
"input_lengths",
"attn_mask",
],
)
return attention_metadata

View File

@ -1,357 +0,0 @@
import torch
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.models.globals import (
ATTENTION,
BLOCK_SIZE,
)
from text_generation_server.layers.attention import Seqlen
from typing import Optional
major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
_PARTITION_SIZE = 512
try:
from vllm._C import cache_ops
except Exception as e:
raise ImportError(
f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}"
)
def reshape_and_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slots: torch.Tensor,
):
if ATTENTION in {"flashdecoding", "flashinfer"}:
shape = key_cache.shape
key_cache.view(-1, shape[-2], shape[-1])[slots] = key
value_cache.view(-1, shape[-2], shape[-1])[slots] = value
else:
cache_ops.reshape_and_cache(
key, value, key_cache, value_cache, slots, "auto", 1.0
)
def paged_attention(
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
kv_head_mapping: torch.Tensor,
softmax_scale: float,
block_tables: torch.Tensor,
seqlen: Seqlen,
max_s: int,
softcap: Optional[float] = None,
):
# Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
# Copyright 2023 The vLLM team. All rights
# reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# value_cache => [num_blocks, num_heads, head_size, block_size]
# block_size = value_cache.shape[3]
block_size = BLOCK_SIZE
num_seqs, num_heads, head_size = query.shape
max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
# NOTE(woosuk): We use a simple heuristic to decide whether to use
# PagedAttention V1 or V2. If the number of partitions is 1, we use
# V1 to avoid the overhead of reduction. Also, if the number of
# sequences or heads is large, we use V1 since there is enough work
# to parallelize.
if ATTENTION == "flashinfer":
from text_generation_server.layers.attention.flashinfer import decode_state
return decode_state.get().forward(
query.contiguous(),
paged_kv_cache=(key_cache, value_cache),
logits_soft_cap=softcap,
sm_scale=softmax_scale,
)
elif ATTENTION == "flashdecoding":
max_q = 1
max_k = max_s
import flash_attn_2_cuda
# TODO fixme when flash contains the fix.
# Number of splits is not correctly handled
# by the current path
# https://github.com/Dao-AILab/flash-attention/blob/320fb59487658f033f56711efd3d61b7c7a6f8f3/csrc/flash_attn/flash_api.cpp#L577
# This fails becuase we're using causal, therefore window_right is set to 0 and the split logic is never applied.
if softcap is None:
softcap = 0.0
out = flash_attn_2_cuda.varlen_fwd(
query,
key_cache,
value_cache,
None,
seqlen.cu_seqlen_q,
seqlen.cu_seqlen_k,
None, # pad_k
None,
block_tables,
None,
max_q,
max_k,
0.0, # dropout
softmax_scale,
False, # zero_tensors
True, # causal
-1, # Window_left
-1, # Window right
softcap,
False, # return softmax
None, # generator
)
return out[0]
else:
if softcap is not None:
raise RuntimeError("Paged attention doesn't support softcapping")
input_lengths = seqlen.input_lengths
from vllm._C import ops
out = torch.empty_like(query)
use_v1 = max_s <= 8192 and (
max_num_partitions == 1 or num_seqs * num_heads > 512
)
if use_v1:
ops.paged_attention_v1(
out,
query,
key_cache,
value_cache,
kv_head_mapping,
softmax_scale,
block_tables,
input_lengths,
block_size,
max_s,
None,
"auto",
1.0,
)
else:
# Run PagedAttention V2.
assert _PARTITION_SIZE % block_size == 0
tmp_output = torch.empty(
size=(num_seqs, num_heads, max_num_partitions, head_size),
dtype=out.dtype,
device=out.device,
)
exp_sums = torch.empty(
size=(num_seqs, num_heads, max_num_partitions),
dtype=torch.float32,
device=out.device,
)
max_logits = torch.empty_like(exp_sums)
ops.paged_attention_v2(
out,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
kv_head_mapping,
softmax_scale,
block_tables,
input_lengths,
block_size,
max_s,
None,
"auto",
1.0,
)
return out
try:
is_ampere_or_newer = major >= 8 and minor >= 0
if not is_ampere_or_newer:
raise ImportError("FlashAttention only supports Ampere GPUs or newer.")
import flash_attn_2_cuda
V2 = True
except ImportError:
try:
import flash_attn_cuda
V2 = False
except ImportError as e:
if major >= 8:
architecture_suffix = f"-{SYSTEM}"
raise ImportError(
"Flash Attention V2 is not installed.\n"
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
)
elif is_sm75:
raise ImportError(
"Flash Attention is not installed.\n"
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
"or install flash attention with `cd server && make install install-flash-attention`"
) from e
else:
raise ImportError(
f"GPU with CUDA capability {major} {minor} is not supported"
) from e
SUPPORTS_WINDOWING = V2
if ATTENTION == "flashinfer":
def attention(
q: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
seqlen: Seqlen,
block_tables: torch.Tensor,
softmax_scale,
window_size_left=-1,
causal=True,
softcap=0.0,
):
from text_generation_server.layers.attention.flashinfer import (
prefill_with_paged_kv_state,
)
return prefill_with_paged_kv_state.get().forward(
q.contiguous(),
causal=causal,
paged_kv_cache=(key_cache, value_cache),
logits_soft_cap=softcap,
sm_scale=softmax_scale,
window_left=window_size_left,
)
elif V2:
def attention(
q,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
seqlen: Seqlen,
block_tables: torch.Tensor,
softmax_scale,
window_size_left=-1,
causal=True,
softcap=0.0,
):
out = torch.empty_like(q)
if window_size_left <= 0 and window_size_left != -1:
raise ValueError("`window_size_left` must be > 0 or -1")
return flash_attn_2_cuda.varlen_fwd(
q,
key_cache,
value_cache,
out,
seqlen.cu_seqlen_q,
seqlen.cu_seqlen_k,
None,
None,
block_tables,
None,
seqlen.max_q,
seqlen.max_k,
0.0,
softmax_scale,
False,
causal,
window_size_left,
0,
softcap,
False,
None,
)[0]
else:
def attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
seqlen: Seqlen,
block_tables: torch.Tensor,
softmax_scale: float,
window_size_left: int = -1,
causal: bool = True,
softcap=None,
):
if window_size_left != -1:
raise NotImplementedError(
"window_size_left is only available with flash attn v2"
)
if softcap is not None:
raise NotImplementedError("softcap is only available with flash attn v2")
# Flash attention v1 requires q, k and v to have the same number of heads
if k.shape[1] != q.shape[1]:
# MQA expand
if k.shape[1] == 1:
k = k.expand(-1, q.shape[1], -1)
# Grouped attention reshape
else:
original_shape = k.shape
k = (
k.unsqueeze(2)
.expand(-1, -1, q.shape[1] // k.shape[1], -1)
.reshape(original_shape[0], -1, original_shape[2])
)
if v.shape[1] != q.shape[1]:
# MQA expand
if v.shape[1] == 1:
v = v.expand(-1, q.shape[1], -1)
# Grouped attention reshape
else:
original_shape = v.shape
v = (
v.unsqueeze(2)
.expand(-1, -1, q.shape[1] // v.shape[1], -1)
.reshape(original_shape[0], -1, original_shape[2])
)
out = torch.empty_like(q)
flash_attn_cuda.fwd(
q,
k,
v,
out,
seqlen.cu_seqlen_q,
seqlen.cu_seqlen_q,
seqlen.max_q,
seqlen.max_k,
0.0,
softmax_scale,
False,
causal,
False,
0,
None,
)
return out
# Prefill in the cache with every kind of attention, unless we
# have a configuration that requires flash-attention v1, which
# does not support block tables.
PREFILL_IN_KV_CACHE = ATTENTION != "paged" or V2

View File

@ -1,813 +0,0 @@
#!/usr/bin/env python
"""
Fused Attention
===============
This is a Triton implementation of the Flash Attention v2 algorithm from Tri Dao
(https://tridao.me/publications/flash2/flash2.pdf)
Credits: OpenAI kernel team, AMD ML Frameworks Triton team
Features supported:
1) Fwd with causal masking
2) Any sequence lengths without padding (currently fwd kernel only)
3) Support for different sequence lengths for q and k
4) Nested tensor API currently does not support dropout or bias.
Not currently supported:
1) Non power of two head dims
"""
import torch
import triton
import triton.language as tl
torch_dtype: tl.constexpr = torch.float16
@triton.jit
def cdiv_fn(x, y):
return (x + y - 1) // y
@triton.jit
def max_fn(x, y):
return tl.math.max(x, y)
@triton.jit
def dropout_offsets(philox_seed, philox_offset, dropout_p, m, n, stride):
ms = tl.arange(0, m)
ns = tl.arange(0, n)
return philox_offset + ms[:, None] * stride + ns[None, :]
@triton.jit
def dropout_rng(philox_seed, philox_offset, dropout_p, m, n, stride):
rng_offsets = dropout_offsets(
philox_seed, philox_offset, dropout_p, m, n, stride
).to(tl.uint32)
# TODO: use tl.randint for better performance
return tl.rand(philox_seed, rng_offsets)
@triton.jit
def dropout_mask(philox_seed, philox_offset, dropout_p, m, n, stride):
rng_output = dropout_rng(philox_seed, philox_offset, dropout_p, m, n, stride)
rng_keep = rng_output > dropout_p
return rng_keep
@triton.jit
def load_fn(block_ptr, first, second, pad):
if first and second:
tensor = tl.load(block_ptr, boundary_check=(0, 1), padding_option=pad)
elif first:
tensor = tl.load(block_ptr, boundary_check=(0,), padding_option=pad)
elif second:
tensor = tl.load(block_ptr, boundary_check=(1,), padding_option=pad)
else:
tensor = tl.load(block_ptr)
return tensor
@triton.jit
def _attn_fwd_inner(
acc,
l_i,
m_i,
q,
K_block_ptr,
V_block_ptr,
start_m,
actual_seqlen_k,
dropout_p,
philox_seed,
batch_philox_offset,
encoded_softmax_block_ptr,
block_min,
block_max,
offs_n_causal,
masked_blocks,
n_extra_tokens,
bias_ptr,
IS_CAUSAL: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
OFFS_M: tl.constexpr,
OFFS_N: tl.constexpr,
PRE_LOAD_V: tl.constexpr,
MASK_STEPS: tl.constexpr,
ENABLE_DROPOUT: tl.constexpr,
RETURN_ENCODED_SOFTMAX: tl.constexpr,
PADDED_HEAD: tl.constexpr,
):
# loop over k, v, and update accumulator
for start_n in range(block_min, block_max, BLOCK_N):
# For padded blocks, we will overrun the tensor size if
# we load all BLOCK_N. For others, the blocks are all within range.
k = load_fn(
K_block_ptr,
PADDED_HEAD,
MASK_STEPS and (n_extra_tokens != 0),
"zero",
)
if PRE_LOAD_V:
v = load_fn(
V_block_ptr,
MASK_STEPS and (n_extra_tokens != 0),
PADDED_HEAD,
"zero",
)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
# We start from end of seqlen_k so only the first iteration would need
# to be checked for padding if it is not a multiple of block_n
# TODO: This can be optimized to only be true for the padded block.
if MASK_STEPS: # noqa: SIM102
# If this is the last block / iteration, we want to
# mask if the sequence length is not a multiple of block size
# a solution is to always do BLOCK_M // BLOCK_N + 1 steps
# if not is_modulo_mn. last step might get wasted but that is okay.
# check if this masking works for that case.
if (start_n + BLOCK_N == block_max) and (n_extra_tokens != 0):
boundary_m = tl.full([BLOCK_M], actual_seqlen_k, dtype=tl.int32)
size_n = start_n + OFFS_N[None, :]
mask = size_n < boundary_m[:, None]
qk = tl.where(mask, qk, float("-inf"))
if IS_CAUSAL:
causal_boundary = start_n + offs_n_causal
causal_mask = OFFS_M[:, None] >= causal_boundary[None, :]
qk = tl.where(causal_mask, qk, float("-inf"))
# -- compute qk ----
qk += tl.dot(q, k)
if bias_ptr is not None:
bias = load_fn(
bias_ptr, False, MASK_STEPS and (n_extra_tokens != 0), "zero"
)
# While bias is added after multiplying qk with sm_scale, our
# optimization to use 2^x instead of e^x results in an additional
# scale factor of log2(e) which we must also multiply the bias with.
qk += bias * 1.44269504089
m_ij = tl.maximum(m_i, tl.max(qk, 1))
qk = qk - m_ij[:, None]
p = tl.math.exp2(qk)
# CAVEAT: Must update l_ij before applying dropout
l_ij = tl.sum(p, 1)
if ENABLE_DROPOUT:
philox_offset = (
batch_philox_offset
+ start_m * BLOCK_M * actual_seqlen_k
+ start_n
- BLOCK_N
)
keep = dropout_mask(
philox_seed,
philox_offset,
dropout_p,
BLOCK_M,
BLOCK_N,
actual_seqlen_k,
)
if RETURN_ENCODED_SOFTMAX:
tl.store(
encoded_softmax_block_ptr,
tl.where(keep, p, -p).to(encoded_softmax_block_ptr.type.element_ty),
)
p = tl.where(keep, p, 0.0)
elif RETURN_ENCODED_SOFTMAX:
tl.store(
encoded_softmax_block_ptr,
p.to(encoded_softmax_block_ptr.type.element_ty),
)
# -- update output accumulator --
alpha = tl.math.exp2(m_i - m_ij)
acc = acc * alpha[:, None]
if not PRE_LOAD_V:
v = load_fn(
V_block_ptr,
MASK_STEPS and (n_extra_tokens != 0),
PADDED_HEAD,
"zero",
)
# -- update m_i and l_i
l_i = l_i * alpha + l_ij
# update m_i and l_i
m_i = m_ij
acc += tl.dot(p.to(V_block_ptr.type.element_ty), v)
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
if bias_ptr is not None:
bias_ptr = tl.advance(bias_ptr, (0, BLOCK_N))
if RETURN_ENCODED_SOFTMAX:
encoded_softmax_block_ptr = tl.advance(
encoded_softmax_block_ptr, (0, BLOCK_N)
)
return acc, l_i, m_i
@triton.autotune(
configs=[
triton.Config(
{
"BLOCK_M": 256,
"BLOCK_N": 64,
"waves_per_eu": 2,
"PRE_LOAD_V": False,
},
num_stages=1,
num_warps=8,
),
triton.Config(
{
"BLOCK_M": 128,
"BLOCK_N": 128,
"waves_per_eu": 2,
"PRE_LOAD_V": False,
},
num_stages=1,
num_warps=4,
),
triton.Config(
{
"BLOCK_M": 256,
"BLOCK_N": 128,
"waves_per_eu": 2,
"PRE_LOAD_V": False,
},
num_stages=1,
num_warps=8,
),
triton.Config(
{
"BLOCK_M": 128,
"BLOCK_N": 64,
"waves_per_eu": 3,
"PRE_LOAD_V": True,
},
num_stages=1,
num_warps=4,
),
triton.Config(
{
"BLOCK_M": 128,
"BLOCK_N": 64,
"waves_per_eu": 3,
"PRE_LOAD_V": False,
},
num_stages=1,
num_warps=4,
),
triton.Config(
{
"BLOCK_M": 64,
"BLOCK_N": 64,
"waves_per_eu": 4,
"PRE_LOAD_V": False,
},
num_stages=1,
num_warps=8,
),
triton.Config(
{
"BLOCK_M": 32,
"BLOCK_N": 32,
"waves_per_eu": 4,
"PRE_LOAD_V": False,
},
num_stages=1,
num_warps=8,
),
# TODO: This config fails with head_size not pow2 with data mismatches.
# triton.Config({'BLOCK_M': 32, 'BLOCK_N': 16, 'waves_per_eu': 1,
# 'PRE_LOAD_V': False}, num_stages=1, num_warps=4),
triton.Config(
{
"BLOCK_M": 16,
"BLOCK_N": 16,
"waves_per_eu": 1,
"PRE_LOAD_V": False,
},
num_stages=1,
num_warps=4,
),
triton.Config(
{
"BLOCK_M": 128,
"BLOCK_N": 64,
"waves_per_eu": 1,
"PRE_LOAD_V": False,
},
num_stages=1,
num_warps=4,
),
],
key=["IS_CAUSAL", "dropout_p", "BLOCK_DMODEL"],
)
@triton.jit
def attn_fwd(
Q,
K,
V,
bias,
sm_scale,
L,
Out,
stride_qz,
stride_qh,
stride_qm,
stride_qk,
stride_kz,
stride_kh,
stride_kn,
stride_kk,
stride_vz,
stride_vh,
stride_vk,
stride_vn,
stride_oz,
stride_oh,
stride_om,
stride_on,
stride_bz,
stride_bh,
stride_bm,
stride_bn,
cu_seqlens_q,
cu_seqlens_k,
dropout_p,
philox_seed,
philox_offset_base,
encoded_softmax,
HQ: tl.constexpr,
HK: tl.constexpr,
ACTUAL_BLOCK_DMODEL: tl.constexpr,
MAX_SEQLENS_Q: tl.constexpr,
MAX_SEQLENS_K: tl.constexpr,
VARLEN: tl.constexpr,
IS_CAUSAL: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
PRE_LOAD_V: tl.constexpr,
BIAS_TYPE: tl.constexpr,
ENABLE_DROPOUT: tl.constexpr,
RETURN_ENCODED_SOFTMAX: tl.constexpr,
):
start_m = tl.program_id(0)
off_h_q = tl.program_id(1)
off_z = tl.program_id(2)
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
if VARLEN:
cu_seqlens_q_start = tl.load(cu_seqlens_q + off_z)
cu_seqlens_q_end = tl.load(cu_seqlens_q + off_z + 1)
seqlen_q = cu_seqlens_q_end - cu_seqlens_q_start
# We have a one-size-fits-all grid in id(0). Some seqlens might be too
# small for all start_m so for those we return early.
if start_m * BLOCK_M > seqlen_q:
return
cu_seqlens_k_start = tl.load(cu_seqlens_k + off_z)
cu_seqlens_k_end = tl.load(cu_seqlens_k + off_z + 1)
seqlen_k = cu_seqlens_k_end - cu_seqlens_k_start
else:
cu_seqlens_q_start = 0
cu_seqlens_k_start = 0
seqlen_q = MAX_SEQLENS_Q
seqlen_k = MAX_SEQLENS_K
# Now we compute whether we need to exit early due to causal masking.
# This is because for seqlen_q > seqlen_k, M rows of the attn scores
# are completely masked, resulting in 0s written to the output, and
# inf written to LSE. We don't need to do any GEMMs in this case.
# This block of code determines what N is, and if this WG is operating
# on those M rows.
n_blocks = cdiv_fn(seqlen_k, BLOCK_N)
if IS_CAUSAL:
# If seqlen_q == seqlen_k, the attn scores are a square matrix.
# If seqlen_q != seqlen_k, attn scores are rectangular which means
# the causal mask boundary is bottom right aligned, and ends at either
# the top edge (seqlen_q < seqlen_k) or left edge.
# This captures the decrease in n_blocks if we have a rectangular attn
# matrix
n_blocks_seqlen = cdiv_fn(
(start_m + 1) * BLOCK_M + seqlen_k - seqlen_q, BLOCK_N
)
# This is what adjusts the block_max for the current WG, only
# if IS_CAUSAL. Otherwise we want to always iterate through all n_blocks
n_blocks = min(n_blocks, n_blocks_seqlen)
# If we have no blocks after adjusting for seqlen deltas, this WG is
# part of the blocks that are all 0. We exit early.
if n_blocks <= 0:
o_offset = (
off_z * stride_oz + cu_seqlens_q_start * stride_om + off_h_q * stride_oh
)
O_block_ptr = tl.make_block_ptr(
base=Out + o_offset,
shape=(seqlen_q, BLOCK_DMODEL),
strides=(stride_om, stride_on),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=Out.type.element_ty)
# We still need to write 0s to the result
# tl.store(O_block_ptr,
# acc.to(Out.type.element_ty), boundary_check=(0,1))
# l_ptrs = L + off_z * hq * MAX_SEQLENS_Q + off_h_q * MAX_SEQLENS_Q
# + offs_m
# We store inf to LSE, not -inf because in the bwd pass,
# we subtract this
# from qk which makes it -inf, such that exp(qk - inf) = 0
# for these masked blocks.
# l = tl.full([BLOCK_M], value=float("inf"), dtype=tl.float32)
# tl.store(l_ptrs, l)
# TODO: Should dropout and return encoded softmax be handled here?
return
# If MQA / GQA, set the K and V head offsets appropriately.
GROUP_SIZE: tl.constexpr = HQ // HK
if GROUP_SIZE != 1:
off_h_k = off_h_q // GROUP_SIZE
else:
off_h_k = off_h_q
n_extra_tokens = 0
if seqlen_k < BLOCK_N:
n_extra_tokens = BLOCK_N - seqlen_k
elif seqlen_k % BLOCK_N:
n_extra_tokens = seqlen_k % BLOCK_N
PADDED_HEAD: tl.constexpr = ACTUAL_BLOCK_DMODEL != BLOCK_DMODEL
# Compute pointers for all the tensors used in this kernel.
q_offset = off_z * stride_qz + off_h_q * stride_qh + cu_seqlens_q_start * stride_qm
Q_block_ptr = tl.make_block_ptr(
base=Q + q_offset,
shape=(seqlen_q, ACTUAL_BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
k_offset = off_z * stride_kz + off_h_k * stride_kh + cu_seqlens_k_start * stride_kn
K_block_ptr = tl.make_block_ptr(
base=K + k_offset,
shape=(ACTUAL_BLOCK_DMODEL, seqlen_k),
strides=(stride_kk, stride_kn),
offsets=(0, 0),
block_shape=(BLOCK_DMODEL, BLOCK_N),
order=(0, 1),
)
v_offset = off_z * stride_vz + off_h_k * stride_vh + cu_seqlens_k_start * stride_vk
V_block_ptr = tl.make_block_ptr(
base=V + v_offset,
shape=(seqlen_k, ACTUAL_BLOCK_DMODEL),
strides=(stride_vk, stride_vn),
offsets=(0, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL),
order=(1, 0),
)
if BIAS_TYPE != 0:
bias_ptr = tl.make_block_ptr(
base=bias + off_h_q * stride_bh,
shape=(seqlen_q, seqlen_k),
strides=(stride_bm, stride_bn),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
else:
bias_ptr = None
if ENABLE_DROPOUT:
batch_philox_offset = (
philox_offset_base + (off_z * HQ + off_h_q) * seqlen_q * seqlen_k
)
else:
batch_philox_offset = 0
# We can ask to return the dropout mask without actually doing any dropout.
# In this case, we return an invalid pointer so indicate the mask is not i
# valid.
# TODO: Fix encoded softmax. It currently uses just h_q in the base offset.
if RETURN_ENCODED_SOFTMAX:
encoded_softmax_block_ptr = tl.make_block_ptr(
base=encoded_softmax + off_h_q * seqlen_q * seqlen_k,
shape=(seqlen_q, seqlen_k),
strides=(seqlen_k, 1),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
else:
encoded_softmax_block_ptr = 0
# initialize pointer to m and l
m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32)
l_i = tl.full([BLOCK_M], 1.0, dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# scale sm_scale by log_2(e) and use 2^x in the loop as we do not
# have native e^x support in HW.
qk_scale = sm_scale * 1.44269504089
# Q is loaded once at the beginning and shared by all N blocks.
q = load_fn(Q_block_ptr, True, PADDED_HEAD, "zero")
q = (q * qk_scale).to(Q_block_ptr.type.element_ty)
# Here we compute how many full and masked blocks we have.
padded_block_k = n_extra_tokens != 0
is_modulo_mn = not padded_block_k and (seqlen_q % BLOCK_M == 0)
if IS_CAUSAL:
# There are always at least BLOCK_M // BLOCK_N masked blocks.
# Additionally there might be one more due to dissimilar seqlens.
masked_blocks = BLOCK_M // BLOCK_N + (not is_modulo_mn)
else:
# Padding on Q does not need to be masked in the FA loop.
masked_blocks = padded_block_k
# if IS_CAUSAL, not is_modulo_mn does not always result in an additional
# block. In this case we might exceed n_blocks so pick the min.
masked_blocks = min(masked_blocks, n_blocks)
n_full_blocks = n_blocks - masked_blocks
block_min = 0
block_max = n_blocks * BLOCK_N
# Compute for full blocks. Here we set causal to false regardless of its
# value because there is no masking. Similarly we do not need padding.
if n_full_blocks > 0:
block_max = (n_blocks - masked_blocks) * BLOCK_N
acc, l_i, m_i = _attn_fwd_inner(
acc,
l_i,
m_i,
q,
K_block_ptr,
V_block_ptr,
start_m,
seqlen_k,
dropout_p,
philox_seed,
batch_philox_offset,
encoded_softmax_block_ptr,
# _, _, offs_n_causal, masked_blocks, n_extra_tokens, _
block_min,
block_max,
0,
0,
0,
bias_ptr,
# IS_CAUSAL, ....
False,
BLOCK_M,
BLOCK_DMODEL,
BLOCK_N,
offs_m,
offs_n,
# _, MASK_STEPS, ...
PRE_LOAD_V,
False,
ENABLE_DROPOUT,
RETURN_ENCODED_SOFTMAX,
PADDED_HEAD,
)
block_min = block_max
block_max = n_blocks * BLOCK_N
tl.debug_barrier()
# Remaining blocks, if any, are full / not masked.
if masked_blocks > 0:
offs_n_causal = offs_n + (seqlen_q - seqlen_k) if IS_CAUSAL else 0
K_block_ptr = tl.advance(K_block_ptr, (0, n_full_blocks * BLOCK_N))
V_block_ptr = tl.advance(V_block_ptr, (n_full_blocks * BLOCK_N, 0))
if bias_ptr is not None:
bias_ptr = tl.advance(bias_ptr, (0, n_full_blocks * BLOCK_N))
if RETURN_ENCODED_SOFTMAX:
encoded_softmax_block_ptr = tl.advance(
encoded_softmax_block_ptr, (0, n_full_blocks)
)
acc, l_i, m_i = _attn_fwd_inner(
acc,
l_i,
m_i,
q,
K_block_ptr,
V_block_ptr,
start_m,
seqlen_k,
dropout_p,
philox_seed,
batch_philox_offset,
encoded_softmax_block_ptr,
block_min,
block_max,
offs_n_causal,
masked_blocks,
n_extra_tokens,
bias_ptr,
IS_CAUSAL,
BLOCK_M,
BLOCK_DMODEL,
BLOCK_N,
offs_m,
offs_n,
# _, MASK_STEPS, ...
PRE_LOAD_V,
True,
ENABLE_DROPOUT,
RETURN_ENCODED_SOFTMAX,
PADDED_HEAD,
)
# epilogue
acc = acc / l_i[:, None]
if ENABLE_DROPOUT:
acc = acc / (1 - dropout_p)
# If seqlen_q > seqlen_k but the delta is not a multiple of BLOCK_M,
# then we have one block with a row of all NaNs which come from computing
# softmax over a row of all -infs (-inf - inf = NaN). We check for that here
# and store 0s where there are NaNs as these rows should've been zeroed out.
end_m_idx = (start_m + 1) * BLOCK_M
start_m_idx = start_m * BLOCK_M
causal_start_idx = seqlen_q - seqlen_k
acc = acc.to(Out.type.element_ty)
if IS_CAUSAL: # noqa: SIM102
if causal_start_idx > start_m_idx and causal_start_idx < end_m_idx:
out_mask_boundary = tl.full(
(BLOCK_DMODEL,), causal_start_idx, dtype=tl.int32
)
mask_m_offsets = start_m_idx + tl.arange(0, BLOCK_M)
out_ptrs_mask = mask_m_offsets[:, None] >= out_mask_boundary[None, :]
z = 0.0
acc = tl.where(out_ptrs_mask, acc, z.to(acc.type.element_ty))
# write back LSE
# l_ptrs = L + off_z * hq * MAX_SEQLENS_Q + off_h_q * MAX_SEQLENS_Q + offs_m
# If seqlen_q not multiple of BLOCK_M, we need to mask out the last
# few rows. This is only true for the last M block. For others,
# overflow_size will be -ve
# overflow_size = end_m_idx - seqlen_q
# if overflow_size > 0:
# boundary = tl.full((BLOCK_M,), BLOCK_M - overflow_size, dtype=tl.int32)
# # This is a > check because mask being 0 blocks the store.
# l_ptrs_mask = boundary > tl.arange(0, BLOCK_M)
# tl.store(l_ptrs, m_i + tl.math.log2(l_i), mask=l_ptrs_mask)
# else:
# tl.store(l_ptrs, m_i + tl.math.log2(l_i))
# write back O
o_offset = off_z * stride_oz + cu_seqlens_q_start * stride_om + off_h_q * stride_oh
O_block_ptr = tl.make_block_ptr(
base=Out + o_offset,
shape=(seqlen_q, ACTUAL_BLOCK_DMODEL),
strides=(stride_om, stride_on),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
# Need boundary check on this to make sure the padding from the
# Q and KV tensors in both dims are not part of what we store back.
# TODO: Do the boundary check optionally.
tl.store(O_block_ptr, acc, boundary_check=(0, 1))
def check_args(
q,
k,
v,
o,
varlen=True,
max_seqlens=None,
cu_seqlens_q=None,
cu_seqlens_k=None,
):
assert q.dim() == k.dim() and q.dim() == v.dim()
if varlen:
assert q.dim() == 3
total_q, nheads_q, head_size = q.shape
total_k, nheads_k, _ = k.shape
assert cu_seqlens_q is not None
assert cu_seqlens_k is not None
assert len(cu_seqlens_q) == len(cu_seqlens_k)
else:
assert q.dim() == 4
batch, nheads_q, seqlen_q, head_size = q.shape
_, nheads_k, seqlen_k, _ = k.shape
assert max_seqlens > 0
assert k.shape == v.shape
assert q.shape[-1] == k.shape[-1] and q.shape[-1] == v.shape[-1]
# TODO: Change assert if we support qkl f8 and v f16
assert q.dtype == k.dtype and q.dtype == v.dtype
# TODO: Fix assert to check head size <=256 once supported
assert head_size <= 128
assert o.shape == q.shape
assert (nheads_q % nheads_k) == 0
class _attention(torch.autograd.Function):
@staticmethod
def forward(
ctx,
q,
k,
v,
o,
cu_seqlens_q,
cu_seqlens_k,
max_seqlens_q,
max_seqlens_k,
causal=False,
sm_scale=1.0,
bias=None,
):
if o is None:
o = torch.empty_like(q, dtype=v.dtype)
check_args(
q,
k,
v,
o,
varlen=True,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
)
if True: # varlen
total_q, nheads_q, head_size = q.shape
total_k, nheads_k, _ = k.shape
batch = len(cu_seqlens_q) - 1
q_strides = (0, q.stride(1), q.stride(0), q.stride(2))
k_strides = (0, k.stride(1), k.stride(0), k.stride(2))
v_strides = (0, v.stride(1), v.stride(0), v.stride(2))
o_strides = (0, o.stride(1), o.stride(0), o.stride(2))
else:
batch, seqlen_q, nheads_q, head_size = q.shape
_, seqlen_k, nheads_k, _ = k.shape
q_strides = (q.stride(0), q.stride(2), q.stride(1), q.stride(3))
k_strides = (k.stride(0), k.stride(2), k.stride(1), k.stride(3))
v_strides = (v.stride(0), v.stride(2), v.stride(1), v.stride(3))
o_strides = (o.stride(0), o.stride(2), o.stride(1), o.stride(3))
# Get closest power of 2 over or equal to 32.
padded_d_model = 1 << (head_size - 1).bit_length()
padded_d_model = max(padded_d_model, 16)
def grid(META):
return triton.cdiv(max_seqlens_q, META["BLOCK_M"]), nheads_q, batch
encoded_softmax = None
# Seed the RNG so we get reproducible results for testing.
philox_seed = 0x1BF52
philox_offset = 0x1D4B42
if bias is not None:
bias_strides = (
bias.stride(0),
bias.stride(1),
bias.stride(2),
bias.stride(3),
)
else:
bias_strides = (0, 0, 0, 0)
attn_fwd[grid](
q,
k,
v,
bias,
sm_scale,
None,
o,
*q_strides,
*k_strides,
*v_strides,
*o_strides,
*bias_strides,
cu_seqlens_q,
cu_seqlens_k,
dropout_p=0.0,
philox_seed=philox_seed,
philox_offset_base=philox_offset,
encoded_softmax=encoded_softmax,
HQ=nheads_q,
HK=nheads_k,
ACTUAL_BLOCK_DMODEL=head_size,
MAX_SEQLENS_Q=max_seqlens_q,
MAX_SEQLENS_K=max_seqlens_k,
IS_CAUSAL=causal,
VARLEN=True,
BLOCK_DMODEL=padded_d_model,
BIAS_TYPE=0 if bias is None else 1,
ENABLE_DROPOUT=False,
RETURN_ENCODED_SOFTMAX=False,
)
ctx.grid = grid
ctx.sm_scale = sm_scale
ctx.BLOCK_DMODEL = head_size
ctx.causal = causal
ctx.dropout_p = 0.0
ctx.philox_seed = philox_seed
ctx.philox_offset = philox_offset
ctx.encoded_softmax = encoded_softmax
ctx.return_encoded_softmax = False
return o, encoded_softmax
triton_attention = _attention.apply

View File

@ -1,251 +0,0 @@
from typing import Optional
from contextvars import ContextVar
from contextlib import contextmanager
import flashinfer
import torch
prefill_state: ContextVar[flashinfer.BatchPrefillWithRaggedKVCacheWrapper] = ContextVar(
"prefill_state"
)
prefill_with_paged_kv_state: ContextVar[
flashinfer.BatchPrefillWithPagedKVCacheWrapper
] = ContextVar("prefill_with_paged_kv_state")
decode_state: ContextVar[flashinfer.BatchDecodeWithPagedKVCacheWrapper] = ContextVar(
"decode_state"
)
workspace: Optional[torch.Tensor] = None
def get_workspace(device):
"""Get shared flashinfer workspace."""
global workspace
if workspace is None:
workspace = torch.empty(128 * 1024 * 1024, dtype=torch.uint8, device=device)
return workspace
def create_prefill_with_paged_kv_state(
*,
device: torch.device,
):
"""Create a prefill state that uses the KV cache."""
workspace_buffer = get_workspace(device)
return flashinfer.BatchPrefillWithPagedKVCacheWrapper(
workspace_buffer, kv_layout="NHD", use_cuda_graph=False
)
@contextmanager
def use_prefill_with_paged_kv_state(
*,
state: flashinfer.BatchPrefillWithPagedKVCacheWrapper,
block_tables: torch.Tensor,
cu_seqlens: torch.Tensor,
input_lengths: torch.Tensor,
num_heads: int,
num_kv_heads: int,
head_size: int,
page_size: int,
dtype: torch.dtype,
window_left: int,
):
"""
Context manager to set the active flashinfer prefill state to the given
`state` and parameters. This state will be used by all calls to the
`attention` function while the context manager is active.
"""
indptr = torch.zeros(
input_lengths.shape[0] + 1, device=input_lengths.device, dtype=torch.int32
)
# Round up to page size and then calculate the cumulative sum to get
# the indices into the block table.
torch.add(input_lengths, page_size - 1, out=indptr[1:])
indptr[1:].div_(page_size, rounding_mode="floor")
indptr[1:].cumsum_(-1)
# Get the lengths of the last page in a block.
if page_size == 1:
last_page_len = torch.ones(
input_lengths.shape[0], dtype=torch.int32, device=input_lengths.device
)
else:
last_page_len = torch.empty(
input_lengths.shape[0], dtype=torch.int32, device=input_lengths.device
)
torch.sub(input_lengths, 1, out=last_page_len)
last_page_len.remainder_(page_size)
last_page_len += 1
token = prefill_with_paged_kv_state.set(state)
try:
state.begin_forward(
qo_indptr=cu_seqlens,
paged_kv_indptr=indptr,
paged_kv_indices=block_tables,
paged_kv_last_page_len=last_page_len,
num_qo_heads=num_heads,
num_kv_heads=num_kv_heads,
head_dim=head_size,
q_data_type=dtype,
page_size=page_size,
window_left=window_left,
)
yield
finally:
state.end_forward()
if token is not None:
prefill_with_paged_kv_state.reset(token)
def create_prefill_state(
*,
device: torch.device,
):
"""Create a prefill state."""
workspace_buffer = get_workspace(device)
return flashinfer.BatchPrefillWithRaggedKVCacheWrapper(
workspace_buffer, kv_layout="NHD", use_cuda_graph=False
)
@contextmanager
def use_prefill_state(
*,
state: flashinfer.BatchPrefillWithRaggedKVCacheWrapper,
cu_seqlens: torch.Tensor,
num_heads: int,
num_kv_heads: int,
head_size: int,
dtype: torch.dtype,
window_left: int,
):
"""
Context manager to set the active flashinfer prefill state to the given
`state` and parameters. This state will be used by all calls to the
`attention` function while the context manager is active.
"""
token = prefill_state.set(state)
try:
state.begin_forward(
qo_indptr=cu_seqlens,
kv_indptr=cu_seqlens,
num_qo_heads=num_heads,
num_kv_heads=num_kv_heads,
head_dim=head_size,
q_data_type=dtype,
window_left=window_left,
)
yield
finally:
state.end_forward()
if token is not None:
prefill_state.reset(token)
def create_decode_state(
*,
device: torch.device,
num_heads: int,
num_kv_heads: int,
):
"""Create a decode state."""
workspace_buffer = get_workspace(device)
num_groups = num_heads // num_kv_heads
return flashinfer.BatchDecodeWithPagedKVCacheWrapper(
workspace_buffer,
kv_layout="NHD",
use_cuda_graph=False,
# Taken from https://github.com/flashinfer-ai/flashinfer/blob/33ef95700981ba70f4cab63b8931e562bc795b21/python/flashinfer/decode.py#L57-L60
use_tensor_cores=num_groups not in [1, 2, 4, 8],
)
def create_decode_state_cuda_graphs(
*,
device: torch.device,
block_tables: torch.Tensor,
block_tables_ptr: torch.Tensor,
last_page_len: torch.Tensor,
num_heads: int,
num_kv_heads: int,
):
"""
Create a decode state for use with CUDA Graphs. `block_tables`,
`block_tables_ptr`, and `last_page_len` are used in CUDA Graphs and are
therefore stored as part of the state.
"""
workspace_buffer = get_workspace(device)
num_groups = num_heads // num_kv_heads
return flashinfer.BatchDecodeWithPagedKVCacheWrapper(
workspace_buffer,
kv_layout="NHD",
use_cuda_graph=True,
paged_kv_indices_buffer=block_tables,
paged_kv_indptr_buffer=block_tables_ptr,
paged_kv_last_page_len_buffer=last_page_len,
# Taken from https://github.com/flashinfer-ai/flashinfer/blob/33ef95700981ba70f4cab63b8931e562bc795b21/python/flashinfer/decode.py#L57-L60
use_tensor_cores=num_groups not in [1, 2, 4, 8],
)
@contextmanager
def use_decode_state(
*,
state: flashinfer.BatchDecodeWithPagedKVCacheWrapper,
input_lengths: torch.Tensor,
block_tables: torch.Tensor,
num_heads: int,
num_kv_heads: int,
head_size: int,
page_size: int,
dtype: torch.dtype,
window_left: int,
):
"""
Context manager to set the active flashinfer decoding state to the given
`state` and parameters. This state will be used by all calls to the
`paged_attention` function while the context manager is active.
"""
indptr = torch.zeros(
input_lengths.shape[0] + 1, device=input_lengths.device, dtype=torch.int32
)
# Round up to page size and then calculate the cumulative sum to get
# the indices into the block table.
torch.add(input_lengths, page_size - 1, out=indptr[1:])
indptr[1:].div_(page_size, rounding_mode="floor")
indptr[1:].cumsum_(-1)
# Get the lengths of the last page in a block.
last_page_len = torch.empty(
input_lengths.shape[0], dtype=torch.int32, device=input_lengths.device
)
torch.sub(input_lengths, 1, out=last_page_len)
last_page_len.remainder_(page_size)
last_page_len += 1
token = decode_state.set(state)
try:
state.begin_forward(
indptr=indptr,
indices=block_tables,
last_page_len=last_page_len,
num_qo_heads=num_heads,
num_kv_heads=num_kv_heads,
head_dim=head_size,
page_size=page_size,
data_type=dtype,
q_data_type=dtype,
window_left=window_left,
)
yield
finally:
state.end_forward()
if token is not None:
decode_state.reset(token)

View File

@ -0,0 +1,227 @@
import torch
from text_generation_server.layers.attention import Seqlen, HPUPagedAttentionMetadata
from typing import Optional
from text_generation_server.layers.attention.kv_cache import KVCache, KVScales
from vllm_hpu_extension import ops
from vllm_hpu_extension.utils import Matmul
from habana_frameworks.torch.hpex.kernels import FusedSDPA
from vllm_hpu_extension.utils import ModuleFusedSDPA
import os
from text_generation_server.models.globals import BLOCK_SIZE
import math
SUPPORTS_WINDOWING = False
class FP8Matmul(torch.nn.Module):
def __init__(self, scale_other):
super().__init__()
self.scale_input = torch.tensor(1.0, dtype=torch.bfloat16, device="hpu")
self.scale_other = scale_other
def quant_input(self, x, scale):
return torch.ops.hpu.cast_to_fp8_v2(
x, scale, False, False, torch.float8_e4m3fn
)[0]
def matmul_fp8(
self, x, other, out_dtype, scale_input_inv=None, scale_other_inv=None
):
return torch.ops.hpu.fp8_gemm_v2(
A=x,
trans_A=False,
B=other,
trans_B=False,
D=None,
out_dtype=out_dtype,
A_scale_inv=scale_input_inv,
B_scale_inv=scale_other_inv,
bias=None,
accumulate=False,
)
def forward(self, input, other):
qinput = self.quant_input(input, self.scale_input)
qother = self.quant_input(other, self.scale_other)
output = self.matmul_fp8(
qinput,
qother,
out_dtype=torch.bfloat16,
scale_input_inv=1.0 / self.scale_input,
scale_other_inv=1.0 / self.scale_other,
)
return output
class FetchFromCache(torch.nn.Module):
def __init__(self, scale_inv):
super().__init__()
self.scale_inv = scale_inv
def forward(self, cache, blocks):
if os.environ.get("VLLM_CONTIGUOUS_PA", "true").lower() == "true":
out = cache[: blocks.size(0)]
else:
out = cache.index_select(0, blocks)
if out.dtype == torch.float8_e4m3fn:
out = torch.ops.hpu.cast_from_fp8(out, self.scale_inv, torch.bfloat16)
return out
def attention(
*,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: KVCache,
kv_scales: KVScales,
seqlen: Seqlen,
softmax_scale: float,
window_size_left: int = -1,
causal: bool = True,
softcap: Optional[float] = None,
):
fsdpa_op = ModuleFusedSDPA(FusedSDPA)
bs = seqlen.input_lengths.shape[0]
_, head_num, head_size = query.shape
_, kv_head_num, head_size = key.shape
query = query.view(bs, -1, head_num, head_size).transpose(1, 2)
key = key.view(bs, -1, kv_head_num, head_size).transpose(1, 2)
value = value.view(bs, -1, kv_head_num, head_size).transpose(1, 2)
attn_output = fsdpa_op(
query,
key,
value,
attn_mask=seqlen.attn_mask if window_size_left != -1 else None,
dropout_p=0.0,
is_causal=causal if window_size_left == -1 else False,
scale=softmax_scale,
softmax_mode="None",
recompute_mode=None,
valid_sequence_lengths=seqlen.input_lengths if window_size_left == -1 else None,
padding_side="left",
)
attn_output = attn_output.transpose(1, 2).squeeze(0).contiguous()
return attn_output
def set_block_mapping(hpu_attention_meta: HPUPagedAttentionMetadata, batch_size):
block_mapping = torch.nn.functional.one_hot(
hpu_attention_meta.block_groups, num_classes=batch_size
)
dtype = hpu_attention_meta.block_usage.dtype
device = hpu_attention_meta.block_usage.device
mask = torch.arange(0, BLOCK_SIZE, device=device, dtype=torch.int32).unsqueeze(0)
mask = mask >= hpu_attention_meta.block_usage.unsqueeze(-1)
attn_bias = torch.zeros_like(mask, dtype=dtype).masked_fill_(mask, -math.inf)
hpu_attention_meta = hpu_attention_meta._replace(
attn_bias=attn_bias, block_mapping=block_mapping.to(dtype)
)
if hpu_attention_meta.block_groups_in_window is not None:
block_mapping = torch.nn.functional.one_hot(
hpu_attention_meta.block_groups_in_window, num_classes=batch_size
)
attn_bias = torch.log(hpu_attention_meta.slots_in_window_mask.float())
hpu_attention_meta = hpu_attention_meta._replace(
attn_bias_in_window=attn_bias,
block_mapping_in_window=block_mapping.to(dtype),
)
return hpu_attention_meta
def paged_attention(
query: torch.Tensor,
kv_cache: KVCache,
kv_head_mapping: torch.Tensor,
softmax_scale: float,
seqlen: Seqlen,
*,
kv_scales: KVScales,
softcap: Optional[float] = None,
hpu_attention_meta: HPUPagedAttentionMetadata,
window_size_left: int = -1,
):
batch_size, head_num, head_size = query.shape
fp8_kv = kv_cache.dtype == torch.float8_e4m3fn
output = ops.flat_pa(
query=query.view(batch_size, 1, head_num * head_size),
key_cache=kv_cache.key,
value_cache=kv_cache.value,
block_list=(
hpu_attention_meta.block_list
if window_size_left == -1
else hpu_attention_meta.block_list_in_window
),
block_mapping=(
hpu_attention_meta.block_mapping
if window_size_left == -1
else hpu_attention_meta.block_mapping_in_window
),
block_bias=(
hpu_attention_meta.attn_bias
if window_size_left == -1
else hpu_attention_meta.attn_bias_in_window
),
block_groups=(
hpu_attention_meta.block_groups
if window_size_left == -1
else hpu_attention_meta.block_groups_in_window
),
block_size=BLOCK_SIZE,
scale=softmax_scale,
matmul_qk_op=FP8Matmul(kv_scales.key_scale) if fp8_kv else Matmul(),
matmul_av_op=FP8Matmul(kv_scales.value_scale) if fp8_kv else Matmul(),
batch2block_matmul_op=Matmul(),
block2batch_matmul_op=Matmul(),
keys_fetch_func=FetchFromCache(1.0 / kv_scales.key_scale_cpu),
values_fetch_func=FetchFromCache(1.0 / kv_scales.value_scale_cpu),
)
# Reshape the output tensor.
return output.view(batch_size, head_num, head_size)
def paged_attention_mla(
query: torch.Tensor,
kv_cache: KVCache,
kv_head_mapping: torch.Tensor,
softmax_scale: float,
seqlen: Seqlen,
*,
kv_scales: KVScales,
softcap: Optional[float] = None,
hpu_attention_meta: HPUPagedAttentionMetadata,
kv_lora_rank: int = 0,
):
batch_size, head_num, head_size = query.shape
fp8_kv = kv_cache.dtype == torch.float8_e4m3fn
output = ops.flat_pa_mla(
query=query,
key_cache=kv_cache.key,
value_cache=None,
block_list=hpu_attention_meta.block_list,
block_mapping=hpu_attention_meta.block_mapping,
block_bias=hpu_attention_meta.attn_bias,
block_groups=hpu_attention_meta.block_groups,
block_size=BLOCK_SIZE,
scale=softmax_scale,
matmul_qk_op=FP8Matmul(kv_scales.key_scale) if fp8_kv else Matmul(),
matmul_av_op=FP8Matmul(kv_scales.value_scale) if fp8_kv else Matmul(),
batch2block_matmul_op=Matmul(),
block2batch_matmul_op=Matmul(),
keys_fetch_func=FetchFromCache(1.0 / kv_scales.key_scale_cpu),
values_fetch_func=None,
kv_lora_rank=kv_lora_rank,
)
# Reshape the output tensor.
return output.view(batch_size, head_num, -1)
__all__ = [
"SUPPORTS_WINDOWING",
"attention",
"paged_attention",
"paged_attention_mla",
"set_block_mapping",
]

View File

@ -1,82 +0,0 @@
import intel_extension_for_pytorch as ipex
import torch
from text_generation_server.models.flash_causal_lm import BLOCK_SIZE
from text_generation_server.layers.attention import Seqlen
from typing import Optional
SUPPORTS_WINDOWING = False
PREFILL_IN_KV_CACHE = False
def attention(
q: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
seqlen: Seqlen,
block_tables: torch.Tensor,
softmax_scale,
window_size_left=-1,
causal=True,
softcap: Optional[float] = None,
):
out = torch.empty_like(q)
# We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
ipex.llm.functional.varlen_attention(
q.contiguous() if q.device.type == "xpu" else q,
key_cache.contiguous() if key_cache.device.type == "xpu" else key_cache,
value_cache.contiguous() if value_cache.device.type == "xpu" else value_cache,
out,
seqlen.cu_seqlen_q,
seqlen.cu_seqlen_q,
seqlen.max_q,
seqlen.max_q,
0.0,
softmax_scale,
False,
causal,
False,
None,
)
return out
def reshape_and_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slots: torch.Tensor,
):
ipex.llm.modules.PagedAttention.reshape_and_cache(
key, value, key_cache, value_cache, slots
)
def paged_attention(
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
kv_head_mapping: torch.Tensor,
softmax_scale: float,
block_tables: torch.Tensor,
seqlen: Seqlen,
max_s: int,
softcap: Optional[float] = None,
):
out = torch.empty_like(query)
ipex.llm.modules.PagedAttention.single_query_cached_kv_attention(
out,
query,
key_cache,
value_cache,
kv_head_mapping,
softmax_scale,
block_tables,
seqlen.input_lengths,
BLOCK_SIZE,
max_s,
None,
)
return out

View File

@ -0,0 +1,205 @@
from typing import Tuple
from dataclasses import dataclass, field
import torch
from text_generation_server.models.globals import BLOCK_SIZE
from text_generation_server.utils.weights import Weights
@dataclass
class KVScales:
"""
Key-value scales for FP8 KV cache.
This data class stores key and value scales both as a GPU tensor and
as a GPU float. This inconvenience is necessary because some functions
(e.g. scaling kernels) take scales as a GPU tensor, whereas others
(e.g. flashinfer) take scales as a CPU scalar.
"""
key_scale: torch.Tensor
value_scale: torch.Tensor
key_scale_cpu: float = field(init=False)
value_scale_cpu: float = field(init=False)
def __post_init__(self):
if self.key_scale.numel() != 1 or self.value_scale.numel() != 1:
raise ValueError("Key and value scales must be scalar tensors.")
self.key_scale_cpu = self.key_scale.item()
self.value_scale_cpu = self.value_scale.item()
class KVCache:
"""
Key-value cache for attention layers.
"""
kv_cache: Tuple[torch.Tensor, torch.Tensor]
def __init__(
self,
*,
num_blocks: int,
num_heads: int,
head_size: int,
dtype: torch.dtype,
device: torch.device,
):
"""Construct the key-value cache for a layer."""
## TODO FP8 kv cache support
if dtype is torch.float8_e5m2:
raise ValueError("torch.float8_e5m2 is not supported in hpu. ")
self.kv_cache = (
torch.zeros(
(num_blocks * BLOCK_SIZE, num_heads, head_size),
dtype=dtype,
device=device,
),
torch.zeros(
(num_blocks * BLOCK_SIZE, num_heads, head_size),
dtype=dtype,
device=device,
),
)
@property
def dtype(self):
"""Get the data type of the cache."""
return self.kv_cache[0].dtype
@property
def key(self):
"""Get the key cache."""
return self.kv_cache[0]
@property
def value(self):
"""Get the value cache."""
return self.kv_cache[1]
def store(
self,
*,
key: torch.Tensor,
value: torch.Tensor,
slots: torch.Tensor,
kv_scales: KVScales,
):
"""Store the key and value at the given slots."""
## TODO FP8 kv cache support
key_cache = self.kv_cache[0]
value_cache = self.kv_cache[1]
paged_reshape_and_cache(
key,
value,
key_cache,
value_cache,
slots,
kv_scales.key_scale,
kv_scales.value_scale,
)
class KVCompressCache(KVCache):
"""
Key-value cache for attention layers.
"""
kv_cache: torch.Tensor
def __init__(
self,
*,
num_blocks: int,
head_size: int,
dtype: torch.dtype,
device: torch.device,
):
"""Construct the key-value cache for a layer."""
## TODO FP8 kv cache support
if dtype is torch.float8_e5m2:
raise ValueError("torch.float8_e5m2 is not supported in hpu. ")
self.kv_cache = torch.zeros(
(num_blocks * BLOCK_SIZE, 1, head_size),
dtype=dtype,
device=device,
)
@property
def dtype(self):
"""Get the data type of the cache."""
return self.kv_cache.dtype
@property
def key(self):
"""Get the key cache."""
return self.kv_cache
@property
def value(self):
"""Get the value cache."""
return self.kv_cache
def store(
self,
*,
key: torch.Tensor,
value: torch.Tensor,
slots: torch.Tensor,
kv_scales: KVScales,
):
"""Store the key and value at the given slots."""
## TODO FP8 kv cache support
if self.kv_cache.dtype == torch.float8_e4m3fn:
key = torch.ops.hpu.cast_to_fp8_v2(
key, kv_scales.key_scale, False, False, torch.float8_e4m3fn
)[0]
self.kv_cache.index_copy_(0, slots, key)
def paged_reshape_and_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slots: torch.Tensor,
k_scale: torch.Tensor,
v_scale: torch.Tensor,
):
if key_cache.dtype == torch.float8_e4m3fn:
key = torch.ops.hpu.cast_to_fp8_v2(
key, k_scale, False, False, torch.float8_e4m3fn
)[0]
value = torch.ops.hpu.cast_to_fp8_v2(
value, v_scale, False, False, torch.float8_e4m3fn
)[0]
key_cache.index_copy_(0, slots, key)
value_cache.index_copy_(0, slots, value)
def get_kv_scales(weights: Weights, prefix: str) -> KVScales:
"""Load KV cache scales."""
key_scale = torch.tensor(1.0, dtype=torch.float32, device=weights.device)
value_scale = key_scale
if weights.has_tensor(f"{prefix}.k_scale") and weights.has_tensor(
f"{prefix}.v_scale"
):
key_scale = weights.get_tensor(f"{prefix}.k_scale", to_dtype=False).float()
value_scale = weights.get_tensor(f"{prefix}.v_scale", to_dtype=False).float()
elif weights.has_tensor(f"{prefix}.kv_scale"):
# Fall back to older more coarse-grained scale when available.
key_scale = weights.get_tensor(f"{prefix}.kv_scale").float()
value_scale = key_scale
return KVScales(key_scale=key_scale, value_scale=value_scale)

View File

@ -1,308 +0,0 @@
import os
from typing import Optional
import torch
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.models.globals import ATTENTION
from text_generation_server.layers.attention import Seqlen
from text_generation_server.utils.log import log_master
from loguru import logger
major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
_PARTITION_SIZE_V1V2 = 512
_PARTITION_SIZE_CUSTOM = 256
use_triton = os.getenv("ROCM_USE_FLASH_ATTN_V2_TRITON", "").lower() in {"true", "1"}
ENGINE = "triton" if use_triton else "ck"
PREFILL_IN_KV_CACHE = False
use_rocm_custom_paged_attn = os.getenv("ROCM_USE_CUSTOM_PAGED_ATTN", "1") != "0"
try:
if use_rocm_custom_paged_attn:
from vllm._custom_C import paged_attention_custom
except ImportError as e:
log_master(
logger.info,
f"Custom Paged Attention not available. Complete error: {e}",
)
use_rocm_custom_paged_attn = False
try:
import vllm._custom_ops as ops
except Exception as e:
raise ImportError(
f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}"
)
def reshape_and_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slots: torch.Tensor,
):
if ATTENTION == "flashdecoding":
shape = key_cache.shape
key_cache.view(-1, shape[-2], shape[-1])[slots] = key
value_cache.view(-1, shape[-2], shape[-1])[slots] = value
else:
ops.reshape_and_cache(key, value, key_cache, value_cache, slots, "auto", 1.0)
def paged_attention(
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
kv_head_mapping: torch.Tensor,
softmax_scale: float,
block_tables: torch.Tensor,
seqlen: Seqlen,
max_s: int,
softcap: Optional[float] = None,
):
# Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
# Copyright 2023 The vLLM team. All rights
# reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
if softcap is not None:
raise RuntimeError("Paged attention doesn't support softcapping")
# value_cache => [num_blocks, num_heads, head_size, block_size]
block_size = value_cache.shape[3]
num_seqs, num_heads, head_size = query.shape
num_kv_heads = key_cache.shape[1]
gqa_ratio = num_heads // num_kv_heads
use_custom = (
use_rocm_custom_paged_attn
and (query.dtype == torch.half or query.dtype == torch.bfloat16)
and (head_size == 128 or head_size == 64)
and (block_size == 16 or block_size == 32)
and (gqa_ratio >= 1 and gqa_ratio <= 16)
and max_s <= 32768
)
if not use_custom:
_PARTITION_SIZE = _PARTITION_SIZE_V1V2
else:
_PARTITION_SIZE = _PARTITION_SIZE_CUSTOM
max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
input_lengths = seqlen.input_lengths
out = torch.empty_like(query)
# NOTE(woosuk): We use a simple heuristic to decide whether to use
# PagedAttention V1 or V2. If the number of partitions is 1, we use
# V1 to avoid the overhead of reduction. Also, if the number of
# sequences or heads is large, we use V1 since there is enough work
# to parallelize.
import vllm._custom_ops as ops
use_v1 = (
max_s <= 8192
and (max_num_partitions == 1 or num_seqs * num_heads > 512)
and not use_custom
)
if use_v1:
ops.paged_attention_v1(
out,
query,
key_cache,
value_cache,
kv_head_mapping,
softmax_scale,
block_tables,
input_lengths,
block_size,
max_s,
None,
"auto",
1.0,
)
else:
# Run PagedAttention V2.
assert _PARTITION_SIZE % block_size == 0
tmp_output = torch.empty(
size=(num_seqs, num_heads, max_num_partitions, head_size),
dtype=out.dtype,
device=out.device,
)
exp_sums = torch.empty(
size=(num_seqs, num_heads, max_num_partitions),
dtype=torch.float32,
device=out.device,
)
max_logits = torch.empty_like(exp_sums)
if not use_custom:
ops.paged_attention_v2(
out,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
kv_head_mapping,
softmax_scale,
block_tables,
input_lengths,
block_size,
max_s,
None,
"auto",
1.0,
)
else:
paged_attention_custom(
out,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
num_kv_heads,
softmax_scale,
block_tables,
input_lengths,
block_size,
max_s,
None,
"auto",
)
return out
if ENGINE != "triton":
try:
import flash_attn_2_cuda
log_master(
logger.info,
"ROCm: using Flash Attention 2 Composable Kernel implementation.",
)
except ImportError as e:
if major >= 8:
architecture_suffix = f"-{SYSTEM}"
raise ImportError(
"Flash Attention V2 is not installed.\n"
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
)
elif is_sm75:
raise ImportError(
"Flash Attention is not installed.\n"
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
"or install flash attention with `cd server && make install install-flash-attention`"
) from e
else:
for idx in range(torch.cuda.device_count()):
name = torch.cuda.get_device_name(idx)
if "MI210" not in name and "MI250" not in name:
raise ImportError(
f"AMD GPU {torch.cuda.get_device_name(idx)} does not support flash-attention"
)
raise ImportError(
f"AMD GPU with ROCm capability {major} {minor} is not supported"
) from e
SUPPORTS_WINDOWING = False
if ENGINE == "ck":
def attention(
q,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
seqlen: Seqlen,
block_tables: torch.Tensor,
softmax_scale: float,
window_size_left: int = -1,
causal: bool = True,
softcap: float = 0.0,
):
if window_size_left <= 0 and window_size_left != -1:
raise ValueError("`window_size_left` must be > 0 or -1")
out = torch.empty_like(q)
# We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
return flash_attn_2_cuda.varlen_fwd(
q,
key_cache,
value_cache,
out,
seqlen.cu_seqlen_q,
seqlen.cu_seqlen_q,
None,
None,
None,
None,
seqlen.max_q,
seqlen.max_k,
0.0,
softmax_scale,
False,
causal,
window_size_left,
0,
softcap,
False,
None,
)[0]
elif ENGINE == "triton":
from .flash_attn_triton import triton_attention
def attention(
q,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
seqlen: Seqlen,
block_tables: torch.Tensor,
softmax_scale: float,
window_size_left: int = -1,
causal: bool = True,
softcap: Optional[float] = None,
):
if softcap is not None:
raise NotImplementedError("softcap is only available with CK flash attn")
out = torch.empty_like(q)
# We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
output, _ = triton_attention(
q,
key_cache,
value_cache,
out,
seqlen.cu_seqlen_q,
seqlen.cu_seqlen_q,
seqlen.max_q,
seqlen.max_k,
causal,
softmax_scale,
)
return output
else:
raise RuntimeError(f"Unknown attention engine {ENGINE}")

View File

@ -0,0 +1,3 @@
from .hpu import WQLinear
__all__ = ["WQLinear"]

View File

@ -0,0 +1,134 @@
from typing import Optional
import torch
import torch.nn as nn
try:
import habana_frameworks.torch.hpu # noqa: F401
convert_from_uint4 = torch.ops.hpu.convert_from_uint4
except Exception as e:
hpu_import_exception = e
def error_raiser_hpu(*args, **kwargs):
raise ValueError(
f"Trying to use HPU, but could not import the HPU framework with the following error: {hpu_import_exception}"
)
convert_from_uint4 = error_raiser_hpu
AWQ_REVERSE_ORDER = [0, 4, 1, 5, 2, 6, 3, 7]
def unpack_awq(qweight: torch.Tensor, qzeros: torch.Tensor, bits: int):
shifts = torch.arange(0, 32, bits, device=qzeros.device)
# unpacking columnwise
iweights = torch.bitwise_right_shift(qweight[:, :, None], shifts[None, None, :]).to(
torch.int8 # smallest dtype available
)
iweights = iweights.view(iweights.shape[0], -1)
# unpacking columnwise
if qzeros is not None:
izeros = torch.bitwise_right_shift(
qzeros[:, :, None], shifts[None, None, :]
).to(
torch.int8 # smallest dtype available
)
izeros = izeros.view(izeros.shape[0], -1)
else:
izeros = qzeros
return iweights, izeros
def reverse_awq_order(iweights: torch.Tensor, izeros: torch.Tensor, bits: int):
reverse_order_tensor = torch.arange(
iweights.shape[-1],
dtype=torch.int32,
device=izeros.device,
)
reverse_order_tensor = reverse_order_tensor.view(-1, 32 // bits)
reverse_order_tensor = reverse_order_tensor[:, AWQ_REVERSE_ORDER]
reverse_order_tensor = reverse_order_tensor.view(-1)
if izeros is not None:
izeros = izeros[:, reverse_order_tensor]
iweights = iweights[:, reverse_order_tensor]
return iweights, izeros
def unpack_weight_and_zeros(qweight, qzeros, bits):
# Unpack the qweight and qzeros tensors
iweight, izeros = unpack_awq(qweight, qzeros, bits)
# Reverse the order of the iweight and izeros tensors
iweight, izeros = reverse_awq_order(iweight, izeros, bits)
# overflow checks
iweight = torch.bitwise_and(iweight, (2**bits) - 1)
izeros = torch.bitwise_and(izeros, (2**bits) - 1)
return iweight, izeros
def pack_tensor(input, bits=4):
normal = input.to(torch.int32)
q = torch.zeros(
(normal.shape[0], normal.shape[1] // 32 * bits),
dtype=torch.int32,
device=input.device,
)
i = 0
col = 0
while col < q.shape[1]:
for j in range(i, i + (32 // bits)):
q[:, col] |= normal[:, j] << (bits * (j - i))
i += 32 // bits
col += 1
q = q.to(torch.int32)
return q
class WQLinear(nn.Module):
def __init__(
self, w_bit, group_size, qweight, qzeros, scales, bias: Optional[torch.Tensor]
):
super().__init__()
if w_bit not in [4]:
raise NotImplementedError("Only 4-bit are supported for now.")
self.in_features = qweight.shape[0]
self.out_features = qweight.shape[1] * 32 // w_bit
self.w_bit = w_bit
self.group_size = group_size if group_size != -1 else self.in_features
# quick sanity check (make sure aligment)
assert self.in_features % self.group_size == 0
assert self.out_features % (32 // self.w_bit) == 0
self.qweight = qweight
self.qzeros = qzeros
self.scales = scales
self.bias = bias
self._preprocessing()
def _preprocessing(self):
device = self.qweight.device
weight, zeros = unpack_weight_and_zeros(
self.qweight.cpu(), self.qzeros.cpu(), self.w_bit
)
self.qweight = pack_tensor(weight).to(device)
self.qzeros = pack_tensor(zeros).to(device)
@torch.no_grad()
def forward(self, x):
out_shape = x.shape[:-1] + (self.out_features,)
x = x.reshape(-1, x.shape[-1])
weights = convert_from_uint4(self.qweight, self.scales, self.qzeros, x.dtype)
outputs = torch.matmul(x, weights)
outputs = outputs + self.bias if self.bias is not None else outputs
outputs = outputs.reshape(out_shape)
return outputs

View File

@ -1,49 +0,0 @@
# Copied logic from https://github.com/mit-han-lab/llm-awq/blob/f084f40bd996f3cf3a0633c1ad7d9d476c318aaa/awq/quantize/qmodule.py
from typing import Optional
import torch
import torch.nn as nn
import awq_inference_engine # with CUDA kernels
# class ScaledActivation(nn.Module):
# def __init__(self, module, scales):
# super().__init__()
# self.act = module
# self.scales = nn.Parameter(scales.data)
#
# def forward(self, x):
# return self.act(x) / self.scales.view(1, 1, -1).to(x.device)
class WQLinear(nn.Module):
def __init__(
self, w_bit, group_size, qweight, qzeros, scales, bias: Optional[torch.Tensor]
):
super().__init__()
if w_bit not in [4]:
raise NotImplementedError("Only 4-bit are supported for now.")
self.in_features = qweight.shape[0]
self.out_features = qweight.shape[1] * 32 // w_bit
self.w_bit = w_bit
self.group_size = group_size if group_size != -1 else self.in_features
# quick sanity check (make sure aligment)
assert self.in_features % self.group_size == 0
assert self.out_features % (32 // self.w_bit) == 0
self.qweight = qweight
self.qzeros = qzeros
self.scales = scales
self.bias = bias
@torch.no_grad()
def forward(self, x):
out_shape = x.shape[:-1] + (self.out_features,)
out = awq_inference_engine.gemm_forward_cuda(
x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, 8
)
out = out + self.bias if self.bias is not None else out
return out.reshape(out_shape)

View File

@ -0,0 +1,3 @@
from .loader import CompressedTensorsLoader
__all__ = ["CompressedTensorsLoader"]

View File

@ -0,0 +1,169 @@
from typing import Any, Dict, List, Union
from compressed_tensors import QuantizationConfig, QuantizationStatus
from compressed_tensors.config import CompressionFormat
from compressed_tensors.quantization import (
QuantizationScheme,
QuantizationType,
find_name_or_class_matches,
)
from loguru import logger
from pydantic import ValidationError
from torch import nn
from text_generation_server.layers.compressed_tensors.w8an_fp import W8ANFpLoader
from text_generation_server.utils.log import log_once
from text_generation_server.utils.weights import (
DefaultWeightsLoader,
UnquantizedWeight,
Weights,
WeightsLoader,
)
# compressed-tensors can match modules as quantization targets. However,
# they need to be objects rather than classes or class names. Since we
# need to match `Linear` targets, make an instance that can be re-used.
_EMPTY_LINEAR: nn.Module = nn.Linear(0, 0)
class CompressedTensorsLoader(WeightsLoader):
"""Loader for checkpoints stored in the compressed-tensors format."""
def __init__(self, config: Dict[str, Any]):
quantization_config_raw = config.get("quantization_config")
if quantization_config_raw is None:
# `compression_config` was renamed to `quantization_config`; support
# retained for backward compatibility.
quantization_config_raw = config.get("compression_config")
if quantization_config_raw is None:
raise ValueError(
"Checkpoint does not have compressed-tensors configuration"
)
try:
quantization_config = QuantizationConfig.model_validate(
quantization_config_raw
)
except ValidationError as e:
raise ValueError("Cannot parse compressed-tensors configuration") from e
if quantization_config.quantization_status not in (
QuantizationStatus.COMPRESSED,
QuantizationStatus.FROZEN,
):
raise ValueError(
f"Model quantization was not finished, status was: {quantization_config.quantization_status}"
)
self.ignore = (
quantization_config.ignore if quantization_config.ignore is not None else []
)
self.loaders = self._get_target_loaders(quantization_config)
for target, loader in self.loaders.items():
log_once(
logger.info,
f"Using {loader} for compressed-tensors target '{target}'",
)
def get_weights(self, weights: Weights, prefix: str):
loader = self._lookup_loader(prefix)
return loader.get_weights(weights, prefix)
def get_weights_col_packed(
self,
weights: "Weights",
prefix: str,
block_sizes: Union[int, List[int]],
):
loader = self._lookup_loader(prefix)
return loader.get_weights_col_packed(weights, prefix, block_sizes)
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
loader = self._lookup_loader(prefixes[0])
return loader.get_multi_weights_col(weights, prefixes, dim)
def get_multi_weights(self, weights: Weights, prefixes: List[str], dim: int):
loader = self._lookup_loader(prefixes[0])
return loader.get_multi_weights(weights, prefixes, dim)
def get_weights_row(self, weights: Weights, prefix: str):
loader = self._lookup_loader(prefix)
return loader.get_weights_row(weights, prefix)
def _get_target_loaders(
self, quantization_config: QuantizationConfig
) -> Dict[str, WeightsLoader]:
"""
A compressed-tensors checkpoint can use different quantizations
for different targets. This method returns a dictionary with a
loader per target.
"""
loaders: Dict[str, WeightsLoader] = {}
format = quantization_config.format
for group_name, group in quantization_config.config_groups.items():
# The group configuration can be a string, but does that ever
# happen in a serialized quantization config?
assert isinstance(group, QuantizationScheme)
loader = self._create_loader_for_group(format, group_name, group)
# A quantized parameter group can have multiple targets, add the
# loader for all the targets.
for target in group.targets:
if target in loaders:
raise ValueError(
f"Target '{target} has multiple configured loaders'"
)
loaders[target] = loader
return loaders
def _create_loader_for_group(
self, format: str, group_name: str, group: QuantizationScheme
) -> WeightsLoader:
"""
Find and create a loader for the group with the given quantization
scheme.
"""
# NOTE: we ignore group.output_activations because we don't support
# output quantization yet.
input_activations = group.input_activations
weights = group.weights
if (
format
in {
CompressionFormat.float_quantized.value,
CompressionFormat.naive_quantized.value,
}
and weights is not None
and weights.type == QuantizationType.FLOAT
and weights.num_bits == 8
):
# FP W8A8 or W8A16.
return W8ANFpLoader(input_activations=input_activations, weights=weights)
else:
raise ValueError(
f"Group '{group_name}' has unsupported compressed-tensors configurtion"
)
def _lookup_loader(self, prefix: str) -> WeightsLoader:
"""
Look up the loader to use for a given parameter name (prefix).
"""
if len(find_name_or_class_matches(prefix, _EMPTY_LINEAR, self.ignore)) > 0:
return DefaultWeightsLoader(UnquantizedWeight)
# We currently only handle linear layers, so unconditionally pass
# a `Linear` instance.
targets = find_name_or_class_matches(prefix, _EMPTY_LINEAR, self.loaders.keys())
if len(targets) == 0:
raise ValueError(
f"Cannot find compressed-tensors target for prefix: {prefix}"
)
return self.loaders[targets[0]]

View File

@ -0,0 +1,253 @@
from typing import List, Optional, Union
import torch
from compressed_tensors.quantization import QuantizationArgs, QuantizationType
from text_generation_server.layers.fp8 import (
Fp8Weight,
_load_scalar_or_matrix_scale,
requantize_with_max_scale,
)
from text_generation_server.utils.weights import Weights, WeightsLoader
class W8ANFpLoader(WeightsLoader):
"""
Loader for W8A8/W8A16 FP compressed-tensors parameters.
"""
def __init__(
self,
*,
input_activations: Optional[QuantizationArgs],
weights: QuantizationArgs,
):
assert weights.type == QuantizationType.FLOAT and weights.num_bits == 8
# We ignore the `strategy` option which sets the scales to be
# per-tensor, per-channel or per-token. What scales are supported
# is dependent on the kernels used (e.g. cutlass can do tokenwise,
# Torch cannot, and FP8-Marlin does not quantize inputs at all).
# So, instead we try to use the best-possible configuration.
self.load_weight_scale = not weights.dynamic
self.load_input_scale = (
input_activations is not None and not input_activations.dynamic
)
self.force_w8a16 = (
input_activations is not None and input_activations.num_bits == 16
)
def __str__(self) -> str:
def scale_to_str(scale):
return "static" if scale else "dynamic"
quantization_type = f"W8A{16 if self.force_w8a16 else 8}"
return f"{self.__class__.__name__} ({quantization_type}, weight: {scale_to_str(self.load_weight_scale)}, input: {scale_to_str(self.load_input_scale)})"
def get_weights(self, weights: "Weights", prefix: str):
w = weights.get_tensor(f"{prefix}.weight")
weight_scale = None
if self.load_weight_scale:
weight_scale = (
weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
.reshape(-1)
.expand(w.shape[0])
)
logical_widths = [w.shape[0]]
w, weight_scale = requantize_with_max_scale(
w,
weight_scale.unsqueeze(-1).to(weights.device),
logical_widths,
weights.dtype,
)
input_scale = None
if self.load_input_scale:
input_scale = weights.get_tensor(
f"{prefix}.input_scale", to_dtype=False
).reshape(-1)
return Fp8Weight(
weight=w,
weight_scale=weight_scale,
input_scale=input_scale,
dtype=weights.dtype,
force_w8a16=self.force_w8a16,
)
def get_weights_col_packed(
self,
weights: Weights,
prefix: str,
block_sizes: Union[int, List[int]],
):
w = weights.get_packed_sharded(
f"{prefix}.weight", dim=0, block_sizes=block_sizes
)
weight_scale = None
if self.load_weight_scale:
weight_scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
if weight_scale.numel() > 1:
weight_scale = weights.get_packed_sharded(
f"{prefix}.weight_scale",
dim=0,
block_sizes=block_sizes,
to_dtype=False,
)
weight_scale = weight_scale.reshape(-1).expand(w.shape[0])
logical_widths = [w.shape[0]]
w, weight_scale = requantize_with_max_scale(
w,
weight_scale.unsqueeze(-1).to(weights.device),
logical_widths,
weights.dtype,
)
input_scale = None
if self.load_input_scale:
input_scale = weights.get_tensor(f"{prefix}.input_scale", to_dtype=False)
if input_scale.numel() > 1:
input_scale = weights.get_packed_sharded(
f"{prefix}.input_scale",
dim=0,
block_sizes=block_sizes,
to_dtype=False,
)
input_scale = input_scale.reshape(-1).max()
return Fp8Weight(
weight=w,
weight_scale=weight_scale,
input_scale=input_scale,
dtype=weights.dtype,
force_w8a16=self.force_w8a16,
)
def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int):
# FIXME: Force to_device to false as fp8 weights do not support torch.cat on device yet
w = [
weights.get_sharded(f"{p}.weight", dim=0, to_device=False) for p in prefixes
]
shapes = [x.shape for x in w]
# Concat then send to the device
w = torch.cat(w, dim=dim).to(weights.device)
weight_scale = None
if self.load_weight_scale:
weight_scale = [
_load_scalar_or_matrix_scale(weights, f"{p}.weight_scale", shape)
for p, shape in zip(prefixes, shapes)
]
weight_scale = torch.cat(weight_scale, dim=0).reshape(-1)
logical_widths = [x[0] for x in shapes]
w, weight_scale = requantize_with_max_scale(
w,
weight_scale.unsqueeze(-1).to(weights.device),
logical_widths,
weights.dtype,
)
input_scale = None
if self.load_input_scale:
input_scale = [
_load_scalar_or_matrix_scale(weights, f"{p}.input_scale", shape)
for p, shape in zip(prefixes, shapes)
if weights.has_tensor(f"{p}.input_scale")
]
assert len(input_scale) == 0 or len(input_scale) == len(prefixes)
input_scale = (
torch.cat(input_scale, dim=0).reshape(-1).max()
if len(input_scale) != 0
else None
)
return Fp8Weight(
weight=w,
weight_scale=weight_scale,
input_scale=input_scale,
dtype=weights.dtype,
force_w8a16=self.force_w8a16,
)
def get_multi_weights(self, weights: "Weights", prefixes: List[str], dim: int):
# FIXME: Force to_device to false as fp8 weights do not support torch.cat on device yet
w = [weights.get_tensor(f"{p}.weight", to_device=False) for p in prefixes]
shapes = [x.shape for x in w]
# Concat then send to the device
w = torch.cat(w, dim=dim).to(weights.device)
weight_scale = None
if self.load_weight_scale:
weight_scale = [
weights.get_tensor(f"{p}.weight_scale", to_dtype=False)
.reshape(-1)
.expand(shape[0])
for p, shape in zip(prefixes, shapes)
]
weight_scale = torch.cat(weight_scale, dim=0).reshape(-1)
logical_widths = [x[0] for x in shapes]
w, weight_scale = requantize_with_max_scale(
w,
weight_scale.unsqueeze(-1).to(weights.device),
logical_widths,
weights.dtype,
)
input_scale = None
if self.load_input_scale:
input_scale = [
weights.get_tensor(f"{p}.input_scale", to_dtype=False)
.reshape(-1)
.expand(shape[0])
for p, shape in zip(prefixes, shapes)
if weights.has_tensor(f"{p}.input_scale")
]
assert len(input_scale) == 0 or len(input_scale) == len(prefixes)
input_scale = (
torch.cat(input_scale, dim=0).reshape(-1).max()
if len(input_scale) != 0
else None
)
return Fp8Weight(
weight=w,
weight_scale=weight_scale,
input_scale=input_scale,
dtype=weights.dtype,
force_w8a16=self.force_w8a16,
)
def get_weights_row(self, weights: "Weights", prefix: str):
w = weights.get_sharded(f"{prefix}.weight", dim=1)
weight_scale = None
if self.load_weight_scale:
weight_scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
weight_scale = weight_scale.reshape(-1).expand(w.shape[0])
logical_widths = [w.shape[0]]
w, weight_scale = requantize_with_max_scale(
w,
weight_scale.unsqueeze(-1).to(weights.device),
logical_widths,
weights.dtype,
)
input_scale = None
if self.load_input_scale:
input_scale = weights.get_tensor(
f"{prefix}.input_scale", to_dtype=False
).reshape(-1)
return Fp8Weight(
weight=w,
weight_scale=weight_scale,
input_scale=input_scale,
dtype=weights.dtype,
force_w8a16=self.force_w8a16,
)

View File

@ -1,43 +0,0 @@
from dataclasses import dataclass
import torch
from EETQ import quant_weights, w8_a16_gemm
from text_generation_server.utils.weights import UnquantizedWeight
@dataclass
class EETQWeight(UnquantizedWeight):
weight: torch.Tensor
def get_linear(self, bias: torch.Tensor):
try:
from text_generation_server.layers.eetq import EETQLinear
return EETQLinear(self.weight, bias)
except ImportError:
raise ImportError(
"Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
)
class EETQLinear(torch.nn.Module):
def __init__(
self,
weight,
bias,
) -> None:
super().__init__()
device = weight.device
if weight.dtype != torch.float16:
weight = weight.to(dtype=torch.float16)
weight = torch.t(weight).contiguous().cpu()
weight, scale = quant_weights(weight, torch.int8, False)
self.weight = weight.cuda(device)
self.scale = scale.cuda(device)
self.bias = bias.cuda(device) if bias is not None else None
def forward(self, input: torch.Tensor) -> torch.Tensor:
output = w8_a16_gemm(input, self.weight, self.scale)
output = output + self.bias if self.bias is not None else output
return output

View File

@ -1,102 +1,295 @@
from dataclasses import dataclass
from typing import Optional, Tuple, Type, Union, List
import torch
from dataclasses import dataclass
from typing import Optional, Union, List
from loguru import logger
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.weights import (
Weight,
WeightsLoader,
UnquantizedWeight,
Weights,
)
from text_generation_server.utils.log import log_master, log_once
import importlib.util
from vllm_hpu_extension.ops import scaled_fp8_quant
from vllm_hpu_extension.scales import get_hpu_gaudi2_scale_factor, is_hpu_gaudi2
quant_dtype: torch.dtype = torch.float8_e4m3fn
FP8_MAX = torch.finfo(torch.float8_e4m3fn).max
if is_hpu_gaudi2():
FP8_MAX = torch.finfo(torch.float8_e4m3fnuz).max
FBGEMM_MM_AVAILABLE = False
FBGEMM_DYN_AVAILABLE = False
def pad_weight(weight, block_size):
"""Pads a matrix to make its dimensions multiples of block_size."""
M, N = weight.shape[-2:]
block_size_m, block_size_n = block_size
pad_M = (block_size_m - M % block_size_m) % block_size_m
pad_N = (block_size_n - N % block_size_n) % block_size_n
if pad_M == 0 and pad_N == 0:
return weight, M, N # No padding needed
padded_weight = torch.nn.functional.pad(
weight, (0, pad_N, 0, pad_M), mode="constant", value=0
)
return padded_weight, M, N # Return original dimensions for unpadding
def is_fbgemm_gpu_available():
try:
return importlib.util.find_spec("fbgemm_gpu.experimental.gen_ai") is not None
except ModuleNotFoundError:
return False
def unpad_weight(weight, original_M, original_N, keep_first_dim=False):
"""Removes padding from the matrix to restore its original shape."""
if (weight.shape[-2] == original_M) and (weight.shape[-1] == original_N):
return weight
if keep_first_dim:
return weight[:, :original_M, :original_N]
else:
return weight[:original_M, :original_N]
if is_fbgemm_gpu_available():
if SYSTEM == "cuda":
major, _ = torch.cuda.get_device_capability()
FBGEMM_MM_AVAILABLE = major == 9
FBGEMM_DYN_AVAILABLE = major >= 8
else:
log_master(logger.warning, "FBGEMM fp8 kernels are not installed.")
def pad_block_fp8_weight_naive(weight, weight_scale, block_size):
assert len(block_size) == 2
block_size_m, block_size_n = block_size
weight_scale_m, weight_scale_n = weight_scale.shape[-2:]
weight, orig_M, orig_N = pad_weight(weight, block_size)
M, N = weight.shape[-2:]
assert weight_scale_m == M // block_size_m
assert weight_scale_n == N // block_size_n
return weight, orig_M, orig_N
def get_fp8_linear() -> torch.nn.Module:
def dynamic_quant(data, single_scale=False):
if single_scale:
scale = ((torch.abs(data)).max() + 1e-8) / FP8_MAX
else:
scale = ((torch.abs(data)).max(dim=-1).values + 1e-8) / FP8_MAX
scale = scale.unsqueeze(-1)
data_fp8 = torch.ops.hpu.cast_to_fp8_v2(
data, 1.0 / scale, False, False, torch.float8_e4m3fn
)[0]
return data_fp8, scale.float()
def dequant_block_fp8_weight_naive(
weight,
weight_scale,
block_size,
dtype=torch.bfloat16,
original_M=None,
original_N=None,
do_unpad=False,
):
if weight_scale is None:
return weight
assert len(block_size) == 2
weight_shape_len = len(weight.shape)
block_size_m, block_size_n = block_size
# mul scale
if weight_shape_len == 2:
weight_scale_m, weight_scale_n = weight_scale.shape
weight_scale = weight_scale.view(weight_scale_m, 1, weight_scale_n, 1)
weight = weight.view(weight_scale_m, block_size_m, weight_scale_n, block_size_n)
if is_hpu_gaudi2():
fake_weight = weight.cpu().to(dtype).to(weight.device)
dequant_weight = fake_weight * weight_scale.to(dtype)
else:
dequant_weight = weight.to(dtype) * weight_scale.to(dtype)
dequant_weight = dequant_weight.view(
weight_scale_m * block_size_m, weight_scale_n * block_size_n
)
keep_first_dim = False
elif weight_shape_len == 3:
fd, weight_scale_m, weight_scale_n = weight_scale.shape
weight_scale = weight_scale.view(fd, weight_scale_m, 1, weight_scale_n, 1)
weight = weight.view(
fd, weight_scale_m, block_size_m, weight_scale_n, block_size_n
)
if is_hpu_gaudi2():
fake_weight = weight.cpu().to(dtype).to(weight.device)
dequant_weight = fake_weight * weight_scale.to(dtype)
else:
dequant_weight = weight.to(dtype) * weight_scale.to(dtype)
dequant_weight = dequant_weight.view(
fd, weight_scale_m * block_size_m, weight_scale_n * block_size_n
)
keep_first_dim = True
else:
raise ValueError("Only support original weight shape is either 2 or 3")
if do_unpad:
dequant_weight = unpad_weight(
dequant_weight, original_M, original_N, keep_first_dim=keep_first_dim
)
return dequant_weight
def apply_block_fp8_linear_hpu_dynamic(
input: torch.Tensor,
weight: torch.Tensor,
weight_scale: torch.Tensor,
input_scale: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
# View input as 2D matrix for fp8 methods
input_2d = input.view(-1, input.shape[-1])
output_shape = [*input.shape[:-1], weight.shape[0]]
x_fp8, x_scale = dynamic_quant(input_2d)
output = torch.ops.hpu.fp8_gemm_v2(
x_fp8,
False,
weight,
True,
None,
torch.bfloat16,
x_scale,
weight_scale,
None,
False,
)
if bias is not None:
output = output + bias
return output.to(dtype=input.dtype).view(*output_shape)
def get_fp8_linear(force_w8a16: bool = False) -> Type[torch.nn.Module]:
"""
Return an FP8 linear `Module` that is compatible with the current system.
"""
if SYSTEM == "cuda":
major, _ = torch.cuda.get_device_capability()
if major == 8:
from text_generation_server.layers.marlin import GPTQMarlinFP8Linear
return GPTQMarlinFP8Linear
# On other systems let Torch decide if the hardware supports FP8.
return Fp8Linear
def fp8_quantize(
weight, scale_upper_bound=None, qdtype=torch.float8_e4m3fn, scalar=False
):
if FBGEMM_DYN_AVAILABLE and not scalar:
qweight, scale = torch.ops.fbgemm.quantize_fp8_per_row(
weight, bs=None, scale_ub=scale_upper_bound, output_dtype=qdtype
)
return qweight, scale
def normalize_e4m3fn_to_native_float8(
weight: torch.Tensor,
weight_scale: torch.Tensor,
input_scale: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
return weight, weight_scale, input_scale
# weight, scale = quant_weights(weight, torch.int8, False)
finfo = torch.finfo(qdtype)
# Calculate the scale as dtype max divided by absmax
scale = finfo.max / weight.abs().max().clamp(min=1e-12, max=scale_upper_bound)
# scale and clamp the tensor to bring it to
# the representative range of float8 data type
# (as default cast is unsaturated)
qweight = (weight * scale).clamp(min=finfo.min, max=finfo.max)
# Return both float8 data and the inverse scale (as float),
# as both required as inputs to torch._scaled_mm
qweight = qweight.to(qdtype)
scale = scale.float().reciprocal()
return qweight, scale
def per_tensor_dequantize(
tensor: torch.Tensor,
inv_scale: Union[float, torch.Tensor],
dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
device = tensor.device
dtype = torch.bfloat16
if is_hpu_gaudi2():
# dequant on cpu to avoid nan on gaudi2
tensor = tensor.to("cpu")
fake_qweight = tensor.to(dtype).to(device)
dq_weight = fake_qweight * inv_scale
return dq_weight
def requantize_with_max_scale(
weight: torch.Tensor,
weight_scale: torch.Tensor,
logical_widths: int,
dtype: torch.dtype,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Max scale to be used for requanitzation.
max_w_scale = weight_scale.max()
if is_hpu_gaudi2():
max_w_scale = max_w_scale * get_hpu_gaudi2_scale_factor()
start = 0
for idx, logical_width in enumerate(logical_widths):
end = start + logical_width
weight_dq = per_tensor_dequantize(
weight[start:end, :], weight_scale[start:end, :], dtype
)
weight[start:end, :], max_w_scale_normalized = fp8_quantize(
weight_dq, max_w_scale
)
start = end
return weight, max_w_scale_normalized
def fp8_quantize(
weight: torch.Tensor,
scale: Optional[torch.Tensor] = None,
scale_upper_bound: Optional[torch.Tensor] = None,
qdtype: torch.dtype = torch.float8_e4m3fn,
scalar: bool = False,
):
"""
This function returns a reciprocal of the scale, so that a tensor can be unscaled
by multiplying it with the returned scale. If a scale is given through the `scale`
argument, it must also be a reciprocal (so that scales from an FP8 checkpoint can
be used without modification).
"""
shape = weight.shape
qweight, scale = scaled_fp8_quant(
weight.reshape(-1, shape[-1]),
scale=scale,
scale_ub=scale_upper_bound,
# TODO: don't do this when we have to use the Torch kernel.
use_per_token_if_dynamic=not scalar,
)
return qweight.reshape(shape), scale
class HybridFP8UnquantLoader(WeightsLoader):
"""Weight loader that loads FP8 and unquantized Torch tensors."""
def __init__(self, activation_scale_ub: Optional[float], to_fp8: bool):
def __init__(
self,
activation_scale_ub: Optional[float],
to_fp8: bool,
weight_block_size: Optional[List[int]] = None,
):
self.activation_scale_ub = activation_scale_ub
self.to_fp8 = to_fp8
self.weight_block_size = weight_block_size
def get_weights(self, weights: "Weights", prefix: str):
w = weights.get_tensor(f"{prefix}.weight")
if w.dtype == torch.float8_e4m3fn:
# FP8 branch
scale = (
weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
.reshape(-1)
.expand(w.shape[0])
)
if self.weight_block_size is not None:
scale = weights.get_tensor(f"{prefix}.weight_scale_inv")
return Fp8Weight(
weight=w,
weight_scale=scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
weight_block_size=self.weight_block_size,
)
# FP8 branch
scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
scale = scale.reshape(-1).expand(w.shape[0])
logical_widths = [w.shape[0]]
w, scale = requantize_with_max_scale(
w, scale.unsqueeze(-1).to(weights.device), logical_widths, weights.dtype
)
input_scale = None
if weights.has_tensor(f"{prefix}.input_scale"):
input_scale = (
weights.get_tensor(f"{prefix}.input_scale", to_dtype=False)
.reshape(-1)
.max()
)
return Fp8Weight(
weight=w,
weight_scale=scale,
input_scale=input_scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
if self.to_fp8:
return Fp8Weight(weight=w, dtype=weights.dtype)
@ -116,6 +309,7 @@ class HybridFP8UnquantLoader(WeightsLoader):
if w.dtype == torch.float8_e4m3fn:
# FP8 branch
scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
if scale.numel() > 1:
scale = weights.get_packed_sharded(
f"{prefix}.weight_scale",
@ -124,10 +318,29 @@ class HybridFP8UnquantLoader(WeightsLoader):
to_dtype=False,
)
scale = scale.reshape(-1).expand(w.shape[0])
logical_widths = [w.shape[0]]
w, scale = requantize_with_max_scale(
w, scale.unsqueeze(-1).to(weights.device), logical_widths, weights.dtype
)
input_scale = None
if weights.has_tensor(f"{prefix}.input_scale"):
input_scale = weights.get_tensor(
f"{prefix}.input_scale", to_dtype=False
)
if input_scale.numel() > 1:
input_scale = weights.get_packed_sharded(
f"{prefix}.input_scale",
dim=0,
block_sizes=block_sizes,
to_dtype=False,
)
input_scale = input_scale.reshape(-1).max()
return Fp8Weight(
weight=w,
weight_scale=scale,
input_scale=input_scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
@ -148,15 +361,110 @@ class HybridFP8UnquantLoader(WeightsLoader):
# FP8 branch
if w.dtype == torch.float8_e4m3fn:
if self.weight_block_size is not None:
scale = [
weights.get_sharded(f"{p}.weight_scale_inv", dim=0, to_device=False)
for p in prefixes
]
scale = torch.cat(scale, dim=dim)
scale = scale.to(weights.device)
return Fp8Weight(
weight=w,
weight_scale=scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
weight_block_size=self.weight_block_size,
)
scale = [
_load_scalar_or_matrix_scale(weights, f"{p}.weight_scale", shape)
for p, shape in zip(prefixes, shapes)
]
scale = torch.cat(scale, dim=0).reshape(-1)
logical_widths = [x[0] for x in shapes]
w, scale = requantize_with_max_scale(
w, scale.unsqueeze(-1).to(weights.device), logical_widths, weights.dtype
)
input_scale = [
_load_scalar_or_matrix_scale(weights, f"{p}.input_scale", shape)
for p, shape in zip(prefixes, shapes)
if weights.has_tensor(f"{p}.input_scale")
]
assert len(input_scale) == 0 or len(input_scale) == len(prefixes)
input_scale = (
torch.cat(input_scale, dim=0).reshape(-1).max()
if len(input_scale) != 0
else None
)
return Fp8Weight(
weight=w,
weight_scale=scale,
input_scale=input_scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
if self.to_fp8:
return Fp8Weight(weight=w, dtype=weights.dtype)
return UnquantizedWeight(w)
def get_multi_weights(self, weights: "Weights", prefixes: List[str], dim: int):
# FIXME: Force to_device to false as fp8 weights do not support torch.cat on device yet
w = [weights.get_tensor(f"{p}.weight", to_device=False) for p in prefixes]
shapes = [x.shape for x in w]
# Concat then send to the device
w = torch.cat(w, dim=dim).to(weights.device)
# FP8 branch
if w.dtype == torch.float8_e4m3fn:
if self.weight_block_size is not None:
scale = [
weights.get_tensor(f"{p}.weight_scale_inv", to_device=False)
for p in prefixes
]
scale = torch.cat(scale, dim=dim)
scale = scale.to(weights.device)
return Fp8Weight(
weight=w,
weight_scale=scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
weight_block_size=self.weight_block_size,
)
scale = [
weights.get_tensor(f"{p}.weight_scale", to_dtype=False)
.reshape(-1)
.expand(shape[0])
for p, shape in zip(prefixes, shapes)
]
scale = torch.cat(scale, dim=0).reshape(-1)
logical_widths = [x[0] for x in shapes]
w, scale = requantize_with_max_scale(
w, scale.unsqueeze(-1).to(weights.device), logical_widths, weights.dtype
)
input_scale = [
weights.get_tensor(f"{p}.input_scale", to_dtype=False).reshape(-1)
for p in prefixes
if weights.has_tensor(f"{p}.input_scale")
]
assert len(input_scale) == 0 or len(input_scale) == len(prefixes)
input_scale = (
torch.cat(input_scale, dim=0).reshape(-1).max()
if len(input_scale) != 0
else None
)
return Fp8Weight(
weight=w,
weight_scale=scale,
input_scale=input_scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
@ -169,14 +477,40 @@ class HybridFP8UnquantLoader(WeightsLoader):
w = weights.get_sharded(f"{prefix}.weight", dim=1)
# FP8 branch
if w.dtype == torch.float8_e4m3fn:
if self.weight_block_size is not None:
# XXX: Yes the weights is named scale_inv, but corresponds to scale it seems.
scale = weights.get_sharded(f"{prefix}.weight_scale_inv", dim=1)
return Fp8Weight(
weight=w,
weight_scale=scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
weight_block_size=self.weight_block_size,
)
scale = (
weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
.reshape(-1)
.expand(w.shape[0])
)
logical_widths = [w.shape[0]]
w, scale = requantize_with_max_scale(
w, scale.unsqueeze(-1).to(weights.device), logical_widths, weights.dtype
)
input_scale = None
if weights.has_tensor(f"{prefix}.input_scale"):
input_scale = (
weights.get_tensor(f"{prefix}.input_scale", to_dtype=False)
.reshape(-1)
.max()
)
return Fp8Weight(
weight=w,
weight_scale=scale,
input_scale=input_scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
@ -191,95 +525,131 @@ class Fp8Weight(Weight):
weight: torch.Tensor
dtype: torch.dtype
weight_scale: Optional[torch.Tensor] = None
input_scale: Optional[torch.Tensor] = None
activation_scale_ub: Optional[float] = None
force_w8a16: bool = False
weight_block_size: Optional[List[int]] = None
def get_linear(self, bias: torch.Tensor):
if self.weight_scale is None:
return get_fp8_linear().from_unquant(self.weight, bias, self.dtype)
return get_fp8_linear(force_w8a16=self.force_w8a16).from_unquant(
self.weight, bias, self.dtype
)
# This is not checked by the fbgemm kernels, but they require contiguous
# memory. Can be non-contiguous when we e.g. expand from scalars.
self.weight_scale = self.weight_scale.contiguous()
return get_fp8_linear().from_fp8(
self.weight, self.weight_scale, self.activation_scale_ub, bias, self.dtype
return get_fp8_linear(force_w8a16=self.force_w8a16).from_fp8(
weight=self.weight,
scale=self.weight_scale,
dtype=self.dtype,
bias=bias,
input_scale=self.input_scale,
scale_upper_bound=self.activation_scale_ub,
weight_block_size=self.weight_block_size,
)
class Fp8Linear(torch.nn.Module):
_device_identity_cache = {}
def __init__(
self,
qweight,
scale,
scale_upper_bound,
bias,
dtype,
qweight: torch.Tensor,
scale: torch.Tensor,
dtype: torch.dtype,
bias: Optional[torch.Tensor] = None,
input_scale: Optional[torch.Tensor] = None,
scale_upper_bound: Optional[float] = None,
weight_block_size: Optional[List[int]] = None,
) -> None:
super().__init__()
if FBGEMM_MM_AVAILABLE:
log_once(logger.info, "Using FBGEMM fp8 optimized kernels")
self.dtype = dtype
self.qweight = qweight
self.scale = scale
self.scale_upper_bound = (
torch.tensor(
[scale_upper_bound], dtype=torch.float32, device=qweight.device
)
if scale_upper_bound is not None
else None
)
self.scale = scale.float()
self.input_scale = input_scale.float() if input_scale is not None else None
self.weight_block_size = weight_block_size
self.scale_upper_bound = scale_upper_bound
self.bias = bias if bias is not None else None
@classmethod
def from_unquant(cls, weight, bias, dtype):
qweight, scale = fp8_quantize(weight, scalar=not FBGEMM_MM_AVAILABLE)
qweight, scale = fp8_quantize(weight, scalar=True)
return cls(
qweight=qweight, scale=scale, scale_upper_bound=None, bias=bias, dtype=dtype
qweight=qweight,
scale=scale,
dtype=dtype,
bias=bias,
input_scale=None,
scale_upper_bound=None,
)
@classmethod
def from_fp8(cls, weight, scale, input_scale, bias, dtype):
if FBGEMM_DYN_AVAILABLE:
# fbgemm needs float32 scales.
scale = scale.float()
def from_fp8(
cls,
weight: torch.Tensor,
scale: torch.Tensor,
dtype: torch.dtype,
bias: Optional[torch.Tensor] = None,
**kwargs,
) -> "Fp8Linear":
input_scale = kwargs.get("input_scale", None)
scale_upper_bound = kwargs.get("scale_upper_bound", None)
weight_block_size = kwargs.get("weight_block_size", None)
if weight_block_size is not None:
weight, orig_M, orig_N = pad_block_fp8_weight_naive(
weight, scale, weight_block_size
)
weight, scale = dynamic_quant(
dequant_block_fp8_weight_naive(
weight,
scale,
weight_block_size,
original_M=orig_M,
original_N=orig_N,
do_unpad=True,
)
)
scale = scale.squeeze(-1)
return cls(
qweight=weight,
scale=scale,
scale_upper_bound=input_scale,
input_scale=input_scale,
scale_upper_bound=scale_upper_bound,
bias=bias,
dtype=dtype,
weight_block_size=weight_block_size,
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
if FBGEMM_MM_AVAILABLE:
qinput, scale = fp8_quantize(
input, scale_upper_bound=self.scale_upper_bound
if self.weight_block_size is not None or self.input_scale is None:
return apply_block_fp8_linear_hpu_dynamic(
input, self.qweight, self.scale, self.input_scale, self.bias
)
y = torch.ops.fbgemm.f8f8bf16_rowwise(
qinput,
self.qweight,
scale,
self.scale,
use_fast_accum=True,
x_fp8 = torch.ops.hpu.cast_to_fp8_v2(
input, 1.0 / self.input_scale, False, False, torch.float8_e4m3fn
)[0]
return torch.ops.hpu.fp8_gemm_v2(
A=x_fp8,
trans_A=False,
B=self.qweight,
trans_B=True,
D=None,
out_dtype=input.dtype,
A_scale_inv=self.input_scale,
B_scale_inv=self.scale,
bias=self.bias,
accumulate=False,
)
return y.to(self.dtype)
qinput, scale = fp8_quantize(input, scalar=True)
output, _ = torch._scaled_mm(
qinput,
self.qweight.t(),
out_dtype=self.dtype,
scale_a=scale,
scale_b=self.scale,
bias=self.bias,
)
return output
def _load_scalar_or_matrix_scale(weights: Weights, prefix: str, shape: torch.Size):
scale = weights.get_tensor(prefix, to_dtype=False)
if scale.numel() > 1:
scale = weights.get_sharded(prefix, dim=0, to_dtype=False)
return scale.reshape(-1).expand(shape[0])

View File

@ -1,12 +1,18 @@
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import torch
from loguru import logger
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.log import log_once
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
from text_generation_server.utils.weights import (
Weight,
Weights,
WeightsLoader,
DefaultWeightsLoader,
)
from .hpu import QuantLinear
@dataclass
@ -30,13 +36,8 @@ class GPTQWeight(Weight):
def get_linear(self, bias: torch.Tensor):
if self.use_awq_kernel:
if SYSTEM == "rocm":
raise NotImplementedError(
"AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead "
"to use Exllama/GPTQ kernels for AWQ inference."
)
try:
from text_generation_server.layers.awq.quantize.qmodule import WQLinear
from text_generation_server.layers.awq.quantize import WQLinear
return WQLinear(
w_bit=self.bits,
@ -50,18 +51,7 @@ class GPTQWeight(Weight):
raise NotImplementedError(
"You do not seem to have awq installed, either install it (cd server && make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
)
elif self.use_exllama:
try:
from text_generation_server.layers.gptq import ExllamaQuantLinear
except ImportError:
raise NotImplementedError(
"Exllama gptq kernels are not installed. Install them `cd server/exllama_kernels && python setup.py install && cd ../exllamav2_kernels && python setup.py install`"
)
return ExllamaQuantLinear(self, bias)
else:
from text_generation_server.layers.gptq.quant_linear import QuantLinear
return QuantLinear(
self.qweight,
self.qzeros,
@ -87,6 +77,7 @@ class GPTQWeightsLoader(WeightsLoader):
quant_method: str,
quantize: str,
sym: bool,
modules_to_not_convert: List[str],
):
self.bits = bits
self.desc_act = desc_act
@ -94,6 +85,12 @@ class GPTQWeightsLoader(WeightsLoader):
self.quant_method = quant_method
self.quantize = quantize
self.sym = sym
self.modules_to_not_convert = modules_to_not_convert
def is_layer_skipped_quantization(
self, prefix: str, modules_to_not_convert: List[str]
):
return any(module_name in prefix for module_name in modules_to_not_convert)
def get_weights(self, weights: Weights, prefix: str):
self._get_gptq_params(weights)
@ -106,6 +103,9 @@ class GPTQWeightsLoader(WeightsLoader):
log_once(logger.warning, "Disabling exllama because desc_act=True")
use_exllama = False
if self.is_layer_skipped_quantization(prefix, self.modules_to_not_convert):
return DefaultWeightsLoader.get_weights(weights, prefix)
try:
qweight = weights.get_tensor(f"{prefix}.qweight")
except RuntimeError:
@ -118,23 +118,6 @@ class GPTQWeightsLoader(WeightsLoader):
else:
g_idx = None
from text_generation_server.layers.gptq import (
HAS_EXLLAMA,
CAN_EXLLAMA,
GPTQWeight,
)
if use_exllama:
if not HAS_EXLLAMA:
if CAN_EXLLAMA:
log_once(
logger.warning,
"Exllama GPTQ cuda kernels (which are faster) could have been used, but are not currently installed, try using BUILD_EXTENSIONS=True",
)
use_exllama = False
else:
log_once(logger.info, f"Using exllama kernels v{HAS_EXLLAMA}")
qzeros = weights.get_tensor(f"{prefix}.qzeros")
scales = weights.get_tensor(f"{prefix}.scales")
@ -177,6 +160,10 @@ class GPTQWeightsLoader(WeightsLoader):
prefix: str,
block_sizes: Union[int, List[int]],
):
if self.is_layer_skipped_quantization(prefix, self.modules_to_not_convert):
return DefaultWeightsLoader.get_weights_col_packed(
weights, prefix, block_sizes
)
try:
qweight = weights.get_packed_sharded(
f"{prefix}.qweight", dim=1, block_sizes=block_sizes
@ -228,6 +215,8 @@ class GPTQWeightsLoader(WeightsLoader):
)
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
if self.is_layer_skipped_quantization(prefixes[0], self.modules_to_not_convert):
return DefaultWeightsLoader.get_multi_weights_col(weights, prefixes, dim)
try:
qweight = torch.cat(
[weights.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1
@ -247,14 +236,7 @@ class GPTQWeightsLoader(WeightsLoader):
[weights.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1
)
from text_generation_server.layers.gptq import HAS_EXLLAMA
use_exllama = (
self.bits == 4
and HAS_EXLLAMA
and self.quantize == "gptq"
and not self.desc_act
)
use_exllama = self.bits == 4 and self.quantize == "gptq" and not self.desc_act
if self.quantize == "gptq" and self.quant_method == "gptq":
w = [weights.get_tensor(f"{p}.g_idx") for p in prefixes]
@ -294,13 +276,74 @@ class GPTQWeightsLoader(WeightsLoader):
use_exllama=use_exllama,
)
def get_multi_weights(self, weights: Weights, prefixes: List[str], dim: int):
if self.is_layer_skipped_quantization(prefixes[0], self.modules_to_not_convert):
return DefaultWeightsLoader.get_multi_weights(weights, prefixes, dim)
try:
qweight = torch.cat(
[weights.get_tensor(f"{p}.qweight") for p in prefixes], dim=1
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{self.quantize}` weight, make sure the model is already quantized"
)
scales = torch.cat([weights.get_tensor(f"{p}.scales") for p in prefixes], dim=1)
self._get_gptq_params(weights)
qzeros = torch.cat([weights.get_tensor(f"{p}.qzeros") for p in prefixes], dim=1)
use_exllama = self.bits == 4 and self.quantize == "gptq" and not self.desc_act
if self.quantize == "gptq" and self.quant_method == "gptq":
w = [weights.get_tensor(f"{p}.g_idx") for p in prefixes]
for w2 in w[1:]:
torch.testing.assert_close(w2, w[0])
g_idx = w[0]
elif self.quantize == "gptq" and self.quant_method == "awq":
log_once(
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
)
from text_generation_server.layers.awq.conversion_utils import (
fast_awq_to_gptq,
)
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
if use_exllama:
g_idx = None
else:
g_idx = (
torch.arange(
qweight.shape[0] * (32 // self.bits),
device=qweight.device,
)
).to(dtype=torch.int32)
else:
g_idx = None
return GPTQWeight(
qweight=qweight,
qzeros=qzeros,
scales=scales,
g_idx=g_idx,
bits=self.bits,
groupsize=self.groupsize,
use_awq_kernel=self.quantize == "awq",
use_exllama=use_exllama,
)
def get_weights_row(self, weights: Weights, prefix: str):
self._get_gptq_params(weights)
use_exllama = True
desc_act = self.desc_act
if self.bits != 4:
use_exllama = False
if self.is_layer_skipped_quantization(prefix, self.modules_to_not_convert):
return DefaultWeightsLoader.get_weights_row(weights, prefix)
if self.desc_act:
log_once(logger.warning, "Disabling exllama because desc_act=True")
use_exllama = False
@ -321,7 +364,8 @@ class GPTQWeightsLoader(WeightsLoader):
if g_idx is not None:
if (
not torch.equal(
g_idx.cpu(),
# Remove g_idx[0] to adapt the check with TP>1.
(g_idx - g_idx[0]).cpu(),
torch.tensor(
[i // self.groupsize for i in range(g_idx.shape[0])],
dtype=torch.int32,
@ -332,34 +376,22 @@ class GPTQWeightsLoader(WeightsLoader):
# Exllama implementation does not support row tensor parallelism with act-order, as
# it would require to reorder input activations that are split unto several GPUs
use_exllama = False
desc_act = True
from text_generation_server.layers.gptq import (
CAN_EXLLAMA,
HAS_EXLLAMA,
GPTQWeight,
)
if use_exllama:
if not HAS_EXLLAMA:
if CAN_EXLLAMA:
log_once(
logger.warning,
"Exllama GPTQ cuda kernels (which are faster) could have been used, but are not currently installed, try using BUILD_EXTENSIONS=True",
)
use_exllama = False
else:
log_once(logger.info, f"Using exllama kernels v{HAS_EXLLAMA}")
if use_exllama and self.groupsize != -1:
if not desc_act and self.groupsize != -1:
qzeros = weights.get_sharded(f"{prefix}.qzeros", dim=0)
scales = weights.get_sharded(f"{prefix}.scales", dim=0)
if g_idx is not None:
# qzeros, scales sharded, and g_idx must be adjusted accordingly
g_idx = g_idx - g_idx[0]
else:
qzeros = weights.get_tensor(f"{prefix}.qzeros")
scales = weights.get_tensor(f"{prefix}.scales")
if use_exllama and g_idx is not None:
g_idx = g_idx - g_idx[0]
if self.quantize == "gptq" and self.quant_method == "awq":
log_once(
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
@ -392,7 +424,7 @@ class GPTQWeightsLoader(WeightsLoader):
)
def _get_gptq_params(self, weights: Weights):
if weights._has_tensor("gptq_bits") and weights._has_tensor("gptq_groupsize"):
if weights.has_tensor("gptq_bits") and weights.has_tensor("gptq_groupsize"):
self.bits = weights.get_tensor("gptq_bits").item()
self.groupsize = weights.get_tensor("gptq_groupsize").item()
self.desc_act = False
@ -400,41 +432,7 @@ class GPTQWeightsLoader(WeightsLoader):
# before the `gptq_sym` setting tensor was added.
self.sym = (
weights.get_tensor("gptq_sym").item()
if weights._has_tensor("gptq_sym")
if weights.has_tensor("gptq_sym")
else False
)
self.quant_method = "gptq"
# Needs to be at the end because circular import.
try:
major, _minor = torch.cuda.get_device_capability()
except Exception:
major = 1
HAS_EXLLAMA = False
CAN_EXLLAMA = major >= 8 or SYSTEM == "rocm"
V2 = os.getenv("EXLLAMA_VERSION", "2") == "2"
if os.getenv("DISABLE_EXLLAMA") == "True":
HAS_EXLLAMA = False
elif CAN_EXLLAMA:
try:
if V2:
from text_generation_server.layers.gptq.exllamav2 import (
QuantLinear as ExllamaQuantLinear, # noqa: F401
create_exllama_buffers, # noqa: F401
set_device, # noqa: F401
)
HAS_EXLLAMA = "2"
else:
from text_generation_server.layers.gptq.exllama import (
Ex4bitLinear as ExllamaQuantLinear, # noqa: F401
create_exllama_buffers, # noqa: F401
set_device, # noqa: F401
)
HAS_EXLLAMA = "1"
except ImportError:
pass

View File

@ -1,261 +0,0 @@
# https://github.com/fpgaminer/GPTQ-triton
"""
Mostly the same as the autotuner in Triton, but with a few changes like using 40 runs instead of 100.
"""
import builtins
import math
import time
from typing import Dict
import triton
class Autotuner(triton.KernelInterface):
def __init__(
self,
fn,
arg_names,
configs,
key,
reset_to_zero,
prune_configs_by: Dict = None,
nearest_power_of_two: bool = False,
):
"""
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
'perf_model': performance model used to predicate running time with different configs, returns running time
'top_k': number of configs to bench
'prune_num_stages_by'(optional): a function used to prune num_stages. It take configs:List[Config] as its input, and returns pruned configs.
'nearest_power_of_two'(optional): whether to round key arguments to the nearest power of two when caching tuning results
"""
if not configs:
self.configs = [triton.Config({}, num_warps=4, num_stages=2)]
else:
self.configs = configs
self.key_idx = [arg_names.index(k) for k in key]
self.nearest_power_of_two = nearest_power_of_two
self.cache = {}
# hook to reset all required tensor to zeros before relaunching a kernel
self.hook = lambda args: 0
if reset_to_zero is not None:
self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
def _hook(args):
for i in self.reset_idx:
args[i].zero_()
self.hook = _hook
self.arg_names = arg_names
# prune configs
if prune_configs_by:
perf_model, top_k = (
prune_configs_by["perf_model"],
prune_configs_by["top_k"],
)
if "early_config_prune" in prune_configs_by:
early_config_prune = prune_configs_by["early_config_prune"]
else:
perf_model, top_k, early_config_prune = None, None, None
self.perf_model, self.configs_top_k = perf_model, top_k
self.early_config_prune = early_config_prune
self.fn = fn
def _bench(self, *args, config, **meta):
# check for conflicts, i.e. meta-parameters both provided
# as kwargs and by the autotuner
conflicts = meta.keys() & config.kwargs.keys()
if conflicts:
raise ValueError(
f"Conflicting meta-parameters: {', '.join(conflicts)}."
" Make sure that you don't re-define auto-tuned symbols."
)
# augment meta-parameters with tunable ones
current = dict(meta, **config.kwargs)
def kernel_call():
if config.pre_hook:
config.pre_hook(self.nargs)
self.hook(args)
self.fn.run(
*args,
num_warps=config.num_warps,
num_stages=config.num_stages,
**current,
)
try:
# In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses
# PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default
return triton.testing.do_bench(
kernel_call, quantiles=(0.5, 0.2, 0.8), rep=40
)
except triton.OutOfResources:
return [float("inf"), float("inf"), float("inf")]
def run(self, *args, **kwargs):
self.nargs = dict(zip(self.arg_names, args))
if len(self.configs) > 1:
key = tuple(args[i] for i in self.key_idx)
# This reduces the amount of autotuning by rounding the keys to the nearest power of two
# In my testing this gives decent results, and greatly reduces the amount of tuning required
if self.nearest_power_of_two:
key = tuple([2 ** int(math.log2(x) + 0.5) for x in key])
if key not in self.cache:
# prune configs
pruned_configs = self.prune_configs(kwargs)
bench_start = time.time()
timings = {
config: self._bench(*args, config=config, **kwargs)
for config in pruned_configs
}
bench_end = time.time()
self.bench_time = bench_end - bench_start
self.cache[key] = builtins.min(timings, key=timings.get)
self.hook(args)
self.configs_timings = timings
config = self.cache[key]
else:
config = self.configs[0]
self.best_config = config
if config.pre_hook is not None:
config.pre_hook(self.nargs)
return self.fn.run(
*args,
num_warps=config.num_warps,
num_stages=config.num_stages,
**kwargs,
**config.kwargs,
)
def prune_configs(self, kwargs):
pruned_configs = self.configs
if self.early_config_prune:
pruned_configs = self.early_config_prune(self.configs, self.nargs)
if self.perf_model:
top_k = self.configs_top_k
if isinstance(top_k, float) and top_k <= 1.0:
top_k = int(len(self.configs) * top_k)
if len(pruned_configs) > top_k:
est_timing = {
config: self.perf_model(
**self.nargs,
**kwargs,
**config.kwargs,
num_stages=config.num_stages,
num_warps=config.num_warps,
)
for config in pruned_configs
}
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[
:top_k
]
return pruned_configs
def warmup(self, *args, **kwargs):
self.nargs = dict(zip(self.arg_names, args))
for config in self.prune_configs(kwargs):
self.fn.warmup(
*args,
num_warps=config.num_warps,
num_stages=config.num_stages,
**kwargs,
**config.kwargs,
)
self.nargs = None
def autotune(
configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False
):
"""
Decorator for auto-tuning a :code:`triton.jit`'d function.
.. highlight:: python
.. code-block:: python
@triton.autotune(configs=[
triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4),
triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8),
],
key=['x_size'] # the two above configs will be evaluated anytime
# the value of x_size changes
)
@triton.jit
def kernel(x_ptr, x_size, **META):
BLOCK_SIZE = META['BLOCK_SIZE']
:note: When all the configurations are evaluated, the kernel will run multiple time.
This means that whatever value the kernel updates will be updated multiple times.
To avoid this undesired behavior, you can use the `reset_to_zero` argument, which
reset the value of the provided tensor to `zero` before running any configuration.
:param configs: a list of :code:`triton.Config` objects
:type configs: list[triton.Config]
:param key: a list of argument names whose change in value will trigger the evaluation of all provided configs.
:type key: list[str]
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
'perf_model': performance model used to predicate running time with different configs, returns running time
'top_k': number of configs to bench
'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It take configs:List[Config] as its input, and returns pruned configs.
:param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs.
:type reset_to_zero: list[str]
"""
def decorator(fn):
return Autotuner(
fn,
fn.arg_names,
configs,
key,
reset_to_zero,
prune_configs_by,
nearest_power_of_two,
)
return decorator
def matmul248_kernel_config_pruner(configs, nargs):
"""
The main purpose of this function is to shrink BLOCK_SIZE_* when the corresponding dimension is smaller.
"""
m = max(2 ** int(math.ceil(math.log2(nargs["M"]))), 16)
n = max(2 ** int(math.ceil(math.log2(nargs["N"]))), 16)
k = max(2 ** int(math.ceil(math.log2(nargs["K"]))), 16)
used = set()
for config in configs:
block_size_m = min(m, config.kwargs["BLOCK_SIZE_M"])
block_size_n = min(n, config.kwargs["BLOCK_SIZE_N"])
block_size_k = min(k, config.kwargs["BLOCK_SIZE_K"])
group_size_m = config.kwargs["GROUP_SIZE_M"]
if (
block_size_m,
block_size_n,
block_size_k,
group_size_m,
config.num_stages,
config.num_warps,
) in used:
continue
used.add(
(
block_size_m,
block_size_n,
block_size_k,
group_size_m,
config.num_stages,
config.num_warps,
)
)
yield triton.Config(
{
"BLOCK_SIZE_M": block_size_m,
"BLOCK_SIZE_N": block_size_n,
"BLOCK_SIZE_K": block_size_k,
"GROUP_SIZE_M": group_size_m,
},
num_stages=config.num_stages,
num_warps=config.num_warps,
)

View File

@ -1,134 +0,0 @@
from text_generation_server.layers.gptq import GPTQWeight
import torch
from exllama_kernels import make_q4, q4_matmul, prepare_buffers, set_tuning_params
# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
none_tensor = torch.empty((1, 1), device="meta")
def ext_make_q4(qweight, qzeros, scales, g_idx, device):
"""Construct Q4Matrix, return handle"""
return make_q4(
qweight, qzeros, scales, g_idx if g_idx is not None else none_tensor, device
)
def ext_q4_matmul(x, q4, q4_width):
"""Matrix multiplication, returns x @ q4"""
outshape = x.shape[:-1] + (q4_width,)
x = x.view(-1, x.shape[-1])
output = torch.empty((x.shape[0], q4_width), dtype=torch.float16, device=x.device)
q4_matmul(x, q4, output)
return output.view(outshape)
MAX_DQ = 1
MAX_INNER = 1
ACT_ORDER = False
DEVICE = None
TEMP_STATE = None
TEMP_DQ = None
def set_device(device):
global DEVICE
DEVICE = device
def create_exllama_buffers(max_total_tokens: int):
global MAX_DQ, MAX_INNER, ACT_ORDER, DEVICE, TEMP_STATE, TEMP_DQ
assert DEVICE is not None, "call set_device first"
if not ACT_ORDER:
max_total_tokens = 1
# This temp_state buffer is required to reorder X in the act-order case.
temp_state = torch.zeros(
(max_total_tokens, MAX_INNER), dtype=torch.float16, device=DEVICE
)
temp_dq = torch.zeros((1, MAX_DQ), dtype=torch.float16, device=DEVICE)
# This temp_dq buffer is required to dequantize weights when using cuBLAS, typically for the prefill.
prepare_buffers(DEVICE, temp_state, temp_dq)
matmul_recons_thd = 8
matmul_fused_remap = False
matmul_no_half2 = False
set_tuning_params(matmul_recons_thd, matmul_fused_remap, matmul_no_half2)
TEMP_STATE, TEMP_DQ = temp_state, temp_dq
class Ex4bitLinear(torch.nn.Module):
"""Linear layer implementation with per-group 4-bit quantization of the weights"""
def __init__(self, weight: GPTQWeight, bias):
super().__init__()
global MAX_DQ, MAX_INNER, ACT_ORDER, DEVICE
assert weight.bits == 4
self.device = weight.qweight.device
self.qweight = weight.qweight
self.qzeros = weight.qzeros
self.scales = weight.scales
self.g_idx = weight.g_idx.cpu() if weight.g_idx is not None else None
self.bias = bias if bias is not None else None
if self.g_idx is not None and (
(self.g_idx == 0).all()
or torch.equal(
weight.g_idx.cpu(),
torch.tensor(
[i // weight.groupsize for i in range(weight.g_idx.shape[0])],
dtype=torch.int32,
),
)
):
self.empty_g_idx = True
self.g_idx = None
assert self.device.type == "cuda"
assert self.device.index is not None
self.q4 = ext_make_q4(
self.qweight, self.qzeros, self.scales, self.g_idx, self.device.index
)
self.height = weight.qweight.shape[0] * 8
self.width = weight.qweight.shape[1]
# Infer groupsize from height of qzeros
self.groupsize = None
if self.qzeros.shape[0] > 1:
self.groupsize = (self.qweight.shape[0] * 8) // (self.qzeros.shape[0])
if self.groupsize is not None:
assert weight.groupsize == self.groupsize
# Handle act-order matrix
if self.g_idx is not None:
if self.groupsize is None:
raise ValueError("Found group index but no groupsize. What do?")
self.act_order = True
else:
self.act_order = False
DEVICE = self.qweight.device
MAX_DQ = max(MAX_DQ, self.qweight.numel() * 8)
if self.act_order:
MAX_INNER = max(MAX_INNER, self.height, self.width)
ACT_ORDER = True
def forward(self, x):
out = ext_q4_matmul(x, self.q4, self.width)
if self.bias is not None:
out.add_(self.bias)
return out

View File

@ -1,267 +0,0 @@
# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
from loguru import logger
from text_generation_server.layers.exl2 import Exl2Weight
from text_generation_server.layers.gptq import GPTQWeight
from text_generation_server.utils.log import log_master
try:
from exllamav2.ext import exllamav2_ext
make_q_matrix = exllamav2_ext.make_q_matrix
gemm_half_q_half = exllamav2_ext.gemm_half_q_half
except ImportError:
log_master(logger.warning, "exllamav2_kernels not installed.")
raise
# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
none_tensor = torch.empty((1, 1), device="meta")
@dataclass
class _ExtraTensors:
"""Additional generated quantizer tensors."""
q_group_map: Optional[torch.Tensor] = None
q_invperm: Optional[torch.Tensor] = None
q_perm: Optional[torch.Tensor] = None
def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda):
"""Matrix multiplication, returns x @ q4"""
output_shape = x.shape[:-1] + (q4_width,)
x = x.view(-1, x.shape[-1])
output = torch.empty((x.shape[0], q4_width), dtype=torch.half, device=x.device)
gemm_half_q_half(x, q_handle, output, force_cuda)
return output.view(output_shape)
def make_group_map(q_groups: torch.Tensor, num_qrows: int):
gr = q_groups.tolist()
group_map = []
num_groups = len(gr) // 2
for i in range(num_groups):
bits = gr[i * 2]
if i < num_groups - 1:
qrows = gr[i * 2 + 3] - gr[i * 2 + 1]
else:
qrows = num_qrows - gr[i * 2 + 1]
rows = qrows * 32 // bits
for j in range(rows):
group_map += [i]
group_map += [rows - j]
return torch.tensor(group_map, dtype=torch.short, device=q_groups.device)
# Create Q matrix
def ext_make_q_matrix(
w: Exl2Weight | GPTQWeight,
extra: _ExtraTensors,
temp_dq,
key: Optional[str] = None,
):
"""
Create Q matrix
"""
# max_dq_size = 512*(1024**2)
# max_dq_rows = max_dq_size // out_features[0]
max_dq_rows = 0
# EXL2
if isinstance(w, Exl2Weight):
extra.q_group_map = make_group_map(w.q_groups, w.q_weight.shape[0])
extra.q_perm = torch.argsort(w.q_invperm).short()
return make_q_matrix(
w.q_weight,
extra.q_perm,
w.q_invperm,
w.q_scale,
w.q_scale_max,
w.q_groups,
extra.q_group_map,
none_tensor, # zeros
none_tensor, # scales
none_tensor, # g_idx
none_tensor, # bias
temp_dq,
max_dq_rows,
)
# GPTQ
elif isinstance(w, GPTQWeight):
if w.scales.dtype == torch.float:
w.scales = w.scales.half()
# GPTQ with g_idx (act_order)
if w.g_idx is not None and not (w.g_idx == 0).all().item():
extra.q_perm = torch.empty(
(w.qweight.shape[0] * 8,),
dtype=torch.short,
device=w.qweight.device,
)
extra.q_invperm = torch.empty_like(extra.q_perm)
# make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx.
return make_q_matrix(
w.qweight,
extra.q_perm,
extra.q_invperm,
none_tensor, # q_scale
none_tensor, # q_scale_max
none_tensor, # q_groups
none_tensor, # q_group_map
w.qzeros,
w.scales,
w.g_idx.cpu(),
none_tensor, # bias
temp_dq,
max_dq_rows,
)
# GPTQ without g_idx
else:
return make_q_matrix(
w.qweight,
none_tensor, # q_perm
none_tensor, # q_invperm
none_tensor, # q_scale
none_tensor, # q_scale_max
none_tensor, # q_groups
none_tensor, # q_group_map
w.qzeros,
w.scales,
none_tensor, # g_idx
none_tensor, # bias
temp_dq,
max_dq_rows,
)
else:
RuntimeError("Cannot create handle")
DEVICE = None
LAYERS = []
def set_device(device):
global DEVICE
DEVICE = device
def create_exllama_buffers(max_total_tokens: int):
global LAYERS, DEVICE
# No need to initialize scratch space if there are no layers
# that use ExLLamav2.
if len(LAYERS) == 0:
return
# Find the size of the scratch space.
scratch_bytes = max(
layer.scratch_space_fixed(max_input_len=max_total_tokens, max_batch_size=1)
for layer in LAYERS
)
temp_dq = ExLlamaV2DeviceTensors(DEVICE, scratch_bytes)
for layer in LAYERS:
layer.post_init(temp_dq)
class QuantLinear(nn.Module):
QUANT_TYPE = "exllamav2"
"""Linear layer implementation with per-group 4-bit quantization of the weights"""
def __init__(
self,
weight: Exl2Weight | GPTQWeight,
bias: torch.Tensor,
):
super().__init__()
self.q_handle = None
self.q_tensors = weight
self.extra_tensors = _ExtraTensors()
if isinstance(weight, Exl2Weight):
self.infeatures = weight.q_invperm.shape[0]
self.outfeatures = weight.q_weight.shape[1]
elif isinstance(weight, GPTQWeight):
if weight.bits != 4:
raise ValueError(
f"Exllamav2 kernel supports only bits=4, requested bits={weight.bits}. Something is wrong in the model initialization."
)
self.infeatures = weight.qweight.shape[0] // weight.bits * 32
self.outfeatures = weight.qweight.shape[1]
self.padding = -self.outfeatures % 32
self.outfeatures = self.outfeatures + self.padding
self.device = weight.device
self.bias = bias if bias is not None else None
global LAYERS
LAYERS.append(self)
def post_init(self, temp_dq):
device = self.q_tensors.device
assert device.type == "cuda"
assert device.index is not None
temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size())
# We NEED to keep a pointer on Python side, otherwise the garbage collector will mess with us,
# and `Memory access fault by GPU node-2` will EAT you.
self.temp_dq = temp_dq
self.q_handle = ext_make_q_matrix(self.q_tensors, self.extra_tensors, temp_dq)
def forward(self, x, force_cuda=False):
output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda)
if self.bias is not None:
output.add_(self.bias)
return output
def temp_dq_size(self):
return self.infeatures * self.outfeatures * 2 + 128
def temp_fwd_size(self, max_input_len, max_batch_size):
return self.outfeatures * max_input_len * max_batch_size * 4 + 128
def scratch_space_fixed(self, max_input_len, max_batch_size):
return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size)
class ExLlamaV2DeviceTensors:
device_idx: int
scratch_bytes: int
scratch_idx: int
scratch: torch.tensor = None
def __init__(self, device, scratch_bytes):
self.device = device
self.scratch_bytes = scratch_bytes
def prepare(self):
self.scratch = torch.empty(
(self.scratch_bytes // 2,), dtype=torch.half, device=self.device
)
def get_scratch_slice(self, size_bytes):
if self.scratch is None:
self.prepare()
size_bytes = ((size_bytes + 127) // 128) * 128
size_half = size_bytes // 2
scratch_slice = self.scratch.narrow(0, 0, size_half)
return scratch_slice

View File

@ -0,0 +1,204 @@
import math
import numpy as np
import torch
import torch.nn as nn
try:
convert_from_uint4 = torch.ops.hpu.convert_from_uint4
except Exception as e:
hpu_import_exception = e
def error_raiser_hpu(*args, **kwargs):
raise ValueError(
f"Trying to use HPU, but could not import the HPU framework with the following error: {hpu_import_exception}"
)
convert_from_uint4 = error_raiser_hpu
def pack_tensor(input, bits=4):
normal = input.to(torch.int32)
q = torch.zeros((normal.shape[0], normal.shape[1] // 32 * bits), dtype=torch.int32)
i = 0
col = 0
while col < q.shape[1]:
for j in range(i, i + (32 // bits)):
q[:, col] |= normal[:, j] << (bits * (j - i))
i += 32 // bits
col += 1
q = q.to(torch.int32)
return q
class QuantLinear(nn.Module):
def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize):
super().__init__()
self.register_buffer("qweight", qweight)
self.register_buffer("qzeros", qzeros)
self.register_buffer("scales", scales)
self.register_buffer("g_idx", g_idx)
if bias is not None:
self.register_buffer("bias", bias)
else:
self.bias = None
if bits not in [4]:
raise NotImplementedError("Only 4 bits are supported.")
self.bits = bits
self.maxq = 2**self.bits - 1
self.groupsize = groupsize
self.outfeatures = qweight.shape[1]
self.infeatures = qweight.shape[0] * 32 // bits
self.wf = torch.tensor(
list(range(0, 32, self.bits)), dtype=torch.int32
).unsqueeze(0)
self._preprocessing()
def unpack_zeros_from_cuda_old_format(self):
zeros = torch.bitwise_right_shift(
torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 32 // self.bits),
self.wf.unsqueeze(0),
).to(torch.int16 if self.bits == 8 else torch.int8)
zeros = zeros + 1
zeros = torch.bitwise_and(zeros, (2**self.bits) - 1).to(
self.scales.dtype
) # NOTE: It appears that casting here after the `zeros = zeros + 1` is important.
zeros = zeros.reshape(-1, zeros.shape[1] * zeros.shape[2])
return zeros
def unpack_weight_from_cuda_old_format(self):
weight = torch.bitwise_right_shift(
torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1),
self.wf.unsqueeze(-1),
).to(torch.int16 if self.bits == 8 else torch.int8)
weight = torch.bitwise_and(weight, (2**self.bits) - 1)
weight = weight.reshape((weight.shape[0] * weight.shape[1], weight.shape[2]))
return weight
def _preprocessing(self):
orig_device = self.qweight.device
self.qweight = self.qweight.cpu()
weight = self.unpack_weight_from_cuda_old_format()
new_qweight = pack_tensor(weight)
self.qweight = new_qweight.to(orig_device)
# TODO: Support group indexing and remove the check
columns = self.qweight.shape[0]
g_idx_trivial = [i // self.groupsize for i in range(columns)]
g_idx_trivial = torch.tensor(
g_idx_trivial, dtype=torch.int32, device=self.g_idx.device
)
sort_zeros = not (torch.equal(self.g_idx, g_idx_trivial))
self.qzeros = self.qzeros.cpu()
zeros = self.unpack_zeros_from_cuda_old_format()
if sort_zeros:
zeros_group_1 = torch.zeros(
(self.infeatures, self.outfeatures),
dtype=zeros.dtype,
device=zeros.device,
)
scales = self.scales.cpu()
scale_group_1 = torch.zeros(
(self.infeatures, self.outfeatures),
dtype=scales.dtype,
device=scales.device,
)
for i in range(self.infeatures):
zeros_group_1[i] = zeros[self.g_idx[i]]
scale_group_1[i] = self.scales[self.g_idx[i]]
self.qzeros = pack_tensor(zeros_group_1).to(orig_device)
self.scales = scale_group_1.to(orig_device)
self.groupsize = 1
self.g_idx = None
else:
new_qzeros = pack_tensor(zeros)
self.qzeros = new_qzeros.to(orig_device)
@classmethod
def new(cls, bits, groupsize, infeatures, outfeatures, bias):
if bits not in [4]:
raise NotImplementedError("Only 4 bits are supported.")
qweight = torch.zeros((infeatures // 32 * bits, outfeatures), dtype=torch.int32)
qzeros = torch.zeros(
(math.ceil(infeatures / groupsize), outfeatures // 32 * bits),
dtype=torch.int32,
)
scales = torch.zeros(
(math.ceil(infeatures / groupsize), outfeatures), dtype=torch.float16
)
g_idx = torch.tensor(
[i // groupsize for i in range(infeatures)], dtype=torch.int32
)
if bias:
bias = torch.zeros((outfeatures), dtype=torch.float16)
else:
bias = None
return cls(qweight, qzeros, scales, g_idx, bias, bits, groupsize)
def pack(self, linear, scales, zeros, g_idx=None):
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
self.scales = scales.clone().half()
if linear.bias is not None:
self.bias = linear.bias.clone().half()
intweight = []
for idx in range(self.infeatures):
intweight.append(
torch.round(
(linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]])
/ self.scales[self.g_idx[idx]]
).to(torch.int)[:, None]
)
intweight = torch.cat(intweight, dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
qweight = np.zeros(
(intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32
)
i = 0
row = 0
while row < qweight.shape[0]:
if self.bits in [4]:
for j in range(i, i + (32 // self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += 32 // self.bits
row += 1
else:
raise NotImplementedError("Only 4 bits are supported.")
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
zeros -= 1
zeros = zeros.numpy().astype(np.uint32)
qzeros = np.zeros(
(zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32
)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [4]:
for j in range(i, i + (32 // self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += 32 // self.bits
col += 1
else:
raise NotImplementedError("Only 4 bits are supported.")
qzeros = qzeros.astype(np.int32)
self.qzeros = torch.from_numpy(qzeros)
def forward(self, x):
out_shape = x.shape[:-1] + (self.outfeatures,)
x = x.reshape(-1, x.shape[-1])
weight = convert_from_uint4(self.qweight, self.scales, self.qzeros, x.dtype)
out = torch.matmul(x, weight)
out = out.reshape(out_shape)
out = out + self.bias if self.bias is not None else out
return out

View File

@ -1,359 +0,0 @@
import math
import numpy as np
import torch
import torch.nn as nn
from torch.cuda.amp import custom_fwd
import triton
import triton.language as tl
from . import custom_autotune
# code based https://github.com/fpgaminer/GPTQ-triton
@custom_autotune.autotune(
configs=[
triton.Config(
{
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=2,
num_warps=8,
),
triton.Config(
{
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 8,
},
num_stages=3,
num_warps=8,
),
triton.Config(
{
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 8,
},
num_stages=2,
num_warps=4,
),
],
key=["M", "N", "K"],
nearest_power_of_two=True,
prune_configs_by={
"early_config_prune": custom_autotune.matmul248_kernel_config_pruner,
"perf_model": None,
"top_k": None,
},
)
@triton.jit
def matmul_248_kernel(
a_ptr,
b_ptr,
c_ptr,
scales_ptr,
zeros_ptr,
g_ptr,
M,
N,
K,
bits,
maxq,
stride_am,
stride_ak,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
stride_scales,
stride_zeros,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
):
"""
Compute the matrix multiplication C = A x B.
A is of shape (M, K) float16
B is of shape (K//8, N) int32
C is of shape (M, N) float16
scales is of shape (G, N) float16
zeros is of shape (G, N) float16
g_ptr is of shape (K) int32
"""
infearure_per_bits = 32 // bits
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (
offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak
) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
a_mask = offs_am[:, None] < M
# b_ptrs is set up such that it repeats elements along the K axis 8 times
b_ptrs = b_ptr + (
(offs_k[:, None] // infearure_per_bits) * stride_bk
+ offs_bn[None, :] * stride_bn
) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
g_ptrs = g_ptr + offs_k
# shifter is used to extract the N bits of each element in the 32-bit word from B
scales_ptrs = scales_ptr + offs_bn[None, :]
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
shifter = (offs_k % infearure_per_bits) * bits
zeros_shifter = (offs_bn % infearure_per_bits) * bits
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, num_pid_k):
g_idx = tl.load(g_ptrs)
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
scales = tl.load(
scales_ptrs + g_idx[:, None] * stride_scales
) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = tl.load(
zeros_ptrs + g_idx[:, None] * stride_zeros
) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = (zeros >> zeros_shifter[None, :]) & maxq
zeros = (zeros + 1) & maxq # eventually avoid overflow
a = tl.load(a_ptrs, mask=a_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
# Now we need to unpack b (which is N-bit values) into 32-bit values
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
b = (b - zeros) * scales # Scale and shift
accumulator += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_K
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
g_ptrs += BLOCK_SIZE_K
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
tl.store(c_ptrs, accumulator, mask=c_mask)
def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
with torch.cuda.device(input.device):
output = torch.empty(
(input.shape[0], qweight.shape[1]), device=input.device, dtype=torch.float16
)
def grid(META):
return (
triton.cdiv(input.shape[0], META["BLOCK_SIZE_M"])
* triton.cdiv(qweight.shape[1], META["BLOCK_SIZE_N"]),
)
matmul_248_kernel[grid](
input,
qweight,
output,
scales,
qzeros,
g_idx,
input.shape[0],
qweight.shape[1],
input.shape[1],
bits,
maxq,
input.stride(0),
input.stride(1),
qweight.stride(0),
qweight.stride(1),
output.stride(0),
output.stride(1),
scales.stride(0),
qzeros.stride(0),
)
return output
class QuantLinearFunction(torch.autograd.Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float16)
def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq):
output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq)
return output
class QuantLinear(nn.Module):
def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize):
super().__init__()
self.register_buffer("qweight", qweight)
self.register_buffer("qzeros", qzeros)
self.register_buffer("scales", scales)
self.register_buffer("g_idx", g_idx)
if bias is not None:
self.register_buffer("bias", bias)
else:
self.bias = None
if bits not in [2, 4, 8]:
raise NotImplementedError("Only 2,4,8 bits are supported.")
self.bits = bits
self.maxq = 2**self.bits - 1
self.groupsize = groupsize
self.outfeatures = qweight.shape[1]
self.infeatures = qweight.shape[0] * 32 // bits
@classmethod
def new(cls, bits, groupsize, infeatures, outfeatures, bias):
if bits not in [2, 4, 8]:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qweight = torch.zeros((infeatures // 32 * bits, outfeatures), dtype=torch.int32)
qzeros = torch.zeros(
(math.ceil(infeatures / groupsize), outfeatures // 32 * bits),
dtype=torch.int32,
)
scales = torch.zeros(
(math.ceil(infeatures / groupsize), outfeatures), dtype=torch.float16
)
g_idx = torch.tensor(
[i // groupsize for i in range(infeatures)], dtype=torch.int32
)
if bias:
bias = torch.zeros((outfeatures), dtype=torch.float16)
else:
bias = None
return cls(qweight, qzeros, scales, g_idx, bias, bits, groupsize)
def pack(self, linear, scales, zeros, g_idx=None):
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
self.scales = scales.clone().half()
if linear.bias is not None:
self.bias = linear.bias.clone().half()
intweight = []
for idx in range(self.infeatures):
intweight.append(
torch.round(
(linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]])
/ self.scales[self.g_idx[idx]]
).to(torch.int)[:, None]
)
intweight = torch.cat(intweight, dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
qweight = np.zeros(
(intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32
)
i = 0
row = 0
while row < qweight.shape[0]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += 32 // self.bits
row += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
zeros -= 1
zeros = zeros.numpy().astype(np.uint32)
qzeros = np.zeros(
(zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32
)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += 32 // self.bits
col += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qzeros = qzeros.astype(np.int32)
self.qzeros = torch.from_numpy(qzeros)
def forward(self, x):
out_shape = x.shape[:-1] + (self.outfeatures,)
out = QuantLinearFunction.apply(
x.reshape(-1, x.shape[-1]),
self.qweight,
self.scales,
self.qzeros,
self.g_idx,
self.bits,
self.maxq,
)
out = out + self.bias if self.bias is not None else out
return out.reshape(out_shape)

View File

@ -12,7 +12,7 @@ from huggingface_hub import HfApi
from accelerate import init_empty_weights
from text_generation_server.utils import initialize_torch_distributed, Weights
from text_generation_server.utils.hub import weight_files
from text_generation_server.layers.gptq.quant_linear import QuantLinear
from text_generation_server.layers.gptq import QuantLinear
from loguru import logger
from typing import Optional
from text_generation_server.layers.gptq.utils import torch_snr_error
@ -956,15 +956,24 @@ def quantize(
pack(model, quantizers, bits, groupsize)
from safetensors.torch import save_file
from transformers.modeling_utils import shard_checkpoint
from huggingface_hub import split_torch_state_dict_into_shards
state_dict = model.state_dict()
state_dict = {k: v.cpu().contiguous() for k, v in state_dict.items()}
max_shard_size = "10GB"
shards, index = shard_checkpoint(
state_dict, max_shard_size=max_shard_size, weights_name="model.safetensors"
state_dict_split = split_torch_state_dict_into_shards(
state_dict,
filename_pattern="model.safetensors",
max_shard_size=max_shard_size,
)
index = None
if state_dict_split.is_sharded:
index = {
"metadata": state_dict_split.metadata,
"weight_map": state_dict_split.tensor_to_filename,
}
shards = state_dict_split.filename_to_tensors
os.makedirs(output_dir, exist_ok=True)
for shard_file, shard in shards.items():
save_file(

View File

@ -1,9 +1,6 @@
import torch
from torch import nn
from accelerate import init_empty_weights
from text_generation_server.utils.import_utils import (
SYSTEM,
)
# Monkey patching
@ -33,48 +30,8 @@ def load_layer_norm_no_bias(cls, prefix, weights, eps):
torch.nn.LayerNorm.load = load_layer_norm
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
if SYSTEM == "cuda":
import dropout_layer_norm
class FastLayerNorm(nn.LayerNorm):
def forward(self, hidden_states, residual=None):
if hidden_states.shape[-1] > 8192:
if residual is not None:
hidden_states += residual
residual = hidden_states
return super(FastLayerNorm, self).forward(hidden_states), residual
else:
(
normed_hidden_states,
residual,
*rest,
) = dropout_layer_norm.dropout_add_ln_fwd(
hidden_states,
residual,
self.weight,
self.bias,
None,
None,
None,
None,
0.0,
self.eps,
1.0,
0,
None,
False,
False,
)
if residual is None:
residual = hidden_states
return normed_hidden_states, residual
elif SYSTEM == "rocm":
from vllm._C import ops
class FastLayerNorm(nn.LayerNorm):
class FastLayerNorm(nn.LayerNorm):
def forward(self, hidden_states, residual=None):
if residual is not None:
hidden_states += residual
@ -82,21 +39,6 @@ elif SYSTEM == "rocm":
return super().forward(hidden_states), residual
elif SYSTEM == "ipex":
import intel_extension_for_pytorch as ipex
class FastLayerNorm(nn.LayerNorm):
def forward(self, hidden_states, residual=None):
out = ipex.llm.functional.add_layer_norm(
residual,
hidden_states,
self.weight,
self.bias,
self.eps,
residual is not None,
)
return out, residual if residual is not None else hidden_states
class FastRMSNorm(nn.Module):
def __init__(self, weight: torch.Tensor, eps: float):
@ -111,74 +53,10 @@ class FastRMSNorm(nn.Module):
return cls(weight, eps)
def forward(self, hidden_states, residual=None):
if SYSTEM == "ipex":
out = ipex.llm.functional.add_rms_norm(
residual,
hidden_states,
self.weight,
None,
self.variance_epsilon,
residual is not None,
)
return out, residual if residual is not None else hidden_states
elif hidden_states.shape[-1] > 8192:
if residual is not None:
hidden_states += residual
residual = hidden_states
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(
variance + self.variance_epsilon
)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states, residual
elif SYSTEM == "cuda":
# faster post attention rms norm
(
normed_hidden_states,
res,
*rest,
) = dropout_layer_norm.dropout_add_ln_fwd(
hidden_states,
residual,
self.weight,
None,
None,
None,
None,
None,
0.0,
self.variance_epsilon,
1.0,
0,
None,
False,
True, # Activate RMSNorm
)
if res is None:
res = hidden_states
return normed_hidden_states, res
elif SYSTEM == "rocm":
# We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
if residual is not None:
hidden_states += residual
residual = hidden_states
out = torch.empty_like(hidden_states)
ops.rms_norm(
out,
hidden_states,
self.weight.data,
self.variance_epsilon,
)
return out, residual
else:
raise ValueError(
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(self.weight.dtype), residual

View File

@ -1,21 +1,5 @@
import torch
from text_generation_server.utils.import_utils import SYSTEM
from torch.nn import functional as F
import os
if SYSTEM == "rocm":
ROCM_USE_SKINNY_GEMM = os.getenv("ROCM_USE_SKINNY_GEMM", "True").lower() in (
"true",
"1",
)
if ROCM_USE_SKINNY_GEMM:
try:
from vllm import _custom_C
except Exception as e:
raise ImportError(
f"Could not load `vllm._custom_C` for ROCm skinny gemm. Full error: {e}"
)
class FastLinear(torch.nn.Module):
@ -44,83 +28,11 @@ class FastLinear(torch.nn.Module):
return F.linear(input, self.weight, self.bias)
class FastLinearROCm(torch.nn.Module):
def __init__(
self,
weight,
bias,
) -> None:
super().__init__()
self.weight = torch.nn.Parameter(weight)
if bias is not None:
self.bias = torch.nn.Parameter(bias)
else:
self.bias = None
self.cu_count = torch.cuda.get_device_properties(
device="cuda"
).multi_processor_count
self.use_skinny_gemm = (
ROCM_USE_SKINNY_GEMM
and "gfx1" not in torch.cuda.get_device_properties("cuda").gcnArchName
)
@classmethod
def load(cls, config, prefix: str, weights, bias: bool):
weight = weights.get_tensor(f"{prefix}.weight")
if bias:
bias = weights.get_tensor(f"{prefix}.bias")
else:
bias = None
return cls(weight, bias)
def forward(self, inp: torch.Tensor) -> torch.Tensor:
weight = self.weight
bias = self.bias
if (
self.use_skinny_gemm
and inp.dtype == torch.float16
and inp.shape[-1] % 8 == 0
):
batched = False
inp_shape = inp.shape
if inp.dim() == 3:
inp = inp.view(-1, inp_shape[-1])
batched = True
m, n, k = weight.shape[0], inp_shape[0], inp_shape[1]
if m > 8 and n <= 4:
out = torch.empty(
inp_shape[0], weight.shape[0], dtype=inp.dtype, device=weight.device
)
_custom_C.wvSpltK(weight, inp, out, n, self.cu_count)
elif m % 4 == 0 and n == 1 and k <= 8192:
out = torch.empty(
inp_shape[0], weight.shape[0], dtype=inp.dtype, device=weight.device
)
_custom_C.LLMM1(weight, inp, out, 4)
else:
out = F.linear(inp, weight)
if batched:
out.view(*inp_shape[:-1], out.shape[-1])
if bias is not None:
out = out + bias
return out
return F.linear(inp, self.weight, self.bias)
def get_linear(weight, bias):
# Weights that are loaded through methods that are not
# quantization-aware are still bare tensors. We may want
# to change this in the future.
if isinstance(weight, torch.Tensor):
if SYSTEM == "rocm":
return FastLinearROCm(weight, bias)
else:
return FastLinear(weight, bias)
return weight.get_linear(bias)

View File

@ -1,15 +0,0 @@
from text_generation_server.layers.marlin.fp8 import GPTQMarlinFP8Linear
from text_generation_server.layers.marlin.gptq import (
GPTQMarlinWeightsLoader,
can_use_gptq_marlin,
repack_gptq_for_marlin,
)
from text_generation_server.layers.marlin.marlin import MarlinWeightsLoader
__all__ = [
"GPTQMarlinFP8Linear",
"GPTQMarlinWeightsLoader",
"MarlinWeightsLoader",
"can_use_gptq_marlin",
"repack_gptq_for_marlin",
]

View File

@ -1,140 +0,0 @@
from typing import Optional
import torch
import torch.nn as nn
from loguru import logger
from text_generation_server.layers.fp8 import fp8_quantize
from text_generation_server.layers.marlin.gptq import _check_valid_shape
from text_generation_server.layers.marlin.util import (
_check_marlin_kernels,
permute_scales,
)
from text_generation_server.utils.log import log_once
try:
import marlin_kernels
except ImportError:
marlin_kernels = None
MARLIN_TILE_SIZE = 16
class GPTQMarlinFP8Linear(nn.Module):
"""
FP8 GPTQ-Marlin linear layer.
"""
def __init__(
self,
qweight: torch.Tensor,
scales: torch.Tensor,
bias: Optional[torch.Tensor],
) -> None:
super().__init__()
_check_marlin_kernels()
assert marlin_kernels is not None
log_once(logger.info, "GPU does not support FP8, using Marlin FP8 kernel")
scales = scales.unsqueeze(0)
if scales.shape[1] == 1:
out_features, in_features = qweight.shape
scales = scales.repeat(1, out_features)
qweight, scales = repack_fp8_for_marlin(qweight, scales)
in_features = qweight.shape[0] * MARLIN_TILE_SIZE
out_features = scales.shape[1]
_check_valid_shape(in_features=in_features, out_features=out_features)
self.qweight = qweight
self.scales = scales
self.bias = bias if bias is not None else None
self.workspace = torch.zeros(
out_features // 64 * 16, dtype=torch.int, device=qweight.device
)
@classmethod
def from_unquant(cls, weight, bias, dtype):
qweight, scales = fp8_quantize(weight)
return cls(qweight=qweight, scales=scales.to(dtype), bias=bias)
@classmethod
def from_fp8(cls, weight, scale, _input_scale, bias, dtype):
return cls(qweight=weight, scales=scale.to(dtype), bias=bias)
def forward(self, A: torch.Tensor) -> torch.Tensor:
assert marlin_kernels is not None
A_flat = A.view(-1, A.shape[-1])
C = marlin_kernels.fp8_marlin_gemm(
A_flat,
self.qweight,
self.scales,
self.workspace,
8,
A_flat.shape[0],
self.scales.shape[1],
A_flat.shape[1],
)
C = C.reshape(A.shape[:-1] + (self.scales.shape[1],))
if self.bias is not None:
C += self.bias
return C
def pack_fp8_as_int32(fp8_tensor: torch.Tensor) -> torch.Tensor:
"""
Repack FP8 weights to gptq format (packed int32 elements).
"""
assert fp8_tensor.dtype == torch.float8_e4m3fn
if fp8_tensor.shape[0] % 4 != 0:
raise ValueError(
f"Leading tensor dimension is not divisable by 4: {fp8_tensor.shape[0]}"
)
# Reshape to prepare for packing
reshaped = fp8_tensor.reshape(-1, 4, *fp8_tensor.shape[1:])
# Convert fp8 to uint8 (byte) representation
byte_tensor = reshaped.view(torch.uint8)
# Pack 4 uint8 values into one int32
packed = torch.zeros(
fp8_tensor.shape[0] // 4,
fp8_tensor.shape[1],
dtype=torch.int32,
device=fp8_tensor.device,
)
for i in range(4):
packed.bitwise_or_(byte_tensor[:, i].to(torch.int32) << i * 8)
return packed
def repack_fp8_for_marlin(weight: torch.Tensor, scales: torch.Tensor):
"""
Repack FP8 tensor for GPTQ-Marlin.
"""
out_features, in_features = weight.shape
# Torch linear layers weights with shape [out_features, in_features],
# GPTQ-quantized weights use [in_feateres/pack_factor, in_features],
# so transpose before packing.
qweight = pack_fp8_as_int32(weight.t())
perm = torch.empty(0, dtype=torch.int, device=qweight.device)
repacked = marlin_kernels.gptq_marlin_repack(
qweight, perm, in_features, out_features, 8
)
scales = permute_scales(scales)
return repacked, scales

View File

@ -1,464 +0,0 @@
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy
import torch
import torch.nn as nn
from loguru import logger
from text_generation_server.layers.marlin.util import (
_check_marlin_kernels,
marlin_zero_points,
permute_scales,
unpack_cols,
)
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.log import log_once
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
try:
import marlin_kernels
except ImportError:
marlin_kernels = None
try:
major, _minor = torch.cuda.get_device_capability()
has_sm_8_0 = major >= 8
except Exception:
has_sm_8_0 = False
GPTQ_MARLIN_BITS = [4, 8]
GPTQ_MARLIN_GROUP_SIZES = [-1, 32, 64, 128]
MARLIN_TILE_SIZE = 16
def can_use_gptq_marlin(
*, bits: int, groupsize: int, quant_method: str, quantize: str, sym: bool
) -> bool:
return (
SYSTEM == "cuda"
and marlin_kernels is not None
and has_sm_8_0
and quantize in {"awq", "gptq"}
and quant_method in {"awq", "gptq"}
and bits in GPTQ_MARLIN_BITS
and groupsize in GPTQ_MARLIN_GROUP_SIZES
# We only suppord asymmetric quantization for AWQ.
and (sym or quant_method == "awq")
)
class GPTQMarlinWeightsLoader(WeightsLoader):
"""
Loader for using GPTQ- and AWQ-quantized weights with Marlin kernels.
"""
def __init__(
self,
*,
bits: int,
desc_act: bool,
groupsize: int,
quant_method: str,
quantize: str,
sym: bool,
):
self.bits = bits
self.desc_act = desc_act
self.groupsize = groupsize
self.quant_method = quant_method
self.quantize = quantize
self.sym = sym
def get_weights(self, weights: Weights, prefix: str):
log_once(logger.info, "Using GPTQ-Marlin kernels")
try:
qweight = weights.get_tensor(f"{prefix}.qweight")
except RuntimeError:
raise RuntimeError(
f"Cannot load `{self.quantize}` weight for GPTQ -> Marlin repacking, make sure the model is already quantized"
)
if not self.sym:
qzeros = weights.get_tensor(f"{prefix}.qzeros")
else:
qzeros = None
if self.quant_method == "awq":
g_idx = None
else:
g_idx = weights.get_tensor(f"{prefix}.g_idx")
scales = weights.get_tensor(f"{prefix}.scales")
return repack_gptq_for_marlin(
qweight=qweight,
scales=scales,
qzeros=qzeros,
g_idx=g_idx,
bits=self.bits,
desc_act=self.desc_act,
groupsize=self.groupsize,
quant_method=self.quant_method,
sym=self.sym,
sharded_infeatures=False,
)
def get_weights_col_packed(
self,
weights: Weights,
prefix: str,
block_sizes: Union[int, List[int]],
):
try:
qweight = weights.get_packed_sharded(
f"{prefix}.qweight", dim=1, block_sizes=block_sizes
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{self.quantize}` weight, make sure the model is already quantized."
)
scales = weights.get_packed_sharded(
f"{prefix}.scales", dim=1, block_sizes=block_sizes
)
scales = scales.to(dtype=weights.dtype)
if not self.sym:
qzeros = weights.get_packed_sharded(
f"{prefix}.qzeros", dim=1, block_sizes=block_sizes
)
else:
qzeros = None
if self.quant_method == "awq":
g_idx = None
else:
g_idx = weights.get_tensor(f"{prefix}.g_idx")
return repack_gptq_for_marlin(
qweight=qweight,
scales=scales,
qzeros=qzeros,
g_idx=g_idx,
bits=self.bits,
desc_act=self.desc_act,
groupsize=self.groupsize,
quant_method=self.quant_method,
sym=self.sym,
sharded_infeatures=False,
)
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
try:
qweight = torch.cat(
[weights.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{self.quantize}` weight, make sure the model is already quantized"
)
scales = torch.cat(
[weights.get_sharded(f"{p}.scales", dim=1) for p in prefixes], dim=1
)
if not self.sym:
qzeros = torch.cat(
[weights.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1
)
else:
qzeros = None
if self.quant_method == "awq":
g_idx = None
else:
w = [weights.get_tensor(f"{p}.g_idx") for p in prefixes]
for w2 in w[1:]:
torch.testing.assert_close(w2, w[0])
g_idx = w[0]
return repack_gptq_for_marlin(
qweight=qweight,
scales=scales,
qzeros=qzeros,
g_idx=g_idx,
bits=self.bits,
desc_act=self.desc_act,
groupsize=self.groupsize,
quant_method=self.quant_method,
sym=self.sym,
sharded_infeatures=False,
)
def get_weights_row(self, weights: Weights, prefix: str):
log_once(logger.info, "Using GPTQ-Marlin kernels")
try:
qweight = weights.get_sharded(f"{prefix}.qweight", dim=0)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{self.quantize}` weight for GPTQ -> Marlin repacking, make sure the model is already quantized"
)
if not self.sym:
if self.desc_act or self.groupsize == -1:
qzeros = weights.get_tensor(f"{prefix}.qzeros")
else:
qzeros = weights.get_sharded(f"{prefix}.qzeros", dim=0)
else:
qzeros = None
if self.quant_method == "awq":
g_idx = None
else:
g_idx = weights.get_sharded(f"{prefix}.g_idx", dim=0)
if self.desc_act or self.groupsize == -1:
scales = weights.get_tensor(f"{prefix}.scales")
else:
scales = weights.get_sharded(f"{prefix}.scales", dim=0)
sharded_in_features = weights.process_group.size() > 1
return repack_gptq_for_marlin(
qweight=qweight,
scales=scales,
qzeros=qzeros,
g_idx=g_idx,
bits=self.bits,
desc_act=self.desc_act,
groupsize=self.groupsize,
quant_method=self.quant_method,
sym=self.sym,
sharded_infeatures=sharded_in_features,
)
def _get_gptq_params(self, weights: Weights):
if weights._has_tensor("gptq_bits") and weights._has_tensor("gptq_groupsize"):
self.bits = weights.get_tensor("gptq_bits").item()
self.groupsize = weights.get_tensor("gptq_groupsize").item()
self.desc_act = False
# `server quantize` used asymmetric quantization unconditionally
# before the `gptq_sym` setting tensor was added.
self.sym = (
weights.get_tensor("gptq_sym").item()
if weights._has_tensor("gptq_sym")
else False
)
self.quant_method = "gptq"
@dataclass
class GPTQMarlinWeight(Weight):
"""
Repacked GPTQ Marlin weights.
"""
qweight: torch.Tensor
qzeros: torch.Tensor
scales: torch.Tensor
g_idx: torch.Tensor
perm: torch.Tensor
bits: int
is_full_k: bool
def __post_init__(self):
assert self.qweight.dtype == torch.int32
assert self.scales.dtype == torch.float16
assert self.g_idx.dtype == torch.int32
assert self.perm.dtype == torch.int32
def get_linear(self, bias: torch.Tensor):
return GPTQMarlinLinear(
weight=self,
bias=bias,
)
def repack_gptq_for_marlin(
*,
qweight: torch.Tensor,
qzeros: Optional[torch.Tensor],
scales: torch.Tensor,
g_idx: Optional[torch.Tensor],
bits: int,
desc_act: bool,
groupsize: int,
quant_method: str,
sym: bool,
sharded_infeatures: bool,
) -> GPTQMarlinWeight:
"""Convert GPTQ weights to a layout that's compatible with GPTQ-Marlin kernels."""
_check_marlin_kernels()
assert marlin_kernels is not None
if bits not in GPTQ_MARLIN_BITS:
supported_bits = ", ".join(str(b) for b in GPTQ_MARLIN_BITS)
raise RuntimeError(
f"Repacking {bits}-bit GPTQ weights as Marlin is not supported, must be one of: {supported_bits}"
)
if groupsize not in GPTQ_MARLIN_GROUP_SIZES:
supported_sizes = ", ".join(str(b) for b in GPTQ_MARLIN_GROUP_SIZES)
raise RuntimeError(
f"Repacking GPTQ weights with group size {groupsize} as Marlin is not supported, must be one of: {supported_sizes}"
)
if not (sym or quant_method == "awq"):
raise RuntimeError(
"Repacking GPTQ weights with asymmetric quantization as Marlin is not supported."
)
log_once(logger.info, f"Converting {quant_method} model to Marlin packing format.")
weights_per_int = 32 // bits
in_features = qweight.shape[0]
out_features = qweight.shape[1]
# AWQ uses column packing, GPTQ uses row packing
if quant_method == "awq":
out_features *= weights_per_int
else:
in_features *= weights_per_int
if in_features % groupsize != 0:
raise ValueError(
f"Number of input features ({in_features}) not divisible by group size ({groupsize})"
)
if g_idx is not None and desc_act and groupsize != -1:
perm = torch.argsort(g_idx).to(torch.int)
g_idx = g_idx[perm]
else:
perm = torch.empty(0, dtype=torch.int, device=qweight.device)
g_idx = torch.empty(0, dtype=torch.int, device=qweight.device)
if quant_method == "awq":
repacked = marlin_kernels.awq_marlin_repack(
qweight, in_features, out_features, bits
)
if qzeros is not None:
qzeros = awq_to_marlin_zero_points(
qzeros,
in_features // groupsize,
out_features,
bits,
)
else:
repacked = marlin_kernels.gptq_marlin_repack(
qweight, perm, in_features, out_features, bits
)
if qzeros is None:
qzeros = torch.empty(0, dtype=torch.int, device=qweight.device)
scales = permute_scales(scales)
is_full_k = not (desc_act and groupsize != -1 and sharded_infeatures)
return GPTQMarlinWeight(
qweight=repacked,
qzeros=qzeros,
scales=scales,
g_idx=g_idx,
perm=perm,
bits=bits,
is_full_k=is_full_k,
)
class GPTQMarlinLinear(nn.Module):
"""
Linear layer for GPTQ weights that were converted for the GPTQ-Marlin
kernels.
"""
def __init__(
self,
*,
weight: GPTQMarlinWeight,
bias: Optional[torch.Tensor],
):
super().__init__()
_check_marlin_kernels()
assert marlin_kernels is not None
in_features = weight.qweight.shape[0] * MARLIN_TILE_SIZE
out_features = weight.scales.shape[1]
_check_valid_shape(in_features=in_features, out_features=out_features)
self.bits = weight.bits
self.is_full_k = weight.is_full_k
self.qweight = weight.qweight
self.qzeros = weight.qzeros
self.scales = weight.scales
self.g_idx = weight.g_idx
self.perm = weight.perm
if bias is not None:
self.bias = bias
else:
self.bias = None
self.workspace = torch.zeros(
out_features // 64 * 16, dtype=torch.int, device=weight.qweight.device
)
def forward(self, A: torch.Tensor) -> torch.Tensor:
assert marlin_kernels is not None
A_flat = A.view(-1, A.shape[-1])
C = marlin_kernels.gptq_marlin_gemm(
A_flat,
self.qweight,
self.scales,
self.qzeros,
self.g_idx,
self.perm,
self.workspace,
self.bits,
A_flat.shape[0],
self.scales.shape[1],
A_flat.shape[1],
self.is_full_k,
self.qzeros.numel() > 0,
True,
)
C = C.reshape(A.shape[:-1] + (self.scales.shape[1],))
if self.bias is not None:
C += self.bias
return C
def awq_to_marlin_zero_points(
q_zp_packed: torch.Tensor, size_k: int, size_n: int, num_bits: int
) -> torch.Tensor:
# AWQ zero-points are quantized and packed on the column dim.
# In addition, the values are permuted based on dequantizer.
# Here we undo both of these, and then apply marlin permutation
# and pack it back.
q_zp = unpack_cols(q_zp_packed, num_bits, size_k, size_n)
# Undo interleaving (use argsort(..) to get inverse perm)
if num_bits == 4:
undo_interleave = numpy.argsort(numpy.array([0, 2, 4, 6, 1, 3, 5, 7]))
elif num_bits == 8:
undo_interleave = numpy.argsort(numpy.array([0, 2, 1, 3]))
else:
raise Exception("num_bits must be 4 or 8, got {}".format(num_bits))
q_zp = q_zp.reshape((-1, len(undo_interleave)))[:, undo_interleave].ravel()
q_zp = q_zp.reshape((-1, size_n)).contiguous()
marlin_zp = marlin_zero_points(q_zp, size_k, size_n, num_bits)
return marlin_zp
def _check_valid_shape(in_features: int, out_features: int):
if (in_features % 128 != 0 or out_features % 64 != 0) and (
in_features % 64 != 0 or out_features % 128 != 0
):
raise ValueError(
f"The GPTQ Marlin kernel does not have a valid thread configuration for weight matrix with shape ({out_features}, {in_features})."
" The shape elements must be divisible by (128, 64) or (64, 128)."
)

View File

@ -1,346 +0,0 @@
from dataclasses import dataclass
from typing import List, Optional, Union
import torch
import torch.nn as nn
from text_generation_server.layers.marlin.util import _check_marlin_kernels
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
try:
import marlin_kernels
except ImportError:
marlin_kernels = None
class MarlinWeightsLoader(WeightsLoader):
"""Loader for Marlin-quantized weights."""
def __init__(self, *, bits: int, is_marlin_24: bool):
self.bits = bits
self.is_marlin_24 = is_marlin_24
def get_weights(self, weights: "Weights", prefix: str):
"""
Get weights at the given prefix and apply without tensor paralllism.
"""
is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
if is_marlin_24:
try:
B = weights.get_tensor(f"{prefix}.B_24")
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
)
B_meta = weights.get_tensor(f"{prefix}.B_meta")
s = weights.get_tensor(f"{prefix}.s")
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
else:
try:
B = weights.get_tensor(f"{prefix}.B")
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` weight, make sure the model is already quantized."
)
s = weights.get_tensor(f"{prefix}.s")
weight = MarlinWeight(B=B, s=s)
return weight
def get_weights_col_packed(
self,
weights: Weights,
prefix: str,
block_sizes: Union[int, List[int]],
):
if self.is_marlin_24:
B = weights.get_packed_sharded(
f"{prefix}.B_24", dim=1, block_sizes=block_sizes
)
B_meta = weights.get_packed_sharded(
f"{prefix}.B_meta", dim=1, block_sizes=block_sizes
)
s = weights.get_packed_sharded(
f"{prefix}.s", dim=1, block_sizes=block_sizes
)
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
else:
B = weights.get_packed_sharded(
f"{prefix}.B", dim=1, block_sizes=block_sizes
)
s = weights.get_packed_sharded(
f"{prefix}.s", dim=1, block_sizes=block_sizes
)
weight = MarlinWeight(B=B, s=s)
return weight
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
if self.is_marlin_24:
try:
B = torch.cat(
[weights.get_sharded(f"{p}.B_24", dim=1) for p in prefixes], dim=1
)
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` weight, make sure the model is already quantized"
)
B_meta = torch.cat(
[weights.get_sharded(f"{p}.B_meta", dim=1) for p in prefixes], dim=1
)
s = torch.cat(
[weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
)
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
else:
try:
B = torch.cat(
[weights.get_sharded(f"{p}.B", dim=1) for p in prefixes], dim=1
)
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` weight, make sure the model is already quantized"
)
s = torch.cat(
[weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
)
weight = MarlinWeight(B=B, s=s)
return weight
def get_weights_row(self, weights: Weights, prefix: str):
if self.is_marlin_24:
try:
B = weights.get_sharded(f"{prefix}.B_24", dim=0)
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
)
B_meta = weights.get_sharded(f"{prefix}.B_meta", dim=0)
num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
if num_groups == 1:
# The number of groups is 1 when groupsize == -1. share
# scales between all shards in this case.
s = weights.get_tensor(f"{prefix}.s")
else:
s = weights.get_sharded(f"{prefix}.s", dim=0)
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
else:
try:
B = weights.get_sharded(f"{prefix}.B", dim=0)
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` weight, make sure the model is already quantized."
)
num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
if num_groups == 1:
# The number of groups is 1 when groupsize == -1. share
# scales between all shards in this case.
s = weights.get_tensor(f"{prefix}.s")
else:
s = weights.get_sharded(f"{prefix}.s", dim=0)
weight = MarlinWeight(B=B, s=s)
return weight
@dataclass
class MarlinWeight(Weight):
"""
Marlin weights.
Attributes:
B (torch.Tensor): int4-quantized weights packed into int32.
s (torch.Tensor): bfloat16/float16 scales.
"""
B: torch.Tensor
s: torch.Tensor
def __post_init__(self):
assert self.B.dtype == torch.int32
assert self.s.dtype in [torch.float16, torch.bfloat16]
def get_linear(self, bias: torch.Tensor):
return MarlinLinear(weight=self, bias=bias)
class MarlinLinear(nn.Module):
def __init__(self, *, weight: MarlinWeight, bias: Optional[torch.Tensor]):
super().__init__()
_check_marlin_kernels()
assert marlin_kernels is not None
in_features = weight.B.shape[0] * MARLIN_TILE_SIZE
out_features = weight.s.shape[1]
assert (
in_features % 128 == 0
), f"Number of input features ({in_features}) not divisable by 128"
assert (
out_features % 256 == 0
), f"Number of output features ({out_features}) not divisable by 256"
groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]
assert groupsize in {
-1,
128,
}, f"Group size must be -1 or 128, was {groupsize}"
self.B = weight.B
self.s = weight.s
if bias is not None:
self.bias = bias
else:
self.bias = None
self.workspace = torch.zeros(
out_features // 64 * 16, dtype=torch.int, device=weight.B.device
)
def forward(self, A: torch.Tensor) -> torch.Tensor:
assert marlin_kernels is not None
C = marlin_kernels.marlin_gemm(
A.view(-1, A.shape[-1]),
self.B,
self.s,
self.workspace,
A.shape[0],
self.s.shape[1],
A.shape[1],
)
C = C.reshape(A.shape[:-1] + (self.s.shape[1],))
if self.bias is not None:
C += self.bias
return C
GPTQ_MARLIN_24_MIN_THREAD_N = 128
GPTQ_MARLIN_24_MIN_THREAD_K = 128
GPTQ_MARLIN_24_MAX_PARALLEL = 64
GPTQ_MARLIN_24_SUPPORTED_NUM_BITS = [4, 8]
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES = [-1, 128]
MARLIN_TILE_SIZE = 16
@dataclass
class GPTQMarlin24Weight:
"""
GPTQ-Marlin 2:4 weights.
Attributes:
B (torch.Tensor): int4-quantized weights packed into int32.
B_meta (torch.Tensor): metadata for 2:4 sparsity.
s (torch.Tensor): float16 scales.
bits: quantized weight size.
"""
B: torch.Tensor
B_meta: torch.Tensor
s: torch.Tensor
bits: int
def __post_init__(self):
assert self.B.dtype == torch.int32
assert self.B_meta.dtype == torch.int16
assert self.s.dtype == torch.float16
def get_linear(self, bias: torch.Tensor):
return GPTQMarlin24Linear(
weight=self,
bias=bias,
)
class GPTQMarlin24Linear(nn.Module):
def __init__(self, *, weight: GPTQMarlin24Weight, bias: Optional[torch.Tensor]):
super().__init__()
_check_marlin_kernels()
assert marlin_kernels is not None
if weight.bits not in GPTQ_MARLIN_24_SUPPORTED_NUM_BITS:
supported_bits = ", ".join(
str(b) for b in GPTQ_MARLIN_24_SUPPORTED_NUM_BITS
)
raise RuntimeError(
f"{weight.bits}-bit GPTQ Sparse 2:4 Marlin is not supported, must be one of: {supported_bits}"
)
in_features = weight.B.shape[0] * MARLIN_TILE_SIZE * 2
out_features = weight.s.shape[1]
groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]
if groupsize not in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES:
supported_sizes = ", ".join(
str(b) for b in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
)
raise RuntimeError(
f"Group size {groupsize} is not supported, must be one of: {supported_sizes}"
)
self.bits = weight.bits
weights_per_int32 = 32 // self.bits
assert (
out_features % GPTQ_MARLIN_24_MIN_THREAD_N == 0
), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_N} threads"
assert (
out_features % weights_per_int32 == 0
), f"Number of output features ({out_features}) not divisable by weights per int32 ({weights_per_int32})"
assert (
in_features % GPTQ_MARLIN_24_MIN_THREAD_K == 0
), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_K} threads"
if groupsize != -1 and in_features % groupsize != 0:
raise ValueError(
f"Number of input features ({in_features}) not divisable by group size ({groupsize})"
)
self.B = weight.B
self.B_meta = weight.B_meta
self.s = weight.s
if bias is not None:
self.bias = bias
else:
self.bias = None
self.workspace = torch.zeros(
(out_features // GPTQ_MARLIN_24_MIN_THREAD_N) * GPTQ_MARLIN_24_MAX_PARALLEL,
dtype=torch.int,
device=weight.B.device,
)
def forward(self, A: torch.Tensor) -> torch.Tensor:
assert marlin_kernels is not None
C = marlin_kernels.gptq_marlin_24_gemm(
A.view(-1, A.shape[-1]),
self.B,
self.B_meta,
self.s,
self.workspace,
self.bits,
A.shape[0],
self.s.shape[1],
A.shape[1],
)
C = C.reshape(A.shape[:-1] + (self.s.shape[1],))
if self.bias is not None:
C += self.bias
return C

View File

@ -1,141 +0,0 @@
import functools
from typing import List, Tuple
import numpy
import torch
from text_generation_server.utils.import_utils import SYSTEM
try:
import marlin_kernels
except ImportError:
marlin_kernels = None
try:
major, _minor = torch.cuda.get_device_capability()
has_sm_8_0 = major >= 8
except Exception:
has_sm_8_0 = False
def _check_marlin_kernels():
if not (SYSTEM == "cuda" and has_sm_8_0):
raise NotImplementedError(
"Using quantized Marlin models requires a GPU with CUDA capability 8.0 or later."
)
if marlin_kernels is None:
raise NotImplementedError(
"marlin is not installed, install it with: pip install server/marlin"
)
# https://github.com/IST-DASLab/marlin/blob/2f6d7c10e124b3c5fa29ff8d77d568bd7af3274c/marlin/__init__.py#L40C1-L68C54
@functools.cache
def get_perms() -> Tuple[List[int], List[int]]:
scale_perm = []
for i in range(8):
scale_perm.extend([i + 8 * j for j in range(8)])
scale_perm_single = []
for i in range(4):
scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
return scale_perm, scale_perm_single
def permute_scales(scales: torch.Tensor):
scale_perm, scale_perm_single = get_perms()
out_features = scales.shape[1]
if scales.shape[0] == 1:
scales = scales.reshape((-1, len(scale_perm_single)))[:, scale_perm_single]
else:
scales = scales.reshape((-1, len(scale_perm)))[:, scale_perm]
return scales.reshape((-1, out_features)).contiguous()
# Functions below are from vLLM
def get_pack_factor(bits: int) -> int:
if 32 % bits != 0:
raise ValueError(f"Cannot {bits} bit values into uint32")
return 32 // bits
def pack_cols(
q_w: torch.Tensor,
num_bits: int,
size_k: int,
size_n: int,
):
assert q_w.shape == (size_k, size_n)
pack_factor = get_pack_factor(num_bits)
assert size_n % pack_factor == 0
orig_device = q_w.device
q_w = q_w.cpu().numpy().astype(numpy.uint32)
q_res = numpy.zeros((size_k, size_n // pack_factor), dtype=numpy.uint32)
for i in range(pack_factor):
q_res |= q_w[:, i::pack_factor] << num_bits * i
q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device)
q_res = q_res.contiguous()
return q_res
def unpack_cols(
packed_q_w: torch.Tensor,
num_bits: int,
size_k: int,
size_n: int,
):
pack_factor = get_pack_factor(num_bits)
assert size_n % pack_factor == 0
assert packed_q_w.shape == (
size_k,
size_n // pack_factor,
), "packed_q_w.shape = {} size_k = {}, size_n = {} pack_Factor = {}".format(
packed_q_w.shape, size_k, size_n, pack_factor
)
orig_device = packed_q_w.device
packed_q_w_cpu = packed_q_w.cpu().numpy().astype(numpy.uint32)
q_res = numpy.zeros((size_k, size_n), dtype=numpy.uint32)
mask = (1 << num_bits) - 1
for i in range(pack_factor):
vals = packed_q_w_cpu & mask
packed_q_w_cpu >>= num_bits
q_res[:, i::pack_factor] = vals
q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device)
q_res = q_res.contiguous()
return q_res
def marlin_zero_points(
zp: torch.Tensor, size_k: int, size_n: int, num_bits: int
) -> torch.Tensor:
scale_perm, _ = get_perms()
# Permute zero-points in a similar way to scales, but do not use the
# "single" permutation, since zero-points are applied on every MMA
zp = zp.reshape((-1, len(scale_perm)))[:, scale_perm]
# Interleave column dim (for the dequantize code) and pack it to int32
if num_bits == 4:
interleave = numpy.array([0, 2, 4, 6, 1, 3, 5, 7])
elif num_bits == 8:
interleave = numpy.array([0, 2, 1, 3])
else:
raise Exception("num_bits must be 4 or 8, got {}".format(num_bits))
zp = zp.reshape((-1, len(interleave)))[:, interleave].ravel()
zp = zp.reshape((-1, size_n)).contiguous()
zp = pack_cols(zp, num_bits, size_k, size_n)
return zp

View File

@ -10,13 +10,8 @@ from text_generation_server.layers import (
TensorParallelRowLinear,
)
from text_generation_server.layers.fp8 import HybridFP8UnquantLoader
from text_generation_server.layers.marlin import GPTQMarlinWeightsLoader
from text_generation_server.layers.moe.gptq_marlin import (
GPTQMarlinSparseMoELayer,
can_use_marlin_moe_gemm,
)
from text_generation_server.layers.moe.unquantized import UnquantizedSparseMoELayer
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.layers.moe.fp8 import FP8SparseMoELayer
from text_generation_server.utils.log import log_once
from text_generation_server.utils.weights import (
DefaultWeightsLoader,
@ -24,12 +19,7 @@ from text_generation_server.utils.weights import (
UnquantizedWeight,
)
if SYSTEM == "rocm":
from .fused_moe_rocm import grouped_topk
from vllm.model_executor.layers.fused_moe import fused_topk
elif SYSTEM != "ipex":
from moe_kernels.fused_moe import fused_topk, grouped_topk
from .fused_moe import fused_topk, grouped_topk
# NOTE: we are using a protocol here, because multiple inherance is not nice.
# We need `Module`, and `Module` -> some abstract class -> some concrete
@ -52,6 +42,8 @@ class MoELayer(Protocol):
up_proj_name: str = "up_proj",
down_proj_name: str = "down_proj",
hidden_act: str = "silu",
scoring_func: Optional[str] = None,
e_score_correction_bias: Optional[float] = None,
): ...
def forward(
@ -81,9 +73,14 @@ class DenseMoELayer(nn.Module):
up_proj_name: str = "up_proj",
down_proj_name: str = "down_proj",
hidden_act: str = "silu",
scoring_func: Optional[str] = None,
e_score_correction_bias: Optional[float] = None,
):
super().__init__()
assert scoring_func is None, "scoring func is not handled"
assert e_score_correction_bias is None, "scoring correction bias is not handled"
log_once(
logger.info,
"No fused layers are available for this model type, using (slower) dense MoE layer",
@ -199,22 +196,27 @@ class SparseMoELayer(nn.Module):
topk: int,
topk_group: Optional[int],
weights: Weights,
scoring_func: Optional[str] = "softmax",
e_score_correction_bias: Optional[float] = None,
gate_proj_name: str = "gate_proj",
up_proj_name: str = "up_proj",
down_proj_name: str = "down_proj",
):
super().__init__()
if (
isinstance(weights.loader, DefaultWeightsLoader)
and isinstance(weights.loader.weight_class, UnquantizedWeight)
) or isinstance(weights.loader, HybridFP8UnquantLoader):
if (
isinstance(weights.loader, HybridFP8UnquantLoader)
and weights.loader.to_fp8
):
cls = FP8SparseMoELayer
else:
cls = UnquantizedSparseMoELayer
elif isinstance(weights.loader, GPTQMarlinWeightsLoader) and weights.loader.sym:
cls = GPTQMarlinSparseMoELayer
else:
raise ValueError(
f"Unsupported weights loader: {weights.loader}, sparse MoE is only supported for unquantized and GPTQ weights"
f"Unsupported weights loader: {type(weights.loader)}, sparse MoE is only supported for unquantized, AWQ, and GPTQ weights"
)
log_once(
@ -230,6 +232,8 @@ class SparseMoELayer(nn.Module):
topk=topk,
topk_group=topk_group,
weights=weights,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
gate_proj_name=gate_proj_name,
up_proj_name=up_proj_name,
down_proj_name=down_proj_name,
@ -241,17 +245,6 @@ class SparseMoELayer(nn.Module):
@staticmethod
def is_supported(weights: Weights) -> bool:
return (
(
isinstance(weights.loader, DefaultWeightsLoader)
and isinstance(weights.loader.weight_class, UnquantizedWeight)
)
or isinstance(weights.loader, HybridFP8UnquantLoader)
or (
isinstance(weights.loader, GPTQMarlinWeightsLoader)
and can_use_marlin_moe_gemm(
quant_method=weights.loader.quant_method,
quantize=weights.loader.quantize,
sym=weights.loader.sym,
)
)
)
) or isinstance(weights.loader, HybridFP8UnquantLoader)

View File

@ -0,0 +1,270 @@
from typing import Optional
import torch
import torch.nn as nn
import os
from text_generation_server.utils.weights import Weights
from text_generation_server.layers.fp8 import (
Fp8Weight,
fp8_quantize,
quant_dtype,
normalize_e4m3fn_to_native_float8,
dynamic_quant,
dequant_block_fp8_weight_naive,
)
from text_generation_server.layers.moe.fused_moe import select_experts
import habana_frameworks.torch as htorch
class FP8SparseMoELayer(nn.Module):
def __init__(
self,
*,
n_expert_group: Optional[int],
n_experts: int,
prefix: str,
renormalize: bool,
topk: int,
topk_group: Optional[int],
weights: Weights,
scoring_func: Optional[str] = "softmax",
e_score_correction_bias: Optional[float] = None,
gate_proj_name: str = "gate_proj",
up_proj_name: str = "up_proj",
down_proj_name: str = "down_proj",
):
super().__init__()
assert (n_expert_group is None) == (
topk_group is None
), "n_expert_group and topk_group must both be None or have some value"
self.n_expert_group = n_expert_group
self.topk = topk
self.topk_group = topk_group
self.renormalize = renormalize
self.weight_block_size = weights.weights_loader.weight_block_size
self.scoring_func = scoring_func
self.e_score_correction_bias = e_score_correction_bias
self.world_size = weights.process_group.size()
self.rank = weights.process_group.rank()
self.ep_rank = self.rank
self.use_ep = os.getenv("USE_EXPERT_PARALLEL", "true").lower() == "true"
if (n_experts + self.world_size - 1) // self.world_size < 4:
self.use_ep = False
if self.use_ep:
n_experts_per_rank = (n_experts + self.world_size - 1) // self.world_size
self.ep_offset = self.ep_rank * n_experts_per_rank
n_experts = min(n_experts_per_rank, n_experts - self.ep_offset)
else:
self.ep_offset = 0
(
self.gate_up_proj,
self.gate_up_proj_weight_scale,
self.gate_up_proj_input_scale,
) = _load_expert_multi_weights_col(
prefix=prefix,
n_experts=n_experts,
gate_proj_name=gate_proj_name,
up_proj_name=up_proj_name,
weights=weights,
use_ep=self.use_ep,
ep_offset=self.ep_offset,
)
self.down_proj, self.down_proj_weight_scale, self.down_proj_input_scale = (
_load_expert_weights_row(
prefix=prefix,
n_experts=n_experts,
name=down_proj_name,
weights=weights,
use_ep=self.use_ep,
ep_offset=self.ep_offset,
)
)
if self.weight_block_size is not None:
self.gate_up_proj, self.gate_up_proj_weight_scale = dynamic_quant(
dequant_block_fp8_weight_naive(
self.gate_up_proj,
self.gate_up_proj_weight_scale,
self.weight_block_size,
)
)
self.down_proj, self.down_proj_weight_scale = dynamic_quant(
dequant_block_fp8_weight_naive(
self.down_proj, self.down_proj_weight_scale, self.weight_block_size
)
)
self.gate_up_proj_weight_scale, self.down_proj_weight_scale = (
self.gate_up_proj_weight_scale.squeeze(-1),
self.down_proj_weight_scale.squeeze(-1),
)
def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor:
topk_weights, topk_ids = select_experts(
hidden_states=x,
router_logits=gating_output,
use_grouped_topk=self.n_expert_group is not None,
top_k=self.topk,
renormalize=self.renormalize,
topk_group=self.topk_group,
num_expert_group=self.n_expert_group,
scoring_func=self.scoring_func,
e_score_correction_bias=self.e_score_correction_bias,
)
total_num_experts = gating_output.size(-1)
x_fp8, x_scale = dynamic_quant(x, single_scale=True)
if self.use_ep:
moe_n_slice = 1
n_expert_slice = (
total_num_experts + self.world_size - 1
) // self.world_size
else:
moe_n_slice = 1
n_expert_slice = (total_num_experts + moe_n_slice - 1) // moe_n_slice
for i in range(moe_n_slice):
min_expert = i * n_expert_slice
max_expert = min((i + 1) * n_expert_slice, total_num_experts)
w13_list_slice = [
self.gate_up_proj[j, ...] for j in range(min_expert, max_expert)
]
w2_list_slice = [
self.down_proj[j, ...] for j in range(min_expert, max_expert)
]
w13_weight_scale = [
self.gate_up_proj_weight_scale[j, ...]
for j in range(min_expert, max_expert)
]
w2_weight_scale = [
self.down_proj_weight_scale[j, ...]
for j in range(min_expert, max_expert)
]
current_hidden_states = torch.ops.hpu.mixture_of_experts(
hidden_states=x_fp8,
expert_routing_table=topk_ids.to(torch.int64),
router_weights=topk_weights.to(x.dtype),
w12=w13_list_slice,
w3=w2_list_slice,
d_scale_hidden_states=x_scale,
d_scale_w12=w13_weight_scale,
d_scale_w3=w2_weight_scale,
permuted_weights=True,
activation="silu",
experts_min=min_expert + self.ep_offset,
experts_max=max_expert + self.ep_offset - 1,
)
htorch.core.mark_step()
if i == 0:
final_hidden_states = current_hidden_states
else:
final_hidden_states.add_(current_hidden_states)
return final_hidden_states
def _load_expert_weights(
get_weight_fn,
*,
prefix: str,
n_experts: int,
name: str,
weights: Weights,
ep_offset: int = 0,
) -> torch.Tensor:
all_weight = None
all_weight_scales = None
max_input_scale = None
for i in range(n_experts):
weight = get_weight_fn(prefix, i + ep_offset, name, weights)
assert isinstance(weight, Fp8Weight)
if all_weight is None:
all_weight = torch.empty(
(n_experts,) + weight.weight.shape,
dtype=quant_dtype,
device=weight.weight.device,
)
if all_weight_scales is None:
all_weight_scales = torch.empty(
(n_experts,) + weight.weight_scale.shape,
dtype=torch.float32,
device=weight.weight.device,
)
if weight.weight.dtype in {torch.float8_e4m3fn, torch.float8_e4m3fnuz}:
all_weight[i], all_weight_scales[i], current_input_scale = (
normalize_e4m3fn_to_native_float8(
weight.weight, weight.weight_scale, weight.input_scale
)
)
if current_input_scale is not None:
if max_input_scale is None or current_input_scale > max_input_scale:
max_input_scale = current_input_scale
else:
all_weight[i], all_weight_scales[i] = fp8_quantize(
weight.weight, scalar=True
)
assert all_weight is not None
return all_weight, all_weight_scales, max_input_scale
def _load_expert_multi_weights_col(
*,
prefix: str,
n_experts: int,
gate_proj_name: str,
up_proj_name: str,
weights: Weights,
use_ep: bool = False,
ep_offset: int = 0,
) -> torch.Tensor:
def get_weight_fn_sharded(prefix, i, name, weights):
return weights.get_multi_weights_col(
[f"{prefix}.{i}.{gate_proj_name}", f"{prefix}.{i}.{up_proj_name}"], 0
)
def get_weight_fn(prefix, i, name, weights):
return weights.get_multi_weights(
[f"{prefix}.{i}.{gate_proj_name}", f"{prefix}.{i}.{up_proj_name}"], 0
)
return _load_expert_weights(
get_weight_fn if use_ep else get_weight_fn_sharded,
prefix=prefix,
n_experts=n_experts,
name=None,
weights=weights,
ep_offset=ep_offset if use_ep else 0,
)
def _load_expert_weights_row(
*,
prefix: str,
n_experts: int,
name: str,
weights: Weights,
use_ep: bool = False,
ep_offset: int = 0,
) -> torch.Tensor:
def get_weight_fn_sharded(prefix, i, name, weights):
return weights.get_weights_row(f"{prefix}.{i}.{name}")
def get_weight_fn(prefix, i, name, weights):
return weights.get_weights(f"{prefix}.{i}.{name}")
return _load_expert_weights(
get_weight_fn if use_ep else get_weight_fn_sharded,
prefix=prefix,
n_experts=n_experts,
name=name,
weights=weights,
ep_offset=ep_offset if use_ep else 0,
)

View File

@ -0,0 +1,131 @@
# coding=utf-8
# Copyright 2023, 2024 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple, Optional
import torch
def grouped_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
num_expert_group: int = 0,
topk_group: int = 0,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
assert hidden_states.shape[0] == gating_output.shape[0], "Number of tokens mismatch"
gating_output = gating_output.float()
if e_score_correction_bias is not None:
e_score_correction_bias = e_score_correction_bias.float()
if scoring_func == "softmax":
scores = torch.softmax(gating_output, dim=-1)
elif scoring_func == "sigmoid":
scores = gating_output.sigmoid()
else:
raise ValueError(f"Unsupported scoring function: {scoring_func}")
num_token = scores.shape[0]
if e_score_correction_bias is not None:
# Store original scores before applying correction bias. We use biased
# scores for expert selection but original scores for routing weights
original_scores = scores
scores = scores + e_score_correction_bias.unsqueeze(0)
group_scores = (
scores.view(num_token, num_expert_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
)
else:
group_scores = (
scores.view(num_token, num_expert_group, -1).max(dim=-1).values
) # [n, n_group]
group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=False)[
1
] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, n_group]
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
score_mask = (
group_mask.unsqueeze(-1)
.expand(num_token, num_expert_group, scores.shape[-1] // num_expert_group)
.reshape(num_token, -1)
) # [n, e]
tmp_scores = scores.masked_fill(~score_mask.bool(), float("-inf")) # [n, e]
if e_score_correction_bias is not None:
topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)[1]
# Use original unbiased scores for the routing weights
topk_weights = original_scores.gather(1, topk_ids)
else:
topk_weights, topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights.to(torch.float32), topk_ids.to(torch.int32)
def fused_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
topk_weights = torch.nn.functional.softmax(
gating_output, dim=1, dtype=torch.float32
)
topk_weights, topk_ids = torch.topk(topk_weights, topk, dim=-1)
if renormalize:
topk_weights /= topk_weights.sum(dim=-1, keepdim=True)
return topk_weights, topk_ids
def select_experts(
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
use_grouped_topk: bool,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
):
# DeekSeekv2 uses grouped_top_k
if use_grouped_topk:
assert topk_group is not None
assert num_expert_group is not None
topk_weights, topk_ids = grouped_topk(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
num_expert_group=num_expert_group,
topk_group=topk_group,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
)
else:
topk_weights, topk_ids = fused_topk(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
)
return topk_weights, topk_ids

View File

@ -1,52 +0,0 @@
# coding=utf-8
# Copyright 2023, 2024 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import torch
import torch.distributed
# TODO: Remove the functions once moe_kernel are built for ROCM
def grouped_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
num_expert_group: int = 0,
topk_group: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
scores = torch.softmax(gating_output, dim=-1)
num_token = scores.shape[0]
group_scores = (
scores.view(num_token, num_expert_group, -1).max(dim=-1).values
) # [n, n_group]
group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=False)[
1
] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, n_group]
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
score_mask = (
group_mask.unsqueeze(-1)
.expand(num_token, num_expert_group, scores.shape[-1] // num_expert_group)
.reshape(num_token, -1)
) # [n, e]
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
topk_weights, topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights, topk_ids

View File

@ -1,215 +0,0 @@
from dataclasses import dataclass
from typing import List, Optional
import torch
import torch.nn as nn
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.weights import Weights
from text_generation_server.layers.marlin.gptq import (
GPTQMarlinWeight,
GPTQMarlinWeightsLoader,
)
if SYSTEM == "cuda":
from moe_kernels.fused_marlin_moe import fused_marlin_moe
else:
fused_marlin_moe = None
try:
major, _minor = torch.cuda.get_device_capability()
has_sm_8_0 = major >= 8
except Exception:
has_sm_8_0 = False
def can_use_marlin_moe_gemm(
*,
quant_method: str,
quantize: str,
sym: bool,
):
return (
SYSTEM == "cuda"
and fused_marlin_moe is not None
and has_sm_8_0
and quantize == "gptq"
and quant_method == "gptq"
and sym
)
@dataclass
class GPTQMarlinMoEWeight:
qweight: torch.Tensor
qzeros: torch.Tensor
scales: torch.Tensor
g_idx: torch.Tensor
perm: torch.Tensor
is_full_k: bool
class GPTQMarlinSparseMoELayer(nn.Module):
"""
MoE layer that uses a fused GPTQ-Marlin kernel.
"""
def __init__(
self,
*,
n_expert_group: Optional[int],
n_experts: int,
prefix: str,
renormalize: bool,
topk: int,
topk_group: Optional[int],
weights: Weights,
gate_proj_name: str = "gate_proj",
up_proj_name: str = "up_proj",
down_proj_name: str = "down_proj",
):
super().__init__()
if not (
isinstance(weights.loader, GPTQMarlinWeightsLoader) and weights.loader.sym
):
raise ValueError(
f"Unsupported weights loader: {weights.loader}, only GPTQMarlinWeightsLoader with symmetric quantization is supported"
)
assert (n_expert_group is None) == (
topk_group is None
), "n_expert_group and topk_group must both be None or have some value"
self.n_expert_group = n_expert_group
self.topk = topk
self.topk_group = topk_group
self.renormalize = renormalize
self.gate_up_proj = _load_expert_multi_weights_col(
prefix=prefix,
n_experts=n_experts,
names=[gate_proj_name, up_proj_name],
weights=weights,
)
self.down_proj = _load_expert_weights_row(
prefix=prefix, n_experts=n_experts, name=down_proj_name, weights=weights
)
self.bits = weights.loader.bits
def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor:
return fused_marlin_moe(
x,
w1=self.gate_up_proj.qweight,
w2=self.down_proj.qweight,
g_idx1=self.gate_up_proj.g_idx,
g_idx2=self.down_proj.g_idx,
perm1=self.gate_up_proj.perm,
perm2=self.down_proj.perm,
w1_scale=self.gate_up_proj.scales,
w2_scale=self.down_proj.scales,
is_full_k1=self.gate_up_proj.is_full_k,
is_full_k2=self.down_proj.is_full_k,
gating_output=gating_output,
topk=self.topk,
renormalize=self.renormalize,
use_grouped_topk=self.n_expert_group is not None,
num_expert_group=self.n_expert_group,
topk_group=self.topk_group,
num_bits=self.bits,
)
def _load_expert_multi_weights_col(
*,
prefix: str,
n_experts: int,
names: List[str],
weights: Weights,
) -> GPTQMarlinMoEWeight:
moe_weight = None
for i in range(n_experts):
weight = weights.get_multi_weights_col(
[f"{prefix}.{i}.{name}" for name in names], 0
)
assert isinstance(weight, GPTQMarlinWeight)
moe_weight = _pack_weight(
n_experts=n_experts, expert=i, weight=weight, moe_weight=moe_weight
)
assert moe_weight is not None
return moe_weight
def _load_expert_weights_row(
*,
prefix: str,
n_experts: int,
name: str,
weights: Weights,
) -> GPTQMarlinMoEWeight:
moe_weight = None
for i in range(n_experts):
weight = weights.get_weights_row(
f"{prefix}.{i}.{name}",
)
assert isinstance(weight, GPTQMarlinWeight)
moe_weight = _pack_weight(
n_experts=n_experts, expert=i, weight=weight, moe_weight=moe_weight
)
assert moe_weight is not None
return moe_weight
def _pack_weight(
*,
n_experts: int,
expert: int,
moe_weight: Optional[GPTQMarlinMoEWeight],
weight: GPTQMarlinWeight,
) -> GPTQMarlinMoEWeight:
if moe_weight is None:
qweight = torch.empty(
(n_experts,) + weight.qweight.shape,
dtype=weight.qweight.dtype,
device=weight.qweight.device,
)
qzeros = torch.empty(
(n_experts,) + weight.qzeros.shape,
dtype=weight.qzeros.dtype,
device=weight.qzeros.device,
)
scales = torch.empty(
(n_experts,) + weight.scales.shape,
dtype=weight.scales.dtype,
device=weight.scales.device,
)
g_idx = torch.empty(
(n_experts,) + weight.g_idx.shape,
dtype=weight.g_idx.dtype,
device=weight.g_idx.device,
)
perm = torch.empty(
(n_experts,) + weight.perm.shape,
dtype=weight.perm.dtype,
device=weight.perm.device,
)
moe_weight = GPTQMarlinMoEWeight(
qweight=qweight,
qzeros=qzeros,
scales=scales,
g_idx=g_idx,
perm=perm,
is_full_k=weight.is_full_k,
)
moe_weight.qweight[expert] = weight.qweight
moe_weight.qzeros[expert] = weight.qzeros
moe_weight.scales[expert] = weight.scales
moe_weight.g_idx[expert] = weight.g_idx
moe_weight.perm[expert] = weight.perm
return moe_weight

View File

@ -3,13 +3,11 @@ from typing import Optional
import torch
import torch.nn as nn
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.weights import UnquantizedWeight, Weights
if SYSTEM == "rocm":
from vllm.model_executor.layers.fused_moe import fused_moe
elif SYSTEM != "ipex":
from moe_kernels.fused_moe import fused_moe
from vllm_hpu_extension.ops import VllmMixtureOfExpertsOp
import habana_frameworks.torch as htorch
import torch.nn.functional as F
import os
class UnquantizedSparseMoELayer(nn.Module):
@ -23,6 +21,8 @@ class UnquantizedSparseMoELayer(nn.Module):
topk: int,
topk_group: Optional[int],
weights: Weights,
scoring_func: Optional[str] = "softmax",
e_score_correction_bias: Optional[float] = None,
gate_proj_name: str = "gate_proj",
up_proj_name: str = "up_proj",
down_proj_name: str = "down_proj",
@ -37,6 +37,24 @@ class UnquantizedSparseMoELayer(nn.Module):
self.topk = topk
self.topk_group = topk_group
self.renormalize = renormalize
self.weight_block_size = weights.weights_loader.weight_block_size
self.scoring_func = scoring_func
self.e_score_correction_bias = e_score_correction_bias
self.rank = weights.process_group.rank()
self.world_size = weights.process_group.size()
self.use_ep = os.getenv("USE_EXPERT_PARALLEL", "true").lower() == "true"
if (n_experts + self.world_size - 1) // self.world_size < 4:
self.use_ep = False
if self.use_ep:
n_experts_per_rank = (n_experts + self.world_size - 1) // self.world_size
self.ep_offset = self.rank * n_experts_per_rank
n_experts = min(n_experts_per_rank, n_experts - self.ep_offset)
experts_min = self.ep_offset
experts_max = self.ep_offset + n_experts - 1
else:
self.ep_offset = 0
experts_min = 0
experts_max = n_experts - 1
self.gate_up_proj = _load_expert_multi_weights_col(
prefix=prefix,
@ -44,6 +62,8 @@ class UnquantizedSparseMoELayer(nn.Module):
gate_proj_name=gate_proj_name,
up_proj_name=up_proj_name,
weights=weights,
use_ep=self.use_ep,
ep_offset=self.ep_offset,
)
self.down_proj = _load_expert_weights_row(
@ -51,32 +71,33 @@ class UnquantizedSparseMoELayer(nn.Module):
n_experts=n_experts,
name=down_proj_name,
weights=weights,
use_ep=self.use_ep,
ep_offset=self.ep_offset,
)
self.MoeOp = VllmMixtureOfExpertsOp(n_experts, experts_min, experts_max)
for i in range(n_experts):
self.MoeOp.w13_list[i].set_weight(self.gate_up_proj[i])
self.MoeOp.w2_list[i].set_weight(self.down_proj[i])
def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor:
if SYSTEM == "rocm":
return fused_moe(
x,
self.gate_up_proj,
self.down_proj,
gating_output,
self.topk,
renormalize=self.renormalize,
inplace=True,
htorch.core.mark_step()
routing_weights = F.softmax(gating_output, dim=1, dtype=torch.float32)
routing_weights, selected_experts = torch.topk(
routing_weights, self.topk, dim=-1
)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
routing_weights = routing_weights.to(x.dtype)
final_hidden_states = self.MoeOp(
hidden_states=x,
expert_routing_table=selected_experts,
router_weights=routing_weights,
permuted_weights=True,
activation="silu",
)
return fused_moe(
x,
w1=self.gate_up_proj,
w2=self.down_proj,
gating_output=gating_output,
topk=self.topk,
renormalize=self.renormalize,
inplace=True,
use_grouped_topk=self.n_expert_group is not None,
num_expert_group=self.n_expert_group,
topk_group=self.topk_group,
)
return final_hidden_states.view(-1, x.shape[1])
def _load_expert_multi_weights_col(
@ -86,12 +107,23 @@ def _load_expert_multi_weights_col(
gate_proj_name: str,
up_proj_name: str,
weights: Weights,
use_ep: bool = False,
ep_offset: int = 0,
) -> torch.Tensor:
all_weight = None
for i in range(n_experts):
if not use_ep:
weight = weights.get_multi_weights_col(
[f"{prefix}.{i}.{gate_proj_name}", f"{prefix}.{i}.{up_proj_name}"], 0
)
else:
weight = weights.get_multi_weights(
[
f"{prefix}.{i+ep_offset}.{gate_proj_name}",
f"{prefix}.{i+ep_offset}.{up_proj_name}",
],
0,
)
assert isinstance(weight, UnquantizedWeight)
@ -115,12 +147,19 @@ def _load_expert_weights_row(
n_experts: int,
name: str,
weights: Weights,
use_ep: bool = False,
ep_offset: int = 0,
) -> torch.Tensor:
all_weight = None
for i in range(n_experts):
if not use_ep:
weight = weights.get_weights_row(
f"{prefix}.{i}.{name}",
)
else:
weight = weights.get_weights(
f"{prefix}.{i+ep_offset}.{name}",
)
assert isinstance(weight, UnquantizedWeight)

View File

@ -2,14 +2,10 @@ import os
import math
import torch
from torch import nn
from text_generation_server.utils.import_utils import SYSTEM
if SYSTEM == "cuda":
import rotary_emb
elif SYSTEM == "rocm":
from vllm._C import ops
elif SYSTEM == "ipex":
import intel_extension_for_pytorch as ipex
from habana_frameworks.torch.hpex.kernels import (
RotaryPosEmbeddingMode,
apply_rotary_pos_emb,
)
def _create_inv_freq(dim, base, device):
@ -30,7 +26,7 @@ def _get_rope_config(config):
class PositionRotaryEmbedding(nn.Module):
def __init__(self, inv_freq, scaling_factor):
def __init__(self, inv_freq, scaling_factor, max_position_embeddings):
super().__init__()
self.inv_freq = inv_freq
self._seq_len_cached = 0
@ -40,6 +36,9 @@ class PositionRotaryEmbedding(nn.Module):
self._sin_k_cached = None
self.scaling_factor = scaling_factor
self.dynamic_args = None
self._update_cos_sin_cache(
torch.float32, inv_freq.device, max_position_embeddings
)
def forward(
self,
@ -48,40 +47,41 @@ class PositionRotaryEmbedding(nn.Module):
cos: torch.Tensor,
sin: torch.Tensor,
):
# Such controlflows may add some overhead.
if SYSTEM == "cuda":
rotary_dim = cos.shape[-1]
q1 = query[..., :rotary_dim]
q2 = query[..., rotary_dim : 2 * rotary_dim]
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
k1 = key[..., :rotary_dim]
k2 = key[..., rotary_dim : 2 * rotary_dim]
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
elif SYSTEM == "rocm":
# NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
# Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773
num_tokens = query.shape[0]
head_size = query.shape[-1]
# HPU RoPE kernel requires hidden dimension for cos and sin to be equal
# to query hidden dimension, so the original tensors need to be
# expanded
# GPT-NeoX kernel requires position_ids = None, offset, mode = BLOCKWISE
# and expansion of cos/sin tensors via concatenation
rope_mode = RotaryPosEmbeddingMode.BLOCKWISE
cos = torch.cat((cos, cos), dim=-1)
sin = torch.cat((sin, sin), dim=-1)
rotary_dim = cos.shape[-1]
query_shape = query.shape
query = query.view(num_tokens, -1, head_size)
query_rot = query[..., :rotary_dim]
query_pass = query[..., rotary_dim:]
query_rot = apply_rotary_pos_emb(query_rot, cos, sin, None, 0, rope_mode)
query.copy_(torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape))
# Inplace operation, updating query and key.
ops.rotary_embedding(query, key, head_size, cos, sin, True)
elif SYSTEM == "ipex":
ipex.llm.functional.rotary_embedding(
query, key, sin, cos, query.size(-1), True
)
else:
raise ValueError(
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
)
key_shape = key.shape
key = key.view(num_tokens, -1, head_size)
key_rot = key[..., :rotary_dim]
key_pass = key[..., rotary_dim:]
key_rot = apply_rotary_pos_emb(key_rot, cos, sin, None, 0, rope_mode)
key.copy_(torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape))
@classmethod
def static(cls, config, dim, base, device):
inv_freq = _create_inv_freq(dim, base, device)
scaling_factor = None
rope_scaling = _get_rope_config(config)
if not hasattr(config, "max_position_embeddings") and hasattr(
config, "max_seq_len"
):
# handling for dbrx
config.max_position_embeddings = config.max_seq_len
if rope_scaling is not None:
# `rope_type` is now standard in transformers, but some existing models
# have `type` instead.
@ -89,6 +89,17 @@ class PositionRotaryEmbedding(nn.Module):
if rope_type == "linear":
pass
elif rope_type == "default":
pass
elif rope_type == "mrope":
mrope_section = rope_scaling["mrope_section"]
if mrope_section is not None:
return RotaryPositionEmbeddingMultimodalSections(
inv_freq,
scaling_factor,
mrope_section,
config.max_position_embeddings,
)
elif rope_type == "dynamic":
scaling_factor = rope_scaling["factor"]
return DynamicPositionRotaryEmbedding(
@ -109,7 +120,7 @@ class PositionRotaryEmbedding(nn.Module):
],
)
return cls(inv_freq, scaling_factor)
return cls(inv_freq, scaling_factor, config.max_position_embeddings)
elif rope_type == "yarn":
scaling_factor = rope_scaling["factor"]
@ -185,12 +196,13 @@ class PositionRotaryEmbedding(nn.Module):
long_inv_freq=long_inv_freq,
scaling_factor=scaling_factor,
original_max_position_embeddings=original_max_position_embeddings,
max_position_embeddings=config.max_position_embeddings,
)
else:
raise NotImplementedError(
f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
)
return cls(inv_freq, scaling_factor)
return cls(inv_freq, scaling_factor, config.max_position_embeddings)
@classmethod
def load(cls, config, prefix, weights):
@ -236,7 +248,7 @@ class PositionRotaryEmbedding(nn.Module):
raise NotImplementedError(
f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
)
return cls(inv_freq, scaling_factor)
return cls(inv_freq, scaling_factor, config.max_position_embeddings)
def _update_cos_sin_cache(self, dtype, device, seqlen):
# Reset the tables if the sequence length has changed,
@ -257,17 +269,7 @@ class PositionRotaryEmbedding(nn.Module):
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
def get_cos_sin(self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype):
"""
Return cos and sin for the asked position ids
"""
if SYSTEM == "rocm":
# For RoCm, we always use float cos/sin to avoid a cast.
# For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26
# But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
dtype = torch.float32
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
def get_cos_sin(self, position_ids: torch.Tensor):
cos = torch.index_select(self._cos_cached, 0, position_ids)
sin = torch.index_select(self._sin_cached, 0, position_ids)
@ -283,6 +285,7 @@ class SuRotaryEmbedding(PositionRotaryEmbedding):
long_inv_freq,
scaling_factor,
original_max_position_embeddings,
max_position_embeddings,
):
super(PositionRotaryEmbedding, self).__init__()
self.short_inv_freq = short_inv_freq
@ -295,6 +298,9 @@ class SuRotaryEmbedding(PositionRotaryEmbedding):
self._cos_k_cached = None
self._sin_k_cached = None
self.dynamic_args = None
self._update_cos_sin_cache(
torch.float32, short_inv_freq.device, max_position_embeddings
)
def _update_cos_sin_cache(self, dtype, device, seqlen):
# Reset the tables if the sequence length has changed,
@ -348,6 +354,9 @@ class Phi3LongRoPEScaledRotaryEmbedding(PositionRotaryEmbedding):
self._cos_k_cached = None
self._sin_k_cached = None
self.dynamic_args = None
self._update_cos_sin_cache(
torch.float32, short_inv_freq.device, max_position_embeddings
)
def _update_cos_sin_cache(self, dtype, device, seqlen):
if (
@ -383,7 +392,7 @@ class Phi3LongRoPEScaledRotaryEmbedding(PositionRotaryEmbedding):
class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
inv_freq = _create_inv_freq(dim, base, device)
super().__init__(inv_freq, scaling_factor)
super().__init__(inv_freq, scaling_factor, max_position_embeddings)
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
@ -461,7 +470,6 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
mscale_all_dim: float,
):
inv_freq = _create_inv_freq(dim, base, device)
super().__init__(inv_freq, scaling_factor)
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
@ -476,6 +484,7 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
/ get_mscale(self.scaling_factor, mscale_all_dim)
* self.attn_factor
) # Get n-d magnitude scaling corrected for interpolation
super().__init__(inv_freq, scaling_factor, max_position_embeddings)
def _update_cos_sin_cache(self, dtype, device, seqlen):
# Reset the tables if the sequence length has changed,
@ -546,3 +555,50 @@ def apply_llama3_scaling(
new_freqs.append((1 - smooth) * freq / scaling_factor + smooth * freq)
return torch.tensor(new_freqs, dtype=freqs.dtype, device=freqs.device)
class RotaryPositionEmbeddingMultimodalSections(PositionRotaryEmbedding):
def __init__(
self,
inv_freq: torch.Tensor,
scaling_factor: float,
sections: list,
max_position_embeddings,
):
self.sections = sections
self._cos_cached = None
self._sin_cached = None
self.section_indices = (
torch.arange(len(self.sections))
.repeat_interleave(torch.tensor(self.sections))
.view(1, 1, -1)
.to(inv_freq.device)
)
super().__init__(inv_freq, scaling_factor, max_position_embeddings)
def _update_cos_sin_cache(
self, dtype: torch.dtype, device: torch.device, seqlen: int
):
# always cache the cos/sin for the full sequence length to avoid
# recomputing if the sequence length is smaller than the cached one
if (
seqlen > self._seq_len_cached
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
):
self._seq_len_cached = seqlen
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
self._sections = self.section_indices.expand(seqlen, -1, -1)
def get_cos_sin(
self,
position_ids: torch.Tensor,
):
slen = position_ids.shape[0]
cos = self._cos_cached[position_ids].gather(1, self._sections[:slen])
sin = self._sin_cached[position_ids].gather(1, self._sections[:slen])
return cos, sin

View File

@ -2,10 +2,8 @@ import torch
from torch.nn import functional as F
from typing import Iterable, List
from text_generation_server.layers.linear import get_linear, FastLinear
from text_generation_server.utils.import_utils import SYSTEM
if SYSTEM == "ipex":
import intel_extension_for_pytorch as ipex
import habana_frameworks.torch as htorch
class LayerConcat(torch.nn.Module):
@ -90,11 +88,7 @@ class TensorParallelHead(SuperLayer):
local_out = gather_input.T
torch.mm(input, self.linear.weight.T, out=local_out)
if SYSTEM == "ipex":
ipex.distributed.all_gather_into_tensor(
world_out, gather_input, group=self.process_group
)
else:
htorch.core.mark_step()
torch.distributed.all_gather_into_tensor(
world_out, gather_input, group=self.process_group
)
@ -107,9 +101,8 @@ class TensorParallelHead(SuperLayer):
world_output = [
torch.empty_like(output) for _ in range(self.process_group.size())
]
if SYSTEM == "ipex":
ipex.distributed.all_gather(world_output, output, group=self.process_group)
else:
htorch.core.mark_step()
torch.distributed.all_gather(world_output, output, group=self.process_group)
world_output = torch.cat(world_output, dim=-1)
return world_output
@ -202,9 +195,10 @@ class TensorParallelRowLinear(SuperLayer):
def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor:
out = super().forward(input)
if self.process_group.size() > 1 and reduce:
if SYSTEM == "ipex":
ipex.distributed.all_reduce(out, group=self.process_group)
else:
# FIXME(kzawora): this is a workaround for a bug in Habana PT bridge
# occurring when PT_HPU_ENABLE_LAZY_COLLECTIVES=true env var is used
# (which is required for tensor parallel HPUGraph inference)
htorch.core.mark_step()
torch.distributed.all_reduce(out, group=self.process_group)
return out
@ -242,8 +236,9 @@ class TensorParallelEmbedding(torch.nn.Module):
)
out = torch.nn.functional.embedding(input, self.weight)
if self.reduce and self.process_group.size() > 1:
if SYSTEM == "ipex":
ipex.distributed.all_reduce(out, group=self.process_group)
else:
# FIXME(kzawora): this is a workaround for a bug in Habana PT bridge
# occurring when PT_HPU_ENABLE_LAZY_COLLECTIVES=true env var is used
# (which is required for tensor parallel HPUGraph inference)
htorch.core.mark_step()
torch.distributed.all_reduce(out, group=self.process_group)
return out

View File

@ -1,30 +1,24 @@
# ruff: noqa: F821
# the above line disables the `undefined-name` rule for the model type variables
import torch
import os
from loguru import logger
from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto import modeling_auto
from huggingface_hub import hf_hub_download, HfApi
from typing import Optional
from pathlib import Path
from typing import List, Dict
import enum
# Needed to properly setup habana_frameworks
from text_generation_server.utils.speculate import get_speculate, set_speculate
from text_generation_server.models.model import Model
from text_generation_server.models.causal_lm import CausalLM
from text_generation_server.models.bloom import BLOOM
from text_generation_server.models.starcoder import StarCoder
from text_generation_server.models.vlm_causal_lm import VlmCausalLM
from text_generation_server.models.custom_modeling.mllama import (
MllamaForConditionalGeneration,
)
from text_generation_server.models.custom_modeling.llava_next import (
LlavaNextForConditionalGeneration,
from text_generation_server.models.custom_modeling.flash_phi_moe_modeling import (
PhiMoEConfig,
)
# from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch
from text_generation_server.utils.adapter import (
AdapterParameters,
build_layer_weight_lookup,
@ -33,9 +27,329 @@ from text_generation_server.utils.adapter import (
)
from text_generation_server.adapters.lora import LoraWeights
from text_generation_server.utils.log import log_master
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
__all__ = [
"Model",
"CausalLM",
"Seq2SeqLM",
"get_model_with_lora_adapters",
]
VLM_BATCH_TYPES = set()
FLASH_ATTENTION = True
try:
from text_generation_server.models.flash_causal_lm import FlashCausalLM
from text_generation_server.models.flash_vlm_causal_lm import FlashVlmCausalLM
from text_generation_server.models.mllama_causal_lm import FlashMllamaCausalLM
from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import (
FlashDeepseekV2ForCausalLM,
DeepseekV2Config,
)
from text_generation_server.models.custom_modeling.flash_deepseek_v3_modeling import (
FlashDeepseekV3ForCausalLM,
DeepseekV3Config,
)
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
FlashLlamaForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_llama4_modeling import (
Llama4ForConditionalGeneration,
)
from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
FlashCohereForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
FlashGemmaForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_gemma2_modeling import (
FlashGemma2ForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_gemma3_modeling import (
Gemma3ForConditionalGeneration,
FlashGemma3ForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_dbrx_modeling import (
FlashDbrxForCausalLM,
DbrxConfig,
)
from text_generation_server.models.custom_modeling.flash_rw_modeling import (
RWConfig,
FlashRWForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_neox_modeling import (
FlashGPTNeoXForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_pali_gemma_modeling import (
PaliGemmaForConditionalGeneration,
)
from text_generation_server.models.custom_modeling.flash_phi_modeling import (
FlashPhiForCausalLM,
)
from text_generation_server.models.mllama_causal_lm import FlashMllamaCausalLMBatch
from text_generation_server.models.custom_modeling.flash_mllama import (
FlashMllamaForConditionalGeneration,
)
from text_generation_server.models.custom_modeling.flash_llava_next import (
FlashLlavaNextForConditionalGeneration,
)
from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
FlashSantacoderForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_starcoder2_modeling import (
FlashStarcoder2ForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_qwen2_modeling import (
Qwen2ForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_qwen3_modeling import (
Qwen3ForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_qwen3_moe_modeling import (
Qwen3MoeForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
FlashMistralForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_mixtral_modeling import (
FlashMixtralForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_gpt2_modeling import (
FlashGPT2ForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_gptj_modeling import (
FlashGPTJForCausalLM,
)
from text_generation_server.models.custom_modeling.idefics2 import (
Idefics2ForConditionalGeneration,
)
from text_generation_server.models.custom_modeling.idefics3 import (
Idefics3ForConditionalGeneration,
)
from text_generation_server.models.custom_modeling.qwen2_vl import (
Qwen2VLForConditionalGeneration,
)
from text_generation_server.models.custom_modeling.qwen2_5_vl import (
Qwen2_5VLForConditionalGeneration,
Qwen2_5_VLConfig,
Qwen2_5_VLProcessor,
)
from text_generation_server.layers.attention import SUPPORTS_WINDOWING
except ImportError as e:
log_master(logger.warning, f"Could not import Flash Attention enabled models: {e}")
SUPPORTS_WINDOWING = False
FLASH_ATTENTION = False
VLM_BATCH_TYPES = set()
if FLASH_ATTENTION:
__all__.append(FlashCausalLM)
from text_generation_server.models.flash_vlm_causal_lm import (
FlashVlmCausalLMBatch,
)
VLM_BATCH_TYPES = {
FlashVlmCausalLMBatch,
FlashMllamaCausalLMBatch,
}
__all__.append(VLM_BATCH_TYPES)
class ModelType(enum.Enum):
DEEPSEEK_V2 = {
"type": "deepseek_v2",
"name": "Deepseek V2",
"url": "https://huggingface.co/deepseek-ai/DeepSeek-V2",
}
DEEPSEEK_V3 = {
"type": "deepseek_v3",
"name": "Deepseek V3",
"url": "https://huggingface.co/deepseek-ai/DeepSeek-V3",
}
IDEFICS2 = {
"type": "idefics2",
"name": "Idefics 2",
"url": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
"multimodal": True,
}
IDEFICS3 = {
"type": "idefics3",
"name": "Idefics 3",
"url": "https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3",
"multimodal": True,
}
LLAVA_NEXT = {
"type": "llava_next",
"name": "Llava Next (1.6)",
"url": "https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf",
"multimodal": True,
}
LLAMA = {
"type": "llama",
"name": "Llama",
"url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
}
LLAMA4 = {
"type": "llama4",
"name": "Llama4",
"url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
}
PHI3 = {
"type": "phi3",
"name": "Phi 3",
"url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
}
GRANITE = {
"type": "granite",
"name": "Granite",
"url": "https://huggingface.co/ibm-granite/granite-3.0-8b-instruct",
}
GEMMA = {
"type": "gemma",
"name": "Gemma",
"url": "https://huggingface.co/google/gemma-7b",
}
PALIGEMMA = {
"type": "paligemma",
"name": "PaliGemma",
"url": "https://huggingface.co/google/paligemma-3b-pt-224",
}
GEMMA2 = {
"type": "gemma2",
"name": "Gemma2",
"url": "https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315",
}
GEMMA3 = {
"type": "gemma3",
"name": "Gemma3",
"url": "https://huggingface.co/collections/google/gemma-3-release-67c6c6f89c4f76621268bb6d",
}
GEMMA3_TEXT = {
"type": "gemma3_text",
"name": "Gemma3 Text",
"url": "https://huggingface.co/collections/google/gemma-3-release-67c6c6f89c4f76621268bb6d",
}
COHERE = {
"type": "cohere",
"name": "Cohere",
"url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
}
DBRX = {
"type": "dbrx",
"name": "Dbrx",
"url": "https://huggingface.co/databricks/dbrx-instruct",
}
MAMBA = {
"type": "mamba",
"name": "Mamba",
"url": "https://huggingface.co/state-spaces/mamba-2.8b-slimpj",
}
MISTRAL = {
"type": "mistral",
"name": "Mistral",
"url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407",
}
MIXTRAL = {
"type": "mixtral",
"name": "Mixtral",
"url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
}
GPT_BIGCODE = {
"type": "gpt_bigcode",
"name": "Gpt Bigcode",
"url": "https://huggingface.co/bigcode/gpt_bigcode-santacoder",
}
PHI = {
"type": "phi",
"name": "Phi",
"url": "https://huggingface.co/microsoft/phi-1_5",
}
PHI_MOE = {
"type": "phimoe",
"name": "PhiMoe",
"url": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct",
}
BAICHUAN = {
"type": "baichuan",
"name": "Baichuan",
"url": "https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat",
}
FALCON = {
"type": "falcon",
"name": "Falcon",
"url": "https://huggingface.co/tiiuae/falcon-7b-instruct",
}
STARCODER2 = {
"type": "starcoder2",
"name": "StarCoder 2",
"url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
}
QWEN2 = {
"type": "qwen2",
"name": "Qwen 2",
"url": "https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f",
}
QWEN2_VL = {
"type": "qwen2_vl",
"name": "Qwen 2 VL",
"url": "https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d",
}
QWEN2_5_VL = {
"type": "qwen2_5_vl",
"name": "Qwen 2.5 VL",
"url": "https://huggingface.co/collections/Qwen/qwen25-66e81a666513e518adb90d9e",
}
QWEN3 = {
"type": "qwen3",
"name": "Qwen 3",
"url": "https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f",
}
QWEN3_MOE = {
"type": "qwen3_moe",
"name": "Qwen 3 Moe",
"url": "https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f",
}
GALACTICA = {
"type": "galactica",
"name": "Galactica",
"url": "https://huggingface.co/facebook/galactica-120b",
}
SANTACODER = {
"type": "santacoder",
"name": "SantaCoder",
"url": "https://huggingface.co/bigcode/santacoder",
}
GPT2 = {
"type": "gpt2",
"name": "Gpt2",
"url": "https://huggingface.co/openai-community/gpt2",
}
GPT_NEOX = {
"type": "gpt_neox",
"name": "Gpt Neox",
"url": "https://huggingface.co/EleutherAI/gpt-neox-20b",
}
GPTJ = {
"type": "gptj",
"name": "Gptj",
"url": "https://huggingface.co/EleutherAI/gpt-j-6b",
}
MLLAMA = {
"type": "mllama",
"name": "Mllama",
"url": "https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct",
"multimodal": True,
}
__GLOBALS = locals()
for data in ModelType:
__GLOBALS[data.name] = data.value["type"]
SDP_ON_BF16 = int(os.environ.get("SDP_ON_BF16", 0))
# Disable gradients
@ -50,12 +364,11 @@ def get_model(
quantize: Optional[str],
speculate: Optional[int],
dtype: Optional[torch.dtype],
kv_cache_dtype: Optional[str],
trust_remote_code: bool,
max_input_tokens: int,
) -> Model:
adapt_transformers_to_gaudi()
if SDP_ON_BF16 == 1:
torch._C._set_math_sdp_allow_fp16_bf16_reduction(True)
global FLASH_ATTENTION
if speculate is not None:
set_speculate(speculate)
@ -177,47 +490,454 @@ def get_model(
model_type = config_dict["model_type"]
if model_type == "gpt_bigcode":
return StarCoder(model_id=model_id, revision=revision, dtype=dtype)
if kv_cache_dtype == "fp8_e4m3fn":
kv_cache_dtype = torch.float8_e4m3fn
elif kv_cache_dtype == "fp8_e5m2":
kv_cache_dtype = torch.float8_e5m2
else:
kv_cache_dtype = dtype
if model_type == "bloom":
return BLOOM(
if FLASH_ATTENTION:
if model_type == DEEPSEEK_V2:
head_size = max(
config_dict.get("qk_nope_dim", 128)
+ config_dict.get("qk_rope_dim", 64),
config_dict.get("v_head_dim", 128),
)
return FlashCausalLM(
model_id=model_id,
model_class=FlashDeepseekV2ForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
default_dtype=torch.bfloat16,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
config_class=DeepseekV2Config,
head_size=head_size,
)
elif model_type == DEEPSEEK_V3:
head_size = max(
config_dict.get("qk_nope_dim", 128)
+ config_dict.get("qk_rope_dim", 64),
config_dict.get("v_head_dim", 128),
)
return FlashCausalLM(
model_id=model_id,
model_class=FlashDeepseekV3ForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
default_dtype=torch.bfloat16,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
config_class=DeepseekV3Config,
head_size=head_size,
)
if model_type == "llava_next":
return VlmCausalLM(
model_class=LlavaNextForConditionalGeneration,
elif (
model_type == GPT_BIGCODE
or model_type == GPT2
and model_id.startswith("bigcode/")
):
return FlashCausalLM(
model_id=model_id,
model_class=FlashSantacoderForCausalLM,
revision=revision,
quantize=None,
speculator=speculator,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
if model_type == "mllama":
return VlmCausalLM(
model_class=MllamaForConditionalGeneration,
model_id=model_id,
revision=revision,
quantize=None,
speculator=speculator,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
return CausalLM(
model_id,
revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
aliases={"transformer.wte.weight": ["lm_head.weight"]},
num_kv_heads=1,
)
elif model_type == GPT2:
return FlashCausalLM(
model_id=model_id,
model_class=FlashGPT2ForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == GPTJ:
return FlashCausalLM(
model_id=model_id,
model_class=FlashGPTJForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == GPT_NEOX:
from text_generation_server.models.custom_modeling.flash_neox_modeling import (
GPTNeoXConfig,
)
return FlashCausalLM(
model_id=model_id,
model_class=FlashGPTNeoXForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
config_class=GPTNeoXConfig,
)
elif model_type == PHI:
return FlashCausalLM(
model_id=model_id,
model_class=FlashPhiForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == PHI_MOE:
return FlashCausalLM(
model_id=model_id,
model_class=FlashLlamaForCausalLM,
config_class=PhiMoEConfig,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == LLAMA or model_type == PHI3 or model_type == GRANITE:
return FlashCausalLM(
model_id=model_id,
model_class=FlashLlamaForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == LLAMA4:
print(f"Llama4 model detected: {model_id}")
return FlashVlmCausalLM(
model_id=model_id,
model_class=Llama4ForConditionalGeneration,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
default_dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
support_chunking=False,
)
elif model_type == BAICHUAN:
return FlashCausalLM(
model_id=model_id,
model_class=FlashLlamaForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == GEMMA:
return FlashCausalLM(
model_id=model_id,
model_class=FlashGemmaForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
# Works better for these models
default_dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == GEMMA2:
return FlashCausalLM(
model_id=model_id,
model_class=FlashGemma2ForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
# Works better for these models
default_dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == GEMMA3:
return FlashVlmCausalLM(
model_id=model_id,
model_class=Gemma3ForConditionalGeneration,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
default_dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
support_chunking=False,
)
elif model_type == GEMMA3_TEXT:
return FlashCausalLM(
model_id=model_id,
model_class=FlashGemma3ForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
# Works better for these models
default_dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == COHERE:
return FlashCausalLM(
model_id=model_id,
model_class=FlashCohereForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == DBRX:
return FlashCausalLM(
model_id=model_id,
model_class=FlashDbrxForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
# Dbrx works better in bfloat16.
default_dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
config_class=DbrxConfig,
)
elif (
model_type in ["RefinedWeb", "RefinedWebModel", FALCON]
and not sharded
and not config_dict.get("alibi", False)
):
return FlashCausalLM(
model_id=model_id,
model_class=FlashRWForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
aliases={
"lm_head.weight": ["transformer.word_embeddings.weight"],
"transformer.word_embeddings.weight": ["lm_head.weight"],
},
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
config_class=RWConfig,
)
elif model_type == MISTRAL:
return FlashCausalLM(
model_id=model_id,
model_class=FlashMistralForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == MIXTRAL:
return FlashCausalLM(
model_id=model_id,
model_class=FlashMixtralForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == STARCODER2:
return FlashCausalLM(
model_id=model_id,
model_class=FlashStarcoder2ForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == QWEN2:
return FlashCausalLM(
model_id=model_id,
model_class=Qwen2ForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == QWEN2_VL:
return FlashVlmCausalLM(
model_id=model_id,
model_class=Qwen2VLForConditionalGeneration,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
default_dtype=torch.bfloat16,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
# TODO: Fix bug in rust image_text_replacement implementation
support_chunking=False,
)
elif model_type == QWEN2_5_VL:
return FlashVlmCausalLM(
model_id=model_id,
model_class=Qwen2_5VLForConditionalGeneration,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
default_dtype=torch.bfloat16,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
config_class=Qwen2_5_VLConfig,
processor_class=Qwen2_5_VLProcessor,
# TODO: Fix bug in rust image_text_replacement implementation
support_chunking=False,
)
elif model_type == QWEN3:
return FlashCausalLM(
model_id=model_id,
model_class=Qwen3ForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == QWEN3_MOE:
return FlashCausalLM(
model_id=model_id,
model_class=Qwen3MoeForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == MLLAMA:
return FlashMllamaCausalLM(
model_id=model_id,
model_class=FlashMllamaForConditionalGeneration,
batch_class=FlashMllamaCausalLMBatch,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
default_dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
support_chunking=False,
)
elif model_type == IDEFICS2:
return FlashVlmCausalLM(
model_id=model_id,
model_class=Idefics2ForConditionalGeneration,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
# XXX: Extremely important to cap resolution in order to limit
# VRAM usage.
processor_kwargs={"size": {"longest_edge": 448, "shortest_edge": 378}},
)
elif model_type == IDEFICS3:
return FlashVlmCausalLM(
model_id=model_id,
model_class=Idefics3ForConditionalGeneration,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
default_dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
# XXX: Extremely important to cap resolution in order to limit
# VRAM usage.
processor_kwargs={"size": {"longest_edge": 1456}},
)
elif model_type == PALIGEMMA:
return FlashVlmCausalLM(
model_id=model_id,
model_class=PaliGemmaForConditionalGeneration,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
# Works better for these models
default_dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == LLAVA_NEXT:
return FlashVlmCausalLM(
model_class=FlashLlavaNextForConditionalGeneration,
model_id=model_id,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
)
@ -234,6 +954,7 @@ def get_model_with_lora_adapters(
quantize: Optional[str],
speculate: Optional[int],
dtype: Optional[torch.dtype],
kv_cache_dtype: Optional[str],
trust_remote_code: bool,
max_input_tokens: int,
adapter_to_index: Dict[str, int],
@ -247,6 +968,7 @@ def get_model_with_lora_adapters(
quantize,
speculate,
dtype,
kv_cache_dtype,
trust_remote_code,
max_input_tokens,
)

View File

@ -1,52 +0,0 @@
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
import torch
from typing import Optional, Type
from transformers import PreTrainedTokenizerBase
from text_generation_server.models import CausalLM
from text_generation_server.models.causal_lm import CausalLMBatch
from text_generation_server.pb import generate_pb2
class BloomCausalLMBatch(CausalLMBatch):
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
device: torch.device,
) -> "CausalLMBatch":
batch = super().from_pb(
pb=pb,
tokenizer=tokenizer,
dtype=dtype,
device=device,
)
batch.keys_head_dim_last = False
return batch
class BLOOM(CausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
speculator: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
super(BLOOM, self).__init__(
model_id=model_id,
revision=revision,
speculator=speculator,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
@property
def batch_type(self) -> Type[CausalLMBatch]:
return BloomCausalLMBatch

View File

@ -377,7 +377,7 @@ class BloomAttention(nn.Module):
past_value.view(-1, *past_value.shape[-2:]),
)
if CUSTOM_KERNELS_ENABLED:
if CUSTOM_KERNELS_ENABLED and attention_mask.shape[-1] < 4096:
assert self.training is False, "Only foward pass was implemented"
assert (
attention_mask.shape[-1] < 4096
@ -580,7 +580,7 @@ class BloomPreTrainedModel(PreTrainedModel):
@staticmethod
def _convert_to_bloom_cache(
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]],
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
"""
Converts the cache to the format expected by Bloom, i.e. to tuple(tuple([batch_size * num_heads, ...]))

View File

@ -28,10 +28,11 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
@ -39,7 +40,6 @@ from text_generation_server.layers import (
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
@ -47,11 +47,12 @@ from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
from text_generation_server.utils.weights import UnquantizedWeight
from habana_frameworks.torch.hpex.kernels import (
RotaryPosEmbeddingMode,
apply_rotary_pos_emb,
)
if SYSTEM == "cuda":
import dropout_layer_norm
else:
dropout_layer_norm = None
import habana_frameworks.torch as htorch
class CohereRotary(PositionRotaryEmbedding):
@ -63,38 +64,25 @@ class CohereRotary(PositionRotaryEmbedding):
sin: torch.Tensor,
):
# Such controlflows may add some overhead.
if SYSTEM == "cuda":
import rotary_emb
q1 = query[..., ::2]
q2 = query[..., 1::2]
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
k1 = key[..., ::2]
k2 = key[..., 1::2]
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
elif SYSTEM == "rocm":
from vllm._C import ops
# NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
# Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773
num_tokens = query.shape[0]
head_size = query.shape[-1]
rope_mode = RotaryPosEmbeddingMode.PAIRWISE
sin = torch.repeat_interleave(sin, 2, dim=-1)
cos = torch.repeat_interleave(cos, 2, dim=-1)
rotary_dim = cos.shape[-1]
query_shape = query.shape
query = query.view(num_tokens, -1, head_size)
query_rot = query[..., :rotary_dim]
query_pass = query[..., rotary_dim:]
query_rot = apply_rotary_pos_emb(query_rot, cos, sin, None, 0, rope_mode)
query.copy_(torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape))
# Inplace operation, updating query and key.
ops.rotary_embedding(query, key, head_size, cos, sin, False)
elif SYSTEM == "ipex":
import intel_extension_for_pytorch as ipex
ipex.llm.functional.rotary_embedding(
query, key, sin, cos, query.size(-1), False
)
else:
raise ValueError(
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
)
key_shape = key.shape
key = key.view(num_tokens, -1, head_size)
key_rot = key[..., :rotary_dim]
key_pass = key[..., rotary_dim:]
key_rot = apply_rotary_pos_emb(key_rot, cos, sin, None, 0, rope_mode)
key.copy_(torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape))
class CohereLayerNorm(nn.Module):
@ -107,7 +95,6 @@ class CohereLayerNorm(nn.Module):
self.eps = eps
def forward(self, hidden_states):
if hidden_states.shape[-1] > 8192 or SYSTEM != "cuda":
hidden_states = hidden_states.reshape(
-1, self.weight.shape[0], self.weight.shape[1]
)
@ -121,36 +108,6 @@ class CohereLayerNorm(nn.Module):
hidden_states = hidden_states.view(-1, self.weight.shape[1])
return hidden_states.to(input_dtype)
(
hidden_states,
*rest,
) = dropout_layer_norm.dropout_add_ln_fwd(
hidden_states,
None,
self.ones,
None,
None,
None,
None,
None,
0.0,
self.eps,
1.0,
0,
None,
False,
False,
)
# Required to apply one weight matrix per head
hidden_states = hidden_states.view(
-1, self.weight.shape[0], self.weight.shape[1]
)
hidden_states = self.weight * hidden_states
hidden_states = hidden_states.view(-1, self.weight.shape[1])
return hidden_states
def load_attention(config, prefix, weights):
if config.num_attention_heads != config.num_key_value_heads:
@ -203,18 +160,14 @@ class FlashCohereAttention(torch.nn.Module):
prefix: str,
config,
weights,
rotary_emb,
):
super().__init__()
self.num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_heads
self.rotary_emb = CohereRotary.static(
config=config,
dim=self.head_size,
base=config.rope_theta,
device=weights.device,
)
self.rotary_emb = rotary_emb
self.softmax_scale = self.head_size**-0.5
@ -229,6 +182,7 @@ class FlashCohereAttention(torch.nn.Module):
)
self.query_key_value = load_attention(config, prefix, weights)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.use_qk_norm = config.use_qk_norm
if self.use_qk_norm:
@ -264,10 +218,9 @@ class FlashCohereAttention(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
qkv = self.query_key_value(hidden_states)
query, key, value = qkv.split(
@ -291,30 +244,35 @@ class FlashCohereAttention(torch.nn.Module):
self.rotary_emb(query, key, cos, sin)
reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots)
kv_cache.store(
key=key,
value=value,
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else key,
kv_cache[1] if PREFILL_IN_KV_CACHE else value,
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=key,
value=value,
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
return self.o_proj(
@ -363,11 +321,14 @@ class CohereMLP(nn.Module):
class FlashCohereLayer(nn.Module):
def __init__(self, prefix: str, layer_id, config, weights):
def __init__(self, prefix: str, layer_id, config, weights, rotary_emb):
super().__init__()
prefix = f"{prefix}.layers.{layer_id}"
self.self_attn = FlashCohereAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
prefix=f"{prefix}.self_attn",
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
self.mlp = CohereMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
@ -386,10 +347,9 @@ class FlashCohereLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
@ -400,10 +360,9 @@ class FlashCohereLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
mlp_output = self.mlp(normed_hidden_states)
@ -425,6 +384,12 @@ class FlashCohereModel(torch.nn.Module):
self.embed_tokens = TensorParallelEmbedding(
prefix=f"{prefix}.embed_tokens", weights=weights
)
rotary_emb = CohereRotary.static(
config=config,
dim=config.hidden_size // config.num_attention_heads,
base=config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
FlashCohereLayer(
@ -432,6 +397,7 @@ class FlashCohereModel(torch.nn.Module):
layer_id,
config,
weights,
rotary_emb,
)
for layer_id in range(config.num_hidden_layers)
]
@ -452,21 +418,24 @@ class FlashCohereModel(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: torch.Tensor,
max_s: int,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, max_s, hidden_states.dtype
)
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -475,11 +444,12 @@ class FlashCohereModel(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
@ -516,11 +486,9 @@ class FlashCohereForCausalLM(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
@ -529,10 +497,9 @@ class FlashCohereForCausalLM(torch.nn.Module):
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -20,17 +20,15 @@ from torch import nn
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple, Any
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.layers.attention.kv_cache import get_kv_scales
if SYSTEM != "ipex":
from vllm.model_executor.layers.fused_moe import fused_moe
from text_generation_server.layers.attention import (
paged_attention,
attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
PREFILL_IN_KV_CACHE,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers import (
FastLinear,
@ -46,6 +44,8 @@ from text_generation_server.layers.rotary import (
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
from vllm_hpu_extension.ops import DynamicFusedMOE
import habana_frameworks.torch as htorch
class DbrxAttentionConfig(PretrainedConfig):
@ -263,6 +263,7 @@ class DbrxAttention(torch.nn.Module):
prefix: str,
config,
weights,
rotary_emb,
):
super().__init__()
self.clip_qkv = config.attn_config.clip_qkv
@ -270,12 +271,7 @@ class DbrxAttention(torch.nn.Module):
self.hidden_size = config.d_model
self.head_size = self.hidden_size // self.num_heads
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
base=config.attn_config.rope_theta,
device=weights.device,
)
self.rotary_emb = rotary_emb
self.softmax_scale = self.head_size**-0.5
@ -290,6 +286,7 @@ class DbrxAttention(torch.nn.Module):
)
self.query_key_value = load_attention(config, prefix, weights)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.o_proj = TensorParallelRowLinear.load(
config,
@ -309,10 +306,9 @@ class DbrxAttention(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
qkv = self.query_key_value(hidden_states)
if self.clip_qkv is not None:
@ -330,30 +326,35 @@ class DbrxAttention(torch.nn.Module):
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots)
kv_cache.store(
key=kv[:, 0],
value=kv[:, 1],
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0],
kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1],
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=kv[:, 0],
value=kv[:, 1],
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
@ -365,13 +366,17 @@ class DbrxNormAttentionNorm(nn.Module):
prefix: str,
config,
weights,
rotary_emb,
):
super().__init__()
self.norm_1 = FastLayerNorm.load_no_bias(
prefix=f"{prefix}.norm_1", weights=weights, eps=1e-5
)
self.self_attn = DbrxAttention(
prefix=f"{prefix}.attn", config=config, weights=weights
prefix=f"{prefix}.attn",
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
self.norm_2 = FastLayerNorm.load_no_bias(
prefix=f"{prefix}.norm_2",
@ -387,10 +392,9 @@ class DbrxNormAttentionNorm(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
normed_hidden_states, res = self.norm_1(hidden_states, residual)
@ -401,10 +405,9 @@ class DbrxNormAttentionNorm(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
# faster post attention rms norm
@ -482,18 +485,15 @@ class BlockSparseMoE(nn.Module):
self.process_group = weights.process_group
self.hpu_fused_moe = DynamicFusedMOE(self.num_experts)
for i in range(self.num_experts):
self.hpu_fused_moe.MoeOp.w13_list[i].set_weight(self.wv1[i])
self.hpu_fused_moe.MoeOp.w2_list[i].set_weight(self.w2[i])
def forward(self, x: torch.Tensor) -> torch.Tensor:
# router_logits: (num_tokens, n_experts)
router_logits = self.gate(x)
out = fused_moe(
x,
self.wv1,
self.w2,
router_logits,
self.top_k,
renormalize=self.moe_normalize_expert_weights,
inplace=True,
)
out = self.hpu_fused_moe(x, router_logits, self.top_k)
# Reduce sum
if self.process_group.size() > 1:
@ -601,12 +601,15 @@ class DenseMoE(nn.Module):
class DbrxLayer(nn.Module):
def __init__(self, prefix: str, layer_id, config, weights):
def __init__(self, prefix: str, layer_id, config, weights, rotary_emb):
super().__init__()
prefix = f"{prefix}.blocks.{layer_id}"
self.attn = DbrxNormAttentionNorm(
prefix=f"{prefix}.norm_attn_norm", config=config, weights=weights
prefix=f"{prefix}.norm_attn_norm",
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
moe_cls = BlockSparseMoE if config.quantize is None else DenseMoE
@ -620,10 +623,9 @@ class DbrxLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
# Self Attention
attn_output, attn_res = self.attn(
@ -633,10 +635,9 @@ class DbrxLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
moe_output = self.moe(attn_output)
@ -651,6 +652,12 @@ class DbrxModel(torch.nn.Module):
self.embed_tokens = TensorParallelEmbedding(
prefix=f"{prefix}.wte", weights=weights
)
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=config.d_model // config.n_heads,
base=config.attn_config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
@ -659,6 +666,7 @@ class DbrxModel(torch.nn.Module):
layer_id,
config,
weights,
rotary_emb,
)
for layer_id in range(config.n_layers)
]
@ -677,20 +685,23 @@ class DbrxModel(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].attn.self_attn.rotary_emb.get_cos_sin(
position_ids, max_s, hidden_states.dtype
)
cos, sin = self.layers[0].attn.self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -699,11 +710,12 @@ class DbrxModel(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
@ -732,11 +744,9 @@ class FlashDbrxForCausalLM(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
@ -745,10 +755,9 @@ class FlashDbrxForCausalLM(torch.nn.Module):
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -28,25 +28,33 @@ from text_generation_server.layers import (
TensorParallelEmbedding,
TensorParallelRowLinear,
get_linear,
Fp8Linear,
)
from text_generation_server.layers.attention import (
Seqlen,
attention,
paged_attention,
reshape_and_cache,
paged_attention_mla,
set_block_mapping,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
from text_generation_server.layers.attention.kv_cache import KVCache, get_kv_scales
from text_generation_server.layers.layernorm import FastRMSNorm
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
from text_generation_server.layers.rotary import PositionRotaryEmbedding, get_mscale
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.weights import Weights
import habana_frameworks.torch as htorch
if SYSTEM == "rocm":
try:
from vllm import _custom_C
except Exception as e:
raise ImportError(f"Could not load `vllm._custom_C`. Full error: {e}")
def get_and_maybe_dequant_weights(layer: torch.nn.Module) -> torch.Tensor:
if isinstance(layer, Fp8Linear):
eye = torch.eye(
layer.qweight.shape[-1], dtype=torch.bfloat16, device=layer.qweight.device
)
dequant_weights = layer(eye)
del eye
# standardize to (output, input)
return dequant_weights.T
return layer.weight
class DeepseekV2Config(PretrainedConfig):
@ -161,6 +169,7 @@ class DeepseekV2Attention(torch.nn.Module):
prefix: str,
config,
weights: Weights,
rotary_emb,
):
super().__init__()
self.num_heads = config.num_attention_heads
@ -172,13 +181,7 @@ class DeepseekV2Attention(torch.nn.Module):
self.head_size = config.qk_nope_head_dim + config.qk_rope_head_dim
self.value_head_size = config.v_head_dim
self.head_pad_size = max(self.head_size, self.value_head_size)
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.qk_rope_head_dim,
base=config.rope_theta,
device=weights.device,
)
self.rotary_emb = rotary_emb
mscale = get_mscale(
self.rotary_emb.scaling_factor, self.rotary_emb.mscale_all_dim
@ -232,6 +235,8 @@ class DeepseekV2Attention(torch.nn.Module):
),
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.kv_a_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.kv_a_layernorm", weights=weights, eps=config.rms_norm_eps
)
@ -254,27 +259,60 @@ class DeepseekV2Attention(torch.nn.Module):
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
).repeat_interleave(self.num_groups)
kv_b_proj_weight = get_and_maybe_dequant_weights(self.kv_b_proj.linear).T
kv_b_proj_weight = kv_b_proj_weight.view(
self.kv_lora_rank,
self.num_heads,
self.qk_nope_head_dim + self.value_head_size,
)
W_UK, W_UV = kv_b_proj_weight.split(
[self.qk_nope_head_dim, self.value_head_size], dim=-1
)
# Convert from (L, N, V) to (N, L, V)
self.W_UV = W_UV.transpose(0, 1)
# Convert from (L, N, P) to (N, P, L)
self.W_UK_T = W_UK.permute(1, 2, 0)
def _q_proj_and_k_up_proj(self, x):
q_proj = self.q_proj if self.q_lora_rank is None else self.q_b_proj
q_nope, q_pe = (
q_proj(x)
.view(-1, self.num_heads, self.head_size)
.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
)
# Convert from (B, N, P) to (N, B, P)
q_nope = q_nope.transpose(0, 1)
# Multiply (N, B, P) x (N, P, L) -> (N, B, L)
ql_nope = torch.bmm(q_nope, self.W_UK_T)
# Convert from (N, B, L) to (B, N, L)
return ql_nope.transpose(0, 1), q_pe
def _v_up_proj_and_o_proj(self, x):
# Convert from (B, N, L) to (N, B, L)
x = x.view(-1, self.num_heads, self.kv_lora_rank).transpose(0, 1)
# Multiply (N, B, L) x (N, L, V) -> (N, B, V)
x = torch.bmm(x, self.W_UV)
# Convert from (N, B, V) to (B, N * V)
x = x.transpose(0, 1).reshape(-1, self.num_heads * self.value_head_size)
return self.o_proj(x)
def forward(
self,
hidden_states: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
cu_seqlen_prefill: torch.Tensor,
kv_cache: Tuple[torch.Tensor, torch.Tensor],
block_tables: torch.Tensor,
kv_cache: KVCache,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
):
if self.q_lora_rank is None:
query = self.q_proj(hidden_states)
hidden_states_or_q_c = hidden_states
else:
query = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))[0])
query = query.view(-1, self.num_heads, self.head_size)
_, query_pe = torch.split(
query, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
hidden_states_or_q_c = self.q_a_layernorm(self.q_a_proj(hidden_states))[0]
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
compressed_kv, key_pe = torch.split(
@ -282,13 +320,18 @@ class DeepseekV2Attention(torch.nn.Module):
)
key_pe = key_pe.view(-1, 1, self.qk_rope_head_dim)
kv = self.kv_b_proj(self.kv_a_layernorm(compressed_kv.contiguous())[0]).view(
-1, self.num_key_value_heads, self.qk_nope_head_dim + self.value_head_size
)
kv_c_normed = self.kv_a_layernorm(compressed_kv.contiguous())[0]
key_nope, value = torch.split(
kv, [self.qk_nope_head_dim, self.value_head_size], dim=-1
# Prefill
if cu_seqlen_prefill is not None:
q_proj = self.q_proj if self.q_lora_rank is None else self.q_b_proj
query = q_proj(hidden_states_or_q_c)
query = query.view(-1, self.num_heads, self.head_size)
query_nope, query_pe = torch.split(
query, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
else:
query_nope, query_pe = self._q_proj_and_k_up_proj(hidden_states_or_q_c)
batch_size, heads, head_dim = query_pe.shape
query_pe = (
@ -303,7 +346,30 @@ class DeepseekV2Attention(torch.nn.Module):
.reshape(batch_size, heads, head_dim)
)
self.rotary_emb(query_pe, key_pe, cos, sin)
latent_vec_k = torch.concat(
(kv_c_normed, key_pe.view(-1, self.qk_rope_head_dim)), dim=-1
)
latent_vec_k = latent_vec_k.view(-1, self.qk_rope_head_dim + self.kv_lora_rank)
latent_vec_k = latent_vec_k.unflatten(0, (slots.size(0), -1))
kv_cache.store(
key=latent_vec_k,
value=None,
slots=slots,
kv_scales=self.kv_scales,
)
if cu_seqlen_prefill is not None:
kv = self.kv_b_proj(kv_c_normed).view(
-1,
self.num_key_value_heads,
self.qk_nope_head_dim + self.value_head_size,
)
key_nope, value = torch.split(
kv, [self.qk_nope_head_dim, self.value_head_size], dim=-1
)
query[..., self.qk_nope_head_dim :] = query_pe
key = torch.empty_like(query)
key[..., : self.qk_nope_head_dim] = key_nope
@ -321,38 +387,36 @@ class DeepseekV2Attention(torch.nn.Module):
value, (0, self.head_pad_size - self.value_head_size), value=0
)
reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else key,
kv_cache[1] if PREFILL_IN_KV_CACHE else value,
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=key,
value=value,
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
)
# Remove padding.
attn_output = attn_output[..., : self.value_head_size]
return self.o_proj(
attn_output.reshape(-1, self.num_heads * self.value_head_size)
)
else:
# Decode
query = torch.cat([query_nope, query_pe], dim=-1)
attn_output = paged_attention_mla(
query,
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
seqlen,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
kv_lora_rank=self.kv_lora_rank,
)
attn_output = self._v_up_proj_and_o_proj(attn_output)
return attn_output
class DeepseekV2MLP(nn.Module):
@ -387,22 +451,6 @@ class DeepseekV2MLP(nn.Module):
self.quantize = config.quantize
def forward(self, hidden_states: torch.Tensor, reduce: bool = True):
if (
SYSTEM == "rocm"
and self.hidden_act == "silu"
and hidden_states.dtype == torch.float16
and hidden_states.shape[0] == 1
and not self.quantize
):
out = torch.empty(
hidden_states.shape[0],
self.intermediate_size,
dtype=hidden_states.dtype,
device="cuda",
)
_custom_C.LLMM_Silu(self.gate_up_proj.linear.weight, hidden_states, out, 8)
return self.down_proj(out, reduce=reduce)
else:
gate_up_states = self.gate_up_proj(hidden_states)
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
return self.down_proj(
@ -474,7 +522,7 @@ class DeepseekV2MoE(nn.Module):
class DeepseekV2Layer(nn.Module):
def __init__(self, prefix, layer_id, config, weights):
def __init__(self, prefix, layer_id, config, weights, rotary_emb):
super().__init__()
prefix = f"{prefix}.layers.{layer_id}"
@ -482,6 +530,7 @@ class DeepseekV2Layer(nn.Module):
prefix=f"{prefix}.self_attn",
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
if (
@ -520,10 +569,9 @@ class DeepseekV2Layer(nn.Module):
sin: torch.Tensor,
cu_seqlen_prefill: torch.Tensor,
kv_cache,
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
):
normed_hidden_states, residual = self.input_layernorm(hidden_states, residual)
@ -534,10 +582,9 @@ class DeepseekV2Layer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
# faster post attention rms norm
@ -558,6 +605,12 @@ class DeepseekV2Model(torch.nn.Module):
prefix=f"{prefix}.embed_tokens", weights=weights
)
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=config.qk_rope_head_dim,
base=config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
DeepseekV2Layer(
@ -565,6 +618,7 @@ class DeepseekV2Model(torch.nn.Module):
layer_id,
config,
weights,
rotary_emb,
)
for layer_id in range(config.num_hidden_layers)
]
@ -583,20 +637,24 @@ class DeepseekV2Model(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, max_s, hidden_states.dtype
)
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -605,11 +663,12 @@ class DeepseekV2Model(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
@ -635,11 +694,9 @@ class FlashDeepseekV2ForCausalLM(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
@ -648,10 +705,9 @@ class FlashDeepseekV2ForCausalLM(torch.nn.Module):
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -0,0 +1,723 @@
# coding=utf-8
# Copyright 2023, 2024 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Type
import torch
import torch.distributed
from torch import nn
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from text_generation_server.layers import (
FastLinear,
SpeculativeHead,
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
get_linear,
Fp8Linear,
)
from text_generation_server.layers.attention import (
Seqlen,
attention,
paged_attention_mla,
set_block_mapping,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers.attention.kv_cache import KVCache, get_kv_scales
from text_generation_server.layers.layernorm import FastRMSNorm
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
from text_generation_server.layers.rotary import PositionRotaryEmbedding, get_mscale
from text_generation_server.utils.weights import Weights
import habana_frameworks.torch as htorch
def get_and_maybe_dequant_weights(layer: torch.nn.Module) -> torch.Tensor:
if isinstance(layer, Fp8Linear):
eye = torch.eye(
layer.qweight.shape[-1], dtype=torch.bfloat16, device=layer.qweight.device
)
dequant_weights = layer(eye)
del eye
# standardize to (output, input)
return dequant_weights.T
return layer.weight
class DeepseekV3Config(PretrainedConfig):
def __init__(
self,
vocab_size=102400,
hidden_size=4096,
intermediate_size=11008,
moe_intermediate_size=1407,
num_hidden_layers=30,
num_attention_heads=32,
num_key_value_heads=32,
n_shared_experts=2,
n_routed_experts=160,
ep_size=1,
routed_scaling_factor=1.0,
kv_lora_rank=512,
q_lora_rank=1536,
qk_rope_head_dim=64,
v_head_dim=128,
qk_nope_head_dim=128,
topk_method="gready",
n_group=8,
topk_group=3,
num_experts_per_tok=6,
moe_layer_freq=1,
first_k_dense_replace=0,
norm_topk_prob=False,
scoring_func="softmax",
aux_loss_alpha=0.001,
seq_aux=True,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=100000,
eos_token_id=100001,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.moe_intermediate_size = moe_intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.n_shared_experts = n_shared_experts
self.n_routed_experts = n_routed_experts
self.ep_size = ep_size
self.routed_scaling_factor = routed_scaling_factor
self.kv_lora_rank = kv_lora_rank
self.q_lora_rank = q_lora_rank
self.qk_rope_head_dim = qk_rope_head_dim
self.v_head_dim = v_head_dim
self.qk_nope_head_dim = qk_nope_head_dim
self.topk_method = topk_method
self.n_group = n_group
self.topk_group = topk_group
self.num_experts_per_tok = num_experts_per_tok
self.moe_layer_freq = moe_layer_freq
self.first_k_dense_replace = first_k_dense_replace
self.norm_topk_prob = norm_topk_prob
self.scoring_func = scoring_func
self.aux_loss_alpha = aux_loss_alpha
self.seq_aux = seq_aux
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
tie_word_embeddings = kwargs.pop("tie_word_embeddings", False)
if tie_word_embeddings:
raise ValueError(
"tie_word_embeddings is not supported for Deepseek V2 models."
)
if ep_size != 1:
raise ValueError(
f"Currently only ep_size == 1 is supported for Deepseek V2 models, was {ep_size}"
)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class DeepseekV3Attention(torch.nn.Module):
def __init__(
self,
prefix: str,
config,
weights: Weights,
rotary_emb,
):
super().__init__()
self.num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.kv_lora_rank = config.kv_lora_rank
self.q_lora_rank = config.q_lora_rank
self.qk_nope_head_dim = config.qk_nope_head_dim
self.qk_rope_head_dim = config.qk_rope_head_dim
self.head_size = config.qk_nope_head_dim + config.qk_rope_head_dim
self.value_head_size = config.v_head_dim
self.head_pad_size = max(self.head_size, self.value_head_size)
self.rotary_emb = rotary_emb
mscale = get_mscale(
self.rotary_emb.scaling_factor, self.rotary_emb.mscale_all_dim
)
self.softmax_scale = self.head_size**-0.5 * mscale * mscale
if self.num_heads % weights.process_group.size() != 0:
raise ValueError(
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
f"and `num_shards`: {weights.process_group.size()}"
)
self.num_heads = self.num_heads // weights.process_group.size()
self.num_key_value_heads = (
config.num_key_value_heads // weights.process_group.size()
)
if self.q_lora_rank is None:
self.q_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.q_proj",
weights=weights,
bias=config.attention_bias,
)
else:
self.q_a_proj = get_linear(
weight=weights.get_weights(f"{prefix}.q_a_proj"),
bias=(
weights.get_tensor(f"{prefix}.q_a_proj.bias")
if config.attention_bias
else None
),
)
self.q_a_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.q_a_layernorm",
weights=weights,
eps=config.rms_norm_eps,
)
self.q_b_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.q_b_proj",
weights=weights,
bias=config.attention_bias,
)
self.kv_a_proj_with_mqa = get_linear(
weight=weights.get_weights(f"{prefix}.kv_a_proj_with_mqa"),
bias=(
weights.get_tensor(f"{prefix}.kv_a_proj_with_mqa.bias")
if config.attention_bias
else None
),
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.kv_a_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.kv_a_layernorm", weights=weights, eps=config.rms_norm_eps
)
self.kv_b_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.kv_b_proj",
weights=weights,
bias=config.attention_bias,
)
self.o_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=False,
)
self.num_groups = self.num_heads // self.num_key_value_heads
self.kv_head_mapping = torch.arange(
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
).repeat_interleave(self.num_groups)
kv_b_proj_weight = get_and_maybe_dequant_weights(self.kv_b_proj.linear).T
kv_b_proj_weight = kv_b_proj_weight.view(
self.kv_lora_rank,
self.num_heads,
self.qk_nope_head_dim + self.value_head_size,
)
W_UK, W_UV = kv_b_proj_weight.split(
[self.qk_nope_head_dim, self.value_head_size], dim=-1
)
# Convert from (L, N, V) to (N, L, V)
self.W_UV = W_UV.transpose(0, 1)
# Convert from (L, N, P) to (N, P, L)
self.W_UK_T = W_UK.permute(1, 2, 0)
def _q_proj_and_k_up_proj(self, x):
q_proj = self.q_proj if self.q_lora_rank is None else self.q_b_proj
q_nope, q_pe = (
q_proj(x)
.view(-1, self.num_heads, self.head_size)
.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
)
# Convert from (B, N, P) to (N, B, P)
q_nope = q_nope.transpose(0, 1)
# Multiply (N, B, P) x (N, P, L) -> (N, B, L)
ql_nope = torch.bmm(q_nope, self.W_UK_T)
# Convert from (N, B, L) to (B, N, L)
return ql_nope.transpose(0, 1), q_pe
def _v_up_proj_and_o_proj(self, x):
# Convert from (B, N, L) to (N, B, L)
x = x.view(-1, self.num_heads, self.kv_lora_rank).transpose(0, 1)
# Multiply (N, B, L) x (N, L, V) -> (N, B, V)
x = torch.bmm(x, self.W_UV)
# Convert from (N, B, V) to (B, N * V)
x = x.transpose(0, 1).reshape(-1, self.num_heads * self.value_head_size)
return self.o_proj(x)
def forward(
self,
hidden_states: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
cu_seqlen_prefill: torch.Tensor,
kv_cache: KVCache,
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
):
if self.q_lora_rank is None:
hidden_states_or_q_c = hidden_states
else:
hidden_states_or_q_c = self.q_a_layernorm(self.q_a_proj(hidden_states))[0]
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
compressed_kv, key_pe = torch.split(
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
)
key_pe = key_pe.view(-1, 1, self.qk_rope_head_dim)
kv_c_normed = self.kv_a_layernorm(compressed_kv.contiguous())[0]
# Prefill
if cu_seqlen_prefill is not None:
q_proj = self.q_proj if self.q_lora_rank is None else self.q_b_proj
query = q_proj(hidden_states_or_q_c)
query = query.view(-1, self.num_heads, self.head_size)
query_nope, query_pe = torch.split(
query, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
else:
query_nope, query_pe = self._q_proj_and_k_up_proj(hidden_states_or_q_c)
batch_size, heads, head_dim = query_pe.shape
query_pe = (
query_pe.view(batch_size, heads, head_dim // 2, 2)
.transpose(2, 3)
.reshape(batch_size, heads, head_dim)
)
batch_size, heads, head_dim = key_pe.shape
key_pe = (
key_pe.view(batch_size, heads, head_dim // 2, 2)
.transpose(2, 3)
.reshape(batch_size, heads, head_dim)
)
self.rotary_emb(query_pe, key_pe, cos, sin)
latent_vec_k = torch.concat(
(kv_c_normed, key_pe.view(-1, self.qk_rope_head_dim)), dim=-1
)
latent_vec_k = latent_vec_k.view(-1, self.qk_rope_head_dim + self.kv_lora_rank)
latent_vec_k = latent_vec_k.unflatten(0, (slots.size(0), -1))
kv_cache.store(
key=latent_vec_k,
value=None,
slots=slots,
kv_scales=self.kv_scales,
)
if cu_seqlen_prefill is not None:
kv = self.kv_b_proj(kv_c_normed).view(
-1,
self.num_key_value_heads,
self.qk_nope_head_dim + self.value_head_size,
)
key_nope, value = torch.split(
kv, [self.qk_nope_head_dim, self.value_head_size], dim=-1
)
query[..., self.qk_nope_head_dim :] = query_pe
key = torch.empty_like(query)
key[..., : self.qk_nope_head_dim] = key_nope
key[..., self.qk_nope_head_dim :] = key_pe
# We need to pad the heads because Flash Attention does not support
# qk and v with different head sizes.
query = torch.nn.functional.pad(
query, (0, self.head_pad_size - self.head_size), value=0
)
key = torch.nn.functional.pad(
key, (0, self.head_pad_size - self.head_size), value=0
)
value = torch.nn.functional.pad(
value, (0, self.head_pad_size - self.value_head_size), value=0
)
# flash attention
attn_output = attention(
query=query,
key=key,
value=value,
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
)
attn_output = attn_output[..., : self.value_head_size]
return self.o_proj(
attn_output.reshape(-1, self.num_heads * self.value_head_size)
)
else:
# Decode
query = torch.cat([query_nope, query_pe], dim=-1)
attn_output = paged_attention_mla(
query,
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
seqlen,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
kv_lora_rank=self.kv_lora_rank,
)
attn_output = self._v_up_proj_and_o_proj(attn_output)
return attn_output
class DeepseekV3MLP(nn.Module):
def __init__(self, prefix: str, config, weights, intermediate_size: int):
super().__init__()
self.hidden_act = config.hidden_act
if self.hidden_act != "silu":
# Bail out because MoE only supports silu.
raise NotImplementedError(
"Currently only `silu` is supported as an activation for Deepseek V2."
)
self.act = ACT2FN[self.hidden_act]
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
weights=weights,
dim=0,
bias=False,
)
self.down_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.down_proj",
weights=weights,
bias=False,
)
self.intermediate_size = intermediate_size // weights.process_group.size()
# TODO: This is a hotfix to be removed & properly refactored.
self.quantize = config.quantize
def forward(self, hidden_states: torch.Tensor, reduce: bool = True):
gate_up_states = self.gate_up_proj(hidden_states)
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
return self.down_proj(
self.act(gate_up_states[:, 0]) * gate_up_states[:, 1], reduce=reduce
)
class DeepseekV3MoE(nn.Module):
def __init__(
self,
prefix,
config: DeepseekV3Config,
moe_layer_cls: Type[MoELayer],
weights,
):
super().__init__()
self.hidden_dim = config.hidden_size
self.moe_intermediate_size = (
config.moe_intermediate_size // weights.process_group.size()
)
self.routed_scaling_factor = config.routed_scaling_factor
# Gating
self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False)
if config.topk_method == "noaux_tc":
self.gate.e_score_correction_bias = torch.zeros(
config.n_routed_experts, device=weights.device
)
else:
self.gate.e_score_correction_bias = None
self.moe_layer = moe_layer_cls(
prefix=f"{prefix}.experts",
n_experts=config.n_routed_experts,
n_expert_group=config.n_group,
renormalize=config.norm_topk_prob,
topk=config.num_experts_per_tok,
topk_group=config.topk_group,
weights=weights,
scoring_func=config.scoring_func,
e_score_correction_bias=self.gate.e_score_correction_bias,
)
assert isinstance(self.moe_layer, MoELayer)
if config.n_shared_experts is not None:
self.shared_experts = DeepseekV3MLP(
prefix=f"{prefix}.shared_experts",
config=config,
weights=weights,
intermediate_size=config.moe_intermediate_size
* config.n_shared_experts,
)
else:
self.shared_experts = None
self.process_group = weights.process_group
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.shared_experts is not None:
shared_output = self.shared_experts(x, reduce=False)
else:
shared_output = None
router_logits = self.gate(x)
out = self.moe_layer(x, gating_output=router_logits)
if shared_output is not None:
out = out + shared_output
# Reduce sum
if self.process_group.size() > 1:
torch.distributed.all_reduce(out, group=self.process_group)
return out.view(*x.shape)
class DeepseekV3Layer(nn.Module):
def __init__(self, prefix, layer_id, config, weights, rotary_emb):
super().__init__()
prefix = f"{prefix}.layers.{layer_id}"
self.self_attn = DeepseekV3Attention(
prefix=f"{prefix}.self_attn",
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
if (
config.n_routed_experts is not None
and layer_id >= config.first_k_dense_replace
and layer_id % config.moe_layer_freq == 0
):
moe_layer_cls = (
SparseMoELayer
if SparseMoELayer.is_supported(weights)
else DenseMoELayer
)
self.mlp = DeepseekV3MoE(f"{prefix}.mlp", config, moe_layer_cls, weights)
else:
self.mlp = DeepseekV3MLP(
prefix=f"{prefix}.mlp",
config=config,
weights=weights,
intermediate_size=config.intermediate_size,
)
self.input_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
)
self.post_attention_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.post_attention_layernorm",
weights=weights,
eps=config.rms_norm_eps,
)
def forward(
self,
hidden_states: torch.Tensor,
residual: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
cu_seqlen_prefill: torch.Tensor,
kv_cache,
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
):
normed_hidden_states, residual = self.input_layernorm(hidden_states, residual)
# Self Attention
attn_output = self.self_attn(
normed_hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
)
# faster post attention rms norm
normed_attn_res_output, residual = self.post_attention_layernorm(
attn_output, residual
)
output = self.mlp(normed_attn_res_output)
return output, residual
class DeepseekV3Model(torch.nn.Module):
def __init__(self, prefix: str, config, weights: Weights):
super().__init__()
self.embed_tokens = TensorParallelEmbedding(
prefix=f"{prefix}.embed_tokens", weights=weights
)
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=config.qk_rope_head_dim,
base=config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
DeepseekV3Layer(
prefix,
layer_id,
config,
weights,
rotary_emb,
)
for layer_id in range(config.num_hidden_layers)
]
)
self.norm = FastRMSNorm.load(
prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
)
self.head_size = self.layers[0].self_attn.head_size
self.num_heads = self.layers[0].self_attn.num_heads
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache[i],
slots,
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class FlashDeepseekV3ForCausalLM(torch.nn.Module):
def __init__(self, prefix: str, config, weights: Weights):
super().__init__()
self.model = DeepseekV3Model(
"model" if not prefix else f"{prefix}.model", config, weights
)
self.lm_head = SpeculativeHead.load(
config,
prefix="lm_head" if not prefix else f"{prefix}.lm_head",
weights=weights,
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
hidden_states = self.model(
input_ids,
position_ids,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.lm_head(hidden_states)
return logits, speculative_logits

View File

@ -28,8 +28,9 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers import (
TensorParallelRowLinear,
@ -40,12 +41,13 @@ from text_generation_server.layers import (
TensorParallelMultiAdapterLinear,
TensorParallelAdapterRowLinear,
)
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
from text_generation_server.utils.weights import UnquantizedWeight
import habana_frameworks.torch as htorch
class Gemma2Config(PretrainedConfig):
@ -164,7 +166,14 @@ def _load_gqa(config, prefix: str, weights):
class FlashGemma2Attention(torch.nn.Module):
def __init__(
self, prefix: str, config, weights, layer_id, causal: bool, is_sliding: bool
self,
prefix: str,
config,
weights,
layer_id,
causal: bool,
is_sliding: bool,
rotary_emb,
):
super().__init__()
self.num_heads = config.num_attention_heads
@ -174,13 +183,7 @@ class FlashGemma2Attention(torch.nn.Module):
self.window_size = config.sliding_window
else:
self.window_size = -1
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
base=config.rope_theta,
device=weights.device,
)
self.rotary_emb = rotary_emb
# self.softmax_scale = self.head_size**-0.5
self.softmax_scale = config.query_pre_attn_scalar**-0.5
@ -208,6 +211,7 @@ class FlashGemma2Attention(torch.nn.Module):
],
process_group=weights.process_group,
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
o_proj = TensorParallelRowLinear.load(
config,
@ -234,11 +238,10 @@ class FlashGemma2Attention(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
adapter_data,
hpu_attention_meta,
):
qkv = self.query_key_value(hidden_states, adapter_data)
query, kv = qkv.split(
@ -253,19 +256,24 @@ class FlashGemma2Attention(torch.nn.Module):
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots)
kv_cache.store(
key=kv[:, 0],
value=kv[:, 1],
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0],
kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1],
seqlen,
block_tables,
self.softmax_scale,
causal=self.causal,
query=query,
key=kv[:, 0],
value=kv[:, 1],
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
window_size_left=self.window_size,
softcap=self.softcap,
)
@ -273,14 +281,14 @@ class FlashGemma2Attention(torch.nn.Module):
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
softcap=self.softcap,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
window_size_left=self.window_size,
)
return self.o_proj(
@ -348,7 +356,14 @@ class Gemma2MLP(nn.Module):
class FlashGemma2Layer(nn.Module):
def __init__(
self, prefix: str, config, weights, layer_id, causal: bool, is_sliding: bool
self,
prefix: str,
config,
weights,
layer_id,
causal: bool,
is_sliding: bool,
rotary_emb,
):
super().__init__()
self.self_attn = FlashGemma2Attention(
@ -358,6 +373,7 @@ class FlashGemma2Layer(nn.Module):
layer_id=layer_id,
causal=causal,
is_sliding=is_sliding,
rotary_emb=rotary_emb,
)
self.mlp = Gemma2MLP(
prefix=f"{prefix}.mlp", config=config, weights=weights, layer_id=layer_id
@ -390,11 +406,10 @@ class FlashGemma2Layer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
adapter_data,
hpu_attention_meta,
):
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
@ -405,11 +420,10 @@ class FlashGemma2Layer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
adapter_data,
hpu_attention_meta,
)
# faster post attention rms norm
@ -431,6 +445,13 @@ class FlashGemma2Model(torch.nn.Module):
process_group = weights.process_group
self.tp_rank = process_group.rank()
self.tp_world_size = process_group.size()
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=config.head_dim,
base=config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
FlashGemma2Layer(
@ -440,6 +461,7 @@ class FlashGemma2Model(torch.nn.Module):
layer_id=layer_id,
causal=causal,
is_sliding=layer_id % 2 == 0,
rotary_emb=rotary_emb,
)
for layer_id in range(config.num_hidden_layers)
]
@ -458,21 +480,26 @@ class FlashGemma2Model(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
adapter_data: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, max_s, hidden_states.dtype
)
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -481,12 +508,13 @@ class FlashGemma2Model(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
adapter_data,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
@ -529,11 +557,9 @@ class FlashGemma2ForCausalLM(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
@ -543,11 +569,10 @@ class FlashGemma2ForCausalLM(torch.nn.Module):
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
adapter_data,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -0,0 +1,755 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.distributed
from torch import nn
from typing import Optional, List, Tuple
import copy
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
get_linear,
#
SpeculativeHead,
TensorParallelMultiAdapterLinear,
TensorParallelAdapterRowLinear,
)
import torch
from text_generation_server.models.custom_modeling.vlm import (
load_text_model,
load_vision_model,
)
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
from text_generation_server.utils.weights import UnquantizedWeight
from transformers.activations import ACT2FN
from text_generation_server.layers.attention import (
paged_attention,
attention,
Seqlen,
set_block_mapping,
HPUPagedAttentionMetadata,
)
import habana_frameworks.torch as htorch
ATTENTION_TYPE_GLOBAL = "global"
ATTENTION_TYPE_LOCAL = "local_sliding"
class Gemma3FastRMSNorm(FastRMSNorm):
@classmethod
def load(cls, prefix: str, weights, eps=1e-6):
dtype = weights.dtype
weights.dtype = torch.float32
weight = weights.get_tensor(f"{prefix}.weight") + 1
weights.dtype = dtype
new = cls(weight, eps)
new.dtype = dtype
return new
# perform the multiplication in full precision and downcast after
def forward(self, hidden_states, residual=None):
if residual is not None:
hidden_states += residual
residual = hidden_states
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
hidden_states = hidden_states * self.weight
return hidden_states.to(self.dtype), residual
def load_attention(config, prefix: str, weights):
if config.num_attention_heads != config.num_key_value_heads:
return _load_gqa(config, prefix, weights)
else:
return TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=False,
)
def _load_gqa(config, prefix: str, weights):
assert config.num_attention_heads % weights.process_group.size() == 0
weight = weights.get_multi_weights_col(
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
)
if isinstance(weight, UnquantizedWeight):
weight.weight = weight.weight.to(dtype=weights.dtype).to(device=weights.device)
head_size = config.head_dim
num_heads = config.num_attention_heads // weights.process_group.size()
num_key_value_heads = config.num_key_value_heads // weights.process_group.size()
assert list(weight.weight.shape) == [
(num_heads + 2 * num_key_value_heads) * head_size,
config.hidden_size,
], f"{list(weight.weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
return TensorParallelColumnLinear(get_linear(weight, bias=None))
class FlashGemma3Attention(torch.nn.Module):
def __init__(
self,
prefix: str,
config,
weights,
layer_id,
causal: bool,
is_sliding: bool,
local_rotary_emb,
global_rotary_emb,
):
super().__init__()
self.num_heads = config.num_attention_heads
self.head_size = config.head_dim
self.causal = causal
if is_sliding:
self.window_size = config.sliding_window
self.rotary_emb = local_rotary_emb
else:
self.window_size = -1
self.rotary_emb = global_rotary_emb
self.softmax_scale = (
config.query_pre_attn_scalar**-0.5
if config.query_pre_attn_scalar is not None
else None
)
if self.num_heads % weights.process_group.size() != 0:
raise ValueError(
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
f"and `num_shards`: {weights.process_group.size()}"
)
self.num_heads = self.num_heads // weights.process_group.size()
self.num_key_value_heads = (
config.num_key_value_heads // weights.process_group.size()
)
self.softcap = None # config.attn_logit_softcapping
query_key_value = load_attention(config, prefix, weights)
self.query_key_value = TensorParallelMultiAdapterLinear.load(
query_key_value,
layer_id,
["q_proj", "k_proj", "v_proj"],
sizes=[
self.head_size * config.num_attention_heads,
self.head_size * config.num_key_value_heads,
self.head_size * config.num_key_value_heads,
],
process_group=weights.process_group,
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
o_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=False,
)
self.o_proj = TensorParallelAdapterRowLinear.load(
o_proj,
layer_id,
"o_proj",
process_group=weights.process_group,
)
self.num_groups = self.num_heads // self.num_key_value_heads
self.kv_head_mapping = torch.arange(
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
).repeat_interleave(self.num_groups)
self.q_norm = Gemma3FastRMSNorm.load(
prefix=f"{prefix}.q_norm", weights=weights, eps=config.rms_norm_eps
)
self.k_norm = Gemma3FastRMSNorm.load(
prefix=f"{prefix}.k_norm", weights=weights, eps=config.rms_norm_eps
)
self.enable_gqa = self.num_heads != self.num_key_value_heads
def forward(
self,
hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
adapter_data,
hpu_attention_meta,
):
qkv = self.query_key_value(hidden_states, adapter_data)
query, kv = qkv.split(
[
self.head_size * self.num_heads,
2 * self.head_size * self.num_key_value_heads,
],
dim=1,
)
kv = kv.view(-1, 2, self.num_key_value_heads * self.head_size)
key = kv[:, 0]
value = kv[:, 1]
query = query.reshape(-1, self.head_size)
key = key.reshape(-1, self.head_size)
query, _ = self.q_norm(query.contiguous())
key, _ = self.k_norm(key.contiguous())
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_key_value_heads, self.head_size)
value = value.view(-1, self.num_key_value_heads, self.head_size)
self.rotary_emb(query, key, cos, sin)
kv_cache.store(
key=key,
value=value,
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# sdpa
attn_output = attention(
query=query,
key=key,
value=value,
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
window_size_left=self.window_size,
softcap=self.softcap,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
seqlen,
softcap=self.softcap,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
window_size_left=self.window_size,
)
return self.o_proj(
attn_output.view(-1, self.num_heads * self.head_size), adapter_data
)
class Gemma3MLP(nn.Module):
def __init__(self, prefix, config, weights, layer_id):
super().__init__()
act = config.hidden_activation
self.act = (
ACT2FN[act]
if "gelu" not in act
else lambda x: torch.nn.functional.gelu(
x,
approximate=(
"tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none"
),
)
)
# Fuse gate and up proj
gate_up_proj = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
weights=weights,
dim=0,
bias=False,
)
self.gate_up_proj = TensorParallelMultiAdapterLinear.load(
gate_up_proj,
layer_id,
["gate_proj", "up_proj"],
sizes=[
config.intermediate_size,
config.intermediate_size,
],
process_group=weights.process_group,
)
down_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.down_proj",
weights=weights,
bias=False,
)
self.down_proj = TensorParallelAdapterRowLinear.load(
down_proj,
layer_id,
"down_proj",
process_group=weights.process_group,
)
self.intermediate_size = (
config.intermediate_size // weights.process_group.size()
)
def forward(self, hidden_states, adapter_data):
gate_up_states = self.gate_up_proj(hidden_states, adapter_data)
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
return self.down_proj(
self.act(gate_up_states[:, 0]) * gate_up_states[:, 1], adapter_data
)
class FlashGemma3Layer(nn.Module):
def __init__(
self,
prefix: str,
config,
weights,
layer_id,
causal: bool,
is_sliding: bool,
local_rotary_emb,
global_rotary_emb,
):
super().__init__()
self.self_attn = FlashGemma3Attention(
prefix=f"{prefix}.self_attn",
config=config,
weights=weights,
layer_id=layer_id,
causal=causal,
is_sliding=is_sliding,
local_rotary_emb=local_rotary_emb,
global_rotary_emb=global_rotary_emb,
)
self.mlp = Gemma3MLP(
prefix=f"{prefix}.mlp", config=config, weights=weights, layer_id=layer_id
)
self.input_layernorm = Gemma3FastRMSNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
)
self.post_attention_layernorm = Gemma3FastRMSNorm.load(
prefix=f"{prefix}.post_attention_layernorm",
weights=weights,
eps=config.rms_norm_eps,
)
self.pre_feedforward_layernorm = Gemma3FastRMSNorm.load(
prefix=f"{prefix}.pre_feedforward_layernorm",
weights=weights,
eps=config.rms_norm_eps,
)
self.post_feedforward_layernorm = Gemma3FastRMSNorm.load(
prefix=f"{prefix}.post_feedforward_layernorm",
weights=weights,
eps=config.rms_norm_eps,
)
def forward(
self,
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
adapter_data,
hpu_attention_meta,
):
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
# Self Attention
attn_output = self.self_attn(
normed_hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
adapter_data,
hpu_attention_meta,
)
# faster post attention rms norm
normed_attn_res_output, _ = self.post_attention_layernorm(attn_output)
normed_attn_res_output = normed_attn_res_output + res
res = normed_attn_res_output
pre_normed, _ = self.pre_feedforward_layernorm(normed_attn_res_output)
mlp_output = self.mlp(pre_normed, adapter_data)
post_hidden_states, _ = self.post_feedforward_layernorm(mlp_output)
return post_hidden_states, normed_attn_res_output
class FlashGemma3Model(torch.nn.Module):
def __init__(self, prefix: str, config, weights, causal: bool):
super().__init__()
process_group = weights.process_group
self.tp_rank = process_group.rank()
self.tp_world_size = process_group.size()
local_config = copy.deepcopy(config)
local_config.rope_scaling = dict(rope_type="default")
local_rotary_emb = PositionRotaryEmbedding.static(
config=local_config,
dim=config.head_dim,
base=config.rope_local_base_freq,
device=weights.device,
)
global_rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=config.head_dim,
base=config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
FlashGemma3Layer(
prefix=f"{prefix}.layers.{layer_id}",
config=config,
weights=weights,
layer_id=layer_id,
causal=causal,
is_sliding=bool((layer_id + 1) % config.sliding_window_pattern),
local_rotary_emb=local_rotary_emb,
global_rotary_emb=global_rotary_emb,
)
for layer_id in range(config.num_hidden_layers)
]
)
self.norm = Gemma3FastRMSNorm.load(
prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
)
self.head_size = self.layers[0].self_attn.head_size
self.num_heads = self.layers[0].self_attn.num_heads
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
adapter_data: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
# Get rotary cos and sin for this forward
# Avoid to index in each layer
residual = None
for i, layer in enumerate(self.layers):
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = layer.self_attn.rotary_emb.get_cos_sin(position_ids)
hidden_states, residual = layer(
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache[i],
slots,
seqlen,
adapter_data,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class FlashGemma3ForCausalLM(torch.nn.Module):
def __init__(self, prefix: str, config, weights, *, causal: bool = True):
super().__init__()
embed_norm = config.hidden_size**0.5
if not prefix:
prefix = "model"
else:
prefix = f"{prefix}.model"
self.embed_tokens = TensorParallelEmbedding(
prefix=f"{prefix}.embed_tokens", weights=weights
)
self.embed_tokens.weight *= embed_norm
self.model = FlashGemma3Model(
prefix=prefix, config=config, weights=weights, causal=causal
)
self.lm_head = SpeculativeHead.load(
prefix=(
f"{prefix}.embed_tokens"
if config.tie_word_embeddings
else f"{prefix}.lm_head"
),
config=config,
weights=weights,
)
# self.softcap = config.attn_logit_softcapping
# assert isinstance(self.softcap, float)
self.softcap = None
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
input_embeds = self.embed_tokens(input_ids)
hidden_states = self.model(
input_embeds,
position_ids,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
adapter_data,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.lm_head(hidden_states)
return logits, speculative_logits
class Gemma3MultimodalInputProjection(torch.nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.mm_input_projection_weight = weights.get_tensor(
"multi_modal_projector.mm_input_projection_weight"
)
self.mm_soft_emb_norm = Gemma3FastRMSNorm.load(
prefix=f"{prefix}.mm_soft_emb_norm",
weights=weights,
eps=config.vision_config.layer_norm_eps,
)
self.patches_per_image = int(
config.vision_config.image_size // config.vision_config.patch_size
)
self.tokens_per_side = int(config.mm_tokens_per_image**0.5)
self.kernel_size = self.patches_per_image // self.tokens_per_side
self.avg_pool = nn.AvgPool2d(
kernel_size=self.kernel_size, stride=self.kernel_size
)
def forward(self, vision_outputs: torch.Tensor):
batch_size, _, seq_length = vision_outputs.shape
reshaped_vision_outputs = vision_outputs.transpose(1, 2)
reshaped_vision_outputs = reshaped_vision_outputs.reshape(
batch_size, seq_length, self.patches_per_image, self.patches_per_image
)
reshaped_vision_outputs = reshaped_vision_outputs.contiguous()
pooled_vision_outputs = self.avg_pool(reshaped_vision_outputs)
pooled_vision_outputs = pooled_vision_outputs.flatten(2)
pooled_vision_outputs = pooled_vision_outputs.transpose(1, 2)
normed_vision_outputs, _ = self.mm_soft_emb_norm(pooled_vision_outputs)
projected_vision_outputs = torch.matmul(
normed_vision_outputs, self.mm_input_projection_weight
)
return projected_vision_outputs.type_as(vision_outputs)
class Gemma3ForConditionalGeneration(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
if config.vision_config is not None:
config.vision_config.quantize = config.quantize
self.post_vision_model_layernorm = nn.LayerNorm.load(
prefix="vision_tower.vision_model.post_layernorm",
weights=weights,
eps=config.vision_config.layer_norm_eps,
)
self.multimodal_projector = Gemma3MultimodalInputProjection(
prefix="multi_modal_projector",
config=config,
weights=weights,
)
text_config = config.text_config
text_config.speculator = config.speculator
text_config.quantize = config.quantize
self.vision_model = load_vision_model(
prefix="vision_tower" if not prefix else f"{prefix}.vision_tower",
config=config.vision_config,
weights=weights,
)
self.text_model = load_text_model(
prefix="language_model" if not prefix else f"{prefix}.language_model",
config=config.text_config,
weights=weights,
)
else:
config.text_config.quantize = config.quantize
config.text_config.speculator = config.speculator
self.text_model = load_text_model(
prefix=prefix,
config=config.text_config,
weights=weights,
)
self.pad_token_id = (
config.pad_token_id if config.pad_token_id is not None else -1
)
self.dtype = weights.dtype
def get_vision_embeds(
self,
pixel_values: torch.FloatTensor,
pixel_attention_mask: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
pixel_values = pixel_values.to(dtype=self.dtype)
image_outputs = self.vision_model(pixel_values)
vision_outputs = self.post_vision_model_layernorm(
image_outputs.last_hidden_state
)
image_features = self.multimodal_projector(vision_outputs)
image_features = image_features.view(-1, image_features.shape[-1])
return image_features
def get_inputs_embeds(
self,
input_ids: torch.Tensor,
vision_embeds: torch.Tensor = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if vision_embeds is not None:
# Replace the image token embeddings with the vision features
image_token_mask = (input_ids == self.config.image_token_index).to(
input_ids.device
)
inputs_embeds[image_token_mask] = vision_embeds.view(
-1, vision_embeds.shape[-1]
)
return inputs_embeds
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
if cu_seqlen_prefill is not None:
position_ids += 1
if attention_mask is not None:
min_dtype = torch.finfo(inputs_embeds.dtype).min
# prefill may be larger than sliding window
effective_seq_len = max(
position_ids.shape[0], self.config.text_config.sliding_window
)
sliding_window_mask = torch.tril(
torch.ones_like(attention_mask, dtype=torch.bool),
diagonal=-self.config.text_config.sliding_window,
)
attention_mask_local = torch.where(
sliding_window_mask, min_dtype, attention_mask
)
offset = max(0, position_ids.shape[0] - effective_seq_len)
attention_mask_local = attention_mask_local[
:, :, :, offset : offset + effective_seq_len
]
else:
attention_mask_local = None
hidden_states = self.text_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
slots=slots,
seqlen=seqlen,
hpu_attention_meta=hpu_attention_meta,
adapter_data=adapter_data,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.text_model.lm_head(hidden_states)
return logits, speculative_logits

View File

@ -28,9 +28,9 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
PREFILL_IN_KV_CACHE,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers import (
TensorParallelRowLinear,
@ -39,11 +39,13 @@ from text_generation_server.layers import (
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
from text_generation_server.utils.weights import UnquantizedWeight
import habana_frameworks.torch as htorch
class GemmaConfig(PretrainedConfig):
@ -161,19 +163,12 @@ def _load_gqa(config, prefix: str, weights):
class FlashGemmaAttention(torch.nn.Module):
def __init__(self, prefix: str, config, weights, causal: bool):
def __init__(self, prefix: str, config, weights, causal: bool, rotary_emb):
super().__init__()
self.num_heads = config.num_attention_heads
self.head_size = config.head_dim
self.causal = causal
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
base=config.rope_theta,
device=weights.device,
)
self.rotary_emb = rotary_emb
self.softmax_scale = self.head_size**-0.5
if self.num_heads % weights.process_group.size() != 0:
@ -187,6 +182,7 @@ class FlashGemmaAttention(torch.nn.Module):
)
self.query_key_value = load_attention(config, prefix, weights)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.o_proj = TensorParallelRowLinear.load(
config,
@ -206,10 +202,9 @@ class FlashGemmaAttention(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
qkv = self.query_key_value(hidden_states)
query, kv = qkv.split(
@ -224,31 +219,36 @@ class FlashGemmaAttention(torch.nn.Module):
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots)
kv_cache.store(
key=kv[:, 0],
value=kv[:, 1],
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0],
kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1],
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=kv[:, 0],
value=kv[:, 1],
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
causal=self.causal,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
@ -293,10 +293,14 @@ class GemmaMLP(nn.Module):
class FlashGemmaLayer(nn.Module):
def __init__(self, prefix: str, config, weights, causal: bool):
def __init__(self, prefix: str, config, weights, causal: bool, rotary_emb):
super().__init__()
self.self_attn = FlashGemmaAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights, causal=causal
prefix=f"{prefix}.self_attn",
config=config,
weights=weights,
causal=causal,
rotary_emb=rotary_emb,
)
self.mlp = GemmaMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
@ -317,10 +321,9 @@ class FlashGemmaLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
@ -331,10 +334,9 @@ class FlashGemmaLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
# faster post attention rms norm
@ -354,6 +356,13 @@ class FlashGemmaModel(torch.nn.Module):
process_group = weights.process_group
self.tp_rank = process_group.rank()
self.tp_world_size = process_group.size()
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=config.head_dim,
base=config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
FlashGemmaLayer(
@ -361,6 +370,7 @@ class FlashGemmaModel(torch.nn.Module):
config=config,
weights=weights,
causal=causal,
rotary_emb=rotary_emb,
)
for layer_id in range(config.num_hidden_layers)
]
@ -379,20 +389,25 @@ class FlashGemmaModel(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
adapter_data: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, max_s, hidden_states.dtype
)
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -401,11 +416,12 @@ class FlashGemmaModel(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
@ -446,11 +462,9 @@ class FlashGemmaForCausalLM(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
@ -460,10 +474,10 @@ class FlashGemmaForCausalLM(torch.nn.Module):
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
adapter_data,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -24,12 +24,12 @@ import torch.distributed
from torch import nn
from transformers.activations import ACT2FN
from typing import Optional, List, Tuple
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
from text_generation_server.layers.attention import (
paged_attention,
attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers import (
TensorParallelRowLinear,
@ -38,6 +38,8 @@ from text_generation_server.layers import (
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.attention.kv_cache import get_kv_scales
import habana_frameworks.torch as htorch
def load_qkv(config, prefix: str, weights, head_size, num_heads):
@ -47,10 +49,6 @@ def load_qkv(config, prefix: str, weights, head_size, num_heads):
prefix,
weights,
)
elif config.quantize == "marlin":
raise RuntimeError(
"GPT-2 models with marlin quantization are not yet supported"
)
else:
return _load_qkv(config, prefix, weights, head_size, num_heads)
@ -195,6 +193,7 @@ class FlashGPT2Attention(torch.nn.Module):
head_size=self.head_size,
num_heads=self.num_heads,
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.o_proj = load_row(
config,
@ -212,10 +211,9 @@ class FlashGPT2Attention(torch.nn.Module):
hidden_states,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
query, key, value = self.query_key_value(hidden_states).split(
self.head_size * self.num_heads, dim=1
@ -224,30 +222,35 @@ class FlashGPT2Attention(torch.nn.Module):
key = key.view(-1, self.num_heads, self.head_size)
value = value.view(-1, self.num_heads, self.head_size)
reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots)
kv_cache.store(
key=key,
value=value,
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else key,
kv_cache[1] if PREFILL_IN_KV_CACHE else value,
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=key,
value=value,
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
@ -313,10 +316,9 @@ class FlashGPT2Layer(nn.Module):
residual,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
@ -326,10 +328,9 @@ class FlashGPT2Layer(nn.Module):
hidden_states,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
hidden_states = attn_output + residual
@ -379,27 +380,33 @@ class FlashGPT2Model(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
true_max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
residual,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states = self.norm(hidden_states)
@ -432,11 +439,9 @@ class FlashGPT2ForCausalLM(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor] = None,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
@ -448,12 +453,9 @@ class FlashGPT2ForCausalLM(torch.nn.Module):
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
true_max_s=max_s,
prefill_cache_indices=prefill_cache_indices,
hpu_attention_meta=hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -24,12 +24,13 @@ import torch.distributed
from torch import nn
from transformers.activations import ACT2FN
from typing import Optional, List, Tuple
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.attention import (
paged_attention,
attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers import (
TensorParallelRowLinear,
@ -38,13 +39,17 @@ from text_generation_server.layers import (
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
from habana_frameworks.torch.hpex.kernels import (
RotaryPosEmbeddingMode,
apply_rotary_pos_emb,
)
import habana_frameworks.torch as htorch
def load_attention(config, prefix: str, weights):
@ -78,39 +83,25 @@ class GPTJRotary(PositionRotaryEmbedding):
cos: torch.Tensor,
sin: torch.Tensor,
):
# Such controlflows may add some overhead.
if SYSTEM == "cuda":
import rotary_emb
q1 = query[..., ::2]
q2 = query[..., 1::2]
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
k1 = key[..., ::2]
k2 = key[..., 1::2]
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
elif SYSTEM == "rocm":
from vllm._C import ops
# NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
# Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773
num_tokens = query.shape[0]
head_size = query.shape[-1]
rope_mode = RotaryPosEmbeddingMode.PAIRWISE
sin = torch.repeat_interleave(sin, 2, dim=-1)
cos = torch.repeat_interleave(cos, 2, dim=-1)
rotary_dim = cos.shape[-1]
query_shape = query.shape
query = query.view(num_tokens, -1, head_size)
query_rot = query[..., :rotary_dim]
query_pass = query[..., rotary_dim:]
query_rot = apply_rotary_pos_emb(query_rot, cos, sin, None, 0, rope_mode)
query.copy_(torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape))
# Inplace operation, updating query and key.
ops.rotary_embedding(query, key, head_size, cos, sin, False)
elif SYSTEM == "ipex":
import intel_extension_for_pytorch as ipex
ipex.llm.functional.rotary_embedding(
query, key, sin, cos, query.size(-1), False
)
else:
raise ValueError(
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
)
key_shape = key.shape
key = key.view(num_tokens, -1, head_size)
key_rot = key[..., :rotary_dim]
key_pass = key[..., rotary_dim:]
key_rot = apply_rotary_pos_emb(key_rot, cos, sin, None, 0, rope_mode)
key.copy_(torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape))
class FlashGPTJAttention(torch.nn.Module):
@ -119,6 +110,7 @@ class FlashGPTJAttention(torch.nn.Module):
prefix: str,
config,
weights,
rotary_emb,
):
super().__init__()
self.num_heads = config.num_attention_heads
@ -140,6 +132,7 @@ class FlashGPTJAttention(torch.nn.Module):
prefix=prefix,
weights=weights,
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.o_proj = load_row(
config,
@ -151,13 +144,7 @@ class FlashGPTJAttention(torch.nn.Module):
self.kv_head_mapping = torch.arange(
0, self.num_heads, dtype=torch.int32, device=weights.device
)
self.rotary_emb = GPTJRotary.static(
config=config,
dim=self.rotary_dim,
base=10000,
device=weights.device,
)
self.rotary_emb = rotary_emb
def forward(
self,
@ -166,10 +153,9 @@ class FlashGPTJAttention(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
query, key, value = self.query_key_value(hidden_states).split(
self.head_size * self.num_heads, dim=1
@ -186,30 +172,35 @@ class FlashGPTJAttention(torch.nn.Module):
else:
self.rotary_emb(query, key, cos, sin)
reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots)
kv_cache.store(
key=key,
value=value,
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else key,
kv_cache[1] if PREFILL_IN_KV_CACHE else value,
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=key,
value=value,
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
@ -248,10 +239,13 @@ class GPTJMLP(nn.Module):
class FlashGPTJLayer(nn.Module):
def __init__(self, prefix: str, config, weights):
def __init__(self, prefix: str, config, weights, rotary_emb):
super().__init__()
self.self_attn = FlashGPTJAttention(
prefix=f"{prefix}.attn", config=config, weights=weights
prefix=f"{prefix}.attn",
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
self.mlp = GPTJMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
@ -267,10 +261,9 @@ class FlashGPTJLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
hidden_states, residual = self.input_layernorm(hidden_states, residual)
# Self Attention
@ -280,10 +273,9 @@ class FlashGPTJLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
feed_forward_hidden_states = self.mlp(hidden_states)
@ -297,6 +289,12 @@ class FlashGPTJModel(torch.nn.Module):
self.config = config
self.wte = TensorParallelEmbedding(prefix=f"{prefix}.wte", weights=weights)
rotary_emb = GPTJRotary.static(
config=config,
dim=config.rotary_dim,
base=10000,
device=weights.device,
)
self.layers = nn.ModuleList(
[
FlashGPTJLayer(
@ -305,6 +303,7 @@ class FlashGPTJModel(torch.nn.Module):
),
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
for layer_id in range(config.num_hidden_layers)
]
@ -327,21 +326,24 @@ class FlashGPTJModel(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.wte(input_ids)
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, max_s, hidden_states.dtype
)
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -350,11 +352,12 @@ class FlashGPTJModel(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.ln_f(hidden_states, residual)
@ -381,11 +384,9 @@ class FlashGPTJForCausalLM(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor] = None,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
@ -394,11 +395,9 @@ class FlashGPTJForCausalLM(torch.nn.Module):
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices=prefill_cache_indices,
hpu_attention_meta=hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -26,15 +26,18 @@ import torch.distributed
from torch import nn
from transformers.activations import ACT2FN
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
import habana_frameworks.torch as htorch
from text_generation_server.layers.attention import (
KVCache,
get_kv_scales,
)
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.layers.attention import (
paged_attention,
attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers import (
TensorParallelRowLinear,
@ -57,15 +60,6 @@ from text_generation_server.utils.weights import (
)
from text_generation_server.layers.fp8 import HybridFP8UnquantLoader
if SYSTEM != "ipex":
pass
if SYSTEM == "rocm":
try:
from vllm import _custom_C
except Exception as e:
raise ImportError(f"Could not load `vllm._custom_C`. Full error: {e}")
def load_attention(config, prefix: str, weights, layer_id):
# Only defined in granite.
@ -139,25 +133,19 @@ class FlashLlamaAttention(torch.nn.Module):
prefix: str,
config,
weights,
rotary_emb,
):
super().__init__()
self.num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_heads
# Setting defaults for baichuan custom config which doesn't apply them.
config.rope_theta = getattr(config, "rope_theta", 10000)
config.num_key_value_heads = getattr(
config, "num_key_value_heads", config.num_attention_heads
)
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
base=config.rope_theta,
device=weights.device,
)
self.rotary_emb = rotary_emb
self.softmax_scale = self.head_size**-0.5
# `config.attention_multiplier` is used in Granite
self.softmax_scale = getattr(
config, "attention_multiplier", self.head_size**-0.5
)
if self.num_heads % weights.process_group.size() != 0:
raise ValueError(
@ -177,11 +165,13 @@ class FlashLlamaAttention(torch.nn.Module):
self.query_key_value = load_attention(config, prefix, weights, index)
self.index = index
self.kv_scales = get_kv_scales(weights, f"{prefix}")
o_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=False,
bias=getattr(config, "attention_bias", False),
)
self.o_proj = TensorParallelAdapterRowLinear.load(
@ -202,12 +192,11 @@ class FlashLlamaAttention(torch.nn.Module):
cos,
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
kv_cache: KVCache,
slots,
seqlen,
max_s,
adapter_data,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
):
qkv = self.query_key_value(hidden_states, adapter_data)
query, kv = qkv.split(
@ -222,30 +211,35 @@ class FlashLlamaAttention(torch.nn.Module):
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots)
kv_cache.store(
key=kv[:, 0],
value=kv[:, 1],
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0],
kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1],
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=kv[:, 0],
value=kv[:, 1],
kv_scales=self.kv_scales,
kv_cache=kv_cache,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
return self.o_proj(
@ -363,26 +357,6 @@ class LlamaMLP(nn.Module):
self.hidden_size = config.hidden_size
def forward(self, hidden_states, adapter_data):
if (
SYSTEM == "rocm"
and self.hidden_act == "silu"
and hidden_states.dtype == torch.float16
and hidden_states.shape[0] == 1
and not self.quantize
and self.hidden_size
!= 16384 # TODO: Temporary workaround for `LLMM_Silu` kernel not working with LLama3.1 405B; needs refactoring once fixed.
):
out = torch.empty(
hidden_states.shape[0],
self.intermediate_size,
dtype=hidden_states.dtype,
device="cuda",
)
_custom_C.LLMM_Silu(
self.gate_up_proj.base_layer.linear.weight, hidden_states, out, 8
)
return self.down_proj(out, adapter_data)
else:
gate_up_states = self.gate_up_proj(hidden_states, adapter_data)
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
return self.down_proj(
@ -391,7 +365,7 @@ class LlamaMLP(nn.Module):
class FlashLlamaLayer(nn.Module):
def __init__(self, index, prefix, config, weights):
def __init__(self, index, prefix, config, weights, rotary_emb):
super().__init__()
with no_fp8(weights):
@ -400,6 +374,7 @@ class FlashLlamaLayer(nn.Module):
prefix=f"{prefix}.self_attn",
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
if config.model_type == "phimoe":
@ -408,7 +383,7 @@ class FlashLlamaLayer(nn.Module):
if SparseMoELayer.is_supported(weights)
else DenseMoELayer
)
self.dense = Phi3MoE(
self.mlp = Phi3MoE(
f"{prefix}.block_sparse_moe", config, moe_layer_cls, weights
)
# with moe the layernorms are are not rmsnorms and they have bias
@ -423,7 +398,7 @@ class FlashLlamaLayer(nn.Module):
eps=config.rms_norm_eps,
)
else:
self.dense = LlamaMLP(
self.mlp = LlamaMLP(
prefix=f"{prefix}.mlp", config=config, weights=weights, index=index
)
self.input_layernorm = FastRMSNorm.load(
@ -437,6 +412,11 @@ class FlashLlamaLayer(nn.Module):
eps=config.rms_norm_eps,
)
# Used in Granite
# This could eventually be baked into the weights like we do for the embeddings/lm_head
# but this would mean modifying the lora code
self.residual_multiplier = getattr(config, "residual_multiplier", None)
def forward(
self,
hidden_states,
@ -445,12 +425,11 @@ class FlashLlamaLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
adapter_data,
cross_attention_states,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
):
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
@ -461,19 +440,21 @@ class FlashLlamaLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
adapter_data,
hpu_attention_meta=hpu_attention_meta,
)
if self.residual_multiplier is not None:
attn_output *= self.residual_multiplier
# faster post attention rms norm
normed_attn_res_output, attn_res = self.post_attention_layernorm(
attn_output, res
)
mlp_output = self.dense(normed_attn_res_output, adapter_data)
mlp_output = self.mlp(normed_attn_res_output, adapter_data)
if self.residual_multiplier is not None:
mlp_output *= self.residual_multiplier
return mlp_output, attn_res
@ -489,33 +470,39 @@ class FlashLlamaModel(torch.nn.Module):
# Skip fp8 quant for first and last layers
self.layers = nn.ModuleList()
self.cross_attention_layers = getattr(config, "cross_attention_layers", [])
# Setting defaults for baichuan custom config which doesn't apply them.
config.rope_theta = getattr(config, "rope_theta", 10000)
config.num_key_value_heads = getattr(
config, "num_key_value_heads", config.num_attention_heads
)
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=config.hidden_size // config.num_attention_heads,
base=config.rope_theta,
device=weights.device,
)
with no_fp8(weights):
self.layers.append(
FlashLlamaLayer(
index=0,
prefix=(
"model.layers.0" if not prefix else f"{prefix}.model.layers.0"
),
prefix=f"{prefix}.layers.0",
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
)
# Skip first and last layers
for layer_id in range(1, config.num_hidden_layers - 1):
if layer_id in self.cross_attention_layers:
from text_generation_server.models.custom_modeling.mllama import (
from text_generation_server.models.custom_modeling.flash_mllama import (
FlashLlamaCrossLayer,
)
self.layers.append(
FlashLlamaCrossLayer(
index=layer_id,
prefix=(
f"model.layers.{layer_id}"
if not prefix
else f"{prefix}.model.layers.{layer_id}"
),
prefix=(f"{prefix}.layers.{layer_id}"),
config=config,
weights=weights,
)
@ -524,13 +511,10 @@ class FlashLlamaModel(torch.nn.Module):
self.layers.append(
FlashLlamaLayer(
index=layer_id,
prefix=(
f"model.layers.{layer_id}"
if not prefix
else f"{prefix}.model.layers.{layer_id}"
),
prefix=(f"{prefix}.layers.{layer_id}"),
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
)
@ -539,18 +523,15 @@ class FlashLlamaModel(torch.nn.Module):
self.layers.append(
FlashLlamaLayer(
index=last_layer_id,
prefix=(
f"model.layers.{last_layer_id}"
if not prefix
else f"{prefix}.model.layers.{last_layer_id}"
),
prefix=(f"{prefix}.layers.{last_layer_id}"),
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
)
self.norm = FastRMSNorm.load(
prefix="model.norm" if not prefix else f"{prefix}.model.norm",
prefix=f"{prefix}.norm",
weights=weights,
eps=config.rms_norm_eps,
)
@ -567,24 +548,27 @@ class FlashLlamaModel(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
true_max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
adapter_data,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
cross_attention_states=None,
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, max_s, hidden_states.dtype
)
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -593,13 +577,14 @@ class FlashLlamaModel(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
adapter_data,
cross_attention_states,
hpu_attention_meta=hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
@ -607,42 +592,60 @@ class FlashLlamaModel(torch.nn.Module):
class FlashLlamaForCausalLM(torch.nn.Module):
def __init__(self, prefix: str, config, weights):
def __init__(self, prefix: str, config, weights, name=None):
if name is None:
name = "model"
super().__init__()
with no_fp8(weights):
self.embed_tokens = TensorParallelEmbedding(
prefix=(
"model.embed_tokens"
f"{name}.embed_tokens"
if not prefix
else f"{prefix}.model.embed_tokens"
else f"{prefix}.{name}.embed_tokens"
),
weights=weights,
)
self.model = FlashLlamaModel(prefix, config, weights)
self.model = FlashLlamaModel(
prefix=name if not prefix else f"{prefix}.{name}",
config=config,
weights=weights,
)
if config.tie_word_embeddings:
suffix = "model.embed_tokens"
else:
suffix = "lm_head"
# Used in Granite
embedding_multiplier = getattr(config, "embedding_multiplier", None)
if embedding_multiplier is not None:
self.embed_tokens.weight.data *= embedding_multiplier
prefix = suffix if not prefix or name != "model" else f"{prefix}.{suffix}"
with no_fp8(weights):
self.lm_head = SpeculativeHead.load(
config,
prefix=suffix if not prefix else f"{prefix}.{suffix}",
weights=weights,
prefix,
weights,
)
# Used in Granite
self.logits_scaling = getattr(config, "logits_scaling", None)
if self.logits_scaling is not None and self.lm_head.head is not None:
try:
# Scale the weights directly
self.lm_head.head.linear.weight.data /= self.logits_scaling
self.logits_scaled = True
except Exception:
self.logits_scaled = False
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor] = None,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
cross_attention_states=None,
@ -653,16 +656,20 @@ class FlashLlamaForCausalLM(torch.nn.Module):
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
true_max_s=max_s,
prefill_cache_indices=prefill_cache_indices,
adapter_data=adapter_data,
cross_attention_states=cross_attention_states,
hpu_attention_meta=hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.lm_head(hidden_states)
# Used in Granite
if self.logits_scaling is not None and not self.logits_scaled:
logits /= self.logits_scaling
if speculative_logits is not None:
speculative_logits /= self.logits_scaling
return logits, speculative_logits

View File

@ -0,0 +1,298 @@
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Llava-NeXT model."""
from typing import List, Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.image_processing_utils import select_best_resolution
from text_generation_server.layers.attention import Seqlen, HPUPagedAttentionMetadata
from text_generation_server.models.custom_modeling.vlm import (
load_text_model,
load_vision_model,
)
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelRowLinear,
)
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (`tuple`):
The size of the input image in the format (height, width).
grid_pinpoints (`List`):
A list containing possible resolutions. Each item in the list should be a tuple or list
of the form `(height, width)`.
patch_size (`int`):
The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (height, width).
"""
if not isinstance(grid_pinpoints, list):
raise ValueError("grid_pinpoints should be a list of tuples or lists")
height, width = select_best_resolution(image_size, grid_pinpoints)
return height // patch_size, width // patch_size
def unpad_image(tensor, original_size):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (`torch.Tensor`):
The image tensor, assumed to be of shape (num_channels, height, width).
original_size (`tuple`):
The original size of the image (height, width).
Returns:
`torch.Tensor`: The unpadded image tensor.
"""
original_height, original_width = original_size
current_height, current_width = tensor.shape[1:]
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
scale_factor = current_width / original_width
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
unpadded_tensor = tensor[:, padding : current_height - padding, :]
else:
scale_factor = current_height / original_height
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
unpadded_tensor = tensor[:, :, padding : current_width - padding]
return unpadded_tensor
# Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->LlavaNext
class LlavaNextMultiModalProjector(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.linear_1 = TensorParallelColumnLinear.load(
prefix=f"{prefix}.linear_1", config=config, weights=weights, bias=True
)
self.act = ACT2FN[config.projector_hidden_act]
self.linear_2 = TensorParallelRowLinear.load(
prefix=f"{prefix}.linear_2", config=config, weights=weights, bias=True
)
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class FlashLlavaNextForConditionalGeneration(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
config.vision_config.quantize = config.quantize
vision_config = config.vision_config
# Instead of selecting in hidden_states[-2].
# Instead compute only the n -2 + 1 layers and don't pool
if config.vision_feature_layer < 0:
vision_config.num_hidden_layers += config.vision_feature_layer + 1
else:
vision_config.num_hidden_layers = config.vision_feature_layer + 1
self.vision_tower = load_vision_model(
prefix="vision_tower" if not prefix else f"{prefix}.vision_tower",
config=config.vision_config,
weights=weights,
)
self.multi_modal_projector = LlavaNextMultiModalProjector(
prefix="multi_modal_projector", config=config, weights=weights
)
self.image_newline = weights.get_tensor("image_newline")
self.vocab_size = config.text_config.vocab_size
self.config = config
config.text_config.quantize = config.quantize
config.text_config.speculator = config.speculator
self.text_model = load_text_model(
prefix="language_model" if not prefix else f"{prefix}.language_model",
config=config.text_config,
weights=weights,
)
self.pad_token_id = (
config.pad_token_id if config.pad_token_id is not None else -1
)
def _merge_input_ids_with_image_features(
self,
input_ids: torch.Tensor,
inputs_embeds: torch.Tensor,
image_features: torch.Tensor,
):
"""In place merges in vision_embeddings with inputs_embeds."""
mask = torch.where(input_ids == self.config.image_token_index)
# Let's pray we have enabled enough slots !
try:
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
except Exception as e:
raise RuntimeError(
f"Cannot fill images right now. If error happens at warmup, make sure you have enough `--max-input-tokens` to handle images. If error happens at regular runtime, please fill in an issue: {e}"
)
return inputs_embeds
def get_vision_embeds(
self,
pixel_values: torch.FloatTensor,
pixel_attention_mask: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
# num_special_image_tokens = (input_ids == self.config.image_token_index).sum()
# assert num_special_image_tokens == len(pixel_values), f"Received {num_special_image_tokens} for {len(pixel_values)} images, this is invalid"
# 1. Extract the input embeddings
# 2. Merge text and images
num_images, num_patches, channels, height, width = pixel_values.shape
pixel_values = pixel_values.view(
num_images * num_patches, channels, height, width
)
image_features = self.vision_tower(pixel_values)
# selected_image_feature = image_features.hidden_states[self.config.vision_feature_layer]
# Already done within the clip model
selected_image_feature = image_features.last_hidden_state
if self.config.vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif self.config.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
else:
raise RuntimeError(
f"Strategy `{self.config.vision_feature_select_strategy}` is not supported/valid."
)
image_features = self.multi_modal_projector(selected_image_feature)
# split up image_features for each of the individual images
# hence we get a list of image_features, each of shape (5, num_patches, hidden_size)
# if we assume each image has 5 image features (base image + 4 patches)
split_sizes = [num_patches] * num_images
image_features = torch.split(image_features, split_sizes, dim=0)
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
height = width = (
self.config.vision_config.image_size // self.config.vision_config.patch_size
)
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
if height * width != base_image_feature.shape[0]:
raise ValueError(
"The number of patches is not consistent with the image size."
)
# Dimensions are intentionally swapped to be bug-compatible with
# upstream: https://github.com/LLaVA-VL/LLaVA-NeXT/issues/59
num_patch_width, num_patch_height = get_anyres_image_grid_shape(
image_sizes[image_idx],
self.config.image_grid_pinpoints,
self.config.vision_config.image_size,
)
image_feature = image_feature.view(
num_patch_height, num_patch_width, height, width, -1
)
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat(
(
image_feature,
self.image_newline[:, None, None].expand(
*image_feature.shape[:-1], 1
),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
else:
image_feature = image_feature[0]
image_feature = torch.cat(
(image_feature, self.image_newline[None]), dim=0
)
new_image_features.append(image_feature)
image_features = torch.stack(new_image_features, dim=0)
return image_features.view(-1, image_features.shape[-1])
def get_inputs_embeds(
self,
input_ids: torch.Tensor,
vision_embeds: torch.Tensor = None,
pixel_values: torch.FloatTensor = None,
image_sizes: Optional[torch.LongTensor] = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if vision_embeds is not None:
# When we generate, we don't want to replace the potential image_token_id that we generated by images
# that simply don't exist
inputs_embeds = self._merge_input_ids_with_image_features(
input_ids, inputs_embeds, vision_embeds
)
return inputs_embeds
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
adapter_data: Optional[torch.Tensor] = None,
):
hidden_states = self.text_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
slots=slots,
seqlen=seqlen,
hpu_attention_meta=hpu_attention_meta,
adapter_data=adapter_data,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.text_model.lm_head(hidden_states)
return logits, speculative_logits

View File

@ -26,12 +26,13 @@ from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.attention import (
paged_attention,
attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers import (
TensorParallelRowLinear,
@ -41,18 +42,11 @@ from text_generation_server.layers import (
TensorParallelMultiAdapterLinear,
TensorParallelAdapterRowLinear,
)
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
if SYSTEM == "rocm":
try:
from vllm import _custom_C
except Exception as e:
raise ImportError(f"Could not load `vllm._custom_C`. Full error: {e}")
import habana_frameworks.torch as htorch
class MistralConfig(PretrainedConfig):
@ -110,24 +104,20 @@ class MistralConfig(PretrainedConfig):
class MistralAttention(torch.nn.Module):
def __init__(self, prefix: str, config, weights, layer_id):
def __init__(self, prefix: str, config, weights, layer_id, rotary_emb):
super().__init__()
self.max_past = (
config.sliding_window if config.sliding_window is not None else -1
)
self.num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
if hasattr(config, "head_dim"):
if getattr(config, "head_dim", None) is not None:
self.head_size = config.head_dim
else:
self.head_size = self.hidden_size // self.num_heads
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
base=config.rope_theta,
device=weights.device,
)
self.rotary_emb = rotary_emb
self.softmax_scale = self.head_size**-0.5
@ -160,6 +150,7 @@ class MistralAttention(torch.nn.Module):
],
process_group=weights.process_group,
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
o_proj = TensorParallelRowLinear.load(
config,
@ -185,12 +176,10 @@ class MistralAttention(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
adapter_data,
hpu_attention_meta,
):
qkv = self.query_key_value(hidden_states, adapter_data)
query, kv = qkv.split(
@ -205,38 +194,37 @@ class MistralAttention(torch.nn.Module):
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
if prefill_cache_indices is not None:
kv_to_cache = kv[prefill_cache_indices]
else:
kv_to_cache = kv
reshape_and_cache(
kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots
kv_cache.store(
key=kv[:, 0],
value=kv[:, 1],
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0],
kv_cache[1] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1],
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=kv[:, 0],
value=kv[:, 1],
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
window_size_left=self.max_past,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
window_size_left=self.max_past,
)
return self.o_proj(
@ -300,24 +288,6 @@ class MistralMLP(nn.Module):
self.quantize = config.quantize
def forward(self, hidden_states, adapter_data):
if (
SYSTEM == "rocm"
and self.hidden_act == "silu"
and hidden_states.dtype == torch.float16
and hidden_states.shape[0] == 1
and not self.quantize
):
out = torch.empty(
hidden_states.shape[0],
self.intermediate_size,
dtype=hidden_states.dtype,
device="cuda",
)
_custom_C.LLMM_Silu(
self.gate_up_proj.base_layer.linear.weight, hidden_states, out, 8
)
return self.down_proj(out, adapter_data)
else:
gate_up_states = self.gate_up_proj(hidden_states, adapter_data)
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
return self.down_proj(
@ -326,13 +296,14 @@ class MistralMLP(nn.Module):
class MistralLayer(nn.Module):
def __init__(self, prefix: str, config, weights, layer_id):
def __init__(self, prefix: str, config, weights, layer_id, rotary_emb):
super().__init__()
self.self_attn = MistralAttention(
prefix=f"{prefix}.self_attn",
config=config,
weights=weights,
layer_id=layer_id,
rotary_emb=rotary_emb,
)
self.mlp = MistralMLP(
prefix=f"{prefix}.mlp", config=config, weights=weights, layer_id=layer_id
@ -355,12 +326,10 @@ class MistralLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
adapter_data,
hpu_attention_meta,
):
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
@ -371,12 +340,10 @@ class MistralLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
adapter_data,
hpu_attention_meta,
)
# faster post attention rms norm
@ -396,6 +363,19 @@ class MistralModel(torch.nn.Module):
process_group = weights.process_group
self.tp_rank = process_group.rank()
self.tp_world_size = process_group.size()
if getattr(config, "head_dim", None) is not None:
head_dim = config.head_dim
else:
head_dim = config.hidden_size // config.num_attention_heads
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=head_dim,
base=config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
MistralLayer(
@ -403,6 +383,7 @@ class MistralModel(torch.nn.Module):
config=config,
weights=weights,
layer_id=layer_id,
rotary_emb=rotary_emb,
)
for layer_id in range(config.num_hidden_layers)
]
@ -423,22 +404,24 @@ class MistralModel(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
true_max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
adapter_data: Optional[torch.Tensor] = None,
):
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, true_max_s, hidden_states.dtype
)
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -447,13 +430,13 @@ class MistralModel(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
adapter_data,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
@ -498,35 +481,21 @@ class FlashMistralForCausalLM(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
true_max_s = max_s
if prefill_cache_indices is not None:
# Slots also need to be sliced as it has the same size as the whole kv tensor
slots = slots[prefill_cache_indices]
elif self.max_past is not None:
# Clamp in decode mode as paged attention requires clamped values whereas the flash attention
# kernel requires the true values
seqlen = seqlen.clamp(max=self.max_past_tensor)
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = self.model(
inputs_embeds,
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
true_max_s,
prefill_cache_indices,
hpu_attention_meta,
adapter_data,
)
if lm_head_indices is not None:

View File

@ -37,13 +37,15 @@ from text_generation_server.layers.attention import (
Seqlen,
attention,
paged_attention,
reshape_and_cache,
set_block_mapping,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.layernorm import FastRMSNorm
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.utils.weights import UnquantizedWeight
import habana_frameworks.torch as htorch
class MixtralConfig(PretrainedConfig):
@ -186,6 +188,7 @@ class MixtralAttention(torch.nn.Module):
prefix: str,
config,
weights,
rotary_emb,
):
super().__init__()
self.max_past = (
@ -194,13 +197,7 @@ class MixtralAttention(torch.nn.Module):
self.num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_heads
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
base=config.rope_theta,
device=weights.device,
)
self.rotary_emb = rotary_emb
self.softmax_scale = self.head_size**-0.5
@ -215,6 +212,7 @@ class MixtralAttention(torch.nn.Module):
)
self.query_key_value = load_attention(config, prefix, weights)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.o_proj = TensorParallelRowLinear.load(
config,
@ -234,11 +232,9 @@ class MixtralAttention(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
hpu_attention_meta,
):
qkv = self.query_key_value(hidden_states)
query, kv = qkv.split(
@ -253,38 +249,36 @@ class MixtralAttention(torch.nn.Module):
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
if prefill_cache_indices is not None:
kv_to_cache = kv[prefill_cache_indices]
else:
kv_to_cache = kv
reshape_and_cache(
kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots
kv_cache.store(
key=kv[:, 0],
value=kv[:, 1],
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0],
kv_cache[1] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1],
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=kv[:, 0],
value=kv[:, 1],
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
window_size_left=self.max_past,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
@ -346,12 +340,15 @@ class MixtralMoE(nn.Module):
class MixtralLayer(nn.Module):
def __init__(self, prefix: str, layer_id, config, weights):
def __init__(self, prefix: str, layer_id, config, weights, rotary_emb):
super().__init__()
prefix = f"{prefix}.layers.{layer_id}"
self.self_attn = MixtralAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
prefix=f"{prefix}.self_attn",
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
moe_layer_cls = (
@ -378,11 +375,9 @@ class MixtralLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
hpu_attention_meta,
):
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
@ -393,11 +388,9 @@ class MixtralLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
hpu_attention_meta,
)
# faster post attention rms norm
@ -421,6 +414,12 @@ class MixtralModel(torch.nn.Module):
weights=weights,
)
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=config.hidden_size // config.num_attention_heads,
base=config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
MixtralLayer(
@ -428,6 +427,7 @@ class MixtralModel(torch.nn.Module):
layer_id,
config,
weights,
rotary_emb,
)
for layer_id in range(config.num_hidden_layers)
]
@ -448,22 +448,24 @@ class MixtralModel(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
true_max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, true_max_s, hidden_states.dtype
)
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -472,12 +474,12 @@ class MixtralModel(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
@ -507,34 +509,20 @@ class FlashMixtralForCausalLM(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
true_max_s = max_s
if prefill_cache_indices is not None:
# Slots also need to be sliced as it has the same size as the whole kv tensor
slots = slots[prefill_cache_indices]
elif self.max_past is not None:
# Clamp in decode mode as paged attention requires clamped values whereas the flash attention
# kernel requires the true values
seqlen = seqlen.clamp(max=self.max_past_tensor)
hidden_states = self.model(
input_ids,
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
true_max_s,
prefill_cache_indices,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -0,0 +1,951 @@
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Mllama model."""
from typing import Optional, Tuple, List
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
import torch.nn.functional as F
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
FastLinear,
)
from text_generation_server.layers.attention import (
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
FlashLlamaForCausalLM,
)
from habana_frameworks.torch.hpex.kernels import FusedSDPA
from vllm_hpu_extension.utils import ModuleFusedSDPA
import habana_frameworks.torch as htorch
def _prepare_aspect_ratio_attention_mask(
aspect_ratio_mask: torch.Tensor,
num_patches: int,
target_length: int,
dtype: torch.dtype,
) -> torch.Tensor:
# Expand aspect ratio mask to target_length
batch_size, max_num_tiles = aspect_ratio_mask.shape
attention_mask = aspect_ratio_mask.view(batch_size, max_num_tiles, 1, 1).to(dtype)
attention_mask = attention_mask.repeat(1, 1, target_length, 1)
# Mask padding patches
pad_patches = target_length - num_patches
attention_mask[:, :, -pad_patches:] = 0
# Invert the mask (0 -> 1, 1 -> 0)
attention_mask = 1 - attention_mask
# Reshape to 2D and create 4D attention mask
# (batch_size, 1, max_num_tiles * target_length, max_num_tiles * target_length)
attention_mask = attention_mask.reshape(
batch_size, max_num_tiles * target_length, 1
)
attention_mask = (
attention_mask @ attention_mask.transpose(-1, -2) * torch.finfo(dtype).min
)
attention_mask = attention_mask.unsqueeze(1)
return attention_mask
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
min_dtype: float,
cache_position: torch.Tensor,
batch_size: int,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
min_dtype (`float`):
The minimum value representable with the dtype `dtype`.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
causal_mask = torch.full(
(sequence_length, target_length),
fill_value=min_dtype,
dtype=dtype,
device=device,
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(
target_length, device=device
) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = (
causal_mask.clone()
) # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = (
causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[
:, :, :, :mask_length
].masked_fill(padding_mask, min_dtype)
return causal_mask
def _prepare_cross_attention_mask(
cross_attention_mask: torch.Tensor,
num_vision_tokens: int,
dtype: str,
) -> Tuple[torch.Tensor, torch.Tensor]:
# reshape so it can be used by attn module
batch_size, text_total_length, *_ = cross_attention_mask.shape
cross_attention_mask = cross_attention_mask.repeat_interleave(
num_vision_tokens, dim=3
)
cross_attention_mask = cross_attention_mask.view(batch_size, text_total_length, -1)
cross_attention_mask = cross_attention_mask.unsqueeze(1)
# invert the mask
inverted_cross_attn_mask = (1.0 - cross_attention_mask).to(dtype)
cross_attention_mask = inverted_cross_attn_mask.masked_fill(
inverted_cross_attn_mask.to(torch.bool), torch.finfo(dtype).min
)
# apply full-row bias, which return 4D tensor of shape [B, H, S1, 1] where value is 0 if the a full row in cross attn mask's
# last dimension contains negative infinity values, otherwise it's 1
negative_inf_value = torch.finfo(dtype).min
full_text_row_masked_out_mask = (
(cross_attention_mask != negative_inf_value)
.any(dim=-1)
.type_as(cross_attention_mask)[..., None]
)
cross_attention_mask *= full_text_row_masked_out_mask
return cross_attention_mask, full_text_row_masked_out_mask
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->MllamaVision
class MllamaVisionMLP(nn.Module):
def __init__(self, *, prefix, config, weights):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = TensorParallelColumnLinear.load(
prefix=f"{prefix}.fc1", weights=weights, config=config, bias=True
)
self.fc2 = TensorParallelRowLinear.load(
prefix=f"{prefix}.fc2", weights=weights, config=config, bias=True
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class MllamaVisionSdpaAttention(nn.Module):
def __init__(self, *, prefix, config, weights):
super().__init__()
self.embed_dim = config.hidden_size
self.head_dim = config.hidden_size // config.attention_heads
self.num_heads = config.attention_heads // weights.process_group.size()
self.qkv_proj = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=False,
)
self.o_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=False,
)
def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
qkv = self.qkv_proj(hidden_state)
query, key, value = qkv.split(
[
self.head_dim * self.num_heads,
self.head_dim * self.num_heads,
self.head_dim * self.num_heads,
],
dim=2,
)
batch_size, q_seq_len, _ = query.shape
_, kv_seq_len, _ = key.shape
query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim)
key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)
value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
fsdpa_op = ModuleFusedSDPA(FusedSDPA)
attn_output = fsdpa_op(
query,
key,
value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
scale=None,
softmax_mode="None",
recompute_mode=None,
valid_sequence_lengths=None,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_seq_len, -1)
output = self.o_proj(attn_output)
return output
class MllamaVisionEncoderLayer(nn.Module):
def __init__(self, *, prefix, config, weights, is_gated: bool):
super().__init__()
self.hidden_size = config.hidden_size
self.num_attention_heads = config.attention_heads
self.is_gated = is_gated
self.intermediate_size = config.intermediate_size
self.self_attn = MllamaVisionSdpaAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
self.mlp = MllamaVisionMLP(
prefix=f"{prefix}.mlp", config=config, weights=weights
)
self.input_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=1e-05
)
self.post_attention_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=1e-05
)
# there used to be an if else here, no code path
if is_gated:
self.gate_attn = nn.Parameter(
weights.get_tensor(f"{prefix}.gate_attn"), requires_grad=False
)
self.gate_ffn = nn.Parameter(
weights.get_tensor(f"{prefix}.gate_ffn"), requires_grad=False
)
def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
):
# Self Attention
residual = hidden_state
hidden_state = self.input_layernorm(hidden_state)
hidden_state = self.self_attn(hidden_state, attention_mask=attention_mask)
gate_attn = 1 if not self.is_gated else self.gate_attn.tanh()
hidden_state = residual + gate_attn * hidden_state
# Feed forward
residual = hidden_state
hidden_state = self.post_attention_layernorm(hidden_state)
hidden_state = self.mlp(hidden_state)
gate_ffn = 1 if not self.is_gated else self.gate_ffn.tanh()
hidden_state = residual + gate_ffn * hidden_state
return hidden_state
class MllamaVisionEncoder(nn.Module):
def __init__(self, *, prefix, config, weights, is_gated: bool, num_layers: int):
super().__init__()
self.config = config
self.layers = [
MllamaVisionEncoderLayer(
prefix=f"{prefix}.layers.{i}",
config=config,
weights=weights,
is_gated=is_gated,
)
for i in range(num_layers)
]
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
):
encoder_states = [hidden_states]
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for encoder_layer in self.layers:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
)
hidden_states = layer_outputs
encoder_states.append(hidden_states)
if lazy_mode:
htorch.core.mark_step()
return hidden_states, encoder_states
class MllamaPrecomputedAspectRatioEmbedding(nn.Module):
def __init__(self, *, prefix, config, weights):
super().__init__()
self.max_num_tiles = config.max_num_tiles
self.hidden_size = config.hidden_size
self.max_aspect_ratio_id = config.max_aspect_ratio_id
self.embedding = TensorParallelEmbedding(
prefix=f"{prefix}.embedding", weights=weights
)
self.gate = nn.Parameter(
weights.get_tensor(f"{prefix}.gate"), requires_grad=False
)
def forward(
self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor
) -> torch.Tensor:
embeddings = self.embedding(aspect_ratio_ids)
embeddings = embeddings.reshape(-1, self.max_num_tiles, 1, self.hidden_size)
# Always gated.
embeddings = embeddings * self.gate.tanh()
hidden_state = hidden_state + embeddings
return hidden_state
class MllamaPrecomputedPositionEmbedding(nn.Module):
def __init__(self, *, prefix, config, weights):
super().__init__()
self.max_num_tiles = config.max_num_tiles
self.max_aspect_ratio_id = config.max_aspect_ratio_id
self.num_patches = (config.image_size // config.patch_size) ** 2 + 1
self.hidden_size = config.hidden_size
self.scale = config.hidden_size**-0.5
self.gate = nn.Parameter(
weights.get_tensor(f"{prefix}.gate"), requires_grad=False
)
# position embedding
embedding = nn.Parameter(
weights.get_tensor(f"{prefix}.embedding"), requires_grad=False
)
self.gated_position_embedding = (1 - self.gate.tanh()) * embedding
self.tile_embedding = TensorParallelEmbedding(
prefix=f"{prefix}.tile_embedding", weights=weights
)
def forward(
self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor
) -> torch.Tensor:
# position embeddings
hidden_state = hidden_state + self.gated_position_embedding.view(
1, 1, self.num_patches, self.hidden_size
)
# precomputed tile position embeddings
tile_position_embedding = self.tile_embedding(aspect_ratio_ids)
batch_size = hidden_state.shape[0]
tile_position_embedding = tile_position_embedding.reshape(
batch_size, self.max_num_tiles, self.num_patches, self.hidden_size
)
gated_tile_position_embedding = self.gate.tanh() * tile_position_embedding
hidden_state = hidden_state + gated_tile_position_embedding
return hidden_state
class MllamaVisionModel(nn.Module):
def __init__(self, *, prefix, config, weights):
super().__init__()
self.image_size = config.image_size
self.patch_size = config.patch_size
self.max_num_tiles = config.max_num_tiles
self.hidden_size = config.hidden_size
self.num_channels = config.num_channels
self.intermediate_layers_indices = config.intermediate_layers_indices
self.num_patches = (self.image_size // self.patch_size) ** 2 + 1
self.scale = config.hidden_size**-0.5
self.dtype = weights.dtype
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.hidden_size,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
bias=False,
)
self.patch_embedding.weight = nn.Parameter(
weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False
)
self.class_embedding = nn.Parameter(
weights.get_tensor(f"{prefix}.class_embedding"), requires_grad=False
)
self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding(
prefix=f"{prefix}.gated_positional_embedding",
config=config,
weights=weights,
)
self.pre_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(
prefix=f"{prefix}.pre_tile_positional_embedding",
config=config,
weights=weights,
)
self.post_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(
prefix=f"{prefix}.post_tile_positional_embedding",
config=config,
weights=weights,
)
## layer norms
self.layernorm_pre = nn.LayerNorm.load(
prefix=f"{prefix}.layernorm_pre",
weights=weights,
# torch default
eps=1e-05,
)
self.layernorm_post = nn.LayerNorm.load(
prefix=f"{prefix}.layernorm_post",
weights=weights,
# torch default
eps=1e-05,
)
## encoders
self.transformer = MllamaVisionEncoder(
prefix=f"{prefix}.transformer",
config=config,
weights=weights,
is_gated=False,
num_layers=config.num_hidden_layers,
)
self.global_transformer = MllamaVisionEncoder(
prefix=f"{prefix}.global_transformer",
config=config,
weights=weights,
is_gated=True,
num_layers=config.num_global_layers,
)
def apply_class_embedding(self, hidden_state: torch.Tensor) -> torch.Tensor:
batch_size, _, hidden_size = hidden_state.shape
class_embedding = self.class_embedding.expand(batch_size, 1, hidden_size)
hidden_state = torch.cat([class_embedding, hidden_state], dim=1)
return hidden_state
def forward(
self,
pixel_values: torch.Tensor,
aspect_ratio_ids: torch.Tensor,
attention_mask: torch.Tensor,
) -> torch.Tensor:
(
batch_size,
num_concurrent_media,
num_tiles,
num_channels,
height,
width,
) = pixel_values.shape
pixel_values = pixel_values.reshape(
batch_size * num_concurrent_media * num_tiles, num_channels, height, width
)
aspect_ratio_ids = aspect_ratio_ids.reshape(
batch_size * num_concurrent_media, -1
)
# patch embedding
patch_embeds = self.patch_embedding(pixel_values)
hidden_state = patch_embeds.flatten(2).transpose(1, 2)
# tile embeddings
_, num_patches, dim = hidden_state.shape
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media, num_tiles, -1, dim
)
hidden_state = self.pre_tile_positional_embedding(
hidden_state, aspect_ratio_ids
)
# apply cls token
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media * num_tiles, num_patches, dim
)
hidden_state = self.apply_class_embedding(hidden_state)
num_patches += 1
# apply position embeddings
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media, num_tiles, num_patches, dim
)
hidden_state = self.gated_positional_embedding(hidden_state, aspect_ratio_ids)
# apply encoder
hidden_state = self.layernorm_pre(hidden_state)
# Compute the number of tokens to pad
num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8
# Compute padding tuple for pad function
padding = (
0,
0,
0,
num_padding_patches,
) # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2)
# Pad the tensor
hidden_state = F.pad(hidden_state, padding, mode="constant", value=0)
slice_index = -num_padding_patches if num_padding_patches > 0 else None
if attention_mask is not None:
attention_mask = attention_mask.reshape(
batch_size * num_concurrent_media, -1
)
attention_mask = _prepare_aspect_ratio_attention_mask(
aspect_ratio_mask=attention_mask,
num_patches=self.num_patches,
target_length=hidden_state.shape[2],
dtype=self.dtype,
)
hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1, dim)
hidden_state, all_intermediate_hidden_states = self.transformer(
hidden_state,
attention_mask=attention_mask,
)
intermediate_hidden_states = [
hidden_state
for idx, hidden_state in enumerate(all_intermediate_hidden_states)
if idx in self.intermediate_layers_indices
]
intermediate_hidden_states = torch.stack(intermediate_hidden_states, dim=-1)
# apply global encoder
hidden_state = self.layernorm_post(hidden_state)
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media,
num_tiles,
num_patches + num_padding_patches,
dim,
)
hidden_state = self.post_tile_positional_embedding(
hidden_state, aspect_ratio_ids
)
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media,
num_tiles * (num_patches + num_padding_patches),
dim,
)
hidden_state, _ = self.global_transformer(
hidden_state, attention_mask=attention_mask
)
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media,
num_tiles,
num_patches + num_padding_patches,
dim,
)
hidden_state = hidden_state[:, :, :slice_index]
# adding intermediate layer outputs
hidden_state = hidden_state.reshape(
batch_size, num_concurrent_media, num_tiles, num_patches, dim
)
intermediate_hidden_states = intermediate_hidden_states.reshape(
batch_size * num_concurrent_media,
num_tiles,
num_patches + num_padding_patches,
-1,
)
intermediate_hidden_states = intermediate_hidden_states[:, :, :slice_index]
intermediate_hidden_states = intermediate_hidden_states.reshape(
batch_size, num_concurrent_media, num_tiles, num_patches, -1
)
hidden_state = torch.cat([hidden_state, intermediate_hidden_states], dim=-1)
return hidden_state
class MllamaTextCrossAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, *, prefix, config, weights, layer_idx):
super().__init__()
self.config = config
self.num_heads = self.config.num_attention_heads
self.num_key_value_heads = self.config.num_key_value_heads
self.dropout = config.dropout
self.hidden_size = config.hidden_size
self.head_size = config.hidden_size // self.num_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.layer_idx = layer_idx
self.num_heads = self.num_heads // weights.process_group.size()
self.num_key_value_heads = (
self.num_key_value_heads // weights.process_group.size()
)
self.q_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.q_proj",
weights=weights,
bias=False,
)
self.k_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.k_proj",
weights=weights,
bias=False,
)
self.v_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.v_proj",
weights=weights,
bias=False,
)
self.o_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=False,
)
self.q_norm = MllamaTextRMSNorm.load(
prefix=f"{prefix}.q_norm", weights=weights, eps=config.rms_norm_eps
)
self.k_norm = MllamaTextRMSNorm.load(
prefix=f"{prefix}.k_norm", weights=weights, eps=config.rms_norm_eps
)
self.softmax_scale = self.head_size**-0.5
def forward(
self,
hidden_states: torch.Tensor,
cross_attention_states: Optional[torch.Tensor] = None,
# past_key_value=None,
# attention_mask: Optional[torch.Tensor] = None,
# cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# hidden_states = hidden_states.unsqueeze(0)
# bsz, q_len, _ = hidden_states.size()
(
cross_attention_states,
cross_attention_len,
indices,
) = cross_attention_states
bs = cross_attention_len.size(0)
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bs, -1, self.num_heads, self.head_size)
query_states = self.q_norm(query_states)
key_states = self.k_proj(cross_attention_states)
value_states = self.v_proj(cross_attention_states)
key_states = key_states.view(bs, -1, self.num_key_value_heads, self.head_size)
value_states = value_states.view(
bs, -1, self.num_key_value_heads, self.head_size
)
key_states = self.k_norm(key_states)
# key_states = key_states.repeat(1, self.num_key_value_groups, 1)
# value_states = value_states.repeat(1, self.num_key_value_groups, 1)
# logger.info(
# f"Q: {query_states.shape} -K {key_states.shape} - V{value_states.shape}"
# )
# execute sdpa
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
fsdpa_op = ModuleFusedSDPA(FusedSDPA)
attn_output = fsdpa_op(
query_states,
key_states,
value_states,
attn_mask=None,
dropout_p=0.0,
is_causal=False,
scale=None,
softmax_mode="None",
recompute_mode=None,
valid_sequence_lengths=None,
)
attn_output = attn_output.transpose(1, 2).squeeze(0).contiguous()
attn_output = self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
return attn_output
# Copied from transformers.models.gemma2.modeling_gemma2.Gemma2MLP with Gemma2->MllamaText
class MllamaTextMLP(nn.Module):
def __init__(self, *, prefix, config, weights):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = (
config.intermediate_size // weights.process_group.size()
)
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
weights=weights,
dim=0,
bias=False,
)
self.down_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.down_proj",
weights=weights,
bias=False,
)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
shape = x.shape
gate_up_states = self.gate_up_proj(x)
gate_up_states = gate_up_states.view(*shape[:-1], 2, self.intermediate_size)
result = self.down_proj(
self.act_fn(gate_up_states[:, 0]) * gate_up_states[:, 1]
)
return result
class FlashLlamaCrossLayer(torch.nn.Module):
"""Cross-attention transformer block with tanh-gated attention and feedforward."""
def __init__(self, *, prefix, config, weights, index) -> None:
layer_idx = index
super().__init__()
self.cross_attn = MllamaTextCrossAttention(
prefix=f"{prefix}.cross_attn",
config=config,
weights=weights,
layer_idx=layer_idx,
)
self.input_layernorm = MllamaTextRMSNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
)
self.cross_attn_attn_gate = torch.nn.Parameter(
weights.get_tensor(f"{prefix}.cross_attn_attn_gate"), requires_grad=False
)
self.mlp = MllamaTextMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.post_attention_layernorm = MllamaTextRMSNorm.load(
prefix=f"{prefix}.post_attention_layernorm",
weights=weights,
eps=config.rms_norm_eps,
)
self.cross_attn_mlp_gate = torch.nn.Parameter(
weights.get_tensor(f"{prefix}.cross_attn_mlp_gate"), requires_grad=False
)
self.layer_idx = layer_idx
def forward(
self,
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
adapter_data,
cross_attention_states, # [ IB, ...]
hpu_attention_meta,
) -> Tuple[torch.Tensor, torch.Tensor]:
if cross_attention_states is None:
return hidden_states, residual
if residual is not None:
hidden_states += residual
indices = cross_attention_states[-1]
out_hidden_states = hidden_states[:]
hidden_states = hidden_states[indices]
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.cross_attn(
hidden_states=hidden_states,
# attention_mask=cross_attention_mask,
cross_attention_states=cross_attention_states,
)
hidden_states = residual + self.cross_attn_attn_gate.tanh() * hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.cross_attn_mlp_gate.tanh() * hidden_states
out_hidden_states[indices] = hidden_states
hidden_states = out_hidden_states
return hidden_states, None
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->MllamaText
class MllamaTextRMSNorm(nn.Module):
def __init__(self, weight, eps):
super().__init__()
self.weight = weight
self.variance_epsilon = eps
@classmethod
def load(cls, *, prefix, weights, eps):
weight = nn.Parameter(
weights.get_tensor(f"{prefix}.weight"), requires_grad=False
)
return cls(weight=weight, eps=eps)
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class FlashMllamaForConditionalGeneration(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
config.vision_config.quantize = None
config.vision_config.speculator = config.speculator
config.text_config.quantize = config.quantize
config.text_config.speculator = config.speculator
config.text_config._attn_implementation = "sdpa"
self.hidden_size = config.text_config.hidden_size
self.vision_model = MllamaVisionModel(
prefix="vision_model", config=config.vision_config, weights=weights
)
self.multi_modal_projector = FastLinear.load(
prefix="multi_modal_projector", config=config, weights=weights, bias=True
)
self.text_model = FlashLlamaForCausalLM(
prefix="language_model", config=config.text_config, weights=weights
)
self.config = config
self.dtype = weights.dtype
self.device = weights.device
def vision_forward(self, pixel_values, aspect_ratio_ids, aspect_ratio_mask):
if aspect_ratio_ids is None:
raise ValueError(
"`aspect_ratio_ids` must be provided if `pixel_values` is provided"
)
# logger.info(f"PIxel values {pixel_values.shape}")
batch_size = pixel_values.shape[0]
vision_states = self.vision_model(
pixel_values, aspect_ratio_ids, aspect_ratio_mask
)
cross_attention_states = self.multi_modal_projector(vision_states).reshape(
-1, vision_states.shape[-2], self.hidden_size
)
_, _, h = cross_attention_states.shape
cross_attention_states = cross_attention_states.view(batch_size, -1, h)
# logger.info(f"cross {cross_attention_states.shape}")
return cross_attention_states
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor],
adapter_data: Optional[torch.Tensor] = None,
cross_attention_states: Optional[torch.Tensor] = None,
indices=None,
cross_attention_len: Optional[torch.Tensor] = None,
):
if cross_attention_states is not None:
cross_attention_states = (
cross_attention_states,
cross_attention_len,
indices,
)
outputs = self.text_model(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
slots=slots,
seqlen=seqlen,
hpu_attention_meta=hpu_attention_meta,
lm_head_indices=lm_head_indices,
adapter_data=adapter_data,
cross_attention_states=cross_attention_states,
)
return outputs

View File

@ -29,8 +29,9 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers import (
TensorParallelRowLinear,
@ -39,7 +40,7 @@ from text_generation_server.layers import (
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
@ -47,6 +48,7 @@ from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
from text_generation_server.utils.weights import UnquantizedWeight
import habana_frameworks.torch as htorch
class GPTNeoXConfig(TransformersGPTNeoXConfig):
@ -97,7 +99,7 @@ def load_qkv(config, prefix: str, weights, num_heads, head_size, hidden_size):
class FlashNeoxAttention(torch.nn.Module):
def __init__(self, config, prefix, weights):
def __init__(self, config, prefix, weights, rotary_emb):
super().__init__()
num_heads = config.num_attention_heads
hidden_size = config.hidden_size
@ -114,14 +116,7 @@ class FlashNeoxAttention(torch.nn.Module):
f"and `num_shards`: {weights.process_group.size()}"
)
self.num_heads = self.num_heads // weights.process_group.size()
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.rotary_dim,
base=config.rotary_emb_base,
device=weights.device,
)
self.rotary_emb = rotary_emb
self.softmax_scale = self.head_size ** (-0.5)
self.query_key_value = load_qkv(
@ -132,6 +127,7 @@ class FlashNeoxAttention(torch.nn.Module):
head_size=self.head_size,
hidden_size=self.hidden_size,
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.dense = load_row(
config, prefix=f"{prefix}.dense", weights=weights, bias=True
)
@ -146,10 +142,9 @@ class FlashNeoxAttention(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
qkv = self.query_key_value(hidden_states)
qkv = qkv.view(-1, 3, self.num_heads, self.head_size)
@ -165,30 +160,35 @@ class FlashNeoxAttention(torch.nn.Module):
qkv[:, 0] = torch.cat((query_rot, query_pass), dim=-1)
qkv[:, 1] = torch.cat((key_rot, key_pass), dim=-1)
reshape_and_cache(qkv[:, 1], qkv[:, 2], kv_cache[0], kv_cache[1], slots)
kv_cache.store(
key=qkv[:, 1],
value=qkv[:, 2],
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
qkv[:, 0],
kv_cache[0] if PREFILL_IN_KV_CACHE else qkv[:, 1],
kv_cache[1] if PREFILL_IN_KV_CACHE else qkv[:, 2],
seqlen,
block_tables,
self.softmax_scale,
query=qkv[:, 0],
key=qkv[:, 1],
value=qkv[:, 2],
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
)
# Decode
else:
attn_output = paged_attention(
qkv[:, 0],
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
return self.dense(attn_output.view(-1, self.num_heads * self.head_size))
@ -224,7 +224,7 @@ class FlashMLP(nn.Module):
class FlashNeoXLayer(nn.Module):
def __init__(self, layer_id, config, weights):
def __init__(self, layer_id, config, weights, rotary_emb):
super().__init__()
layer_norm_eps = config.layer_norm_eps
@ -241,7 +241,10 @@ class FlashNeoXLayer(nn.Module):
eps=layer_norm_eps,
)
self.attention = FlashNeoxAttention(
config, prefix=f"{prefix}.attention", weights=weights
config,
prefix=f"{prefix}.attention",
weights=weights,
rotary_emb=rotary_emb,
)
self.mlp = FlashMLP(config, prefix=f"{prefix}.mlp", weights=weights)
@ -255,10 +258,9 @@ class FlashNeoXLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
if self.use_parallel_residual:
ln1_hidden_states, _ = self.input_layernorm(hidden_states)
@ -269,10 +271,9 @@ class FlashNeoXLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
ln2_hidden_states, _ = self.post_attention_layernorm(hidden_states)
@ -293,10 +294,9 @@ class FlashNeoXLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
hidden_states, residual = self.post_attention_layernorm(
@ -324,9 +324,18 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
prefix=f"{prefix}.embed_in", weights=weights
)
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=int(
config.rotary_pct * (config.hidden_size // config.num_attention_heads)
),
base=config.rotary_emb_base,
device=weights.device,
)
self.layers = nn.ModuleList(
[
FlashNeoXLayer(layer_id, config, weights)
FlashNeoXLayer(layer_id, config, weights, rotary_emb)
for layer_id in range(config.num_hidden_layers)
]
)
@ -347,20 +356,24 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_in(input_ids)
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].attention.rotary_emb.get_cos_sin(
position_ids, max_s, hidden_states.dtype
)
cos, sin = self.layers[0].attention.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -369,11 +382,12 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.final_layer_norm(hidden_states, residual)
@ -401,11 +415,9 @@ class FlashGPTNeoXForCausalLM(FlashGPTNeoXPreTrainedModel):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
@ -414,10 +426,9 @@ class FlashGPTNeoXForCausalLM(FlashGPTNeoXPreTrainedModel):
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -19,7 +19,7 @@ from torch import nn
from typing import Optional, List, Tuple
from text_generation_server.layers.tensor_parallel import TensorParallelColumnLinear
from text_generation_server.layers.attention import Seqlen
from text_generation_server.layers.attention import Seqlen, HPUPagedAttentionMetadata
from text_generation_server.models.custom_modeling.vlm import (
load_text_model,
load_vision_model,
@ -62,54 +62,63 @@ class PaliGemmaForConditionalGeneration(nn.Module):
self.pad_token_id = (
config.pad_token_id if config.pad_token_id is not None else -1
)
self.dtype = weights.dtype
def forward(
def get_vision_embeds(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor] = None,
lm_head_indices: Optional[torch.Tensor] = None,
pixel_values: torch.FloatTensor = None,
# Unused here
pixel_attention_mask: Optional[torch.BoolTensor] = None,
pixel_values: torch.FloatTensor,
pixel_attention_mask: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
inputs_embeds = self.text_model.embed_tokens(input_ids)
# TODO This is odd but apparently pali gemma position ids start at 1.
if cu_seqlen_prefill is not None:
max_s += 1
position_ids += 1
if pixel_values is not None:
pixel_values = pixel_values.to(dtype=inputs_embeds.dtype)
image_grid_thw: Optional[torch.LongTensor] = None,
):
pixel_values = pixel_values.to(dtype=self.dtype)
image_outputs = self.vision_tower(pixel_values)
last_hidden_state = self.post_vision_tower_layernorm(
image_outputs.last_hidden_state
)
image_features = self.multi_modal_projector(last_hidden_state)
image_features = image_features.view(-1, image_features.shape[-1])
return image_features
# mask where image or padding tokens
def get_inputs_embeds(
self,
input_ids: torch.Tensor,
vision_embeds: torch.Tensor = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if vision_embeds is not None:
mask = input_ids == self.config.image_token_index
inputs_embeds[mask] = vision_embeds
# insert image features into input embeddings
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
return inputs_embeds
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
# TODO This is odd but apparently pali gemma position ids start at 1.
if cu_seqlen_prefill is not None:
position_ids += 1
hidden_states = self.text_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
seqlen=seqlen,
max_s=max_s,
hpu_attention_meta=hpu_attention_meta,
adapter_data=adapter_data,
)
if lm_head_indices is not None:

View File

@ -9,8 +9,9 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers import (
TensorParallelRowLinear,
@ -19,13 +20,14 @@ from text_generation_server.layers import (
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
import habana_frameworks.torch as htorch
class PhiConfig(PretrainedConfig):
@ -90,7 +92,7 @@ def _load_gqa(config, prefix: str, weights):
dim=0,
)
if config.quantize not in ["gptq", "awq", "marlin"]:
if config.quantize not in ["gptq", "awq"]:
weight = weight.to(dtype=weights.dtype).to(device=weights.device)
head_size = config.hidden_size // config.num_attention_heads
@ -111,6 +113,7 @@ class FlashPhiAttention(torch.nn.Module):
prefix: str,
config,
weights,
rotary_emb,
):
super().__init__()
self.num_heads = config.num_attention_heads
@ -119,13 +122,7 @@ class FlashPhiAttention(torch.nn.Module):
self.softmax_scale = self.head_size**-0.5
self.rotary_dim = int(config.partial_rotary_factor * self.head_size)
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.rotary_dim,
base=config.rope_theta,
device=weights.device,
)
self.rotary_emb = rotary_emb
if self.num_heads % weights.process_group.size() != 0:
raise ValueError(
@ -139,6 +136,7 @@ class FlashPhiAttention(torch.nn.Module):
)
self.query_key_value = load_attention(config, prefix, weights)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
# in llama the dense layer is called "o_proj" and has bias=False
self.dense = TensorParallelRowLinear.load(
@ -159,10 +157,9 @@ class FlashPhiAttention(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
# Compute query, key, value and split
qkv = self.query_key_value(hidden_states)
@ -188,29 +185,34 @@ class FlashPhiAttention(torch.nn.Module):
)
# Reshape key and value and cache
reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots)
kv_cache.store(
key=kv[:, 0],
value=kv[:, 1],
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0],
kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1],
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=kv[:, 0],
value=kv[:, 1],
kv_scales=self.kv_scales,
kv_cache=kv_cache,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
return self.dense(attn_output.view(-1, self.num_heads * self.head_size))
@ -252,11 +254,14 @@ class PhiMLP(nn.Module):
class FlashPhiLayer(nn.Module):
def __init__(self, prefix: str, layer_id, config, weights):
def __init__(self, prefix: str, layer_id, config, weights, rotary_emb):
super().__init__()
prefix = f"{prefix}.layers.{layer_id}"
self.self_attn = FlashPhiAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
prefix=f"{prefix}.self_attn",
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
self.mlp = PhiMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.input_layernorm = FastLayerNorm.load(
@ -274,10 +279,9 @@ class FlashPhiLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
hidden_states, res = self.input_layernorm(hidden_states, residual)
# Self Attention
@ -287,10 +291,9 @@ class FlashPhiLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
hidden_states = self.resid_dropout(attn_output).add(
@ -310,6 +313,16 @@ class FlashPhiModel(torch.nn.Module):
self.embed_tokens = TensorParallelEmbedding(
prefix=f"{prefix}.embed_tokens", weights=weights
)
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=int(
config.partial_rotary_factor
* (config.hidden_size // config.num_attention_heads)
),
base=config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
FlashPhiLayer(
@ -317,6 +330,7 @@ class FlashPhiModel(torch.nn.Module):
layer_id,
config,
weights,
rotary_emb,
)
for layer_id in range(config.num_hidden_layers)
]
@ -339,20 +353,24 @@ class FlashPhiModel(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, max_s, hidden_states.dtype
)
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -361,11 +379,12 @@ class FlashPhiModel(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
@ -394,11 +413,9 @@ class FlashPhiForCausalLM(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
@ -407,10 +424,9 @@ class FlashPhiForCausalLM(torch.nn.Module):
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -18,7 +18,6 @@
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)

View File

@ -8,8 +8,9 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers import (
TensorParallelRowLinear,
@ -17,11 +18,12 @@ from text_generation_server.layers import (
TensorParallelEmbedding,
SpeculativeHead,
)
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
import habana_frameworks.torch as htorch
def load_attention(config, prefix, weights):
@ -56,21 +58,18 @@ class Qwen2Attention(torch.nn.Module):
prefix: str,
config,
weights,
rotary_emb,
):
super().__init__()
self.max_past = (
config.sliding_window if config.sliding_window is not None else -1
config.sliding_window
if config.use_sliding_window and config.sliding_window is not None
else -1
)
self.num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_heads
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
base=config.rope_theta,
device=weights.device,
)
self.rotary_emb = rotary_emb
self.softmax_scale = self.head_size**-0.5
@ -86,6 +85,8 @@ class Qwen2Attention(torch.nn.Module):
self.query_key_value = load_attention(config, prefix, weights)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.o_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
@ -104,11 +105,9 @@ class Qwen2Attention(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
hpu_attention_meta,
):
qkv = self.query_key_value(hidden_states)
query, kv = qkv.split(
@ -123,38 +122,37 @@ class Qwen2Attention(torch.nn.Module):
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
if prefill_cache_indices is not None:
kv_to_cache = kv[prefill_cache_indices]
else:
kv_to_cache = kv
reshape_and_cache(
kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots
kv_cache.store(
key=kv[:, 0],
value=kv[:, 1],
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0],
kv_cache[1] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1],
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=kv[:, 0],
value=kv[:, 1],
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
window_size_left=self.max_past,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
window_size_left=self.max_past,
)
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
@ -199,11 +197,14 @@ class Qwen2MLP(nn.Module):
class Qwen2Layer(nn.Module):
def __init__(self, prefix, layer_id, config, weights):
def __init__(self, prefix, layer_id, config, weights, rotary_emb):
super().__init__()
prefix = f"{prefix}.layers.{layer_id}"
self.self_attn = Qwen2Attention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
prefix=f"{prefix}.self_attn",
config=config,
weights=weights,
rotary_emb=rotary_emb,
)
self.mlp = Qwen2MLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.input_layernorm = FastRMSNorm.load(
@ -223,13 +224,11 @@ class Qwen2Layer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
hpu_attention_meta,
):
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
normed_hidden_states, residual = self.input_layernorm(hidden_states)
# Self Attention
attn_output = self.self_attn(
@ -238,21 +237,17 @@ class Qwen2Layer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
hpu_attention_meta,
)
hidden_states = attn_output + residual
# faster post attention rms norm
normed_attn_res_output, attn_res = self.post_attention_layernorm(
attn_output, res
)
mlp_output = self.mlp(normed_attn_res_output)
return mlp_output, attn_res
hidden_states, residual = self.post_attention_layernorm(hidden_states)
mlp_output = self.mlp(hidden_states)
hidden_states = mlp_output + residual
return hidden_states
class Qwen2Model(torch.nn.Module):
@ -264,9 +259,14 @@ class Qwen2Model(torch.nn.Module):
process_group = weights.process_group
self.tp_rank = process_group.rank()
self.tp_world_size = process_group.size()
self.embed_tokens = TensorParallelEmbedding(
prefix=f"{prefix}.embed_tokens", weights=weights
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=config.hidden_size // config.num_attention_heads,
base=config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
Qwen2Layer(
@ -274,6 +274,7 @@ class Qwen2Model(torch.nn.Module):
layer_id,
config,
weights,
rotary_emb,
)
for layer_id in range(config.num_hidden_layers)
]
@ -290,42 +291,44 @@ class Qwen2Model(torch.nn.Module):
def forward(
self,
input_ids: torch.Tensor,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
true_max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, true_max_s, hidden_states.dtype
position_ids,
)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states = layer(
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
hidden_states, _ = self.norm(hidden_states)
return hidden_states
@ -346,6 +349,12 @@ class Qwen2ForCausalLM(torch.nn.Module):
prefix=f"{prefix}.{suffix}" if prefix else suffix,
weights=weights,
)
self.embed_tokens = TensorParallelEmbedding(
prefix=f"{prefix}.embed_tokens" if prefix else "model.embed_tokens",
weights=weights,
)
self.max_past = config.sliding_window
self.max_past_tensor = (
torch.tensor(config.sliding_window, device=weights.device)
@ -359,34 +368,22 @@ class Qwen2ForCausalLM(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor] = None,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
true_max_s = max_s
if prefill_cache_indices is not None:
# Slots also need to be sliced as it has the same size as the whole kv tensor
slots = slots[prefill_cache_indices]
elif self.max_past is not None:
# Clamp in decode mode as paged attention requires clamped values whereas the flash attention
# kernel requires the true values
seqlen = seqlen.clamp(max=self.max_past_tensor)
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = self.model(
input_ids,
inputs_embeds,
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
true_max_s,
prefill_cache_indices,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -0,0 +1,366 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, List
import torch
from torch import nn
import habana_frameworks.torch as htorch
from text_generation_server.layers.attention import (
paged_attention,
attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers import (
TensorParallelEmbedding,
TensorParallelRowLinear,
TensorParallelColumnLinear,
SpeculativeHead,
)
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
from .flash_qwen2_modeling import Qwen2MLP
from text_generation_server.layers.rotary import PositionRotaryEmbedding
class Qwen3Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config, prefix, weights, layer_idx, rotary_emb):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(
config, "head_dim", config.hidden_size // config.num_attention_heads
)
self.num_key_value_groups = (
config.num_attention_heads // config.num_key_value_heads
)
self.num_heads = config.num_attention_heads
self.attention_dropout = config.attention_dropout
self.softmax_scale = self.head_dim**-0.5
self.rotary_emb = rotary_emb
if self.num_heads % weights.process_group.size() != 0:
raise ValueError(
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
f"and `num_shards`: {weights.process_group.size()}"
)
self.num_heads = self.num_heads // weights.process_group.size()
self.num_key_value_heads = (
config.num_key_value_heads // weights.process_group.size()
)
self.query_key_value = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=False,
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.o_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=False,
)
self.num_groups = self.num_heads // self.num_key_value_heads
self.kv_head_mapping = torch.arange(
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
).repeat_interleave(self.num_groups)
self.max_past = (
config.sliding_window if config.sliding_window is not None else -1
)
self.q_norm = FastRMSNorm.load(
prefix=f"{prefix}.q_norm",
weights=weights,
eps=config.rms_norm_eps,
)
self.k_norm = FastRMSNorm.load(
prefix=f"{prefix}.k_norm",
weights=weights,
eps=config.rms_norm_eps,
)
self.sliding_window = config.sliding_window
if not (
self.config.use_sliding_window
and getattr(self.config, "sliding_window", None) is not None
and self.layer_idx >= self.config.max_window_layers
):
self.sliding_window = None
def forward(
self,
hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
qkv = self.query_key_value(hidden_states)
query_states, key_states, value_states = qkv.split(
[
self.head_dim * self.num_heads,
self.head_dim * self.num_key_value_heads,
self.head_dim * self.num_key_value_heads,
],
dim=1,
)
query_states, _ = self.q_norm(query_states.view(hidden_shape))
key_states, _ = self.k_norm(key_states.view(hidden_shape))
value_states = value_states.view(hidden_shape)
self.rotary_emb(query_states, key_states, cos, sin)
kv_cache.store(
key=key_states,
value=value_states,
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# sdpa
attn_output = attention(
query=query_states,
key=key_states,
value=value_states,
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
window_size_left=self.max_past,
)
# Decode
else:
attn_output = paged_attention(
query_states,
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
seqlen,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
window_size_left=self.max_past,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
return self.o_proj(attn_output)
class Qwen3DecoderLayer(nn.Module):
def __init__(self, config, prefix, weights, layer_idx: int, rotary_emb):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Qwen3Attention(
config=config,
prefix=f"{prefix}.self_attn",
weights=weights,
layer_idx=layer_idx,
rotary_emb=rotary_emb,
)
self.mlp = Qwen2MLP(config=config, prefix=f"{prefix}.mlp", weights=weights)
self.input_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
)
self.post_attention_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.post_attention_layernorm",
weights=weights,
eps=config.rms_norm_eps,
)
def forward(
self,
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
) -> torch.Tensor:
residual = hidden_states
hidden_states, _ = self.input_layernorm(hidden_states)
# Self Attention
hidden_states = self.self_attn(
hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states, _ = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Qwen3Model(nn.Module):
def __init__(self, config, prefix: str, weights):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
head_dim = getattr(
config, "head_dim", config.hidden_size // config.num_attention_heads
)
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=head_dim,
base=config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
Qwen3DecoderLayer(
config=config,
prefix=f"{prefix}.layers.{layer_idx}",
weights=weights,
layer_idx=layer_idx,
rotary_emb=rotary_emb,
)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = FastRMSNorm.load(
prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
)
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids,
)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, decoder_layer in enumerate(self.layers):
hidden_states = decoder_layer(
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache[i],
slots,
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states)
# add hidden states from the last decoder layer
return hidden_states
class Qwen3ForCausalLM(nn.Module):
def __init__(self, prefix: str, config, weights):
super().__init__()
self.model = Qwen3Model(config=config, prefix="model", weights=weights)
self.vocab_size = config.vocab_size
if config.tie_word_embeddings:
suffix = "model.embed_tokens"
else:
suffix = "lm_head"
self.lm_head = SpeculativeHead.load(
config,
prefix=f"{prefix}.{suffix}" if prefix else suffix,
weights=weights,
)
self.embed_tokens = TensorParallelEmbedding(
prefix=f"{prefix}.embed_tokens" if prefix else "model.embed_tokens",
weights=weights,
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
inputs_embeds = self.embed_tokens(input_ids)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
hidden_states = self.model(
inputs_embeds,
position_ids,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
)
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits = self.lm_head(hidden_states)
return logits

View File

@ -0,0 +1,554 @@
# coding=utf-8
# Copyright 5 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Type
import torch
from torch import nn
import torch.nn.functional as F
from text_generation_server.layers.attention import (
attention,
paged_attention,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
from text_generation_server.layers import (
TensorParallelEmbedding,
TensorParallelColumnLinear,
TensorParallelRowLinear,
SpeculativeHead,
FastLinear,
)
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
from .flash_qwen2_modeling import Qwen2MLP
from .flash_qwen3_modeling import Qwen3Attention
from transformers.activations import ACT2FN
from text_generation_server.layers.rotary import PositionRotaryEmbedding
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class Qwen3MoeAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config, prefix, weights, layer_idx, rotary_emb):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(
config, "head_dim", config.hidden_size // config.num_attention_heads
)
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = (
config.num_attention_heads // config.num_key_value_heads
)
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = FastLinear.load(
config, f"{prefix}.q_proj", weights, bias=config.attention_bias
)
self.k_proj = FastLinear.load(
config, f"{prefix}.k_proj", weights, bias=config.attention_bias
)
self.v_proj = FastLinear.load(
config, f"{prefix}.v_proj", weights, bias=config.attention_bias
)
self.o_proj = FastLinear.load(
config, f"{prefix}.o_proj", weights, bias=config.attention_bias
)
self.rotary_emb = rotary_emb
self.q_norm = FastRMSNorm.load(
prefix=f"{prefix}.q_norm",
weights=weights,
eps=config.rms_norm_eps,
)
self.k_norm = FastRMSNorm.load(
prefix=f"{prefix}.k_norm",
weights=weights,
eps=config.rms_norm_eps,
)
self.max_past = (
config.sliding_window if config.sliding_window is not None else -1
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.kv_head_mapping = torch.arange(
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
).repeat_interleave(self.num_key_value_groups)
self.sliding_window = config.sliding_window
if not (
self.config.use_sliding_window
and getattr(self.config, "sliding_window", None) is not None
and self.layer_idx >= self.config.max_window_layers
):
self.sliding_window = None
def forward(
self,
hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states, _ = self.q_norm(self.q_proj(hidden_states).view(hidden_shape))
key_states, _ = self.k_norm(self.k_proj(hidden_states).view(hidden_shape))
value_states = self.v_proj(hidden_states).view(hidden_shape)
self.rotary_emb(query_states, key_states, cos, sin)
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
kv_cache.store(
key=key_states,
value=value_states,
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# sdpa
attn_output = attention(
query=query_states,
key=key_states,
value=value_states,
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.scaling,
window_size_left=self.max_past,
)
# Decode
else:
attn_output = paged_attention(
query_states,
kv_cache,
self.kv_head_mapping,
self.scaling,
seqlen,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
window_size_left=self.max_past,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output
class Qwen3MoE(nn.Module):
def __init__(self, prefix, config, moe_layer_cls: Type[MoELayer], weights):
super().__init__()
# gating
self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False)
self.moe = moe_layer_cls(
n_expert_group=None,
n_experts=config.num_experts,
prefix=f"{prefix}.experts",
renormalize=True,
topk=config.num_experts_per_tok,
topk_group=None,
weights=weights,
)
# gate_proj_name="w1",
# up_proj_name="w3",
# down_proj_name="w2",
assert isinstance(self.moe, MoELayer)
self.process_group = weights.process_group
def forward(self, x: torch.Tensor) -> torch.Tensor:
router_logits = self.gate(x)
out = self.moe(x, gating_output=router_logits)
# Reduce sum
if self.process_group.size() > 1:
torch.distributed.all_reduce(out, group=self.process_group)
return out.view(*x.shape)
class Qwen3MoeMLP(nn.Module):
def __init__(self, prefix, config, weights, intermediate_size=None):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = (
intermediate_size
if intermediate_size is not None
else config.intermediate_size
)
# Fuse gate and up proj
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
weights=weights,
dim=0,
bias=False,
)
self.down_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.down_proj",
weights=weights,
bias=False,
)
self.intermediate_size = (
config.intermediate_size // weights.process_group.size()
)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
gate_up_states = self.gate_up_proj(x)
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1])
class Qwen3MoeSparseMoeBlock(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_tok
self.norm_topk_prob = config.norm_topk_prob
# gating
# self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False)
self.experts = nn.ModuleList(
[
Qwen3MoeMLP(
prefix=f"{prefix}.experts.{i}",
config=config,
weights=weights,
intermediate_size=config.moe_intermediate_size,
)
for i in range(self.num_experts)
]
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
input_shape = hidden_states.shape
_, hidden_dim = hidden_states.shape
# hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=hidden_states.dtype)
routing_weights, selected_experts = torch.topk(
routing_weights, self.top_k, dim=-1
)
if self.norm_topk_prob: # only diff with mixtral sparse moe block!
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(input_shape), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(
selected_experts, num_classes=self.num_experts
).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = (
expert_layer(current_state) * routing_weights[top_x, idx, None]
)
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(
0, top_x, current_hidden_states.to(hidden_states.dtype)
)
final_hidden_states = final_hidden_states.reshape(input_shape)
return final_hidden_states
class Qwen3MoeDecoderLayer(nn.Module):
def __init__(self, config, prefix, weights, layer_idx: int, rotary_emb):
super().__init__()
self.hidden_size = config.hidden_size
if config.num_key_value_heads // weights.process_group.size() > 0:
self.self_attn = Qwen3Attention(
config,
prefix=f"{prefix}.self_attn",
weights=weights,
layer_idx=layer_idx,
rotary_emb=rotary_emb,
)
else:
self.self_attn = Qwen3MoeAttention(
config,
prefix=f"{prefix}.self_attn",
weights=weights,
layer_idx=layer_idx,
rotary_emb=rotary_emb,
)
moe_layer_cls = (
SparseMoELayer if SparseMoELayer.is_supported(weights) else DenseMoELayer
)
if (layer_idx not in config.mlp_only_layers) and (
config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0
):
self.mlp = Qwen3MoE(f"{prefix}.mlp", config, moe_layer_cls, weights)
# self.mlp = Qwen3MoeSparseMoeBlock(f"{prefix}.mlp", config, weights)
else:
self.mlp = Qwen2MLP(config=config, prefix=f"{prefix}.mlp", weights=weights)
self.input_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
)
self.post_attention_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.post_attention_layernorm",
weights=weights,
eps=config.rms_norm_eps,
)
def forward(
self,
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
) -> torch.Tensor:
if residual is None:
residual = hidden_states
hidden_states, _ = self.input_layernorm(hidden_states)
# Self Attention
hidden_states = self.self_attn(
hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states, _ = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Qwen3MoeModel(nn.Module):
def __init__(self, config, prefix: str, weights):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
head_dim = getattr(
config, "head_dim", config.hidden_size // config.num_attention_heads
)
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=head_dim,
base=config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
Qwen3MoeDecoderLayer(
config=config,
prefix=f"{prefix}.layers.{layer_idx}",
weights=weights,
layer_idx=layer_idx,
rotary_emb=rotary_emb,
)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = FastRMSNorm.load(
prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
)
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, inputs_embeds.shape[0]
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids,
)
residual = None
for i, decoder_layer in enumerate(self.layers):
hidden_states = decoder_layer(
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache[i],
slots,
seqlen,
hpu_attention_meta,
)
hidden_states, _ = self.norm(hidden_states)
# add hidden states from the last decoder layer
return hidden_states
class Qwen3MoeForCausalLM(nn.Module):
def __init__(self, prefix: str, config, weights):
super().__init__()
self.model = Qwen3MoeModel(config=config, prefix="model", weights=weights)
self.vocab_size = config.vocab_size
if config.tie_word_embeddings:
suffix = "model.embed_tokens"
else:
suffix = "lm_head"
self.lm_head = SpeculativeHead.load(
config,
prefix=f"{prefix}.{suffix}" if prefix else suffix,
weights=weights,
)
self.embed_tokens = TensorParallelEmbedding(
prefix=f"{prefix}.embed_tokens" if prefix else "model.embed_tokens",
weights=weights,
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
inputs_embeds = self.embed_tokens(input_ids)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
hidden_states = self.model(
inputs_embeds,
position_ids,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
)
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits = self.lm_head(hidden_states)
return logits

View File

@ -12,15 +12,17 @@ from text_generation_server.layers import (
TensorParallelRowLinear,
get_linear,
)
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.layernorm import FastLayerNorm
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.attention import (
attention,
paged_attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
import habana_frameworks.torch as htorch
def load_row(config, prefix: str, weights, bias: bool):
@ -79,6 +81,7 @@ class RWConfig(PretrainedConfig):
self.alibi = False
self.rotary = True
self.rope_theta = rope_theta
self.max_position_embeddings = 2048
self.vocab_size = vocab_size
# Backward compatibility with n_embed kwarg
@ -131,6 +134,7 @@ class FlashRWAttention(torch.nn.Module):
config,
prefix: str,
weights,
rotary_emb,
):
super().__init__()
self.num_heads = config.n_head
@ -138,13 +142,8 @@ class FlashRWAttention(torch.nn.Module):
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_heads
self.rope_theta = config.rope_theta
self.rotary_emb = rotary_emb
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
base=self.rope_theta,
device=weights.device,
)
self.softmax_scale = self.head_size ** (-0.5)
if self.num_heads % weights.process_group.size() != 0:
@ -160,6 +159,7 @@ class FlashRWAttention(torch.nn.Module):
weights=weights,
bias=config.bias,
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.dense = load_row(
config, prefix=f"{prefix}.dense", weights=weights, bias=config.bias
)
@ -180,10 +180,9 @@ class FlashRWAttention(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
qkv = self.query_key_value(hidden_states)
@ -200,30 +199,35 @@ class FlashRWAttention(torch.nn.Module):
# Inplace rotary
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots)
kv_cache.store(
key=kv[:, 0],
value=kv[:, 1],
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0],
kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1],
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=kv[:, 0],
value=kv[:, 1],
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
return self.dense(attn_output.view(-1, self.num_heads * self.head_size))
@ -235,6 +239,7 @@ class FlashRWLargeAttention(torch.nn.Module):
config,
prefix: str,
weights,
rotary_emb,
):
super().__init__()
@ -247,13 +252,8 @@ class FlashRWLargeAttention(torch.nn.Module):
self.head_size = hidden_size // num_heads
self.num_groups = num_groups
self.rope_theta = config.rope_theta
self.rotary_emb = rotary_emb
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
base=self.rope_theta,
device=weights.device,
)
self.softmax_scale = self.head_size ** (-0.5)
# self.num_groups = num_heads // (num_heads_kv * 2)
@ -278,6 +278,7 @@ class FlashRWLargeAttention(torch.nn.Module):
weights=weights,
bias=config.bias,
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.dense = load_row(
config, prefix=f"{prefix}.dense", weights=weights, bias=config.bias
)
@ -293,10 +294,9 @@ class FlashRWLargeAttention(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
qkv = self.query_key_value(hidden_states)
qkv = qkv.view(-1, self.num_groups, self.num_heads + 2, self.head_size)
@ -312,36 +312,35 @@ class FlashRWLargeAttention(torch.nn.Module):
# Inplace rotary
self.rotary_emb(query, torch.select(kv, dim=2, index=0), cos, sin)
reshape_and_cache(
kv[:, :, 0].contiguous(),
kv[:, :, 1].contiguous(),
kv_cache[0],
kv_cache[1],
slots,
kv_cache.store(
key=kv[:, :, 0].contiguous(),
value=kv[:, :, 1].contiguous(),
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, :, 0].contiguous(),
kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, :, 1].contiguous(),
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=kv[:, :, 0],
value=kv[:, :, 1],
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
return self.dense(
@ -375,6 +374,7 @@ class FlashRWLayer(nn.Module):
prefix: str,
config,
weights,
rotary_emb,
):
super().__init__()
@ -397,6 +397,7 @@ class FlashRWLayer(nn.Module):
config,
prefix=f"{prefix}.self_attention",
weights=weights,
rotary_emb=rotary_emb,
)
self.post_attention_layernorm = (
FastLayerNorm.load(
@ -424,10 +425,9 @@ class FlashRWLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
if self.parallel_attn:
ln_hidden_states, residual = self.input_layernorm(hidden_states, residual)
@ -438,10 +438,9 @@ class FlashRWLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
mlp_output = self.mlp(ln_hidden_states)
@ -460,10 +459,9 @@ class FlashRWLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if self.post_attention_layernorm is not None:
@ -522,7 +520,7 @@ class FlashRWLayerNorm(nn.Module):
class FlashRWLargeLayer(nn.Module):
def __init__(self, layer_id, prefix: str, config, weights):
def __init__(self, layer_id, prefix: str, config, weights, rotary_emb):
super().__init__()
prefix = f"{prefix}.h.{layer_id}"
@ -532,6 +530,7 @@ class FlashRWLargeLayer(nn.Module):
config,
prefix=f"{prefix}.self_attention",
weights=weights,
rotary_emb=rotary_emb,
)
assert config.parallel_attn, "This version doesn't support non parallel_attn"
@ -547,10 +546,9 @@ class FlashRWLargeLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
# Layer norm.
ln_attn, ln_mlp, residual = self.ln_layer(hidden_states, residual)
@ -562,10 +560,9 @@ class FlashRWLargeLayer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
# MLP.
@ -591,11 +588,17 @@ class FlashRWModel(FlashRWPreTrainedModel):
self.word_embeddings = TensorParallelEmbedding(
prefix=f"{prefix}.word_embeddings", weights=weights
)
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=config.hidden_size // config.n_head,
base=config.rope_theta,
device=weights.device,
)
if config.new_decoder_architecture:
self.h = nn.ModuleList(
[
FlashRWLargeLayer(layer_id, prefix, config, weights)
FlashRWLargeLayer(layer_id, prefix, config, weights, rotary_emb)
for layer_id in range(config.num_hidden_layers)
]
)
@ -603,7 +606,7 @@ class FlashRWModel(FlashRWPreTrainedModel):
else:
self.h = nn.ModuleList(
[
FlashRWLayer(layer_id, prefix, config, weights)
FlashRWLayer(layer_id, prefix, config, weights, rotary_emb)
for layer_id in range(config.num_hidden_layers)
]
)
@ -623,20 +626,24 @@ class FlashRWModel(FlashRWPreTrainedModel):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.word_embeddings(input_ids)
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.h[0].self_attention.rotary_emb.get_cos_sin(
position_ids, max_s, hidden_states.dtype
)
cos, sin = self.h[0].self_attention.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.h):
hidden_states, residual = layer(
hidden_states,
@ -645,11 +652,12 @@ class FlashRWModel(FlashRWPreTrainedModel):
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.ln_f(hidden_states, residual)
@ -675,11 +683,9 @@ class FlashRWForCausalLM(FlashRWPreTrainedModel):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
@ -688,10 +694,9 @@ class FlashRWForCausalLM(FlashRWPreTrainedModel):
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -8,8 +8,9 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers import (
TensorParallelRowLinear,
@ -18,11 +19,12 @@ from text_generation_server.layers import (
TensorParallelEmbedding,
get_linear,
)
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.gptq import GPTQWeightsLoader
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
import habana_frameworks.torch as htorch
def load_multi_mqa(
@ -32,10 +34,6 @@ def load_multi_mqa(
return _load_multi_mqa_gptq(
config, prefix, weights, bias, head_size, num_heads, hidden_size
)
elif config.quantize == "marlin":
raise RuntimeError(
"santacoder models with marlin quantization are not yet supported"
)
else:
return _load_multi_mqa(
config, prefix, weights, bias, head_size, num_heads, hidden_size
@ -259,6 +257,7 @@ class FlashMQAttention(torch.nn.Module):
self.c_proj = load_row(
config, prefix=f"{prefix}.c_proj", weights=weights, bias=True
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.kv_head_mapping = torch.zeros(
self.num_heads, dtype=torch.int32, device=weights.device
)
@ -268,10 +267,9 @@ class FlashMQAttention(torch.nn.Module):
hidden_states,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
qkv = self.c_attn(hidden_states)
@ -284,32 +282,35 @@ class FlashMQAttention(torch.nn.Module):
query = query.view(-1, self.num_heads, self.head_size)
key_value = key_value.view(-1, 2, 1, self.head_size)
reshape_and_cache(
key_value[:, 0], key_value[:, 1], kv_cache[0], kv_cache[1], slots
kv_cache.store(
key=key_value[:, 0],
value=key_value[:, 1],
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else key_value[:, 0],
kv_cache[1] if PREFILL_IN_KV_CACHE else key_value[:, 1],
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=key_value[:, 0],
value=key_value[:, 1],
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
return self.c_proj(attn_output.view(-1, self.num_heads * self.head_size))
@ -371,20 +372,18 @@ class Block(nn.Module):
residual,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
):
hidden_states, residual = self.ln_1(hidden_states, residual)
hidden_states = self.self_attn(
hidden_states,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
hidden_states, residual = self.ln_2(hidden_states, residual)
@ -435,28 +434,35 @@ class FlashSantacoderModel(nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.wte(input_ids) + self.wpe(position_ids)
if self.process_group.size() > 1:
torch.distributed.all_reduce(hidden_states, group=self.process_group)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
residual,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.ln_f(hidden_states, residual)
@ -484,11 +490,9 @@ class FlashSantacoderForCausalLM(nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
@ -497,10 +501,9 @@ class FlashSantacoderForCausalLM(nn.Module):
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -29,17 +29,20 @@ from typing import Optional, List, Tuple
from text_generation_server.layers.attention import (
paged_attention,
attention,
reshape_and_cache,
set_block_mapping,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers import (
TensorParallelMultiAdapterLinear,
TensorParallelAdapterRowLinear,
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.layernorm import (
FastLayerNorm,
FastRMSNorm,
@ -48,6 +51,7 @@ from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
from text_generation_server.utils.weights import UnquantizedWeight
import habana_frameworks.torch as htorch
class Starcoder2Config(PretrainedConfig):
@ -110,17 +114,31 @@ class Starcoder2Config(PretrainedConfig):
)
def load_attention(config, prefix, weights):
def load_attention(config, prefix, weights, layer_id):
prefixes = [f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"]
head_size = config.hidden_size // config.num_attention_heads
sizes = [
head_size * config.num_attention_heads,
head_size * config.num_key_value_heads,
head_size * config.num_key_value_heads,
]
if config.num_attention_heads != config.num_key_value_heads:
return _load_gqa(config, prefix, weights)
base_layer = _load_gqa(config, prefix, weights)
else:
return TensorParallelColumnLinear.load_multi(
base_layer = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
prefixes=prefixes,
dim=0,
weights=weights,
bias=config.use_bias,
)
return TensorParallelMultiAdapterLinear.load(
base_layer=base_layer,
layer_id=layer_id,
layer_names=prefixes,
sizes=sizes,
process_group=weights.process_group,
)
def _load_gqa(config, prefix: str, weights):
@ -158,9 +176,11 @@ def _load_gqa(config, prefix: str, weights):
class Starcoder2Attention(torch.nn.Module):
def __init__(
self,
index: int,
prefix: str,
config,
weights,
rotary_emb,
):
super().__init__()
self.max_past = (
@ -169,13 +189,7 @@ class Starcoder2Attention(torch.nn.Module):
self.num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_heads
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
base=config.rope_theta,
device=weights.device,
)
self.rotary_emb = rotary_emb
self.softmax_scale = self.head_size**-0.5
@ -189,14 +203,23 @@ class Starcoder2Attention(torch.nn.Module):
config.num_key_value_heads // weights.process_group.size()
)
self.query_key_value = load_attention(config, prefix, weights)
self.query_key_value = load_attention(config, prefix, weights, index)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.o_proj = TensorParallelRowLinear.load(
o_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=config.use_bias,
bias=getattr(config, "use_bias", False),
)
self.o_proj = TensorParallelAdapterRowLinear.load(
o_proj,
index,
"o_proj",
process_group=weights.process_group,
)
self.num_groups = self.num_heads // self.num_key_value_heads
self.kv_head_mapping = torch.arange(
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
@ -209,13 +232,12 @@ class Starcoder2Attention(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
adapter_data,
hpu_attention_meta,
):
qkv = self.query_key_value(hidden_states)
qkv = self.query_key_value(hidden_states, adapter_data)
query, kv = qkv.split(
[
self.head_size * self.num_heads,
@ -228,45 +250,46 @@ class Starcoder2Attention(torch.nn.Module):
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
if prefill_cache_indices is not None:
kv_to_cache = kv[prefill_cache_indices]
else:
kv_to_cache = kv
reshape_and_cache(
kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots
kv_cache.store(
key=kv[:, 0],
value=kv[:, 1],
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
# sdpa
attn_output = attention(
query,
kv_cache[0] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0],
kv_cache[1] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1],
seqlen,
block_tables,
self.softmax_scale,
query=query,
key=kv[:, 0],
value=kv[:, 1],
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.softmax_scale,
window_size_left=self.max_past,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache[0],
kv_cache[1],
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
window_size_left=self.max_past,
)
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
return self.o_proj(
attn_output.view(-1, self.num_heads * self.head_size), adapter_data
)
class Starcoder2MLP(nn.Module):
def __init__(self, prefix, config, weights):
def __init__(self, prefix, config, weights, index):
super().__init__()
act = config.hidden_act
self.act = (
@ -280,27 +303,42 @@ class Starcoder2MLP(nn.Module):
)
)
# Fuse gate and up proj
self.c_fc = TensorParallelColumnLinear.load(
c_fc = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.c_fc",
weights=weights,
bias=config.use_bias,
)
self.c_proj = TensorParallelRowLinear.load(
c_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.c_proj",
weights=weights,
bias=config.use_bias,
)
def forward(self, hidden_states):
hidden_states = self.c_fc(hidden_states)
self.c_fc = TensorParallelMultiAdapterLinear.load(
c_fc,
layer_id=index,
layer_names=[f"{prefix}.c_fc"],
sizes=[config.intermediate_size, config.intermediate_size],
process_group=weights.process_group,
)
self.c_proj = TensorParallelAdapterRowLinear.load(
c_proj,
index,
"c_proj",
process_group=weights.process_group,
)
def forward(self, hidden_states, adapter_data):
hidden_states = self.c_fc(hidden_states, adapter_data)
hidden_states = self.act(hidden_states)
return self.c_proj(hidden_states)
return self.c_proj(hidden_states, adapter_data)
class Starcoder2GatedMLP(nn.Module):
def __init__(self, prefix, config, weights):
def __init__(self, index, prefix, config, weights):
super().__init__()
act = config.hidden_act
self.act = (
@ -314,27 +352,47 @@ class Starcoder2GatedMLP(nn.Module):
)
)
# Fuse gate and up proj
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
prefixes = [f"{prefix}.gate_proj", f"{prefix}.up_proj"]
sizes = [
config.intermediate_size,
config.intermediate_size,
]
gate_up_proj = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
prefixes=prefixes,
weights=weights,
dim=0,
bias=config.use_bias,
)
self.down_proj = TensorParallelRowLinear.load(
self.gate_up_proj = TensorParallelMultiAdapterLinear.load(
gate_up_proj,
index,
layer_names=prefixes,
sizes=sizes,
process_group=weights.process_group,
)
down_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.down_proj",
weights=weights,
bias=config.use_bias,
)
self.down_proj = TensorParallelAdapterRowLinear.load(
down_proj,
index,
"down_proj",
process_group=weights.process_group,
)
self.intermediate_size = (
config.intermediate_size // weights.process_group.size()
)
def forward(self, hidden_states):
gate_up_states = self.gate_up_proj(hidden_states)
def forward(self, hidden_states, adapter_data):
gate_up_states = self.gate_up_proj(hidden_states, adapter_data)
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1])
return self.down_proj(
self.act(gate_up_states[:, 0]) * gate_up_states[:, 1], adapter_data
)
STARCODER2_NORMALIZATION_CLASSES = {
@ -349,15 +407,19 @@ STARCODER2_MLP_CLASSES = {
class Starcoder2Layer(nn.Module):
def __init__(self, layer_id, config, weights):
def __init__(self, layer_id, config, weights, rotary_emb):
super().__init__()
prefix = f"model.layers.{layer_id}"
self.self_attn = Starcoder2Attention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
prefix=f"{prefix}.self_attn",
config=config,
weights=weights,
index=layer_id,
rotary_emb=rotary_emb,
)
self.mlp = STARCODER2_MLP_CLASSES[config.mlp_type](
prefix=f"{prefix}.mlp", config=config, weights=weights
prefix=f"{prefix}.mlp", config=config, weights=weights, index=layer_id
)
self.input_layernorm = STARCODER2_NORMALIZATION_CLASSES[config.norm_type].load(
@ -379,11 +441,10 @@ class Starcoder2Layer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
adapter_data,
hpu_attention_meta,
):
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
@ -394,11 +455,10 @@ class Starcoder2Layer(nn.Module):
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
adapter_data,
hpu_attention_meta,
)
# faster post attention rms norm
@ -406,7 +466,7 @@ class Starcoder2Layer(nn.Module):
attn_output, res
)
mlp_output = self.mlp(normed_attn_res_output)
mlp_output = self.mlp(normed_attn_res_output, adapter_data)
return mlp_output, attn_res
@ -421,12 +481,19 @@ class Starcoder2Model(torch.nn.Module):
self.embed_tokens = TensorParallelEmbedding(
prefix=f"{prefix}.embed_tokens", weights=weights
)
rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=config.hidden_size // config.num_attention_heads,
base=config.rope_theta,
device=weights.device,
)
self.layers = nn.ModuleList(
[
Starcoder2Layer(
layer_id,
config,
weights,
rotary_emb,
)
for layer_id in range(config.num_hidden_layers)
]
@ -447,22 +514,25 @@ class Starcoder2Model(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
true_max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
adapter_data,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
if hpu_attention_meta is not None:
hpu_attention_meta = set_block_mapping(
hpu_attention_meta, input_ids.shape[0]
)
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, true_max_s, hidden_states.dtype
)
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -471,12 +541,13 @@ class Starcoder2Model(torch.nn.Module):
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
adapter_data,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
@ -519,34 +590,21 @@ class FlashStarcoder2ForCausalLM(torch.nn.Module):
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
true_max_s = max_s
if prefill_cache_indices is not None:
# Slots also need to be sliced as it has the same size as the whole kv tensor
slots = slots[prefill_cache_indices]
elif self.max_past is not None:
# Clamp in decode mode as paged attention requires clamped values whereas the flash attention
# kernel requires the true values
seqlen = seqlen.clamp(max=self.max_past_tensor)
hidden_states = self.model(
input_ids,
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
true_max_s,
prefill_cache_indices,
adapter_data,
hpu_attention_meta,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -12,7 +12,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Idefics2 model."""
"""PyTorch Idefics2 model."""
from typing import List, Optional, Tuple
@ -25,7 +25,7 @@ from transformers.activations import ACT2FN
from text_generation_server.models.custom_modeling.vlm import (
load_text_model,
)
from text_generation_server.layers.attention import Seqlen
from text_generation_server.layers.attention import Seqlen, HPUPagedAttentionMetadata
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from text_generation_server.layers import (
@ -728,39 +728,26 @@ class Idefics2ForConditionalGeneration(nn.Module):
):
"""In place merges in vision_embeddings with inputs_embeds."""
# mask = input_ids == self.config.image_token_index
mask = input_ids == self.config.image_token_id
# - replace `==` with torch.where to fix the issue in hpu graph
mask = torch.where(input_ids == self.config.image_token_id)
# Let's pray we have enabled enough slots !
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
return inputs_embeds
def forward(
def get_vision_embeds(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
lm_head_indices: Optional[torch.Tensor] = None,
pixel_values: torch.FloatTensor = None,
pixel_attention_mask: Optional[torch.BoolTensor] = None,
# Unused here
pixel_values: torch.FloatTensor,
pixel_attention_mask: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if pixel_values is not None:
assert pixel_values is not None
batch_size, num_images, num_channels, height, width = pixel_values.shape
all_states = []
all_pixel_values = pixel_values
all_pixel_mask = pixel_attention_mask
for i in range(batch_size):
pixel_values = all_pixel_values.to(
dtype=self.dtype
) # fp16 compatibility
pixel_values = all_pixel_values.to(dtype=self.dtype) # fp16 compatibility
pixel_values = pixel_values[i : i + 1]
pixel_values = pixel_values.view(num_images, *pixel_values.shape[2:])
@ -793,6 +780,7 @@ class Idefics2ForConditionalGeneration(nn.Module):
].contiguous()
patch_size = self.config.vision_config.patch_size
"""
patches_subgrid = pixel_attention_mask.unfold(
dimension=1, size=patch_size, step=patch_size
)
@ -800,6 +788,19 @@ class Idefics2ForConditionalGeneration(nn.Module):
dimension=2, size=patch_size, step=patch_size
)
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
"""
# hpu does none support unfold
conv_kernel = torch.ones(
[1, 1, patch_size, patch_size],
dtype=pixel_values.dtype,
device=pixel_values.device,
)
patches_subgrid = torch.nn.functional.conv2d(
pixel_attention_mask.unsqueeze(1).to(conv_kernel.dtype),
conv_kernel,
stride=patch_size,
).squeeze(1)
patch_attention_mask = torch.gt(patches_subgrid, 0)
# Get sequence from the vision encoder
image_hidden_states = self.vision_model(
@ -814,23 +815,44 @@ class Idefics2ForConditionalGeneration(nn.Module):
)
all_states.append(image_hidden_states)
image_hidden_states = torch.stack(all_states, dim=0)
return image_hidden_states.view(-1, image_hidden_states.shape[-1])
def get_inputs_embeds(
self,
input_ids: torch.Tensor,
vision_embeds: torch.Tensor = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if vision_embeds is not None:
# When we generate, we don't want to replace the potential image_token_id that we generated by images
# that simply don't exist
inputs_embeds = self._merge_input_ids_with_image_features(
input_ids, inputs_embeds, image_hidden_states
input_ids, inputs_embeds, vision_embeds
)
return inputs_embeds
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
adapter_data: Optional[torch.Tensor] = None,
):
hidden_states = self.text_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
seqlen=seqlen,
max_s=max_s,
true_max_s=max_s,
prefill_cache_indices=None,
hpu_attention_meta=hpu_attention_meta,
adapter_data=adapter_data,
)
if lm_head_indices is not None:

View File

@ -0,0 +1,605 @@
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Idefics3 model."""
from typing import List, Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from text_generation_server.models.custom_modeling.vlm import (
load_text_model,
)
from text_generation_server.layers.attention import Seqlen, HPUPagedAttentionMetadata
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
)
from text_generation_server.utils.weights import DefaultWeightsLoader, UnquantizedWeight
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class Idefics3VisionEmbeddings(nn.Module):
"""
This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings` to enable images of variable
resolution.
The modifications are adapted from [Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution](https://arxiv.org/abs/2307.06304)
which allows treating images in their native aspect ratio and without the need to resize them to the same
fixed size. In particular, we start from the original pre-trained SigLIP model
(which uses images of fixed-size square images) and adapt it by training on images of variable resolutions.
"""
def __init__(self, prefix, config, weights):
super().__init__()
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.patch_embedding.weight = nn.Parameter(
weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False
)
self.patch_embedding.bias = nn.Parameter(
weights.get_tensor(f"{prefix}.patch_embedding.bias"), requires_grad=False
)
self.num_patches_per_side = self.image_size // self.patch_size
self.num_patches = self.num_patches_per_side**2
self.num_positions = self.num_patches
self.position_embedding = TensorParallelEmbedding(
prefix=f"{prefix}.position_embedding", weights=weights
)
def forward(
self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor
) -> torch.Tensor:
batch_size, _, max_im_h, max_im_w = pixel_values.shape
patch_embeds = self.patch_embedding(pixel_values)
embeddings = patch_embeds.flatten(2).transpose(1, 2)
max_nb_patches_h, max_nb_patches_w = (
max_im_h // self.patch_size,
max_im_w // self.patch_size,
)
boundaries = torch.arange(
1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side
)
position_ids = torch.full(
size=(batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0
)
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
nb_patches_h = p_attn_mask[:, 0].sum()
nb_patches_w = p_attn_mask[0].sum()
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
bucket_coords_h = torch.bucketize(
fractional_coords_h, boundaries, right=True
)
bucket_coords_w = torch.bucketize(
fractional_coords_w, boundaries, right=True
)
pos_ids = (
bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w
).flatten()
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
position_ids = position_ids.to(self.position_embedding.weight.device)
embeddings = embeddings + self.position_embedding(position_ids)
return embeddings
class Idefics3VisionAttention(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_size = self.embed_dim // self.num_heads
if self.head_size * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_size**-0.5
self.dropout = config.attention_dropout
self.num_heads = self.num_heads // weights.process_group.size()
self.embed_dim = self.embed_dim // weights.process_group.size()
self.qkv = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=True,
)
self.out_proj = TensorParallelRowLinear.load(
config=config, prefix=f"{prefix}.out_proj", weights=weights, bias=True
)
self.is_causal = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, q_len, _ = hidden_states.size()
qkv = self.qkv(hidden_states)
query_states, key_states, value_states = qkv.split(
[
self.head_size * self.num_heads,
self.head_size * self.num_heads,
self.head_size * self.num_heads,
],
dim=2,
)
query_states = query_states.view(
batch_size, q_len, self.num_heads, self.head_size
).transpose(1, 2)
key_states = key_states.view(
batch_size, q_len, self.num_heads, self.head_size
).transpose(1, 2)
value_states = value_states.view(
batch_size, q_len, self.num_heads, self.head_size
).transpose(1, 2)
k_v_seq_len = key_states.shape[-2]
attn_weights = (
torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
)
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
raise ValueError(
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(query_states.dtype)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_size):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_size)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output
class Idefics3VisionMLP(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = TensorParallelColumnLinear.load(
prefix=f"{prefix}.fc1", config=config, weights=weights, bias=True
)
self.fc2 = TensorParallelRowLinear.load(
prefix=f"{prefix}.fc2", config=config, weights=weights, bias=True
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class Idefics3EncoderLayer(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = Idefics3VisionAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
self.layer_norm1 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm1", eps=config.layer_norm_eps, weights=weights
)
self.layer_norm2 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm2", eps=config.layer_norm_eps, weights=weights
)
self.mlp = Idefics3VisionMLP(
prefix=f"{prefix}.mlp", config=config, weights=weights
)
# Copied from transformers.models.siglip.modeling_siglip.SiglipEncoderLayer.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Idefics3Encoder(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.layers = nn.ModuleList(
[
Idefics3EncoderLayer(
prefix=f"{prefix}.layers.{i}", config=config, weights=weights
)
for i in range(config.num_hidden_layers)
]
)
# Ignore copy
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
):
hidden_states = inputs_embeds
for encoder_layer in self.layers:
hidden_states = encoder_layer(
hidden_states,
attention_mask,
)
return hidden_states
class Idefics3VisionTransformer(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.embeddings = Idefics3VisionEmbeddings(
prefix=f"{prefix}.embeddings", config=config, weights=weights
)
self.encoder = Idefics3Encoder(
prefix=f"{prefix}.encoder", config=config, weights=weights
)
self.post_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.post_layernorm",
weights=weights,
eps=config.layer_norm_eps,
)
def forward(
self,
pixel_values,
patch_attention_mask: Optional[torch.BoolTensor] = None,
):
batch_size = pixel_values.size(0)
if patch_attention_mask is None:
patch_size = self.config.patch_size
patch_attention_mask = torch.ones(
(
batch_size,
pixel_values.size(2) // patch_size,
pixel_values.size(3) // patch_size,
)
)
patch_attention_mask = patch_attention_mask.to(
dtype=torch.bool, device=pixel_values.device
)
hidden_states = self.embeddings(
pixel_values=pixel_values, patch_attention_mask=patch_attention_mask
)
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
# The call to `_upad_input` in `_flash_attention_forward` is expensive
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence
if not torch.any(~patch_attention_mask):
patch_attention_mask = None
else:
patch_attention_mask = _prepare_4d_attention_mask(
patch_attention_mask, hidden_states.dtype
)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=patch_attention_mask,
)
last_hidden_state = encoder_outputs
last_hidden_state = self.post_layernorm(last_hidden_state)
return last_hidden_state
class Idefics3SimpleMLP(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
input_size = config.vision_config.hidden_size * (config.scale_factor**2)
output_size = config.text_config.hidden_size
proj = nn.Parameter(
weights.get_tensor(f"{prefix}.modality_projection.proj.weight"),
requires_grad=False,
).to(weights.dtype)
self.proj = nn.Linear(input_size, output_size, bias=False)
self.proj.weight = proj
def forward(self, x):
return self.proj(x)
class Idefics3Connector(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.modality_projection = Idefics3SimpleMLP(prefix, config, weights)
self.scale_factor = config.scale_factor
def pixel_shuffle(self, x, scale_factor=2):
bsz, seq, embed_dim = x.size()
height = width = int(seq**0.5)
x = x.view(bsz, height, width, embed_dim)
x = x.view(bsz, height, int(width / scale_factor), embed_dim * scale_factor)
x = x.permute(0, 2, 1, 3)
x = x.reshape(
bsz,
int(width / scale_factor),
int(height / scale_factor),
embed_dim * (scale_factor**2),
)
x = x.permute(0, 2, 1, 3)
x = x.reshape(bsz, int(seq / (scale_factor**2)), embed_dim * (scale_factor**2))
return x
def forward(self, image_hidden_states):
image_hidden_states = self.pixel_shuffle(image_hidden_states, self.scale_factor)
image_hidden_states = self.modality_projection(image_hidden_states)
return image_hidden_states
class Idefics3ForConditionalGeneration(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
config.vision_config.quantize = None
config.vision_config.speculator = config.speculator
config.text_config.quantize = config.quantize
config.text_config.speculator = config.speculator
# set tie_word_embeddings to True to load `.embed_tokens.weight` instead of `.lm_head.weight`
# since Idefics3 uses the `embed_tokens` for the final prediction
# config.text_config.tie_word_embeddings = True
vision_config = config.vision_config
self.text_model = load_text_model(
prefix="model" if not prefix else f"{prefix}.model",
config=config.text_config,
weights=weights,
name="text_model",
)
self.dtype = weights.dtype
# The vision and connector models are not quantized.
with weights.use_loader(DefaultWeightsLoader(UnquantizedWeight)):
self.vision_model = Idefics3VisionTransformer(
prefix=(
f"{prefix}.model.vision_model" if prefix else "model.vision_model"
),
config=vision_config,
weights=weights,
)
config.quantize = None
self.connector = Idefics3Connector(
prefix=f"{prefix}.model.connector" if prefix else "model.connector",
config=config,
weights=weights,
)
self.config = config
self.image_token_id = config.image_token_id
self.pad_token_id = (
config.pad_token_id if config.pad_token_id is not None else -1
)
def _merge_input_ids_with_image_features(
self,
input_ids: torch.Tensor,
inputs_embeds: torch.Tensor,
image_features: torch.Tensor,
):
"""In place merges in vision_embeddings with inputs_embeds."""
# mask = input_ids == self.config.image_token_index
# - replace `==` with torch.where to fix the issue in hpu graph
mask = torch.where(input_ids == self.config.image_token_id)
# Let's pray we have enabled enough slots !
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
return inputs_embeds
def get_vision_embeds(
self,
pixel_values: torch.FloatTensor,
pixel_attention_mask: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
batch_size, num_images, num_channels, height, width = pixel_values.shape
all_states = []
all_pixel_values = pixel_values
all_pixel_mask = pixel_attention_mask
for i in range(batch_size):
pixel_values = all_pixel_values.to(dtype=self.dtype) # fp16 compatibility
pixel_values = pixel_values[i : i + 1]
pixel_values = pixel_values.view(num_images, *pixel_values.shape[2:])
# Remove padding images - padding images are full 0.
nb_values_per_image = pixel_values.shape[1:].numel()
real_images_inds = (pixel_values == 0.0).sum(
dim=(-1, -2, -3)
) != nb_values_per_image
pixel_values = pixel_values[real_images_inds].contiguous()
# Handle the vision attention mask
if pixel_attention_mask is None:
pixel_attention_mask = torch.ones(
size=(
pixel_values.size(0),
pixel_values.size(2),
pixel_values.size(3),
),
dtype=torch.bool,
device=pixel_values.device,
)
else:
# Remove padding images from the mask/pP p
pixel_attention_mask = all_pixel_mask[i : i + 1]
pixel_attention_mask = pixel_attention_mask.view(
1 * num_images, *pixel_attention_mask.shape[2:]
)
pixel_attention_mask = pixel_attention_mask[
real_images_inds
].contiguous()
patch_size = self.config.vision_config.patch_size
"""
patches_subgrid = pixel_attention_mask.unfold(
dimension=1, size=patch_size, step=patch_size
)
patches_subgrid = patches_subgrid.unfold(
dimension=2, size=patch_size, step=patch_size
)
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
"""
# hpu does none support unfold
conv_kernel = torch.ones(
[1, 1, patch_size, patch_size],
dtype=pixel_values.dtype,
device=pixel_values.device,
)
patches_subgrid = torch.nn.functional.conv2d(
pixel_attention_mask.unsqueeze(1).to(conv_kernel.dtype),
conv_kernel,
stride=patch_size,
).squeeze(1)
patch_attention_mask = torch.gt(patches_subgrid, 0)
# Get sequence from the vision encoder
image_hidden_states = self.vision_model(
pixel_values=pixel_values,
patch_attention_mask=patch_attention_mask,
)
# Modality projection & resampling
image_hidden_states = self.connector(
image_hidden_states,
)
all_states.append(image_hidden_states)
image_hidden_states = torch.stack(all_states, dim=0)
return image_hidden_states.view(-1, image_hidden_states.shape[-1])
def get_inputs_embeds(
self,
input_ids: torch.Tensor,
vision_embeds: torch.Tensor = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if vision_embeds is not None:
# When we generate, we don't want to replace the potential image_token_id that we generated by images
# that simply don't exist
inputs_embeds = self._merge_input_ids_with_image_features(
input_ids, inputs_embeds, vision_embeds
)
return inputs_embeds
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
adapter_data: Optional[torch.Tensor] = None,
image_indices=None,
):
hidden_states = self.text_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
slots=slots,
seqlen=seqlen,
hpu_attention_meta=hpu_attention_meta,
adapter_data=adapter_data,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.text_model.lm_head(hidden_states)
return logits, speculative_logits

View File

@ -1,326 +0,0 @@
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Idefics model configuration"""
import copy
from transformers import PretrainedConfig
IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"HuggingFaceM4/idefics-9b": "https://huggingface.co/HuggingFaceM4/idefics-9b/blob/main/config.json",
"HuggingFaceM4/idefics-80b": "https://huggingface.co/HuggingFaceM4/idefics-80b/blob/main/config.json",
}
class IdeficsVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an
Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Idefics-9B.
e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer. (elsewhere referred to as `hidden_size`)
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
intermediate_size (`int`, *optional*, defaults to 5120):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
image_num_channels (`int`, *optional*, defaults to `3`):
Number of image channels.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
testing).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
"""
model_type = "idefics"
attribute_map = {
"hidden_size": "embed_dim",
}
def __init__(
self,
embed_dim=768,
image_size=224,
intermediate_size=5120,
patch_size=14,
num_hidden_layers=32,
num_attention_heads=16,
num_channels=3,
hidden_act="gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
self.embed_dim = embed_dim
self.image_size = image_size
self.intermediate_size = intermediate_size
self.patch_size = patch_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.layer_norm_eps = layer_norm_eps
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.hidden_act = hidden_act
super().__init__(**kwargs)
class IdeficsPerceiverConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an
Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Idefics-9B.
e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
use_resampler (`bool`, *optional*, defaults to `False`):
Whether or not to use the resampler
resampler_n_latents (`int`, *optional*, defaults to ):
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
resampler_depth (`int`, *optional*, defaults to 6):
Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
resampler_n_heads (`int`, *optional*, defaults to 16):
Number of heads in each Transformer block (for multi-headed self-attention).
resampler_head_dim (`int`, *optional*, defaults to 96):
Dimensionality of each head projection in the Transformer block.
qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`):
Whether or not to use qk layer norms in perceiver
"""
model_type = "idefics"
def __init__(
self,
use_resampler=False,
resampler_n_latents=64,
resampler_depth=6,
resampler_n_heads=16,
resampler_head_dim=96,
qk_layer_norms_perceiver=False,
**kwargs,
):
self.use_resampler = use_resampler
self.resampler_n_latents = resampler_n_latents
self.resampler_depth = resampler_depth
self.resampler_n_heads = resampler_n_heads
self.resampler_head_dim = resampler_head_dim
self.qk_layer_norms_perceiver = qk_layer_norms_perceiver
super().__init__(**kwargs)
class IdeficsConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an
Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Idefics-9B.
e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
additional_vocab_size (`int`, *optional`, defaults to 0):
Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens
are always trainable whereas regular vocab tokens can be frozen or not.
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Idefics model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~IdeficsModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
alpha_initializer (`str`, *optional*, defaults to `"zeros"`):
Initialization type for the alphas.
alphas_initializer_range (`float`, *optional*, defaults to 0.0):
The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross
Attention.
alpha_type (`str`, *optional*, defaults to `"float"`):
Whether the gating alphas should be vectors or single floats.
rms_norm_eps (`float`, *optional*, defaults to 1e-6):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0)
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1)
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2)
End of stream token id.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
cross_layer_interval (`int`, *optional*, default to 1)
Interval for cross attention (from text to image) layers.
qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k
freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers
freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`):
Exceptions to freezing text layers when `freeze_text_layers` is `True`
freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head
freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers
freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`):
Exceptions to freezing vision layers when `freeze_vision_layers` is `True`
use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler
vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict
perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict
Example:
```python
>>> from transformers import IdeficsModel, IdeficsConfig
>>> # Initializing a Idefics idefics-9b style configuration
>>> configuration = IdeficsConfig()
>>> # Initializing a model from the idefics-9b style configuration
>>> model = IdeficsModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "idefics"
is_composition = True
def __init__(
self,
vocab_size=32000,
additional_vocab_size=0,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
dropout=0.0,
hidden_act="silu",
initializer_range=0.02,
alpha_initializer="zeros",
alphas_initializer_range=0.0,
alpha_type="float",
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
cross_layer_interval=1,
qk_layer_norms=False,
freeze_text_layers=True,
freeze_text_module_exceptions=[],
freeze_lm_head=False,
freeze_vision_layers=True,
freeze_vision_module_exceptions=[],
use_resampler=False,
vision_config=None,
perceiver_config=None,
**kwargs,
):
self.vocab_size = vocab_size
self.additional_vocab_size = additional_vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.alpha_initializer = alpha_initializer
self.alphas_initializer_range = alphas_initializer_range
self.alpha_type = alpha_type
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.cross_layer_interval = cross_layer_interval
self.qk_layer_norms = qk_layer_norms
self.freeze_vision_layers = freeze_vision_layers
self.freeze_text_layers = freeze_text_layers
self.freeze_text_module_exceptions = freeze_text_module_exceptions
self.freeze_vision_module_exceptions = freeze_vision_module_exceptions
self.freeze_lm_head = freeze_lm_head
self.use_resampler = use_resampler
if perceiver_config is None:
self.perceiver_config = IdeficsPerceiverConfig()
elif isinstance(perceiver_config, dict):
self.perceiver_config = IdeficsPerceiverConfig(**perceiver_config)
elif isinstance(perceiver_config, IdeficsPerceiverConfig):
self.perceiver_config = perceiver_config
if vision_config is None:
self.vision_config = IdeficsVisionConfig()
elif isinstance(vision_config, dict):
self.vision_config = IdeficsVisionConfig(**vision_config)
elif isinstance(vision_config, IdeficsVisionConfig):
self.vision_config = vision_config
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
# IMPORTANT: Do not do any __init__ args-based checks in the constructor, since
# PretrainedConfig.from_dict first instantiates the class with the config dict and only then
# updates the config object with `kwargs` from from_pretrained, so during the instantiation
# of this object many attributes have default values and haven't yet been overridden.
# Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["vision_config"] = self.vision_config.to_dict()
output["perceiver_config"] = self.perceiver_config.to_dict()
output["model_type"] = self.__class__.model_type
return output

View File

@ -1,297 +0,0 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Idefics."""
from typing import Callable, Dict, List, Optional, Union, Iterable
import numpy as np
from PIL import Image
import transformers
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_transforms import (
resize,
to_channel_dimension_format,
rescale,
normalize,
)
from transformers.image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from io import BytesIO
import base64
import requests
from transformers import TensorType, is_torch_available
IDEFICS_STANDARD_MEAN = [0.48145466, 0.4578275, 0.40821073]
IDEFICS_STANDARD_STD = [0.26862954, 0.26130258, 0.27577711]
def convert_to_rgb(image):
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
# for transparent images. The call to `alpha_composite` handles this case
if image.mode == "RGB":
return image
image_rgba = image.convert("RGBA")
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, image_rgba)
alpha_composite = alpha_composite.convert("RGB")
return alpha_composite
class IdeficsImageProcessor(BaseImageProcessor):
r"""
Constructs a Idefics image processor.
Args:
image_size (`int`, *optional*, defaults to `224`):
Resize to image size
image_num_channels (`int`, *optional*, defaults to `3`):
Number of image channels.
image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
image_size: int = 224,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
image_num_channels: Optional[int] = 3,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.image_size = image_size
self.image_num_channels = image_num_channels
self.image_mean = image_mean
self.image_std = image_std
def preprocess(
self,
images: ImageInput,
image_num_channels: Optional[int] = 3,
image_size: Optional[Dict[str, int]] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
transform: Callable = None,
**kwargs,
) -> TensorType.PYTORCH:
"""
Preprocess a batch of images.
Args:
images (`ImageInput`):
A list of images to preprocess.
image_size (`int`, *optional*, defaults to `self.image_size`):
Resize to image size
image_num_channels (`int`, *optional*, defaults to `self.image_num_channels`):
Number of image channels.
image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can
be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess`
method. Can be overridden by the `image_std` parameter in the `preprocess` method.
transform (`Callable`, *optional*, defaults to `None`):
A custom transform function that accepts a single image can be passed for training. For example,
`torchvision.Compose` can be used to compose multiple transforms. If `None` - an inference mode is
assumed - and then a preset of inference-specific transforms will be applied to the images
Returns:
a PyTorch tensor of the processed images
"""
image_size = image_size if image_size is not None else self.image_size
image_num_channels = (
image_num_channels
if image_num_channels is not None
else self.image_num_channels
)
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = (image_size, image_size)
if len(images) == 0:
return []
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
# For training a user needs to pass their own set of transforms as a Callable.
# For reference this is what was used in the original IDEFICS training:
# transform = transforms.Compose([
# convert_to_rgb,
# transforms.RandomResizedCrop((size, size), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC),
# transforms.ToTensor(),
# transforms.Normalize(mean=image_mean, std=image_std),
# ])
if transform is not None:
if not is_torch_available():
raise ImportError("To pass in `transform` torch must be installed")
import torch
images = [transform(x) for x in images]
return torch.stack(images)
# for inference we do the exact transforms that were used to train IDEFICS
images = [convert_to_rgb(x) for x in images]
# further transforms expect numpy arrays
images = [to_numpy_array(x) for x in images]
images = [resize(x, size, resample=PILImageResampling.BICUBIC) for x in images]
images = [self.rescale(image=image, scale=1 / 255) for image in images]
images = [self.normalize(x, mean=image_mean, std=image_std) for x in images]
images = [
to_channel_dimension_format(x, ChannelDimension.FIRST) for x in images
]
# TODO: this converts to torch tensors - switch to convert_to_tensors once it becomes available
images = BatchFeature(
data={"pixel_values": images}, tensor_type=TensorType.PYTORCH
)["pixel_values"]
return images
def fetch_images(self, image_url_or_urls: Union[str, List[str]]):
"""
Convert a single or a list of urls into the corresponding `PIL.Image` objects.
If a single url is passed, the return value will be a single object. If a list is passed a list of objects is
returned.
"""
headers = {
"User-Agent": (
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0"
" Safari/537.36"
)
}
if isinstance(image_url_or_urls, list):
return [self.fetch_images(x) for x in image_url_or_urls]
elif isinstance(image_url_or_urls, str):
image = image_url_or_urls
if image.startswith("http://") or image.startswith("https://"):
response = requests.get(
image_url_or_urls, stream=True, headers=headers, timeout=(1, 5)
)
response.raise_for_status()
content = response.content
elif image.startswith("data:"):
# https://stackoverflow.com/questions/17090571/is-there-a-way-to-set-background-image-as-a-base64-encoded-image
# 
image = image.split(",")[-1]
content = base64.b64decode(image)
else:
raise ValueError(f"Unrecognized image {image}")
try:
image = Image.open(BytesIO(content))
# image.verify()
except Exception:
raise ValueError(f"Could not load image from url {image_url_or_urls}")
return image
else:
raise ValueError(
f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}"
)
def rescale(
self,
image: np.ndarray,
scale: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`float`):
The scaling factor to rescale pixel values by.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The rescaled image.
"""
# return rescale(image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs)
# requires 4.32
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, Iterable[float]],
std: Union[float, Iterable[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `Iterable[float]`):
Image mean to use for normalization.
std (`float` or `Iterable[float]`):
Image standard deviation to use for normalization.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The normalized image.
"""
# TODO 4.32
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
transformers.IdeficsImageProcessor = IdeficsImageProcessor

View File

@ -1,276 +0,0 @@
# This code was adapted from https://github.com/lucidrains/flamingo-pytorch licensed under the MIT License.
#
# MIT License
#
# Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially
time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents! Note
that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here to
prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use that
to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore.
References:
- DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model
- Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch
"""
from typing import Optional, Tuple
import torch
import torch.nn as nn
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelRowLinear,
)
EPS = 1e-5
class IdeficsPerceiverResampler(nn.Module):
def __init__(
self,
prefix,
config,
embed_dim: int,
depth: int,
n_heads: int,
head_dim: int,
n_latents: int,
weights,
) -> None:
"""
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed
to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler.
Could be e.g., VIT embed_dim, ResNet pool dim, and so on.
Args:
config (`IdeficsConfig`): config object
embed_dim (`int`): The size of each embedding vector
depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention).
head_dim (`int`): Dimensionality of each head projection in the Transformer block.
n_latents (`int`):
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
"""
super().__init__()
self.embed_dim, self.n_heads, self.head_dim, self.n_latents = (
embed_dim,
n_heads,
head_dim,
n_latents,
)
self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver
# Create Latents for Perceiver
self.latents = nn.Parameter(weights.get_tensor(f"{prefix}.latents"))
self.intermediate_dim = (
self.embed_dim * 4
if not hasattr(config.vision_config, "embed_dim")
else config.vision_config.embed_dim * 4
)
# Create Transformer Blocks
self.blocks = nn.ModuleList(
[
nn.ModuleList(
[
IdeficsPerceiverAttention(
prefix=f"{prefix}.blocks.{layer_id}.0",
config=config,
embed_dim=self.embed_dim,
n_heads=self.n_heads,
head_dim=self.head_dim,
qk_layer_norms=self.qk_layer_norms,
weights=weights,
),
IdeficsMLP(
prefix=f"{prefix}.blocks.{layer_id}.1",
intermediate_size=self.intermediate_dim,
config=config,
weights=weights,
),
]
)
for layer_id in range(depth)
]
)
self.layer_norm = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm", weights=weights, eps=EPS
)
def forward(self, context: torch.Tensor) -> torch.Tensor:
"""Resample arbitrary length context & *compress* down to self.n_latents latent embeddings"""
# einsum.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0])
latents = self.latents.repeat(context.shape[0], 1, 1)
# Feed through Perceiver Attention blocks...
for attn, ff in self.blocks:
latents = attn(context, latents) + latents
latents = ff(latents) + latents
return self.layer_norm(latents)
class IdeficsPerceiverAttention(nn.Module):
def __init__(
self,
prefix,
config,
embed_dim: int,
n_heads: int,
head_dim: int,
qk_layer_norms: bool,
weights,
) -> None:
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
super().__init__()
self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim
self.qk_layer_norms = qk_layer_norms
# Normalization & Scaling
self.context_layer_norm = nn.LayerNorm.load(
prefix=f"{prefix}.context_layer_norm", weights=weights, eps=EPS
)
self.latents_layer_norm = nn.LayerNorm.load(
prefix=f"{prefix}.latents_layer_norm", weights=weights, eps=EPS
)
if self.qk_layer_norms:
self.q_layer_norm = nn.LayerNorm.load(
prefix=f"{prefix}.q_layer_norm", weights=weights, eps=EPS
)
self.k_layer_norm = nn.LayerNorm.load(
prefix=f"{prefix}.k_layer_norm", weights=weights, eps=EPS
)
self.qk_scale = self.head_dim**-0.5
if n_heads % weights.process_group.size() != 0:
raise ValueError(
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {n_heads} "
f"and `num_shards`: {weights.process_group.size()}"
)
self.n_heads //= weights.process_group.size()
# Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers).
self.q_proj = TensorParallelColumnLinear.load(
config=config, prefix=f"{prefix}.q_proj", weights=weights, bias=False
)
self.k_proj = TensorParallelColumnLinear.load(
config=config, prefix=f"{prefix}.k_proj", weights=weights, bias=False
)
self.v_proj = TensorParallelColumnLinear.load(
config=config, prefix=f"{prefix}.v_proj", weights=weights, bias=False
)
self.output_proj = TensorParallelRowLinear.load(
config=config, prefix=f"{prefix}.output_proj", weights=weights, bias=False
)
def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
"""
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
Args:
context (`torch.Tensor`):
Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample.
latents (`torch.Tensor`):
Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to.
Returns:
`torch.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross
from context.
"""
context = self.context_layer_norm(context)
latents = self.latents_layer_norm(latents)
batch_size, seq_length, embed_dim = context.shape[:3]
# Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
# Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
q = self.q_proj(latents)
k = self.k_proj(torch.cat([context, latents], dim=-2))
v = self.v_proj(torch.cat([context, latents], dim=-2))
# Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call)
# =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)]
# einsum.rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads)
q, k, v = [
x.reshape(batch_size, x.shape[1], self.n_heads, self.head_dim).transpose(
1, 2
)
for x in (q, k, v)
]
if self.qk_layer_norms:
q = self.q_layer_norm(q)
k = self.k_layer_norm(k)
scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k)
stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach())
attn = stabilized_scores.softmax(dim=-1)
# Attend & project back to output...
resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v)
# einsum.rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads)
return self.output_proj(resampled.transpose(1, 2).flatten(-2))
class IdeficsMLP(nn.Module):
def __init__(
self,
prefix,
intermediate_size,
config,
weights,
):
"""Simple MLP block with intermediate_size and embedding size"""
super().__init__()
self.embed_dim = config.vision_config.embed_dim
self.ln = nn.LayerNorm.load(prefix=f"{prefix}.ln", weights=weights, eps=EPS)
self.fc = TensorParallelColumnLinear.load(
config=config,
prefix=f"{prefix}.fc",
weights=weights,
bias=False,
)
self.act = nn.ReLU()
self.c_proj = TensorParallelRowLinear.load(
config=config,
prefix=f"{prefix}.c_proj",
weights=weights,
bias=False,
)
def forward(
self, hidden_states: Optional[Tuple[torch.FloatTensor]]
) -> torch.FloatTensor:
hidden_states = self.ln(hidden_states)
hidden_states = self.fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
return hidden_states

View File

@ -1,443 +0,0 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for IDEFICS.
"""
from typing import Callable, List, Optional, Union
from urllib.parse import urlparse
from transformers.feature_extraction_utils import BatchFeature
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import (
BatchEncoding,
PaddingStrategy,
TextInput,
TruncationStrategy,
)
from transformers.utils import TensorType, is_torch_available
if is_torch_available():
import torch
IMAGE_TOKEN = "<image>"
# copied from m4.training.packing
def incremental_to_binary_attention_mask(incremental_mask, num_classes=-1):
# This function converts: [-1, 0, 1] => [[0, 0], [1, 0], [0, 1]]
# If any of images index are more than num_classes, set them to -1.
# Words after the max number of images allowed have been seen don't attend on anything
if num_classes != -1:
incremental_mask[incremental_mask >= num_classes] = -1
negatives = incremental_mask == -1
incremental_mask[negatives] = 0
attn_mask = torch.nn.functional.one_hot(incremental_mask, num_classes=num_classes)
attn_mask[negatives, :] = 0
return attn_mask
# copied from m4.training.packing
def image_attention_mask_for_packed_input_ids(input_ids, tokenizer):
image_attention_mask = torch.full_like(input_ids, fill_value=-1)
next_image_attention_mask = torch.full_like(input_ids, fill_value=-1)
image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
eod_token_id = tokenizer.eos_token_id
for batch_idx in range(input_ids.size(0)):
count = -1
seen_eod = False
for idx, token_id in enumerate(input_ids[batch_idx]):
if token_id == image_token_id:
count += 1
image_attention_mask[batch_idx][idx] = count
seen_eod = False
else:
image_attention_mask[batch_idx][idx] = count
if seen_eod:
image_attention_mask[batch_idx][idx] = -1
if token_id == eod_token_id:
seen_eod = True
for batch_idx in range(input_ids.size(0)):
count = -1
seen_eod = False
for idx in range(input_ids[batch_idx].size(0) - 1, -1, -1):
token_id = input_ids[batch_idx][idx]
if token_id == image_token_id:
count += 1
next_image_attention_mask[batch_idx][idx] = count
seen_eod = False
else:
next_image_attention_mask[batch_idx][idx] = count
if token_id == eod_token_id:
seen_eod = True
if seen_eod:
next_image_attention_mask[batch_idx][idx] = -1
non_negative_indices = next_image_attention_mask[batch_idx] != -1
next_image_attention_mask[batch_idx][non_negative_indices] -= count
next_image_attention_mask[batch_idx][non_negative_indices] *= -1
return image_attention_mask, next_image_attention_mask
def is_url(string):
"""Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately
invalidated the url"""
if " " in string:
return False
result = urlparse(string)
return all([result.scheme, result.netloc])
def is_image(string):
"""Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately
invalidated the url"""
return is_url(string) or string.startswith("data:")
class IdeficsProcessor(ProcessorMixin):
r"""
Constructs a IDEFICS processor which wraps a LLama tokenizer and IDEFICS image processor into a single processor.
[`IdeficsProcessor`] offers all the functionalities of [`IdeficsImageProcessor`] and [`LlamaTokenizerFast`]. See
the docstring of [`~IdeficsProcessor.__call__`] and [`~IdeficsProcessor.decode`] for more information.
Args:
image_processor (`IdeficsImageProcessor`):
An instance of [`IdeficsImageProcessor`]. The image processor is a required input.
tokenizer (`LlamaTokenizerFast`):
An instance of [`LlamaTokenizerFast`]. The tokenizer is a required input.
image_size (`int`, *optional*, defaults to 224): Image size (assuming a square image)
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "IdeficsImageProcessor"
tokenizer_class = "LlamaTokenizerFast"
def __init__(
self,
image_processor,
tokenizer=None,
image_size=224,
add_end_of_utterance_token=None,
**kwargs,
):
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
self.default_image_dims = (
self.image_processor.image_num_channels,
self.image_processor.image_size,
self.image_processor.image_size,
)
self.tokenizer_was_trained_with_end_of_utterance_token = (
True
if "<end_of_utterance>"
in self.tokenizer.special_tokens_map.get("additional_special_tokens", [])
else False
)
def __call__(
self,
prompts: Union[List[TextInput], List[List[TextInput]]],
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
transform: Callable = None,
add_eos_token=False,
add_end_of_utterance_token=None,
debug=False,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchEncoding:
"""This method takes batched or non-batched prompts made of text and images and converts them into prompts that
the model was trained on and prepares the image pixel values for the model to process.
Args:
prompts (`Union[List[TextInput], [List[List[TextInput]]]]`):
either a single prompt or a batched list of prompts - see the detailed description immediately after
the end of the arguments doc section.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
transform (`Callable`, *optional*):
A custom transform function that accepts a single image can be passed for training. For example,
`torchvision.Compose` can be used to compose multiple functions. If `None` a preset inference-specific
set of transforms will be applied to the images
add_eos_token (`bool`, *optional*, defaults to `False`):
Adds `eos_token` at the end of the final prompt if True`
add_end_of_utterance_token (`bool`, *optional*)
Whether to automatically add `<end_of_utterance>` after each prompt's text input (unless followed by an
image). If `None` the tokenizer will be checked instead and if this token is found in
`additional_special_tokens` then the value will be `True`.
debug (`bool`, *optional*, defaults to `False`):
`True` value will help debug prompt generation by dumping useful information
return_tensors (`str` or `TensorType`, *optional*, defaults to `TensorType.PYTORCH`):
The type of tensors to return. Can be one of:
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
Returns:
a dict with entries: `input_ids`, `attention_mask`, `pixel_values`, `image_attention_mask` which can be
directly passed to `model.generate`
Detailed explanation:
Each entry in `prompts` is either a text to be passed as is or an image that will be processed.
An image can be either an image object (`PIL.Image`) or a url from which the image can be retrieved.
When the processor encounters an image it'll inject `<fake_token_around_image><image><fake_token_around_image>`
entry into the prompt.
Example:
```python
checkpoint = "HuggingFaceM4/idefics-9b"
processor = AutoProcessor.from_pretrained(checkpoint)
url = "https://hips.hearstapps.com/hmg-prod/images/cute-photos-of-cats-in-grass-1593184777.jpg"
img = processor.image_processor.fetch_images([url])[0]
prompts = [
"User:",
img,
"Describe this image.\nAssistant: An image of two kittens in grass.\n",
"User:",
"https://hips.hearstapps.com/hmg-prod/images/dog-puns-1581708208.jpg",
"Describe this image.\nAssistant:",
]
inputs = processor(prompts, return_tensors="pt")
generated_ids = model.generate(**inputs, max_length=100)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
In this example the `prompts` will be converted into:
```
<s>User:<fake_token_around_image><image><fake_token_around_image>Describe this image.
Assistant: An image of two kittens in grass.
User:<fake_token_around_image><image><fake_token_around_image>Describe this image.
Assistant:'
```
and the two images will be massaged using [`IdeficsImageProcessor.__call__`] method and placed inside the
`pixel_values` dict entry of the return value.
This example also examplifies that images can be passed as objects or as text urls. It can be seen that the
first image is passed as object and the second one as a url.
To do training do:
```python
image_transform = transforms.Compose(
[
transforms.RandomResizedCrop(
(w, h), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC
),
transforms.ToTensor(),
transforms.Normalize(mean=self.image_mean, std=self.image_std),
]
)
inputs = processor(prompts, transform=image_transform, return_tensors="pt")
```
In order to help debug prompt generation enable `debug=True` which will show you what's happening.
"""
# if the value isn't overriden by the user, check if the tokenizer was trained with this token and then use it
if add_end_of_utterance_token is None:
add_end_of_utterance_token = (
self.tokenizer_was_trained_with_end_of_utterance_token
)
# turn non-batched prompts into batched
if not any(isinstance(i, list) for i in prompts):
prompts = [prompts]
fake_token = "<fake_token_around_image>"
image_token = "<image>"
end_of_utterance_token = "<end_of_utterance>"
def image_tokens(last_was_image):
if last_was_image:
return image_token + fake_token
else:
return fake_token + image_token + fake_token
all_texts = []
all_images = []
for sample in prompts:
# the model was trained on samples starting with <s>
full_text = f"{self.tokenizer.bos_token}"
# an image can either be an image object in the item or the url, everything else is a verbatim prompt text
image_objects = []
last_was_image = False
last_was_text = False
for i, item in enumerate(sample):
if i > 0:
last_was_text = True if not last_was_image else False
if isinstance(item, str):
item = item.strip(" ")
if is_image(item):
image = self.image_processor.fetch_images(item)
full_text += image_tokens(last_was_image)
image_objects.append(image)
last_was_image = True
else:
# we add end_of_utterance_token between each subsequent text prompts (but not at the last one!)
if add_end_of_utterance_token and last_was_text:
full_text += end_of_utterance_token
full_text += item
last_was_image = False
else:
# must be an image obj
full_text += image_tokens(last_was_image)
image_objects.append(item)
last_was_image = True
if add_eos_token:
full_text += self.tokenizer.eos_token
if debug is True:
print(f"{full_text=}")
image_objects = self.image_processor(image_objects, transform=transform)
text_encoding = self.tokenizer(
text=full_text,
add_special_tokens=False,
padding=padding,
truncation=truncation,
max_length=max_length,
)
all_texts.append(text_encoding["input_ids"])
all_images.append(image_objects)
max_seq_len = max(len(x) for x in all_texts)
# max_num_images has to be at least 1 even when there are no images
max_num_images = max(len(x) for x in all_images)
max_num_images = max(1, max_num_images)
at_least_one_image = sum(len(x) for x in all_images) > 0
output_input_ids = []
output_images = []
output_attention_masks = []
for text, images in zip(all_texts, all_images):
padded_input_ids = [self.tokenizer.pad_token_id] * max_seq_len
unpadded_seq_len = len(text)
start = max_seq_len - unpadded_seq_len
padded_input_ids[start:] = text[:max_seq_len]
attention_mask = torch.zeros((max_seq_len,), dtype=torch.long)
attention_mask[start:] = 1
image_count = padded_input_ids.count(self.image_token_id)
local_max_num_images = min(image_count, max_num_images)
current_images = images[:local_max_num_images]
if len(current_images) > 0:
padded_image_tensor = torch.zeros(
max_num_images, *current_images.size()[1:]
)
padded_image_tensor[: current_images.size(0)] = current_images
else:
padded_image_tensor = torch.zeros(
max_num_images, *self.default_image_dims
)
output_images.append(padded_image_tensor)
output_input_ids.append(torch.tensor(padded_input_ids))
output_attention_masks.append(attention_mask)
output_input_ids = torch.stack(output_input_ids)
output_images = torch.stack(output_images)
output_attention_masks = torch.stack(output_attention_masks)
if at_least_one_image:
image_attention_mask, _ = image_attention_mask_for_packed_input_ids(
output_input_ids, self.tokenizer
)
image_attention_mask = incremental_to_binary_attention_mask(
image_attention_mask, num_classes=max_num_images
)
else:
# in full language mode we set the image mask to all-0s
image_attention_mask = torch.zeros(
output_input_ids.shape[0],
output_input_ids.shape[1],
1,
dtype=torch.bool,
)
return BatchFeature(
data={
"input_ids": output_input_ids,
"attention_mask": output_attention_masks,
"pixel_values": output_images,
"image_attention_mask": image_attention_mask,
}
)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))

View File

@ -1,529 +0,0 @@
# coding=utf-8
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch IdeficsVision model: a copy of CLIPVisionModel using a simpler config object"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from transformers.utils import (
ModelOutput,
logging,
)
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelRowLinear,
TensorParallelEmbedding,
)
logger = logging.get_logger(__name__)
@dataclass
class IdeficsVisionModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Idefics
class IdeficsVisionEmbeddings(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(
weights.get_tensor(f"{prefix}.class_embedding")
)
self.patch_embedding = nn.Conv2d.load_no_bias(
prefix=f"{prefix}.patch_embedding",
weights=weights,
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = TensorParallelEmbedding(
prefix="model.vision_model.embeddings.position_embedding", weights=weights
)
self.position_ids = (
torch.arange(self.num_positions).expand((1, -1)).to(device=weights.device)
)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(
pixel_values.to(dtype=target_dtype)
) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->IdeficsVision
class IdeficsVisionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
if self.num_heads % weights.process_group.size() != 0:
raise ValueError(
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
f"and `num_shards`: {weights.process_group.size()}"
)
self.num_heads = self.num_heads // weights.process_group.size()
self.embed_dim = self.embed_dim // weights.process_group.size()
self.k_proj = TensorParallelColumnLinear.load(
config, prefix=f"{prefix}.k_proj", weights=weights, bias=True
)
self.v_proj = TensorParallelColumnLinear.load(
config, prefix=f"{prefix}.v_proj", weights=weights, bias=True
)
self.q_proj = TensorParallelColumnLinear.load(
config, prefix=f"{prefix}.q_proj", weights=weights, bias=True
)
self.out_proj = TensorParallelRowLinear.load(
config, prefix=f"{prefix}.out_proj", weights=weights, bias=True
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
.transpose(1, 2)
.contiguous()
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = (
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ causal_attention_mask
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = (
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attention_mask
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(
bsz, self.num_heads, tgt_len, src_len
)
attn_weights = attn_weights_reshaped.view(
bsz * self.num_heads, tgt_len, src_len
)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->IdeficsVision
class IdeficsVisionMLP(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = TensorParallelColumnLinear.load(
config, prefix=f"{prefix}.fc1", weights=weights, bias=True
)
self.fc2 = TensorParallelRowLinear.load(
config, prefix=f"{prefix}.fc2", weights=weights, bias=True
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->IdeficsVision
class IdeficsVisionEncoderLayer(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = IdeficsVisionAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
self.layer_norm1 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm1", weights=weights, eps=config.layer_norm_eps
)
self.mlp = IdeficsVisionMLP(
prefix=f"{prefix}.mlp", config=config, weights=weights
)
self.layer_norm2 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm2", weights=weights, eps=config.layer_norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->IdeficsVision
class IdeficsVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`IdeficsVisionEncoderLayer`].
Args:
config: IdeficsVisionConfig
"""
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.layers = nn.ModuleList(
[
IdeficsVisionEncoderLayer(
prefix=f"{prefix}.encoder.layers.{layer_id}",
config=config,
weights=weights,
)
for layer_id in range(config.num_hidden_layers)
]
)
# self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# if self.gradient_checkpointing and self.training:
# def create_custom_forward(module):
# def custom_forward(*inputs):
# return module(*inputs, output_attentions)
# return custom_forward
# layer_outputs = torch.utils.checkpoint.checkpoint(
# create_custom_forward(encoder_layer),
# hidden_states,
# attention_mask,
# causal_attention_mask,
# )
# else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, encoder_states, all_attentions]
if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
)
# Adapted from transformers.models.clip.modeling_clip.CLIPVisionTransformer
class IdeficsVisionTransformer(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.embeddings = IdeficsVisionEmbeddings(
prefix=f"{prefix}.embeddings", config=config, weights=weights
)
self.pre_layrnorm = nn.LayerNorm.load(
prefix=f"{prefix}.pre_layrnorm", weights=weights, eps=config.layer_norm_eps
)
self.encoder = IdeficsVisionEncoder(
prefix=prefix, config=config, weights=weights
)
self.post_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.post_layernorm",
weights=weights,
eps=config.layer_norm_eps,
)
# copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)

Some files were not shown because too many files have changed in this diff Show More