Spdk/examples/nvme/hello_world/hello_world.c

505 lines
15 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2016 Intel Corporation.
* All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk/nvme.h"
#include "spdk/vmd.h"
#include "spdk/nvme_zns.h"
#include "spdk/env.h"
#include "spdk/string.h"
#include "spdk/log.h"
struct ctrlr_entry {
struct spdk_nvme_ctrlr *ctrlr;
TAILQ_ENTRY(ctrlr_entry) link;
char name[1024];
};
struct ns_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
TAILQ_ENTRY(ns_entry) link;
struct spdk_nvme_qpair *qpair;
};
static TAILQ_HEAD(, ctrlr_entry) g_controllers = TAILQ_HEAD_INITIALIZER(g_controllers);
static TAILQ_HEAD(, ns_entry) g_namespaces = TAILQ_HEAD_INITIALIZER(g_namespaces);
static struct spdk_nvme_transport_id g_trid = {};
static bool g_vmd = false;
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
if (!spdk_nvme_ns_is_active(ns)) {
return;
}
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
entry->ctrlr = ctrlr;
entry->ns = ns;
TAILQ_INSERT_TAIL(&g_namespaces, entry, link);
printf(" Namespace ID: %d size: %juGB\n", spdk_nvme_ns_get_id(ns),
spdk_nvme_ns_get_size(ns) / 1000000000);
}
struct hello_world_sequence {
struct ns_entry *ns_entry;
char *buf;
unsigned using_cmb_io;
int is_completed;
};
static void
read_complete(void *arg, const struct spdk_nvme_cpl *completion)
{
struct hello_world_sequence *sequence = arg;
/* Assume the I/O was successful */
sequence->is_completed = 1;
/* See if an error occurred. If so, display information
* about it, and set completion value so that I/O
* caller is aware that an error occurred.
*/
if (spdk_nvme_cpl_is_error(completion)) {
spdk_nvme_qpair_print_completion(sequence->ns_entry->qpair, (struct spdk_nvme_cpl *)completion);
fprintf(stderr, "I/O error status: %s\n", spdk_nvme_cpl_get_status_string(&completion->status));
fprintf(stderr, "Read I/O failed, aborting run\n");
sequence->is_completed = 2;
exit(1);
}
/*
* The read I/O has completed. Print the contents of the
* buffer, free the buffer, then mark the sequence as
* completed. This will trigger the hello_world() function
* to exit its polling loop.
*/
printf("%s", sequence->buf);
spdk_free(sequence->buf);
}
static void
write_complete(void *arg, const struct spdk_nvme_cpl *completion)
{
struct hello_world_sequence *sequence = arg;
struct ns_entry *ns_entry = sequence->ns_entry;
int rc;
/* See if an error occurred. If so, display information
* about it, and set completion value so that I/O
* caller is aware that an error occurred.
*/
if (spdk_nvme_cpl_is_error(completion)) {
spdk_nvme_qpair_print_completion(sequence->ns_entry->qpair, (struct spdk_nvme_cpl *)completion);
fprintf(stderr, "I/O error status: %s\n", spdk_nvme_cpl_get_status_string(&completion->status));
fprintf(stderr, "Write I/O failed, aborting run\n");
sequence->is_completed = 2;
exit(1);
}
/*
* The write I/O has completed. Free the buffer associated with
* the write I/O and allocate a new zeroed buffer for reading
* the data back from the NVMe namespace.
*/
if (sequence->using_cmb_io) {
spdk_nvme_ctrlr_unmap_cmb(ns_entry->ctrlr);
} else {
spdk_free(sequence->buf);
}
sequence->buf = spdk_zmalloc(0x1000, 0x1000, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
rc = spdk_nvme_ns_cmd_read(ns_entry->ns, ns_entry->qpair, sequence->buf,
0, /* LBA start */
1, /* number of LBAs */
read_complete, (void *)sequence, 0);
if (rc != 0) {
fprintf(stderr, "starting read I/O failed\n");
exit(1);
}
}
static void
reset_zone_complete(void *arg, const struct spdk_nvme_cpl *completion)
{
struct hello_world_sequence *sequence = arg;
/* Assume the I/O was successful */
sequence->is_completed = 1;
/* See if an error occurred. If so, display information
* about it, and set completion value so that I/O
* caller is aware that an error occurred.
*/
if (spdk_nvme_cpl_is_error(completion)) {
spdk_nvme_qpair_print_completion(sequence->ns_entry->qpair, (struct spdk_nvme_cpl *)completion);
fprintf(stderr, "I/O error status: %s\n", spdk_nvme_cpl_get_status_string(&completion->status));
fprintf(stderr, "Reset zone I/O failed, aborting run\n");
sequence->is_completed = 2;
exit(1);
}
}
static void
reset_zone_and_wait_for_completion(struct hello_world_sequence *sequence)
{
if (spdk_nvme_zns_reset_zone(sequence->ns_entry->ns, sequence->ns_entry->qpair,
0, /* starting LBA of the zone to reset */
false, /* don't reset all zones */
reset_zone_complete,
sequence)) {
fprintf(stderr, "starting reset zone I/O failed\n");
exit(1);
}
while (!sequence->is_completed) {
spdk_nvme_qpair_process_completions(sequence->ns_entry->qpair, 0);
}
sequence->is_completed = 0;
}
static void
hello_world(void)
{
struct ns_entry *ns_entry;
struct hello_world_sequence sequence;
int rc;
size_t sz;
TAILQ_FOREACH(ns_entry, &g_namespaces, link) {
/*
* Allocate an I/O qpair that we can use to submit read/write requests
* to namespaces on the controller. NVMe controllers typically support
* many qpairs per controller. Any I/O qpair allocated for a controller
* can submit I/O to any namespace on that controller.
*
* The SPDK NVMe driver provides no synchronization for qpair accesses -
* the application must ensure only a single thread submits I/O to a
* qpair, and that same thread must also check for completions on that
* qpair. This enables extremely efficient I/O processing by making all
* I/O operations completely lockless.
*/
ns_entry->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_entry->ctrlr, NULL, 0);
if (ns_entry->qpair == NULL) {
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair() failed\n");
return;
}
/*
* Use spdk_dma_zmalloc to allocate a 4KB zeroed buffer. This memory
* will be pinned, which is required for data buffers used for SPDK NVMe
* I/O operations.
*/
sequence.using_cmb_io = 1;
sequence.buf = spdk_nvme_ctrlr_map_cmb(ns_entry->ctrlr, &sz);
if (sequence.buf == NULL || sz < 0x1000) {
sequence.using_cmb_io = 0;
sequence.buf = spdk_zmalloc(0x1000, 0x1000, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
}
if (sequence.buf == NULL) {
printf("ERROR: write buffer allocation failed\n");
return;
}
if (sequence.using_cmb_io) {
printf("INFO: using controller memory buffer for IO\n");
} else {
printf("INFO: using host memory buffer for IO\n");
}
sequence.is_completed = 0;
sequence.ns_entry = ns_entry;
/*
* If the namespace is a Zoned Namespace, rather than a regular
* NVM namespace, we need to reset the first zone, before we
* write to it. This not needed for regular NVM namespaces.
*/
if (spdk_nvme_ns_get_csi(ns_entry->ns) == SPDK_NVME_CSI_ZNS) {
reset_zone_and_wait_for_completion(&sequence);
}
/*
* Print "Hello world!" to sequence.buf. We will write this data to LBA
* 0 on the namespace, and then later read it back into a separate buffer
* to demonstrate the full I/O path.
*/
snprintf(sequence.buf, 0x1000, "%s", "Hello world!\n");
/*
* Write the data buffer to LBA 0 of this namespace. "write_complete" and
* "&sequence" are specified as the completion callback function and
* argument respectively. write_complete() will be called with the
* value of &sequence as a parameter when the write I/O is completed.
* This allows users to potentially specify different completion
* callback routines for each I/O, as well as pass a unique handle
* as an argument so the application knows which I/O has completed.
*
* Note that the SPDK NVMe driver will only check for completions
* when the application calls spdk_nvme_qpair_process_completions().
* It is the responsibility of the application to trigger the polling
* process.
*/
rc = spdk_nvme_ns_cmd_write(ns_entry->ns, ns_entry->qpair, sequence.buf,
0, /* LBA start */
1, /* number of LBAs */
write_complete, &sequence, 0);
if (rc != 0) {
fprintf(stderr, "starting write I/O failed\n");
exit(1);
}
/*
* Poll for completions. 0 here means process all available completions.
* In certain usage models, the caller may specify a positive integer
* instead of 0 to signify the maximum number of completions it should
* process. This function will never block - if there are no
* completions pending on the specified qpair, it will return immediately.
*
* When the write I/O completes, write_complete() will submit a new I/O
* to read LBA 0 into a separate buffer, specifying read_complete() as its
* completion routine. When the read I/O completes, read_complete() will
* print the buffer contents and set sequence.is_completed = 1. That will
* break this loop and then exit the program.
*/
while (!sequence.is_completed) {
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
}
/*
* Free the I/O qpair. This typically is done when an application exits.
* But SPDK does support freeing and then reallocating qpairs during
* operation. It is the responsibility of the caller to ensure all
* pending I/O are completed before trying to free the qpair.
*/
spdk_nvme_ctrlr_free_io_qpair(ns_entry->qpair);
}
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
printf("Attaching to %s\n", trid->traddr);
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
int nsid;
struct ctrlr_entry *entry;
struct spdk_nvme_ns *ns;
const struct spdk_nvme_ctrlr_data *cdata;
entry = malloc(sizeof(struct ctrlr_entry));
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
printf("Attached to %s\n", trid->traddr);
/*
* spdk_nvme_ctrlr is the logical abstraction in SPDK for an NVMe
* controller. During initialization, the IDENTIFY data for the
* controller is read using an NVMe admin command, and that data
* can be retrieved using spdk_nvme_ctrlr_get_data() to get
* detailed information on the controller. Refer to the NVMe
* specification for more details on IDENTIFY for NVMe controllers.
*/
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
entry->ctrlr = ctrlr;
TAILQ_INSERT_TAIL(&g_controllers, entry, link);
/*
* Each controller has one or more namespaces. An NVMe namespace is basically
* equivalent to a SCSI LUN. The controller's IDENTIFY data tells us how
* many namespaces exist on the controller. For Intel(R) P3X00 controllers,
* it will just be one namespace.
*
* Note that in NVMe, namespace IDs start at 1, not 0.
*/
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); nsid != 0;
nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
if (ns == NULL) {
continue;
}
register_ns(ctrlr, ns);
}
}
static void
cleanup(void)
{
struct ns_entry *ns_entry, *tmp_ns_entry;
struct ctrlr_entry *ctrlr_entry, *tmp_ctrlr_entry;
struct spdk_nvme_detach_ctx *detach_ctx = NULL;
TAILQ_FOREACH_SAFE(ns_entry, &g_namespaces, link, tmp_ns_entry) {
TAILQ_REMOVE(&g_namespaces, ns_entry, link);
free(ns_entry);
}
TAILQ_FOREACH_SAFE(ctrlr_entry, &g_controllers, link, tmp_ctrlr_entry) {
TAILQ_REMOVE(&g_controllers, ctrlr_entry, link);
spdk_nvme_detach_async(ctrlr_entry->ctrlr, &detach_ctx);
free(ctrlr_entry);
}
if (detach_ctx) {
spdk_nvme_detach_poll(detach_ctx);
}
}
static void
usage(const char *program_name)
{
printf("%s [options]", program_name);
printf("\t\n");
printf("options:\n");
printf("\t[-d DPDK huge memory size in MB]\n");
printf("\t[-g use single file descriptor for DPDK memory segments]\n");
printf("\t[-i shared memory group ID]\n");
printf("\t[-r remote NVMe over Fabrics target address]\n");
printf("\t[-V enumerate VMD]\n");
#ifdef DEBUG
printf("\t[-L enable debug logging]\n");
#else
printf("\t[-L enable debug logging (flag disabled, must reconfigure with --enable-debug)]\n");
#endif
}
static int
parse_args(int argc, char **argv, struct spdk_env_opts *env_opts)
{
int op, rc;
spdk_nvme_trid_populate_transport(&g_trid, SPDK_NVME_TRANSPORT_PCIE);
snprintf(g_trid.subnqn, sizeof(g_trid.subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
while ((op = getopt(argc, argv, "d:gi:r:L:V")) != -1) {
switch (op) {
case 'V':
g_vmd = true;
break;
case 'i':
env_opts->shm_id = spdk_strtol(optarg, 10);
if (env_opts->shm_id < 0) {
fprintf(stderr, "Invalid shared memory ID\n");
return env_opts->shm_id;
}
break;
case 'g':
env_opts->hugepage_single_segments = true;
break;
case 'r':
if (spdk_nvme_transport_id_parse(&g_trid, optarg) != 0) {
fprintf(stderr, "Error parsing transport address\n");
return 1;
}
break;
case 'd':
env_opts->mem_size = spdk_strtol(optarg, 10);
if (env_opts->mem_size < 0) {
fprintf(stderr, "Invalid DPDK memory size\n");
return env_opts->mem_size;
}
break;
case 'L':
rc = spdk_log_set_flag(optarg);
if (rc < 0) {
fprintf(stderr, "unknown flag\n");
usage(argv[0]);
exit(EXIT_FAILURE);
}
#ifdef DEBUG
spdk_log_set_print_level(SPDK_LOG_DEBUG);
#endif
break;
default:
usage(argv[0]);
return 1;
}
}
return 0;
}
int
main(int argc, char **argv)
{
int rc;
struct spdk_env_opts opts;
/*
* SPDK relies on an abstraction around the local environment
* named env that handles memory allocation and PCI device operations.
* This library must be initialized first.
*
*/
spdk_env_opts_init(&opts);
rc = parse_args(argc, argv, &opts);
if (rc != 0) {
return rc;
}
opts.name = "hello_world";
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
return 1;
}
printf("Initializing NVMe Controllers\n");
if (g_vmd && spdk_vmd_init()) {
fprintf(stderr, "Failed to initialize VMD."
" Some NVMe devices can be unavailable.\n");
}
/*
* Start the SPDK NVMe enumeration process. probe_cb will be called
* for each NVMe controller found, giving our application a choice on
* whether to attach to each controller. attach_cb will then be
* called for each controller after the SPDK NVMe driver has completed
* initializing the controller we chose to attach.
*/
rc = spdk_nvme_probe(&g_trid, NULL, probe_cb, attach_cb, NULL);
if (rc != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n");
rc = 1;
goto exit;
}
if (TAILQ_EMPTY(&g_controllers)) {
fprintf(stderr, "no NVMe controllers found\n");
rc = 1;
goto exit;
}
printf("Initialization complete.\n");
hello_world();
cleanup();
if (g_vmd) {
spdk_vmd_fini();
}
exit:
cleanup();
spdk_env_fini();
return rc;
}