per Intel policy to include file commit date using git cmd below. The policy does not apply to non-Intel (C) notices. git log --follow -C90% --format=%ad --date default <file> | tail -1 and then pull just the 4 digit year from the result. Intel copyrights were not added to files where Intel either had no contribution ot the contribution lacked substance (ie license header updates, formatting changes, etc). Contribution date used "--follow -C95%" to get the most accurate date. Note that several files in this patch didn't end the license/(c) block with a blank comment line so these were added as the vast majority of files do have this last blank line. Simply there for consistency. Signed-off-by: paul luse <paul.e.luse@intel.com> Change-Id: Id5b7ce4f658fe87132f14139ead58d6e285c04d4 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15192 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Community-CI: Mellanox Build Bot
505 lines
15 KiB
C
505 lines
15 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright (C) 2016 Intel Corporation.
|
|
* All rights reserved.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
|
|
#include "spdk/nvme.h"
|
|
#include "spdk/vmd.h"
|
|
#include "spdk/nvme_zns.h"
|
|
#include "spdk/env.h"
|
|
#include "spdk/string.h"
|
|
#include "spdk/log.h"
|
|
|
|
struct ctrlr_entry {
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
TAILQ_ENTRY(ctrlr_entry) link;
|
|
char name[1024];
|
|
};
|
|
|
|
struct ns_entry {
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
struct spdk_nvme_ns *ns;
|
|
TAILQ_ENTRY(ns_entry) link;
|
|
struct spdk_nvme_qpair *qpair;
|
|
};
|
|
|
|
static TAILQ_HEAD(, ctrlr_entry) g_controllers = TAILQ_HEAD_INITIALIZER(g_controllers);
|
|
static TAILQ_HEAD(, ns_entry) g_namespaces = TAILQ_HEAD_INITIALIZER(g_namespaces);
|
|
static struct spdk_nvme_transport_id g_trid = {};
|
|
|
|
static bool g_vmd = false;
|
|
|
|
static void
|
|
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
|
|
{
|
|
struct ns_entry *entry;
|
|
|
|
if (!spdk_nvme_ns_is_active(ns)) {
|
|
return;
|
|
}
|
|
|
|
entry = malloc(sizeof(struct ns_entry));
|
|
if (entry == NULL) {
|
|
perror("ns_entry malloc");
|
|
exit(1);
|
|
}
|
|
|
|
entry->ctrlr = ctrlr;
|
|
entry->ns = ns;
|
|
TAILQ_INSERT_TAIL(&g_namespaces, entry, link);
|
|
|
|
printf(" Namespace ID: %d size: %juGB\n", spdk_nvme_ns_get_id(ns),
|
|
spdk_nvme_ns_get_size(ns) / 1000000000);
|
|
}
|
|
|
|
struct hello_world_sequence {
|
|
struct ns_entry *ns_entry;
|
|
char *buf;
|
|
unsigned using_cmb_io;
|
|
int is_completed;
|
|
};
|
|
|
|
static void
|
|
read_complete(void *arg, const struct spdk_nvme_cpl *completion)
|
|
{
|
|
struct hello_world_sequence *sequence = arg;
|
|
|
|
/* Assume the I/O was successful */
|
|
sequence->is_completed = 1;
|
|
/* See if an error occurred. If so, display information
|
|
* about it, and set completion value so that I/O
|
|
* caller is aware that an error occurred.
|
|
*/
|
|
if (spdk_nvme_cpl_is_error(completion)) {
|
|
spdk_nvme_qpair_print_completion(sequence->ns_entry->qpair, (struct spdk_nvme_cpl *)completion);
|
|
fprintf(stderr, "I/O error status: %s\n", spdk_nvme_cpl_get_status_string(&completion->status));
|
|
fprintf(stderr, "Read I/O failed, aborting run\n");
|
|
sequence->is_completed = 2;
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* The read I/O has completed. Print the contents of the
|
|
* buffer, free the buffer, then mark the sequence as
|
|
* completed. This will trigger the hello_world() function
|
|
* to exit its polling loop.
|
|
*/
|
|
printf("%s", sequence->buf);
|
|
spdk_free(sequence->buf);
|
|
}
|
|
|
|
static void
|
|
write_complete(void *arg, const struct spdk_nvme_cpl *completion)
|
|
{
|
|
struct hello_world_sequence *sequence = arg;
|
|
struct ns_entry *ns_entry = sequence->ns_entry;
|
|
int rc;
|
|
|
|
/* See if an error occurred. If so, display information
|
|
* about it, and set completion value so that I/O
|
|
* caller is aware that an error occurred.
|
|
*/
|
|
if (spdk_nvme_cpl_is_error(completion)) {
|
|
spdk_nvme_qpair_print_completion(sequence->ns_entry->qpair, (struct spdk_nvme_cpl *)completion);
|
|
fprintf(stderr, "I/O error status: %s\n", spdk_nvme_cpl_get_status_string(&completion->status));
|
|
fprintf(stderr, "Write I/O failed, aborting run\n");
|
|
sequence->is_completed = 2;
|
|
exit(1);
|
|
}
|
|
/*
|
|
* The write I/O has completed. Free the buffer associated with
|
|
* the write I/O and allocate a new zeroed buffer for reading
|
|
* the data back from the NVMe namespace.
|
|
*/
|
|
if (sequence->using_cmb_io) {
|
|
spdk_nvme_ctrlr_unmap_cmb(ns_entry->ctrlr);
|
|
} else {
|
|
spdk_free(sequence->buf);
|
|
}
|
|
sequence->buf = spdk_zmalloc(0x1000, 0x1000, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
|
|
|
|
rc = spdk_nvme_ns_cmd_read(ns_entry->ns, ns_entry->qpair, sequence->buf,
|
|
0, /* LBA start */
|
|
1, /* number of LBAs */
|
|
read_complete, (void *)sequence, 0);
|
|
if (rc != 0) {
|
|
fprintf(stderr, "starting read I/O failed\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
reset_zone_complete(void *arg, const struct spdk_nvme_cpl *completion)
|
|
{
|
|
struct hello_world_sequence *sequence = arg;
|
|
|
|
/* Assume the I/O was successful */
|
|
sequence->is_completed = 1;
|
|
/* See if an error occurred. If so, display information
|
|
* about it, and set completion value so that I/O
|
|
* caller is aware that an error occurred.
|
|
*/
|
|
if (spdk_nvme_cpl_is_error(completion)) {
|
|
spdk_nvme_qpair_print_completion(sequence->ns_entry->qpair, (struct spdk_nvme_cpl *)completion);
|
|
fprintf(stderr, "I/O error status: %s\n", spdk_nvme_cpl_get_status_string(&completion->status));
|
|
fprintf(stderr, "Reset zone I/O failed, aborting run\n");
|
|
sequence->is_completed = 2;
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
reset_zone_and_wait_for_completion(struct hello_world_sequence *sequence)
|
|
{
|
|
if (spdk_nvme_zns_reset_zone(sequence->ns_entry->ns, sequence->ns_entry->qpair,
|
|
0, /* starting LBA of the zone to reset */
|
|
false, /* don't reset all zones */
|
|
reset_zone_complete,
|
|
sequence)) {
|
|
fprintf(stderr, "starting reset zone I/O failed\n");
|
|
exit(1);
|
|
}
|
|
while (!sequence->is_completed) {
|
|
spdk_nvme_qpair_process_completions(sequence->ns_entry->qpair, 0);
|
|
}
|
|
sequence->is_completed = 0;
|
|
}
|
|
|
|
static void
|
|
hello_world(void)
|
|
{
|
|
struct ns_entry *ns_entry;
|
|
struct hello_world_sequence sequence;
|
|
int rc;
|
|
size_t sz;
|
|
|
|
TAILQ_FOREACH(ns_entry, &g_namespaces, link) {
|
|
/*
|
|
* Allocate an I/O qpair that we can use to submit read/write requests
|
|
* to namespaces on the controller. NVMe controllers typically support
|
|
* many qpairs per controller. Any I/O qpair allocated for a controller
|
|
* can submit I/O to any namespace on that controller.
|
|
*
|
|
* The SPDK NVMe driver provides no synchronization for qpair accesses -
|
|
* the application must ensure only a single thread submits I/O to a
|
|
* qpair, and that same thread must also check for completions on that
|
|
* qpair. This enables extremely efficient I/O processing by making all
|
|
* I/O operations completely lockless.
|
|
*/
|
|
ns_entry->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_entry->ctrlr, NULL, 0);
|
|
if (ns_entry->qpair == NULL) {
|
|
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair() failed\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Use spdk_dma_zmalloc to allocate a 4KB zeroed buffer. This memory
|
|
* will be pinned, which is required for data buffers used for SPDK NVMe
|
|
* I/O operations.
|
|
*/
|
|
sequence.using_cmb_io = 1;
|
|
sequence.buf = spdk_nvme_ctrlr_map_cmb(ns_entry->ctrlr, &sz);
|
|
if (sequence.buf == NULL || sz < 0x1000) {
|
|
sequence.using_cmb_io = 0;
|
|
sequence.buf = spdk_zmalloc(0x1000, 0x1000, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
|
|
}
|
|
if (sequence.buf == NULL) {
|
|
printf("ERROR: write buffer allocation failed\n");
|
|
return;
|
|
}
|
|
if (sequence.using_cmb_io) {
|
|
printf("INFO: using controller memory buffer for IO\n");
|
|
} else {
|
|
printf("INFO: using host memory buffer for IO\n");
|
|
}
|
|
sequence.is_completed = 0;
|
|
sequence.ns_entry = ns_entry;
|
|
|
|
/*
|
|
* If the namespace is a Zoned Namespace, rather than a regular
|
|
* NVM namespace, we need to reset the first zone, before we
|
|
* write to it. This not needed for regular NVM namespaces.
|
|
*/
|
|
if (spdk_nvme_ns_get_csi(ns_entry->ns) == SPDK_NVME_CSI_ZNS) {
|
|
reset_zone_and_wait_for_completion(&sequence);
|
|
}
|
|
|
|
/*
|
|
* Print "Hello world!" to sequence.buf. We will write this data to LBA
|
|
* 0 on the namespace, and then later read it back into a separate buffer
|
|
* to demonstrate the full I/O path.
|
|
*/
|
|
snprintf(sequence.buf, 0x1000, "%s", "Hello world!\n");
|
|
|
|
/*
|
|
* Write the data buffer to LBA 0 of this namespace. "write_complete" and
|
|
* "&sequence" are specified as the completion callback function and
|
|
* argument respectively. write_complete() will be called with the
|
|
* value of &sequence as a parameter when the write I/O is completed.
|
|
* This allows users to potentially specify different completion
|
|
* callback routines for each I/O, as well as pass a unique handle
|
|
* as an argument so the application knows which I/O has completed.
|
|
*
|
|
* Note that the SPDK NVMe driver will only check for completions
|
|
* when the application calls spdk_nvme_qpair_process_completions().
|
|
* It is the responsibility of the application to trigger the polling
|
|
* process.
|
|
*/
|
|
rc = spdk_nvme_ns_cmd_write(ns_entry->ns, ns_entry->qpair, sequence.buf,
|
|
0, /* LBA start */
|
|
1, /* number of LBAs */
|
|
write_complete, &sequence, 0);
|
|
if (rc != 0) {
|
|
fprintf(stderr, "starting write I/O failed\n");
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* Poll for completions. 0 here means process all available completions.
|
|
* In certain usage models, the caller may specify a positive integer
|
|
* instead of 0 to signify the maximum number of completions it should
|
|
* process. This function will never block - if there are no
|
|
* completions pending on the specified qpair, it will return immediately.
|
|
*
|
|
* When the write I/O completes, write_complete() will submit a new I/O
|
|
* to read LBA 0 into a separate buffer, specifying read_complete() as its
|
|
* completion routine. When the read I/O completes, read_complete() will
|
|
* print the buffer contents and set sequence.is_completed = 1. That will
|
|
* break this loop and then exit the program.
|
|
*/
|
|
while (!sequence.is_completed) {
|
|
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
|
|
}
|
|
|
|
/*
|
|
* Free the I/O qpair. This typically is done when an application exits.
|
|
* But SPDK does support freeing and then reallocating qpairs during
|
|
* operation. It is the responsibility of the caller to ensure all
|
|
* pending I/O are completed before trying to free the qpair.
|
|
*/
|
|
spdk_nvme_ctrlr_free_io_qpair(ns_entry->qpair);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
printf("Attaching to %s\n", trid->traddr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
int nsid;
|
|
struct ctrlr_entry *entry;
|
|
struct spdk_nvme_ns *ns;
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
|
|
entry = malloc(sizeof(struct ctrlr_entry));
|
|
if (entry == NULL) {
|
|
perror("ctrlr_entry malloc");
|
|
exit(1);
|
|
}
|
|
|
|
printf("Attached to %s\n", trid->traddr);
|
|
|
|
/*
|
|
* spdk_nvme_ctrlr is the logical abstraction in SPDK for an NVMe
|
|
* controller. During initialization, the IDENTIFY data for the
|
|
* controller is read using an NVMe admin command, and that data
|
|
* can be retrieved using spdk_nvme_ctrlr_get_data() to get
|
|
* detailed information on the controller. Refer to the NVMe
|
|
* specification for more details on IDENTIFY for NVMe controllers.
|
|
*/
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
|
|
snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
|
|
|
|
entry->ctrlr = ctrlr;
|
|
TAILQ_INSERT_TAIL(&g_controllers, entry, link);
|
|
|
|
/*
|
|
* Each controller has one or more namespaces. An NVMe namespace is basically
|
|
* equivalent to a SCSI LUN. The controller's IDENTIFY data tells us how
|
|
* many namespaces exist on the controller. For Intel(R) P3X00 controllers,
|
|
* it will just be one namespace.
|
|
*
|
|
* Note that in NVMe, namespace IDs start at 1, not 0.
|
|
*/
|
|
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); nsid != 0;
|
|
nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
|
|
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
|
|
if (ns == NULL) {
|
|
continue;
|
|
}
|
|
register_ns(ctrlr, ns);
|
|
}
|
|
}
|
|
|
|
static void
|
|
cleanup(void)
|
|
{
|
|
struct ns_entry *ns_entry, *tmp_ns_entry;
|
|
struct ctrlr_entry *ctrlr_entry, *tmp_ctrlr_entry;
|
|
struct spdk_nvme_detach_ctx *detach_ctx = NULL;
|
|
|
|
TAILQ_FOREACH_SAFE(ns_entry, &g_namespaces, link, tmp_ns_entry) {
|
|
TAILQ_REMOVE(&g_namespaces, ns_entry, link);
|
|
free(ns_entry);
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(ctrlr_entry, &g_controllers, link, tmp_ctrlr_entry) {
|
|
TAILQ_REMOVE(&g_controllers, ctrlr_entry, link);
|
|
spdk_nvme_detach_async(ctrlr_entry->ctrlr, &detach_ctx);
|
|
free(ctrlr_entry);
|
|
}
|
|
|
|
if (detach_ctx) {
|
|
spdk_nvme_detach_poll(detach_ctx);
|
|
}
|
|
}
|
|
|
|
static void
|
|
usage(const char *program_name)
|
|
{
|
|
printf("%s [options]", program_name);
|
|
printf("\t\n");
|
|
printf("options:\n");
|
|
printf("\t[-d DPDK huge memory size in MB]\n");
|
|
printf("\t[-g use single file descriptor for DPDK memory segments]\n");
|
|
printf("\t[-i shared memory group ID]\n");
|
|
printf("\t[-r remote NVMe over Fabrics target address]\n");
|
|
printf("\t[-V enumerate VMD]\n");
|
|
#ifdef DEBUG
|
|
printf("\t[-L enable debug logging]\n");
|
|
#else
|
|
printf("\t[-L enable debug logging (flag disabled, must reconfigure with --enable-debug)]\n");
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
parse_args(int argc, char **argv, struct spdk_env_opts *env_opts)
|
|
{
|
|
int op, rc;
|
|
|
|
spdk_nvme_trid_populate_transport(&g_trid, SPDK_NVME_TRANSPORT_PCIE);
|
|
snprintf(g_trid.subnqn, sizeof(g_trid.subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
|
|
|
|
while ((op = getopt(argc, argv, "d:gi:r:L:V")) != -1) {
|
|
switch (op) {
|
|
case 'V':
|
|
g_vmd = true;
|
|
break;
|
|
case 'i':
|
|
env_opts->shm_id = spdk_strtol(optarg, 10);
|
|
if (env_opts->shm_id < 0) {
|
|
fprintf(stderr, "Invalid shared memory ID\n");
|
|
return env_opts->shm_id;
|
|
}
|
|
break;
|
|
case 'g':
|
|
env_opts->hugepage_single_segments = true;
|
|
break;
|
|
case 'r':
|
|
if (spdk_nvme_transport_id_parse(&g_trid, optarg) != 0) {
|
|
fprintf(stderr, "Error parsing transport address\n");
|
|
return 1;
|
|
}
|
|
break;
|
|
case 'd':
|
|
env_opts->mem_size = spdk_strtol(optarg, 10);
|
|
if (env_opts->mem_size < 0) {
|
|
fprintf(stderr, "Invalid DPDK memory size\n");
|
|
return env_opts->mem_size;
|
|
}
|
|
break;
|
|
case 'L':
|
|
rc = spdk_log_set_flag(optarg);
|
|
if (rc < 0) {
|
|
fprintf(stderr, "unknown flag\n");
|
|
usage(argv[0]);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
#ifdef DEBUG
|
|
spdk_log_set_print_level(SPDK_LOG_DEBUG);
|
|
#endif
|
|
break;
|
|
default:
|
|
usage(argv[0]);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
int rc;
|
|
struct spdk_env_opts opts;
|
|
|
|
/*
|
|
* SPDK relies on an abstraction around the local environment
|
|
* named env that handles memory allocation and PCI device operations.
|
|
* This library must be initialized first.
|
|
*
|
|
*/
|
|
spdk_env_opts_init(&opts);
|
|
rc = parse_args(argc, argv, &opts);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
opts.name = "hello_world";
|
|
if (spdk_env_init(&opts) < 0) {
|
|
fprintf(stderr, "Unable to initialize SPDK env\n");
|
|
return 1;
|
|
}
|
|
|
|
printf("Initializing NVMe Controllers\n");
|
|
|
|
if (g_vmd && spdk_vmd_init()) {
|
|
fprintf(stderr, "Failed to initialize VMD."
|
|
" Some NVMe devices can be unavailable.\n");
|
|
}
|
|
|
|
/*
|
|
* Start the SPDK NVMe enumeration process. probe_cb will be called
|
|
* for each NVMe controller found, giving our application a choice on
|
|
* whether to attach to each controller. attach_cb will then be
|
|
* called for each controller after the SPDK NVMe driver has completed
|
|
* initializing the controller we chose to attach.
|
|
*/
|
|
rc = spdk_nvme_probe(&g_trid, NULL, probe_cb, attach_cb, NULL);
|
|
if (rc != 0) {
|
|
fprintf(stderr, "spdk_nvme_probe() failed\n");
|
|
rc = 1;
|
|
goto exit;
|
|
}
|
|
|
|
if (TAILQ_EMPTY(&g_controllers)) {
|
|
fprintf(stderr, "no NVMe controllers found\n");
|
|
rc = 1;
|
|
goto exit;
|
|
}
|
|
|
|
printf("Initialization complete.\n");
|
|
hello_world();
|
|
cleanup();
|
|
if (g_vmd) {
|
|
spdk_vmd_fini();
|
|
}
|
|
|
|
exit:
|
|
cleanup();
|
|
spdk_env_fini();
|
|
return rc;
|
|
}
|