Spdk/test/unit/lib/accel/accel.c/accel_ut.c
Konrad Sztyber 59f55d23f2 accel: add support for appending a decompress operation
Signed-off-by: Konrad Sztyber <konrad.sztyber@intel.com>
Change-Id: I5f091a554e08f0e052ab9e7eb9a1789d381b885f
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15635
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Aleksey Marchuk <alexeymar@nvidia.com>
2023-01-09 12:37:37 +00:00

1280 lines
36 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2021 Intel Corporation.
* All rights reserved.
* Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*/
#include "spdk_cunit.h"
#include "spdk_internal/mock.h"
#include "spdk_internal/accel_module.h"
#include "thread/thread_internal.h"
#include "common/lib/ut_multithread.c"
#include "accel/accel.c"
#include "accel/accel_sw.c"
#include "unit/lib/json_mock.c"
#ifdef SPDK_CONFIG_PMDK
DEFINE_STUB(pmem_msync, int, (const void *addr, size_t len), 0);
DEFINE_STUB(pmem_memcpy_persist, void *, (void *pmemdest, const void *src, size_t len), NULL);
DEFINE_STUB(pmem_is_pmem, int, (const void *addr, size_t len), 0);
DEFINE_STUB(pmem_memset_persist, void *, (void *pmemdest, int c, size_t len), NULL);
#endif
/* global vars and setup/cleanup functions used for all test functions */
struct spdk_accel_module_if g_module = {};
struct spdk_io_channel *g_ch = NULL;
struct accel_io_channel *g_accel_ch = NULL;
struct sw_accel_io_channel *g_sw_ch = NULL;
struct spdk_io_channel *g_module_ch = NULL;
static uint64_t g_opc_mask = 0;
static uint64_t
_accel_op_to_bit(enum accel_opcode opc)
{
return (1 << opc);
}
static bool
_supports_opcode(enum accel_opcode opc)
{
if (_accel_op_to_bit(opc) & g_opc_mask) {
return true;
}
return false;
}
static int
test_setup(void)
{
int i;
g_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct accel_io_channel));
if (g_ch == NULL) {
/* for some reason the assert fatal macro doesn't work in the setup function. */
CU_ASSERT(false);
return -1;
}
g_accel_ch = (struct accel_io_channel *)((char *)g_ch + sizeof(struct spdk_io_channel));
g_module_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct sw_accel_io_channel));
if (g_module_ch == NULL) {
CU_ASSERT(false);
return -1;
}
g_module.submit_tasks = sw_accel_submit_tasks;
g_module.name = "software";
for (i = 0; i < ACCEL_OPC_LAST; i++) {
g_accel_ch->module_ch[i] = g_module_ch;
g_modules_opc[i] = &g_module;
}
g_sw_ch = (struct sw_accel_io_channel *)((char *)g_module_ch + sizeof(
struct spdk_io_channel));
TAILQ_INIT(&g_sw_ch->tasks_to_complete);
g_module.supports_opcode = _supports_opcode;
return 0;
}
static int
test_cleanup(void)
{
free(g_ch);
free(g_module_ch);
return 0;
}
#define DUMMY_ARG 0xDEADBEEF
static bool g_dummy_cb_called = false;
static void
dummy_cb_fn(void *cb_arg, int status)
{
CU_ASSERT(*(uint32_t *)cb_arg == DUMMY_ARG);
CU_ASSERT(status == 0);
g_dummy_cb_called = true;
}
static void
test_spdk_accel_task_complete(void)
{
struct spdk_accel_task accel_task = {};
struct spdk_accel_task *expected_accel_task = NULL;
uint32_t cb_arg = DUMMY_ARG;
int status = 0;
accel_task.accel_ch = g_accel_ch;
accel_task.cb_fn = dummy_cb_fn;
accel_task.cb_arg = &cb_arg;
TAILQ_INIT(&g_accel_ch->task_pool);
/* Confirm cb is called and task added to list. */
spdk_accel_task_complete(&accel_task, status);
CU_ASSERT(g_dummy_cb_called == true);
expected_accel_task = TAILQ_FIRST(&g_accel_ch->task_pool);
TAILQ_REMOVE(&g_accel_ch->task_pool, expected_accel_task, link);
CU_ASSERT(expected_accel_task == &accel_task);
}
static void
test_get_task(void)
{
struct spdk_accel_task *task;
struct spdk_accel_task _task;
void *cb_arg = NULL;
TAILQ_INIT(&g_accel_ch->task_pool);
/* no tasks left, return NULL. */
task = _get_task(g_accel_ch, dummy_cb_fn, cb_arg);
CU_ASSERT(task == NULL);
_task.cb_fn = dummy_cb_fn;
_task.cb_arg = cb_arg;
_task.accel_ch = g_accel_ch;
TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &_task, link);
/* Get a valid task. */
task = _get_task(g_accel_ch, dummy_cb_fn, cb_arg);
CU_ASSERT(task == &_task);
CU_ASSERT(_task.cb_fn == dummy_cb_fn);
CU_ASSERT(_task.cb_arg == cb_arg);
CU_ASSERT(_task.accel_ch == g_accel_ch);
}
#define TEST_SUBMIT_SIZE 64
static void
test_spdk_accel_submit_copy(void)
{
const uint64_t nbytes = TEST_SUBMIT_SIZE;
uint8_t dst[TEST_SUBMIT_SIZE] = {0};
uint8_t src[TEST_SUBMIT_SIZE] = {0};
void *cb_arg = NULL;
int rc;
struct spdk_accel_task task;
struct spdk_accel_task *expected_accel_task = NULL;
int flags = 0;
TAILQ_INIT(&g_accel_ch->task_pool);
/* Fail with no tasks on _get_task() */
rc = spdk_accel_submit_copy(g_ch, src, dst, nbytes, flags, NULL, cb_arg);
CU_ASSERT(rc == -ENOMEM);
task.accel_ch = g_accel_ch;
task.flags = 1;
TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link);
/* submission OK. */
rc = spdk_accel_submit_copy(g_ch, dst, src, nbytes, flags, NULL, cb_arg);
CU_ASSERT(rc == 0);
CU_ASSERT(task.dst == dst);
CU_ASSERT(task.src == src);
CU_ASSERT(task.op_code == ACCEL_OPC_COPY);
CU_ASSERT(task.nbytes == nbytes);
CU_ASSERT(task.flags == 0);
CU_ASSERT(memcmp(dst, src, TEST_SUBMIT_SIZE) == 0);
expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete);
TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link);
CU_ASSERT(expected_accel_task == &task);
}
static void
test_spdk_accel_submit_dualcast(void)
{
void *dst1;
void *dst2;
void *src;
uint32_t align = ALIGN_4K;
uint64_t nbytes = TEST_SUBMIT_SIZE;
void *cb_arg = NULL;
int rc;
struct spdk_accel_task task;
struct spdk_accel_task *expected_accel_task = NULL;
int flags = 0;
TAILQ_INIT(&g_accel_ch->task_pool);
/* Dualcast requires 4K alignment on dst addresses,
* hence using the hard coded address to test the buffer alignment
*/
dst1 = (void *)0x5000;
dst2 = (void *)0x60f0;
src = calloc(1, TEST_SUBMIT_SIZE);
SPDK_CU_ASSERT_FATAL(src != NULL);
memset(src, 0x5A, TEST_SUBMIT_SIZE);
/* This should fail since dst2 is not 4k aligned */
rc = spdk_accel_submit_dualcast(g_ch, dst1, dst2, src, nbytes, flags, NULL, cb_arg);
CU_ASSERT(rc == -EINVAL);
dst1 = (void *)0x7010;
dst2 = (void *)0x6000;
/* This should fail since dst1 is not 4k aligned */
rc = spdk_accel_submit_dualcast(g_ch, dst1, dst2, src, nbytes, flags, NULL, cb_arg);
CU_ASSERT(rc == -EINVAL);
/* Dualcast requires 4K alignment on dst addresses */
dst1 = (void *)0x7000;
dst2 = (void *)0x6000;
/* Fail with no tasks on _get_task() */
rc = spdk_accel_submit_dualcast(g_ch, dst1, dst2, src, nbytes, flags, NULL, cb_arg);
CU_ASSERT(rc == -ENOMEM);
TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link);
/* accel submission OK., since we test the SW path , need to use valid memory addresses
* cannot hardcode them anymore */
dst1 = spdk_dma_zmalloc(nbytes, align, NULL);
SPDK_CU_ASSERT_FATAL(dst1 != NULL);
dst2 = spdk_dma_zmalloc(nbytes, align, NULL);
SPDK_CU_ASSERT_FATAL(dst2 != NULL);
/* SW module does the dualcast. */
rc = spdk_accel_submit_dualcast(g_ch, dst1, dst2, src, nbytes, flags, NULL, cb_arg);
CU_ASSERT(rc == 0);
CU_ASSERT(task.dst == dst1);
CU_ASSERT(task.dst2 == dst2);
CU_ASSERT(task.src == src);
CU_ASSERT(task.op_code == ACCEL_OPC_DUALCAST);
CU_ASSERT(task.nbytes == nbytes);
CU_ASSERT(task.flags == 0);
CU_ASSERT(memcmp(dst1, src, TEST_SUBMIT_SIZE) == 0);
CU_ASSERT(memcmp(dst2, src, TEST_SUBMIT_SIZE) == 0);
expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete);
TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link);
CU_ASSERT(expected_accel_task == &task);
free(src);
spdk_free(dst1);
spdk_free(dst2);
}
static void
test_spdk_accel_submit_compare(void)
{
void *src1;
void *src2;
uint64_t nbytes = TEST_SUBMIT_SIZE;
void *cb_arg = NULL;
int rc;
struct spdk_accel_task task;
struct spdk_accel_task *expected_accel_task = NULL;
TAILQ_INIT(&g_accel_ch->task_pool);
src1 = calloc(1, TEST_SUBMIT_SIZE);
SPDK_CU_ASSERT_FATAL(src1 != NULL);
src2 = calloc(1, TEST_SUBMIT_SIZE);
SPDK_CU_ASSERT_FATAL(src2 != NULL);
/* Fail with no tasks on _get_task() */
rc = spdk_accel_submit_compare(g_ch, src1, src2, nbytes, NULL, cb_arg);
CU_ASSERT(rc == -ENOMEM);
TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link);
/* accel submission OK. */
rc = spdk_accel_submit_compare(g_ch, src1, src2, nbytes, NULL, cb_arg);
CU_ASSERT(rc == 0);
CU_ASSERT(task.src == src1);
CU_ASSERT(task.src2 == src2);
CU_ASSERT(task.op_code == ACCEL_OPC_COMPARE);
CU_ASSERT(task.nbytes == nbytes);
CU_ASSERT(memcmp(src1, src2, TEST_SUBMIT_SIZE) == 0);
expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete);
TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link);
CU_ASSERT(expected_accel_task == &task);
free(src1);
free(src2);
}
static void
test_spdk_accel_submit_fill(void)
{
void *dst;
void *src;
uint8_t fill = 0xf;
uint64_t fill64;
uint64_t nbytes = TEST_SUBMIT_SIZE;
void *cb_arg = NULL;
int rc;
struct spdk_accel_task task;
struct spdk_accel_task *expected_accel_task = NULL;
int flags = 0;
TAILQ_INIT(&g_accel_ch->task_pool);
dst = calloc(1, TEST_SUBMIT_SIZE);
SPDK_CU_ASSERT_FATAL(dst != NULL);
src = calloc(1, TEST_SUBMIT_SIZE);
SPDK_CU_ASSERT_FATAL(src != NULL);
memset(src, fill, TEST_SUBMIT_SIZE);
memset(&fill64, fill, sizeof(uint64_t));
/* Fail with no tasks on _get_task() */
rc = spdk_accel_submit_fill(g_ch, dst, fill, nbytes, flags, NULL, cb_arg);
CU_ASSERT(rc == -ENOMEM);
TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link);
/* accel submission OK. */
rc = spdk_accel_submit_fill(g_ch, dst, fill, nbytes, flags, NULL, cb_arg);
CU_ASSERT(rc == 0);
CU_ASSERT(task.dst == dst);
CU_ASSERT(task.fill_pattern == fill64);
CU_ASSERT(task.op_code == ACCEL_OPC_FILL);
CU_ASSERT(task.nbytes == nbytes);
CU_ASSERT(task.flags == 0);
CU_ASSERT(memcmp(dst, src, TEST_SUBMIT_SIZE) == 0);
expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete);
TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link);
CU_ASSERT(expected_accel_task == &task);
free(dst);
free(src);
}
static void
test_spdk_accel_submit_crc32c(void)
{
const uint64_t nbytes = TEST_SUBMIT_SIZE;
uint32_t crc_dst;
uint8_t src[TEST_SUBMIT_SIZE];
uint32_t seed = 1;
void *cb_arg = NULL;
int rc;
struct spdk_accel_task task;
struct spdk_accel_task *expected_accel_task = NULL;
TAILQ_INIT(&g_accel_ch->task_pool);
/* Fail with no tasks on _get_task() */
rc = spdk_accel_submit_crc32c(g_ch, &crc_dst, src, seed, nbytes, NULL, cb_arg);
CU_ASSERT(rc == -ENOMEM);
TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link);
/* accel submission OK. */
rc = spdk_accel_submit_crc32c(g_ch, &crc_dst, src, seed, nbytes, NULL, cb_arg);
CU_ASSERT(rc == 0);
CU_ASSERT(task.crc_dst == &crc_dst);
CU_ASSERT(task.src == src);
CU_ASSERT(task.s.iovcnt == 0);
CU_ASSERT(task.seed == seed);
CU_ASSERT(task.op_code == ACCEL_OPC_CRC32C);
CU_ASSERT(task.nbytes == nbytes);
expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete);
TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link);
CU_ASSERT(expected_accel_task == &task);
}
static void
test_spdk_accel_submit_crc32cv(void)
{
uint32_t crc_dst;
uint32_t seed = 0;
uint32_t iov_cnt = 32;
void *cb_arg = NULL;
int rc;
uint32_t i = 0;
struct spdk_accel_task task;
struct iovec iov[32];
struct spdk_accel_task *expected_accel_task = NULL;
TAILQ_INIT(&g_accel_ch->task_pool);
for (i = 0; i < iov_cnt; i++) {
iov[i].iov_base = calloc(1, TEST_SUBMIT_SIZE);
SPDK_CU_ASSERT_FATAL(iov[i].iov_base != NULL);
iov[i].iov_len = TEST_SUBMIT_SIZE;
}
task.nbytes = TEST_SUBMIT_SIZE;
TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link);
/* accel submission OK. */
rc = spdk_accel_submit_crc32cv(g_ch, &crc_dst, iov, iov_cnt, seed, NULL, cb_arg);
CU_ASSERT(rc == 0);
CU_ASSERT(task.s.iovs == iov);
CU_ASSERT(task.s.iovcnt == iov_cnt);
CU_ASSERT(task.crc_dst == &crc_dst);
CU_ASSERT(task.seed == seed);
CU_ASSERT(task.op_code == ACCEL_OPC_CRC32C);
CU_ASSERT(task.cb_arg == cb_arg);
CU_ASSERT(task.nbytes == iov[0].iov_len);
expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete);
TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link);
CU_ASSERT(expected_accel_task == &task);
for (i = 0; i < iov_cnt; i++) {
free(iov[i].iov_base);
}
}
static void
test_spdk_accel_submit_copy_crc32c(void)
{
const uint64_t nbytes = TEST_SUBMIT_SIZE;
uint32_t crc_dst;
uint8_t dst[TEST_SUBMIT_SIZE];
uint8_t src[TEST_SUBMIT_SIZE];
uint32_t seed = 0;
void *cb_arg = NULL;
int rc;
struct spdk_accel_task task;
struct spdk_accel_task *expected_accel_task = NULL;
int flags = 0;
TAILQ_INIT(&g_accel_ch->task_pool);
/* Fail with no tasks on _get_task() */
rc = spdk_accel_submit_copy_crc32c(g_ch, dst, src, &crc_dst, seed, nbytes, flags,
NULL, cb_arg);
CU_ASSERT(rc == -ENOMEM);
TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link);
/* accel submission OK. */
rc = spdk_accel_submit_copy_crc32c(g_ch, dst, src, &crc_dst, seed, nbytes, flags,
NULL, cb_arg);
CU_ASSERT(rc == 0);
CU_ASSERT(task.dst == dst);
CU_ASSERT(task.src == src);
CU_ASSERT(task.crc_dst == &crc_dst);
CU_ASSERT(task.s.iovcnt == 0);
CU_ASSERT(task.seed == seed);
CU_ASSERT(task.nbytes == nbytes);
CU_ASSERT(task.flags == 0);
CU_ASSERT(task.op_code == ACCEL_OPC_COPY_CRC32C);
expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete);
TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link);
CU_ASSERT(expected_accel_task == &task);
}
static void
test_spdk_accel_module_find_by_name(void)
{
struct spdk_accel_module_if mod1 = {};
struct spdk_accel_module_if mod2 = {};
struct spdk_accel_module_if mod3 = {};
struct spdk_accel_module_if *accel_module = NULL;
mod1.name = "ioat";
mod2.name = "idxd";
mod3.name = "software";
TAILQ_INIT(&spdk_accel_module_list);
TAILQ_INSERT_TAIL(&spdk_accel_module_list, &mod1, tailq);
TAILQ_INSERT_TAIL(&spdk_accel_module_list, &mod2, tailq);
TAILQ_INSERT_TAIL(&spdk_accel_module_list, &mod3, tailq);
/* Now let's find a valid engine */
accel_module = _module_find_by_name("ioat");
CU_ASSERT(accel_module != NULL);
/* Try to find one that doesn't exist */
accel_module = _module_find_by_name("XXX");
CU_ASSERT(accel_module == NULL);
}
static void
test_spdk_accel_module_register(void)
{
struct spdk_accel_module_if mod1 = {};
struct spdk_accel_module_if mod2 = {};
struct spdk_accel_module_if mod3 = {};
struct spdk_accel_module_if mod4 = {};
struct spdk_accel_module_if *accel_module = NULL;
int i = 0;
mod1.name = "ioat";
mod2.name = "idxd";
mod3.name = "software";
mod4.name = "nothing";
TAILQ_INIT(&spdk_accel_module_list);
spdk_accel_module_list_add(&mod1);
spdk_accel_module_list_add(&mod2);
spdk_accel_module_list_add(&mod3);
spdk_accel_module_list_add(&mod4);
/* Now confirm they're in the right order. */
TAILQ_FOREACH(accel_module, &spdk_accel_module_list, tailq) {
switch (i++) {
case 0:
CU_ASSERT(strcmp(accel_module->name, "software") == 0);
break;
case 1:
CU_ASSERT(strcmp(accel_module->name, "ioat") == 0);
break;
case 2:
CU_ASSERT(strcmp(accel_module->name, "idxd") == 0);
break;
case 3:
CU_ASSERT(strcmp(accel_module->name, "nothing") == 0);
break;
default:
CU_ASSERT(false);
break;
}
}
CU_ASSERT(i == 4);
}
struct ut_sequence {
bool complete;
int status;
};
static void
ut_sequence_step_cb(void *cb_arg)
{
int *completed = cb_arg;
(*completed)++;
}
static void
ut_sequence_complete_cb(void *cb_arg, int status)
{
struct ut_sequence *seq = cb_arg;
seq->complete = true;
seq->status = status;
}
static void
test_sequence_fill_copy(void)
{
struct spdk_accel_sequence *seq = NULL;
struct spdk_io_channel *ioch;
struct ut_sequence ut_seq;
char buf[4096], tmp[2][4096], expected[4096];
struct iovec src_iovs[2], dst_iovs[2];
int rc, completed;
ioch = spdk_accel_get_io_channel();
SPDK_CU_ASSERT_FATAL(ioch != NULL);
/* First check the simplest case - single task in a sequence */
memset(buf, 0, sizeof(buf));
memset(expected, 0xa5, sizeof(expected));
completed = 0;
rc = spdk_accel_append_fill(&seq, ioch, buf, sizeof(buf), NULL, NULL, 0xa5, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
CU_ASSERT_EQUAL(completed, 0);
ut_seq.complete = false;
rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq);
CU_ASSERT_EQUAL(rc, 0);
poll_threads();
CU_ASSERT_EQUAL(completed, 1);
CU_ASSERT(ut_seq.complete);
CU_ASSERT_EQUAL(ut_seq.status, 0);
CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0);
/* Check a single copy operation */
memset(buf, 0, sizeof(buf));
memset(tmp[0], 0xa5, sizeof(tmp[0]));
memset(expected, 0xa5, sizeof(expected));
completed = 0;
seq = NULL;
dst_iovs[0].iov_base = buf;
dst_iovs[0].iov_len = sizeof(buf);
src_iovs[0].iov_base = tmp[0];
src_iovs[0].iov_len = sizeof(tmp[0]);
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[0], 1, NULL, NULL,
&src_iovs[0], 1, NULL, NULL, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
ut_seq.complete = false;
rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq);
CU_ASSERT_EQUAL(rc, 0);
poll_threads();
CU_ASSERT_EQUAL(completed, 1);
CU_ASSERT(ut_seq.complete);
CU_ASSERT_EQUAL(ut_seq.status, 0);
CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0);
/* Check multiple fill operations */
memset(buf, 0, sizeof(buf));
memset(expected, 0xfe, 4096);
memset(expected, 0xde, 2048);
memset(expected, 0xa5, 1024);
seq = NULL;
completed = 0;
rc = spdk_accel_append_fill(&seq, ioch, buf, 4096, NULL, NULL, 0xfe, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
rc = spdk_accel_append_fill(&seq, ioch, buf, 2048, NULL, NULL, 0xde, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
rc = spdk_accel_append_fill(&seq, ioch, buf, 1024, NULL, NULL, 0xa5, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
ut_seq.complete = false;
rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq);
CU_ASSERT_EQUAL(rc, 0);
poll_threads();
CU_ASSERT_EQUAL(completed, 3);
CU_ASSERT(ut_seq.complete);
CU_ASSERT_EQUAL(ut_seq.status, 0);
CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0);
/* Check multiple copy operations */
memset(buf, 0, sizeof(buf));
memset(tmp[0], 0, sizeof(tmp[0]));
memset(tmp[1], 0, sizeof(tmp[1]));
memset(expected, 0xa5, sizeof(expected));
seq = NULL;
completed = 0;
rc = spdk_accel_append_fill(&seq, ioch, tmp[0], sizeof(tmp[0]), NULL, NULL, 0xa5, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
dst_iovs[0].iov_base = tmp[1];
dst_iovs[0].iov_len = sizeof(tmp[1]);
src_iovs[0].iov_base = tmp[0];
src_iovs[0].iov_len = sizeof(tmp[0]);
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[0], 1, NULL, NULL,
&src_iovs[0], 1, NULL, NULL, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
dst_iovs[1].iov_base = buf;
dst_iovs[1].iov_len = sizeof(buf);
src_iovs[1].iov_base = tmp[1];
src_iovs[1].iov_len = sizeof(tmp[1]);
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[1], 1, NULL, NULL,
&src_iovs[1], 1, NULL, NULL, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
ut_seq.complete = false;
rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq);
CU_ASSERT_EQUAL(rc, 0);
poll_threads();
CU_ASSERT_EQUAL(completed, 3);
CU_ASSERT(ut_seq.complete);
CU_ASSERT_EQUAL(ut_seq.status, 0);
CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0);
/* Check that adding a copy operation at the end will change destination buffer */
memset(buf, 0, sizeof(buf));
memset(tmp[0], 0, sizeof(tmp[0]));
memset(expected, 0xa5, sizeof(buf));
seq = NULL;
completed = 0;
rc = spdk_accel_append_fill(&seq, ioch, tmp[0], sizeof(tmp[0]), NULL, NULL, 0xa5, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
dst_iovs[0].iov_base = buf;
dst_iovs[0].iov_len = sizeof(buf);
src_iovs[0].iov_base = tmp[0];
src_iovs[0].iov_len = sizeof(tmp[0]);
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[0], 1, NULL, NULL,
&src_iovs[0], 1, NULL, NULL, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
ut_seq.complete = false;
rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq);
CU_ASSERT_EQUAL(rc, 0);
poll_threads();
CU_ASSERT_EQUAL(completed, 2);
CU_ASSERT(ut_seq.complete);
CU_ASSERT_EQUAL(ut_seq.status, 0);
CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0);
/* Check that it's also possible to add copy operation at the beginning */
memset(buf, 0, sizeof(buf));
memset(tmp[0], 0xde, sizeof(tmp[0]));
memset(tmp[1], 0, sizeof(tmp[1]));
memset(expected, 0xa5, sizeof(expected));
seq = NULL;
completed = 0;
dst_iovs[0].iov_base = tmp[1];
dst_iovs[0].iov_len = sizeof(tmp[1]);
src_iovs[0].iov_base = tmp[0];
src_iovs[0].iov_len = sizeof(tmp[0]);
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[0], 1, NULL, NULL,
&src_iovs[0], 1, NULL, NULL, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
rc = spdk_accel_append_fill(&seq, ioch, tmp[1], sizeof(tmp[1]), NULL, NULL, 0xa5, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
dst_iovs[1].iov_base = buf;
dst_iovs[1].iov_len = sizeof(buf);
src_iovs[1].iov_base = tmp[1];
src_iovs[1].iov_len = sizeof(tmp[1]);
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[1], 1, NULL, NULL,
&src_iovs[1], 1, NULL, NULL, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
ut_seq.complete = false;
rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq);
CU_ASSERT_EQUAL(rc, 0);
poll_threads();
CU_ASSERT_EQUAL(completed, 3);
CU_ASSERT(ut_seq.complete);
CU_ASSERT_EQUAL(ut_seq.status, 0);
CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0);
spdk_put_io_channel(ioch);
poll_threads();
}
static void
test_sequence_abort(void)
{
struct spdk_accel_sequence *seq = NULL;
struct spdk_io_channel *ioch;
char buf[4096], tmp[2][4096], expected[4096];
struct iovec src_iovs[2], dst_iovs[2];
int rc, completed;
ioch = spdk_accel_get_io_channel();
SPDK_CU_ASSERT_FATAL(ioch != NULL);
/* Check that aborting a sequence calls operation's callback, the operation is not executed
* and the sequence is freed
*/
memset(buf, 0, sizeof(buf));
memset(expected, 0, sizeof(buf));
completed = 0;
seq = NULL;
rc = spdk_accel_append_fill(&seq, ioch, buf, sizeof(buf), NULL, NULL, 0xa5, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
spdk_accel_sequence_abort(seq);
CU_ASSERT_EQUAL(completed, 1);
CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0);
/* Check sequence with multiple operations */
memset(buf, 0, sizeof(buf));
memset(expected, 0, sizeof(buf));
completed = 0;
seq = NULL;
dst_iovs[0].iov_base = tmp[1];
dst_iovs[0].iov_len = sizeof(tmp[1]);
src_iovs[0].iov_base = tmp[0];
src_iovs[0].iov_len = sizeof(tmp[0]);
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[0], 1, NULL, NULL,
&src_iovs[0], 1, NULL, NULL, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
rc = spdk_accel_append_fill(&seq, ioch, tmp[1], 4096, NULL, NULL, 0xa5, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
rc = spdk_accel_append_fill(&seq, ioch, tmp[1], 2048, NULL, NULL, 0xde, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
dst_iovs[1].iov_base = buf;
dst_iovs[1].iov_len = sizeof(buf);
src_iovs[1].iov_base = tmp[1];
src_iovs[1].iov_len = sizeof(tmp[1]);
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[1], 1, NULL, NULL,
&src_iovs[1], 1, NULL, NULL, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
spdk_accel_sequence_abort(seq);
CU_ASSERT_EQUAL(completed, 4);
CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0);
/* This should be a no-op */
spdk_accel_sequence_abort(NULL);
spdk_put_io_channel(ioch);
poll_threads();
}
static void
test_sequence_append_error(void)
{
struct spdk_accel_sequence *seq = NULL;
struct spdk_io_channel *ioch;
struct accel_io_channel *accel_ch;
struct iovec src_iovs, dst_iovs;
char buf[4096];
TAILQ_HEAD(, spdk_accel_task) tasks = TAILQ_HEAD_INITIALIZER(tasks);
TAILQ_HEAD(, spdk_accel_sequence) seqs = TAILQ_HEAD_INITIALIZER(seqs);
int rc;
ioch = spdk_accel_get_io_channel();
SPDK_CU_ASSERT_FATAL(ioch != NULL);
accel_ch = spdk_io_channel_get_ctx(ioch);
/* Check that append fails and no sequence object is allocated when there are no more free
* tasks */
TAILQ_SWAP(&tasks, &accel_ch->task_pool, spdk_accel_task, link);
rc = spdk_accel_append_fill(&seq, ioch, buf, sizeof(buf), NULL, NULL, 0xa5, 0,
ut_sequence_step_cb, NULL);
CU_ASSERT_EQUAL(rc, -ENOMEM);
CU_ASSERT_PTR_NULL(seq);
dst_iovs.iov_base = buf;
dst_iovs.iov_len = 2048;
src_iovs.iov_base = &buf[2048];
src_iovs.iov_len = 2048;
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs, 1, NULL, NULL,
&src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, NULL);
CU_ASSERT_EQUAL(rc, -ENOMEM);
CU_ASSERT_PTR_NULL(seq);
dst_iovs.iov_base = buf;
dst_iovs.iov_len = 2048;
src_iovs.iov_base = &buf[2048];
src_iovs.iov_len = 2048;
rc = spdk_accel_append_decompress(&seq, ioch, &dst_iovs, 1, NULL, NULL,
&src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, NULL);
CU_ASSERT_EQUAL(rc, -ENOMEM);
CU_ASSERT_PTR_NULL(seq);
/* Check that the same happens when the sequence queue is empty */
TAILQ_SWAP(&tasks, &accel_ch->task_pool, spdk_accel_task, link);
TAILQ_SWAP(&seqs, &accel_ch->seq_pool, spdk_accel_sequence, link);
rc = spdk_accel_append_fill(&seq, ioch, buf, sizeof(buf), NULL, NULL, 0xa5, 0,
ut_sequence_step_cb, NULL);
CU_ASSERT_EQUAL(rc, -ENOMEM);
CU_ASSERT_PTR_NULL(seq);
dst_iovs.iov_base = buf;
dst_iovs.iov_len = 2048;
src_iovs.iov_base = &buf[2048];
src_iovs.iov_len = 2048;
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs, 1, NULL, NULL,
&src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, NULL);
CU_ASSERT_EQUAL(rc, -ENOMEM);
CU_ASSERT_PTR_NULL(seq);
dst_iovs.iov_base = buf;
dst_iovs.iov_len = 2048;
src_iovs.iov_base = &buf[2048];
src_iovs.iov_len = 2048;
rc = spdk_accel_append_decompress(&seq, ioch, &dst_iovs, 1, NULL, NULL,
&src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, NULL);
CU_ASSERT_EQUAL(rc, -ENOMEM);
CU_ASSERT_PTR_NULL(seq);
TAILQ_SWAP(&tasks, &accel_ch->task_pool, spdk_accel_task, link);
spdk_put_io_channel(ioch);
poll_threads();
}
struct ut_sequence_operation {
int complete_status;
int submit_status;
};
static struct ut_sequence_operation g_seq_operations[ACCEL_OPC_LAST];
static int
ut_sequnce_submit_tasks(struct spdk_io_channel *ch, struct spdk_accel_task *task)
{
struct ut_sequence_operation *op = &g_seq_operations[task->op_code];
if (op->submit_status != 0) {
return op->submit_status;
}
spdk_accel_task_complete(task, op->complete_status);
return 0;
}
static void
test_sequence_completion_error(void)
{
struct spdk_accel_sequence *seq = NULL;
struct spdk_io_channel *ioch;
struct ut_sequence ut_seq;
struct iovec src_iovs, dst_iovs;
char buf[4096], tmp[4096];
struct spdk_accel_module_if *modules[ACCEL_OPC_LAST];
int i, rc, completed;
ioch = spdk_accel_get_io_channel();
SPDK_CU_ASSERT_FATAL(ioch != NULL);
/* Override the submit_tasks function */
g_module.submit_tasks = ut_sequnce_submit_tasks;
for (i = 0; i < ACCEL_OPC_LAST; ++i) {
modules[i] = g_modules_opc[i];
g_modules_opc[i] = &g_module;
}
memset(buf, 0, sizeof(buf));
memset(tmp, 0, sizeof(tmp));
/* Check that if the first operation completes with an error, the whole sequence is
* completed with that error and that all operations' completion callbacks are executed
*/
g_seq_operations[ACCEL_OPC_FILL].complete_status = -E2BIG;
completed = 0;
seq = NULL;
rc = spdk_accel_append_fill(&seq, ioch, tmp, sizeof(tmp), NULL, NULL, 0xa5, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
dst_iovs.iov_base = buf;
dst_iovs.iov_len = sizeof(buf);
src_iovs.iov_base = tmp;
src_iovs.iov_len = sizeof(tmp);
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs, 1, NULL, NULL,
&src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
ut_seq.complete = false;
rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq);
CU_ASSERT_EQUAL(rc, 0);
poll_threads();
CU_ASSERT_EQUAL(completed, 2);
CU_ASSERT_EQUAL(ut_seq.status, -E2BIG);
/* Check the same with a second operation in the sequence */
g_seq_operations[ACCEL_OPC_COPY].complete_status = -EACCES;
g_seq_operations[ACCEL_OPC_FILL].complete_status = 0;
completed = 0;
seq = NULL;
rc = spdk_accel_append_fill(&seq, ioch, tmp, sizeof(tmp), NULL, NULL, 0xa5, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
dst_iovs.iov_base = buf;
dst_iovs.iov_len = sizeof(buf);
src_iovs.iov_base = tmp;
src_iovs.iov_len = sizeof(tmp);
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs, 1, NULL, NULL,
&src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
ut_seq.complete = false;
rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq);
CU_ASSERT_EQUAL(rc, 0);
poll_threads();
CU_ASSERT_EQUAL(completed, 2);
CU_ASSERT_EQUAL(ut_seq.status, -EACCES);
g_seq_operations[ACCEL_OPC_COPY].complete_status = 0;
g_seq_operations[ACCEL_OPC_FILL].complete_status = 0;
/* Check submission failure of the first operation */
g_seq_operations[ACCEL_OPC_FILL].submit_status = -EADDRINUSE;
completed = 0;
seq = NULL;
rc = spdk_accel_append_fill(&seq, ioch, tmp, sizeof(tmp), NULL, NULL, 0xa5, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
dst_iovs.iov_base = buf;
dst_iovs.iov_len = sizeof(buf);
src_iovs.iov_base = tmp;
src_iovs.iov_len = sizeof(tmp);
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs, 1, NULL, NULL,
&src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
ut_seq.complete = false;
rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq);
CU_ASSERT_EQUAL(rc, 0);
poll_threads();
CU_ASSERT_EQUAL(completed, 2);
CU_ASSERT_EQUAL(ut_seq.status, -EADDRINUSE);
/* Check the same with a second operation */
g_seq_operations[ACCEL_OPC_COPY].submit_status = -EADDRNOTAVAIL;
g_seq_operations[ACCEL_OPC_FILL].submit_status = 0;
completed = 0;
seq = NULL;
rc = spdk_accel_append_fill(&seq, ioch, tmp, sizeof(tmp), NULL, NULL, 0xa5, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
dst_iovs.iov_base = buf;
dst_iovs.iov_len = sizeof(buf);
src_iovs.iov_base = tmp;
src_iovs.iov_len = sizeof(tmp);
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs, 1, NULL, NULL,
&src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
ut_seq.complete = false;
rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq);
CU_ASSERT_EQUAL(rc, 0);
poll_threads();
CU_ASSERT_EQUAL(completed, 2);
CU_ASSERT_EQUAL(ut_seq.status, -EADDRNOTAVAIL);
/* Cleanup module pointers to make subsequent tests work correctly */
for (i = 0; i < ACCEL_OPC_LAST; ++i) {
g_modules_opc[i] = modules[i];
}
spdk_put_io_channel(ioch);
poll_threads();
}
#ifdef SPDK_CONFIG_ISAL
static void
ut_compress_cb(void *cb_arg, int status)
{
int *completed = cb_arg;
CU_ASSERT_EQUAL(status, 0);
*completed = 1;
}
static void
test_sequence_decompress(void)
{
struct spdk_accel_sequence *seq = NULL;
struct spdk_io_channel *ioch;
struct ut_sequence ut_seq;
char buf[4096], tmp[2][4096], expected[4096];
struct iovec src_iovs[2], dst_iovs[2];
uint32_t compressed_size;
int rc, completed = 0;
ioch = spdk_accel_get_io_channel();
SPDK_CU_ASSERT_FATAL(ioch != NULL);
memset(expected, 0xa5, sizeof(expected));
src_iovs[0].iov_base = expected;
src_iovs[0].iov_len = sizeof(expected);
rc = spdk_accel_submit_compress(ioch, tmp[0], sizeof(tmp[0]), &src_iovs[0], 1,
&compressed_size, 0, ut_compress_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
while (!completed) {
poll_threads();
}
/* Check a single decompress operation in a sequence */
seq = NULL;
completed = 0;
dst_iovs[0].iov_base = buf;
dst_iovs[0].iov_len = sizeof(buf);
src_iovs[0].iov_base = tmp[0];
src_iovs[0].iov_len = compressed_size;
rc = spdk_accel_append_decompress(&seq, ioch, &dst_iovs[0], 1, NULL, NULL,
&src_iovs[0], 1, NULL, NULL, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
ut_seq.complete = false;
rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq);
CU_ASSERT_EQUAL(rc, 0);
poll_threads();
CU_ASSERT_EQUAL(completed, 1);
CU_ASSERT(ut_seq.complete);
CU_ASSERT_EQUAL(ut_seq.status, 0);
CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0);
/* Put the decompress operation in the middle of a sequence with a copy operation at the
* beginning and a fill at the end modifying the first 2048B of the buffer.
*/
memset(expected, 0xfe, 2048);
memset(buf, 0, sizeof(buf));
seq = NULL;
completed = 0;
dst_iovs[0].iov_base = tmp[1];
dst_iovs[0].iov_len = compressed_size;
src_iovs[0].iov_base = tmp[0];
src_iovs[0].iov_len = compressed_size;
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[0], 1, NULL, NULL,
&src_iovs[0], 1, NULL, NULL, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
dst_iovs[1].iov_base = buf;
dst_iovs[1].iov_len = sizeof(buf);
src_iovs[1].iov_base = tmp[1];
src_iovs[1].iov_len = compressed_size;
rc = spdk_accel_append_decompress(&seq, ioch, &dst_iovs[1], 1, NULL, NULL,
&src_iovs[1], 1, NULL, NULL, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
rc = spdk_accel_append_fill(&seq, ioch, buf, 2048, NULL, NULL, 0xfe, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
ut_seq.complete = false;
rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq);
CU_ASSERT_EQUAL(rc, 0);
poll_threads();
CU_ASSERT_EQUAL(completed, 3);
CU_ASSERT(ut_seq.complete);
CU_ASSERT_EQUAL(ut_seq.status, 0);
CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0);
/* Check sequence with decompress at the beginning: decompress -> copy */
memset(expected, 0xa5, sizeof(expected));
memset(buf, 0, sizeof(buf));
seq = NULL;
completed = 0;
dst_iovs[0].iov_base = tmp[1];
dst_iovs[0].iov_len = sizeof(tmp[1]);
src_iovs[0].iov_base = tmp[0];
src_iovs[0].iov_len = compressed_size;
rc = spdk_accel_append_decompress(&seq, ioch, &dst_iovs[0], 1, NULL, NULL,
&src_iovs[0], 1, NULL, NULL, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
dst_iovs[1].iov_base = buf;
dst_iovs[1].iov_len = sizeof(buf);
src_iovs[1].iov_base = tmp[1];
src_iovs[1].iov_len = sizeof(tmp[1]);
rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[1], 1, NULL, NULL,
&src_iovs[1], 1, NULL, NULL, 0,
ut_sequence_step_cb, &completed);
CU_ASSERT_EQUAL(rc, 0);
ut_seq.complete = false;
rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq);
CU_ASSERT_EQUAL(rc, 0);
poll_threads();
CU_ASSERT_EQUAL(completed, 2);
CU_ASSERT(ut_seq.complete);
CU_ASSERT_EQUAL(ut_seq.status, 0);
CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0);
spdk_put_io_channel(ioch);
poll_threads();
}
#endif
static int
test_sequence_setup(void)
{
int rc;
allocate_cores(1);
allocate_threads(1);
set_thread(0);
rc = spdk_accel_initialize();
if (rc != 0) {
CU_ASSERT(false);
return -1;
}
return 0;
}
static void
accel_finish_cb(void *cb_arg)
{
bool *done = cb_arg;
*done = true;
}
static int
test_sequence_cleanup(void)
{
bool done = false;
spdk_accel_finish(accel_finish_cb, &done);
while (!done) {
poll_threads();
}
free_threads();
free_cores();
return 0;
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL, seq_suite;
unsigned int num_failures;
CU_set_error_action(CUEA_ABORT);
CU_initialize_registry();
/* Sequence tests require accel to be initialized normally, so run them before the other
* tests which register accel modules which aren't fully implemented, causing accel
* initialization to fail.
*/
seq_suite = CU_add_suite("accel_sequence", test_sequence_setup, test_sequence_cleanup);
CU_ADD_TEST(seq_suite, test_sequence_fill_copy);
CU_ADD_TEST(seq_suite, test_sequence_abort);
CU_ADD_TEST(seq_suite, test_sequence_append_error);
CU_ADD_TEST(seq_suite, test_sequence_completion_error);
#ifdef SPDK_CONFIG_ISAL /* accel_sw requires isa-l for compression */
CU_ADD_TEST(seq_suite, test_sequence_decompress);
#endif
suite = CU_add_suite("accel", test_setup, test_cleanup);
CU_ADD_TEST(suite, test_spdk_accel_task_complete);
CU_ADD_TEST(suite, test_get_task);
CU_ADD_TEST(suite, test_spdk_accel_submit_copy);
CU_ADD_TEST(suite, test_spdk_accel_submit_dualcast);
CU_ADD_TEST(suite, test_spdk_accel_submit_compare);
CU_ADD_TEST(suite, test_spdk_accel_submit_fill);
CU_ADD_TEST(suite, test_spdk_accel_submit_crc32c);
CU_ADD_TEST(suite, test_spdk_accel_submit_crc32cv);
CU_ADD_TEST(suite, test_spdk_accel_submit_copy_crc32c);
CU_ADD_TEST(suite, test_spdk_accel_module_find_by_name);
CU_ADD_TEST(suite, test_spdk_accel_module_register);
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}