In support of upcoming patches and to greatly simplify things, the capabilites enum which held bit positions for each opcode has been removed. Only the opcodes enum remains and thus only opcodes are used throughout. For the capabiltiies bitmap a helper function is added to convert from opcode to bit position. Right now it is used in the IO path but in upcoming patches that goes away and the conversion is only done at init time. Signed-off-by: paul luse <paul.e.luse@intel.com> Change-Id: Ic4ad15b9f24ad3675a7bba4831f4e81de9b7bc70 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/11949 Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com> Community-CI: Mellanox Build Bot Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
782 lines
21 KiB
C
782 lines
21 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
#include "spdk/thread.h"
|
|
#include "spdk/env.h"
|
|
#include "spdk/event.h"
|
|
#include "spdk/log.h"
|
|
#include "spdk/string.h"
|
|
#include "spdk/accel_engine.h"
|
|
#include "spdk/crc32.h"
|
|
#include "spdk/util.h"
|
|
|
|
#define DATA_PATTERN 0x5a
|
|
#define ALIGN_4K 0x1000
|
|
|
|
static uint64_t g_tsc_rate;
|
|
static uint64_t g_tsc_end;
|
|
static int g_rc;
|
|
static int g_xfer_size_bytes = 4096;
|
|
static int g_queue_depth = 32;
|
|
/* g_allocate_depth indicates how many tasks we allocate per worker. It will
|
|
* be at least as much as the queue depth.
|
|
*/
|
|
static int g_allocate_depth = 0;
|
|
static int g_threads_per_core = 1;
|
|
static int g_time_in_sec = 5;
|
|
static uint32_t g_crc32c_seed = 0;
|
|
static uint32_t g_crc32c_chained_count = 1;
|
|
static int g_fail_percent_goal = 0;
|
|
static uint8_t g_fill_pattern = 255;
|
|
static bool g_verify = false;
|
|
static const char *g_workload_type = NULL;
|
|
static enum accel_opcode g_workload_selection;
|
|
static struct worker_thread *g_workers = NULL;
|
|
static int g_num_workers = 0;
|
|
static pthread_mutex_t g_workers_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
struct worker_thread;
|
|
static void accel_done(void *ref, int status);
|
|
|
|
struct display_info {
|
|
int core;
|
|
int thread;
|
|
};
|
|
|
|
struct ap_task {
|
|
void *src;
|
|
struct iovec *iovs;
|
|
uint32_t iov_cnt;
|
|
void *dst;
|
|
void *dst2;
|
|
uint32_t crc_dst;
|
|
struct worker_thread *worker;
|
|
int expected_status; /* used for the compare operation */
|
|
TAILQ_ENTRY(ap_task) link;
|
|
};
|
|
|
|
struct worker_thread {
|
|
struct spdk_io_channel *ch;
|
|
uint64_t xfer_completed;
|
|
uint64_t xfer_failed;
|
|
uint64_t injected_miscompares;
|
|
uint64_t current_queue_depth;
|
|
TAILQ_HEAD(, ap_task) tasks_pool;
|
|
struct worker_thread *next;
|
|
unsigned core;
|
|
struct spdk_thread *thread;
|
|
bool is_draining;
|
|
struct spdk_poller *is_draining_poller;
|
|
struct spdk_poller *stop_poller;
|
|
void *task_base;
|
|
struct display_info display;
|
|
};
|
|
|
|
static void
|
|
dump_user_config(struct spdk_app_opts *opts)
|
|
{
|
|
printf("SPDK Configuration:\n");
|
|
printf("Core mask: %s\n\n", opts->reactor_mask);
|
|
printf("Accel Perf Configuration:\n");
|
|
printf("Workload Type: %s\n", g_workload_type);
|
|
if (g_workload_selection == ACCEL_OPC_CRC32C || g_workload_selection == ACCEL_OPC_COPY_CRC32C) {
|
|
printf("CRC-32C seed: %u\n", g_crc32c_seed);
|
|
printf("vector count %u\n", g_crc32c_chained_count);
|
|
} else if (g_workload_selection == ACCEL_OPC_FILL) {
|
|
printf("Fill pattern: 0x%x\n", g_fill_pattern);
|
|
} else if ((g_workload_selection == ACCEL_OPC_COMPARE) && g_fail_percent_goal > 0) {
|
|
printf("Failure inject: %u percent\n", g_fail_percent_goal);
|
|
}
|
|
if (g_workload_selection == ACCEL_OPC_COPY_CRC32C) {
|
|
printf("Vector size: %u bytes\n", g_xfer_size_bytes);
|
|
printf("Transfer size: %u bytes\n", g_xfer_size_bytes * g_crc32c_chained_count);
|
|
} else {
|
|
printf("Transfer size: %u bytes\n", g_xfer_size_bytes);
|
|
}
|
|
printf("Queue depth: %u\n", g_queue_depth);
|
|
printf("Allocate depth: %u\n", g_allocate_depth);
|
|
printf("# threads/core: %u\n", g_threads_per_core);
|
|
printf("Run time: %u seconds\n", g_time_in_sec);
|
|
printf("Verify: %s\n\n", g_verify ? "Yes" : "No");
|
|
}
|
|
|
|
static void
|
|
usage(void)
|
|
{
|
|
printf("accel_perf options:\n");
|
|
printf("\t[-h help message]\n");
|
|
printf("\t[-q queue depth per core]\n");
|
|
printf("\t[-C for crc32c workload, use this value to configure the io vector size to test (default 1)\n");
|
|
printf("\t[-T number of threads per core\n");
|
|
printf("\t[-n number of channels]\n");
|
|
printf("\t[-o transfer size in bytes]\n");
|
|
printf("\t[-t time in seconds]\n");
|
|
printf("\t[-w workload type must be one of these: copy, fill, crc32c, copy_crc32c, compare, dualcast\n");
|
|
printf("\t[-s for crc32c workload, use this seed value (default 0)\n");
|
|
printf("\t[-P for compare workload, percentage of operations that should miscompare (percent, default 0)\n");
|
|
printf("\t[-f for fill workload, use this BYTE value (default 255)\n");
|
|
printf("\t[-y verify result if this switch is on]\n");
|
|
printf("\t[-a tasks to allocate per core (default: same value as -q)]\n");
|
|
printf("\t\tCan be used to spread operations across a wider range of memory.\n");
|
|
}
|
|
|
|
static int
|
|
parse_args(int argc, char *argv)
|
|
{
|
|
int argval = 0;
|
|
|
|
switch (argc) {
|
|
case 'a':
|
|
case 'C':
|
|
case 'f':
|
|
case 'T':
|
|
case 'o':
|
|
case 'P':
|
|
case 'q':
|
|
case 's':
|
|
case 't':
|
|
argval = spdk_strtol(optarg, 10);
|
|
if (argval < 0) {
|
|
fprintf(stderr, "-%c option must be non-negative.\n", argc);
|
|
usage();
|
|
return 1;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
};
|
|
|
|
switch (argc) {
|
|
case 'a':
|
|
g_allocate_depth = argval;
|
|
break;
|
|
case 'C':
|
|
g_crc32c_chained_count = argval;
|
|
break;
|
|
case 'f':
|
|
g_fill_pattern = (uint8_t)argval;
|
|
break;
|
|
case 'T':
|
|
g_threads_per_core = argval;
|
|
break;
|
|
case 'o':
|
|
g_xfer_size_bytes = argval;
|
|
break;
|
|
case 'P':
|
|
g_fail_percent_goal = argval;
|
|
break;
|
|
case 'q':
|
|
g_queue_depth = argval;
|
|
break;
|
|
case 's':
|
|
g_crc32c_seed = argval;
|
|
break;
|
|
case 't':
|
|
g_time_in_sec = argval;
|
|
break;
|
|
case 'y':
|
|
g_verify = true;
|
|
break;
|
|
case 'w':
|
|
g_workload_type = optarg;
|
|
if (!strcmp(g_workload_type, "copy")) {
|
|
g_workload_selection = ACCEL_OPC_COPY;
|
|
} else if (!strcmp(g_workload_type, "fill")) {
|
|
g_workload_selection = ACCEL_OPC_FILL;
|
|
} else if (!strcmp(g_workload_type, "crc32c")) {
|
|
g_workload_selection = ACCEL_OPC_CRC32C;
|
|
} else if (!strcmp(g_workload_type, "copy_crc32c")) {
|
|
g_workload_selection = ACCEL_OPC_COPY_CRC32C;
|
|
} else if (!strcmp(g_workload_type, "compare")) {
|
|
g_workload_selection = ACCEL_OPC_COMPARE;
|
|
} else if (!strcmp(g_workload_type, "dualcast")) {
|
|
g_workload_selection = ACCEL_OPC_DUALCAST;
|
|
}
|
|
break;
|
|
default:
|
|
usage();
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dump_result(void);
|
|
static void
|
|
unregister_worker(void *arg1)
|
|
{
|
|
struct worker_thread *worker = arg1;
|
|
|
|
free(worker->task_base);
|
|
spdk_put_io_channel(worker->ch);
|
|
pthread_mutex_lock(&g_workers_lock);
|
|
assert(g_num_workers >= 1);
|
|
if (--g_num_workers == 0) {
|
|
pthread_mutex_unlock(&g_workers_lock);
|
|
g_rc = dump_result();
|
|
spdk_app_stop(0);
|
|
}
|
|
pthread_mutex_unlock(&g_workers_lock);
|
|
}
|
|
|
|
static int
|
|
_get_task_data_bufs(struct ap_task *task)
|
|
{
|
|
uint32_t align = 0;
|
|
uint32_t i = 0;
|
|
int dst_buff_len = g_xfer_size_bytes;
|
|
|
|
/* For dualcast, the DSA HW requires 4K alignment on destination addresses but
|
|
* we do this for all engines to keep it simple.
|
|
*/
|
|
if (g_workload_selection == ACCEL_OPC_DUALCAST) {
|
|
align = ALIGN_4K;
|
|
}
|
|
|
|
if (g_workload_selection == ACCEL_OPC_CRC32C || g_workload_selection == ACCEL_OPC_COPY_CRC32C) {
|
|
assert(g_crc32c_chained_count > 0);
|
|
task->iov_cnt = g_crc32c_chained_count;
|
|
task->iovs = calloc(task->iov_cnt, sizeof(struct iovec));
|
|
if (!task->iovs) {
|
|
fprintf(stderr, "cannot allocated task->iovs fot task=%p\n", task);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (g_workload_selection == ACCEL_OPC_COPY_CRC32C) {
|
|
dst_buff_len = g_xfer_size_bytes * g_crc32c_chained_count;
|
|
}
|
|
|
|
for (i = 0; i < task->iov_cnt; i++) {
|
|
task->iovs[i].iov_base = spdk_dma_zmalloc(g_xfer_size_bytes, 0, NULL);
|
|
if (task->iovs[i].iov_base == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
memset(task->iovs[i].iov_base, DATA_PATTERN, g_xfer_size_bytes);
|
|
task->iovs[i].iov_len = g_xfer_size_bytes;
|
|
}
|
|
|
|
} else {
|
|
task->src = spdk_dma_zmalloc(g_xfer_size_bytes, 0, NULL);
|
|
if (task->src == NULL) {
|
|
fprintf(stderr, "Unable to alloc src buffer\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* For fill, set the entire src buffer so we can check if verify is enabled. */
|
|
if (g_workload_selection == ACCEL_OPC_FILL) {
|
|
memset(task->src, g_fill_pattern, g_xfer_size_bytes);
|
|
} else {
|
|
memset(task->src, DATA_PATTERN, g_xfer_size_bytes);
|
|
}
|
|
}
|
|
|
|
if (g_workload_selection != ACCEL_OPC_CRC32C) {
|
|
task->dst = spdk_dma_zmalloc(dst_buff_len, align, NULL);
|
|
if (task->dst == NULL) {
|
|
fprintf(stderr, "Unable to alloc dst buffer\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* For compare we want the buffers to match, otherwise not. */
|
|
if (g_workload_selection == ACCEL_OPC_COMPARE) {
|
|
memset(task->dst, DATA_PATTERN, dst_buff_len);
|
|
} else {
|
|
memset(task->dst, ~DATA_PATTERN, dst_buff_len);
|
|
}
|
|
}
|
|
|
|
if (g_workload_selection == ACCEL_OPC_DUALCAST) {
|
|
task->dst2 = spdk_dma_zmalloc(g_xfer_size_bytes, align, NULL);
|
|
if (task->dst2 == NULL) {
|
|
fprintf(stderr, "Unable to alloc dst buffer\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(task->dst2, ~DATA_PATTERN, g_xfer_size_bytes);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
inline static struct ap_task *
|
|
_get_task(struct worker_thread *worker)
|
|
{
|
|
struct ap_task *task;
|
|
|
|
if (!TAILQ_EMPTY(&worker->tasks_pool)) {
|
|
task = TAILQ_FIRST(&worker->tasks_pool);
|
|
TAILQ_REMOVE(&worker->tasks_pool, task, link);
|
|
} else {
|
|
fprintf(stderr, "Unable to get ap_task\n");
|
|
return NULL;
|
|
}
|
|
|
|
return task;
|
|
}
|
|
|
|
/* Submit one operation using the same ap task that just completed. */
|
|
static void
|
|
_submit_single(struct worker_thread *worker, struct ap_task *task)
|
|
{
|
|
int random_num;
|
|
int rc = 0;
|
|
int flags = 0;
|
|
|
|
assert(worker);
|
|
|
|
switch (g_workload_selection) {
|
|
case ACCEL_OPC_COPY:
|
|
rc = spdk_accel_submit_copy(worker->ch, task->dst, task->src,
|
|
g_xfer_size_bytes, flags, accel_done, task);
|
|
break;
|
|
case ACCEL_OPC_FILL:
|
|
/* For fill use the first byte of the task->dst buffer */
|
|
rc = spdk_accel_submit_fill(worker->ch, task->dst, *(uint8_t *)task->src,
|
|
g_xfer_size_bytes, flags, accel_done, task);
|
|
break;
|
|
case ACCEL_OPC_CRC32C:
|
|
rc = spdk_accel_submit_crc32cv(worker->ch, &task->crc_dst,
|
|
task->iovs, task->iov_cnt, g_crc32c_seed,
|
|
accel_done, task);
|
|
break;
|
|
case ACCEL_OPC_COPY_CRC32C:
|
|
rc = spdk_accel_submit_copy_crc32cv(worker->ch, task->dst, task->iovs, task->iov_cnt,
|
|
&task->crc_dst, g_crc32c_seed, flags, accel_done, task);
|
|
break;
|
|
case ACCEL_OPC_COMPARE:
|
|
random_num = rand() % 100;
|
|
if (random_num < g_fail_percent_goal) {
|
|
task->expected_status = -EILSEQ;
|
|
*(uint8_t *)task->dst = ~DATA_PATTERN;
|
|
} else {
|
|
task->expected_status = 0;
|
|
*(uint8_t *)task->dst = DATA_PATTERN;
|
|
}
|
|
rc = spdk_accel_submit_compare(worker->ch, task->dst, task->src,
|
|
g_xfer_size_bytes, accel_done, task);
|
|
break;
|
|
case ACCEL_OPC_DUALCAST:
|
|
rc = spdk_accel_submit_dualcast(worker->ch, task->dst, task->dst2,
|
|
task->src, g_xfer_size_bytes, flags, accel_done, task);
|
|
break;
|
|
default:
|
|
assert(false);
|
|
break;
|
|
|
|
}
|
|
|
|
if (rc) {
|
|
accel_done(task, rc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
_free_task_buffers(struct ap_task *task)
|
|
{
|
|
uint32_t i;
|
|
|
|
if (g_workload_selection == ACCEL_OPC_CRC32C || g_workload_selection == ACCEL_OPC_COPY_CRC32C) {
|
|
if (task->iovs) {
|
|
for (i = 0; i < task->iov_cnt; i++) {
|
|
if (task->iovs[i].iov_base) {
|
|
spdk_dma_free(task->iovs[i].iov_base);
|
|
}
|
|
}
|
|
free(task->iovs);
|
|
}
|
|
} else {
|
|
spdk_dma_free(task->src);
|
|
}
|
|
|
|
spdk_dma_free(task->dst);
|
|
if (g_workload_selection == ACCEL_OPC_DUALCAST) {
|
|
spdk_dma_free(task->dst2);
|
|
}
|
|
}
|
|
|
|
static int
|
|
_vector_memcmp(void *_dst, struct iovec *src_iovs, uint32_t iovcnt)
|
|
{
|
|
uint32_t i;
|
|
uint32_t ttl_len = 0;
|
|
uint8_t *dst = (uint8_t *)_dst;
|
|
|
|
for (i = 0; i < iovcnt; i++) {
|
|
if (memcmp(dst, src_iovs[i].iov_base, src_iovs[i].iov_len)) {
|
|
return -1;
|
|
}
|
|
dst += src_iovs[i].iov_len;
|
|
ttl_len += src_iovs[i].iov_len;
|
|
}
|
|
|
|
if (ttl_len != iovcnt * g_xfer_size_bytes) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
accel_done(void *arg1, int status)
|
|
{
|
|
struct ap_task *task = arg1;
|
|
struct worker_thread *worker = task->worker;
|
|
uint32_t sw_crc32c;
|
|
|
|
assert(worker);
|
|
assert(worker->current_queue_depth > 0);
|
|
|
|
if (g_verify && status == 0) {
|
|
switch (g_workload_selection) {
|
|
case ACCEL_OPC_COPY_CRC32C:
|
|
sw_crc32c = spdk_crc32c_iov_update(task->iovs, task->iov_cnt, ~g_crc32c_seed);
|
|
if (task->crc_dst != sw_crc32c) {
|
|
SPDK_NOTICELOG("CRC-32C miscompare\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
if (_vector_memcmp(task->dst, task->iovs, task->iov_cnt)) {
|
|
SPDK_NOTICELOG("Data miscompare\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
break;
|
|
case ACCEL_OPC_CRC32C:
|
|
sw_crc32c = spdk_crc32c_iov_update(task->iovs, task->iov_cnt, ~g_crc32c_seed);
|
|
if (task->crc_dst != sw_crc32c) {
|
|
SPDK_NOTICELOG("CRC-32C miscompare\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
break;
|
|
case ACCEL_OPC_COPY:
|
|
if (memcmp(task->src, task->dst, g_xfer_size_bytes)) {
|
|
SPDK_NOTICELOG("Data miscompare\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
break;
|
|
case ACCEL_OPC_DUALCAST:
|
|
if (memcmp(task->src, task->dst, g_xfer_size_bytes)) {
|
|
SPDK_NOTICELOG("Data miscompare, first destination\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
if (memcmp(task->src, task->dst2, g_xfer_size_bytes)) {
|
|
SPDK_NOTICELOG("Data miscompare, second destination\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
break;
|
|
case ACCEL_OPC_FILL:
|
|
if (memcmp(task->dst, task->src, g_xfer_size_bytes)) {
|
|
SPDK_NOTICELOG("Data miscompare\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
break;
|
|
case ACCEL_OPC_COMPARE:
|
|
break;
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (task->expected_status == -EILSEQ) {
|
|
assert(status != 0);
|
|
worker->injected_miscompares++;
|
|
} else if (status) {
|
|
/* Expected to pass but the accel engine reported an error (ex: COMPARE operation). */
|
|
worker->xfer_failed++;
|
|
}
|
|
|
|
worker->xfer_completed++;
|
|
worker->current_queue_depth--;
|
|
|
|
if (!worker->is_draining) {
|
|
TAILQ_INSERT_TAIL(&worker->tasks_pool, task, link);
|
|
task = _get_task(worker);
|
|
_submit_single(worker, task);
|
|
worker->current_queue_depth++;
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&worker->tasks_pool, task, link);
|
|
}
|
|
}
|
|
|
|
static int
|
|
dump_result(void)
|
|
{
|
|
uint64_t total_completed = 0;
|
|
uint64_t total_failed = 0;
|
|
uint64_t total_miscompared = 0;
|
|
uint64_t total_xfer_per_sec, total_bw_in_MiBps;
|
|
struct worker_thread *worker = g_workers;
|
|
|
|
printf("\nCore,Thread Transfers Bandwidth Failed Miscompares\n");
|
|
printf("------------------------------------------------------------------------\n");
|
|
while (worker != NULL) {
|
|
|
|
uint64_t xfer_per_sec = worker->xfer_completed / g_time_in_sec;
|
|
uint64_t bw_in_MiBps = (worker->xfer_completed * g_xfer_size_bytes) /
|
|
(g_time_in_sec * 1024 * 1024);
|
|
|
|
total_completed += worker->xfer_completed;
|
|
total_failed += worker->xfer_failed;
|
|
total_miscompared += worker->injected_miscompares;
|
|
|
|
if (xfer_per_sec) {
|
|
printf("%u,%u%17" PRIu64 "/s%9" PRIu64 " MiB/s%7" PRIu64 " %11" PRIu64 "\n",
|
|
worker->display.core, worker->display.thread, xfer_per_sec,
|
|
bw_in_MiBps, worker->xfer_failed, worker->injected_miscompares);
|
|
}
|
|
|
|
worker = worker->next;
|
|
}
|
|
|
|
total_xfer_per_sec = total_completed / g_time_in_sec;
|
|
total_bw_in_MiBps = (total_completed * g_xfer_size_bytes) /
|
|
(g_time_in_sec * 1024 * 1024);
|
|
|
|
printf("=========================================================================\n");
|
|
printf("Total:%15" PRIu64 "/s%9" PRIu64 " MiB/s%6" PRIu64 " %11" PRIu64"\n\n",
|
|
total_xfer_per_sec, total_bw_in_MiBps, total_failed, total_miscompared);
|
|
|
|
return total_failed ? 1 : 0;
|
|
}
|
|
|
|
static inline void
|
|
_free_task_buffers_in_pool(struct worker_thread *worker)
|
|
{
|
|
struct ap_task *task;
|
|
|
|
assert(worker);
|
|
while ((task = TAILQ_FIRST(&worker->tasks_pool))) {
|
|
TAILQ_REMOVE(&worker->tasks_pool, task, link);
|
|
_free_task_buffers(task);
|
|
}
|
|
}
|
|
|
|
static int
|
|
_check_draining(void *arg)
|
|
{
|
|
struct worker_thread *worker = arg;
|
|
|
|
assert(worker);
|
|
|
|
if (worker->current_queue_depth == 0) {
|
|
_free_task_buffers_in_pool(worker);
|
|
spdk_poller_unregister(&worker->is_draining_poller);
|
|
unregister_worker(worker);
|
|
}
|
|
|
|
return SPDK_POLLER_BUSY;
|
|
}
|
|
|
|
static int
|
|
_worker_stop(void *arg)
|
|
{
|
|
struct worker_thread *worker = arg;
|
|
|
|
assert(worker);
|
|
|
|
spdk_poller_unregister(&worker->stop_poller);
|
|
|
|
/* now let the worker drain and check it's outstanding IO with a poller */
|
|
worker->is_draining = true;
|
|
worker->is_draining_poller = SPDK_POLLER_REGISTER(_check_draining, worker, 0);
|
|
|
|
return SPDK_POLLER_BUSY;
|
|
}
|
|
|
|
static void
|
|
_init_thread(void *arg1)
|
|
{
|
|
struct worker_thread *worker;
|
|
struct ap_task *task;
|
|
int i, num_tasks = g_allocate_depth;
|
|
struct display_info *display = arg1;
|
|
|
|
worker = calloc(1, sizeof(*worker));
|
|
if (worker == NULL) {
|
|
fprintf(stderr, "Unable to allocate worker\n");
|
|
free(display);
|
|
return;
|
|
}
|
|
|
|
worker->display.core = display->core;
|
|
worker->display.thread = display->thread;
|
|
free(display);
|
|
worker->core = spdk_env_get_current_core();
|
|
worker->thread = spdk_get_thread();
|
|
pthread_mutex_lock(&g_workers_lock);
|
|
g_num_workers++;
|
|
worker->next = g_workers;
|
|
g_workers = worker;
|
|
pthread_mutex_unlock(&g_workers_lock);
|
|
worker->ch = spdk_accel_engine_get_io_channel();
|
|
|
|
TAILQ_INIT(&worker->tasks_pool);
|
|
|
|
worker->task_base = calloc(num_tasks, sizeof(struct ap_task));
|
|
if (worker->task_base == NULL) {
|
|
fprintf(stderr, "Could not allocate task base.\n");
|
|
goto error;
|
|
}
|
|
|
|
task = worker->task_base;
|
|
for (i = 0; i < num_tasks; i++) {
|
|
TAILQ_INSERT_TAIL(&worker->tasks_pool, task, link);
|
|
task->worker = worker;
|
|
if (_get_task_data_bufs(task)) {
|
|
fprintf(stderr, "Unable to get data bufs\n");
|
|
goto error;
|
|
}
|
|
task++;
|
|
}
|
|
|
|
/* Register a poller that will stop the worker at time elapsed */
|
|
worker->stop_poller = SPDK_POLLER_REGISTER(_worker_stop, worker,
|
|
g_time_in_sec * 1000000ULL);
|
|
|
|
/* Load up queue depth worth of operations. */
|
|
for (i = 0; i < g_queue_depth; i++) {
|
|
task = _get_task(worker);
|
|
worker->current_queue_depth++;
|
|
if (task == NULL) {
|
|
goto error;
|
|
}
|
|
|
|
_submit_single(worker, task);
|
|
}
|
|
return;
|
|
error:
|
|
|
|
_free_task_buffers_in_pool(worker);
|
|
free(worker->task_base);
|
|
free(worker);
|
|
spdk_app_stop(-1);
|
|
}
|
|
|
|
static void
|
|
accel_perf_start(void *arg1)
|
|
{
|
|
struct spdk_cpuset tmp_cpumask = {};
|
|
char thread_name[32];
|
|
uint32_t i;
|
|
int j;
|
|
struct spdk_thread *thread;
|
|
struct display_info *display;
|
|
|
|
g_tsc_rate = spdk_get_ticks_hz();
|
|
g_tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
|
|
|
|
printf("Running for %d seconds...\n", g_time_in_sec);
|
|
fflush(stdout);
|
|
|
|
/* Create worker threads for each core that was specified. */
|
|
SPDK_ENV_FOREACH_CORE(i) {
|
|
for (j = 0; j < g_threads_per_core; j++) {
|
|
snprintf(thread_name, sizeof(thread_name), "ap_worker_%u_%u", i, j);
|
|
spdk_cpuset_zero(&tmp_cpumask);
|
|
spdk_cpuset_set_cpu(&tmp_cpumask, i, true);
|
|
thread = spdk_thread_create(thread_name, &tmp_cpumask);
|
|
display = calloc(1, sizeof(*display));
|
|
if (display == NULL) {
|
|
fprintf(stderr, "Unable to allocate memory\n");
|
|
spdk_app_stop(-1);
|
|
return;
|
|
}
|
|
display->core = i;
|
|
display->thread = j;
|
|
spdk_thread_send_msg(thread, _init_thread, display);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
struct spdk_app_opts opts = {};
|
|
struct worker_thread *worker, *tmp;
|
|
|
|
pthread_mutex_init(&g_workers_lock, NULL);
|
|
spdk_app_opts_init(&opts, sizeof(opts));
|
|
opts.reactor_mask = "0x1";
|
|
if (spdk_app_parse_args(argc, argv, &opts, "a:C:o:q:t:yw:P:f:T:", NULL, parse_args,
|
|
usage) != SPDK_APP_PARSE_ARGS_SUCCESS) {
|
|
g_rc = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
if ((g_workload_selection != ACCEL_OPC_COPY) &&
|
|
(g_workload_selection != ACCEL_OPC_FILL) &&
|
|
(g_workload_selection != ACCEL_OPC_CRC32C) &&
|
|
(g_workload_selection != ACCEL_OPC_COPY_CRC32C) &&
|
|
(g_workload_selection != ACCEL_OPC_COMPARE) &&
|
|
(g_workload_selection != ACCEL_OPC_DUALCAST)) {
|
|
usage();
|
|
g_rc = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (g_allocate_depth > 0 && g_queue_depth > g_allocate_depth) {
|
|
fprintf(stdout, "allocate depth must be at least as big as queue depth\n");
|
|
usage();
|
|
g_rc = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (g_allocate_depth == 0) {
|
|
g_allocate_depth = g_queue_depth;
|
|
}
|
|
|
|
if ((g_workload_selection == ACCEL_OPC_CRC32C || g_workload_selection == ACCEL_OPC_COPY_CRC32C) &&
|
|
g_crc32c_chained_count == 0) {
|
|
usage();
|
|
g_rc = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
dump_user_config(&opts);
|
|
g_rc = spdk_app_start(&opts, accel_perf_start, NULL);
|
|
if (g_rc) {
|
|
SPDK_ERRLOG("ERROR starting application\n");
|
|
}
|
|
|
|
pthread_mutex_destroy(&g_workers_lock);
|
|
|
|
worker = g_workers;
|
|
while (worker) {
|
|
tmp = worker->next;
|
|
free(worker);
|
|
worker = tmp;
|
|
}
|
|
cleanup:
|
|
spdk_app_fini();
|
|
return g_rc;
|
|
}
|