/* SPDX-License-Identifier: BSD-3-Clause * Copyright (C) 2021 Intel Corporation. * All rights reserved. * Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. */ #include "spdk_cunit.h" #include "spdk_internal/mock.h" #include "spdk_internal/accel_module.h" #include "thread/thread_internal.h" #include "common/lib/ut_multithread.c" #include "accel/accel.c" #include "accel/accel_sw.c" #include "unit/lib/json_mock.c" #ifdef SPDK_CONFIG_PMDK DEFINE_STUB(pmem_msync, int, (const void *addr, size_t len), 0); DEFINE_STUB(pmem_memcpy_persist, void *, (void *pmemdest, const void *src, size_t len), NULL); DEFINE_STUB(pmem_is_pmem, int, (const void *addr, size_t len), 0); DEFINE_STUB(pmem_memset_persist, void *, (void *pmemdest, int c, size_t len), NULL); #endif /* global vars and setup/cleanup functions used for all test functions */ struct spdk_accel_module_if g_module = {}; struct spdk_io_channel *g_ch = NULL; struct accel_io_channel *g_accel_ch = NULL; struct sw_accel_io_channel *g_sw_ch = NULL; struct spdk_io_channel *g_module_ch = NULL; static uint64_t g_opc_mask = 0; static uint64_t _accel_op_to_bit(enum accel_opcode opc) { return (1 << opc); } static bool _supports_opcode(enum accel_opcode opc) { if (_accel_op_to_bit(opc) & g_opc_mask) { return true; } return false; } static int test_setup(void) { int i; g_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct accel_io_channel)); if (g_ch == NULL) { /* for some reason the assert fatal macro doesn't work in the setup function. */ CU_ASSERT(false); return -1; } g_accel_ch = (struct accel_io_channel *)((char *)g_ch + sizeof(struct spdk_io_channel)); g_module_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct sw_accel_io_channel)); if (g_module_ch == NULL) { CU_ASSERT(false); return -1; } g_module.submit_tasks = sw_accel_submit_tasks; g_module.name = "software"; for (i = 0; i < ACCEL_OPC_LAST; i++) { g_accel_ch->module_ch[i] = g_module_ch; g_modules_opc[i] = &g_module; } g_sw_ch = (struct sw_accel_io_channel *)((char *)g_module_ch + sizeof( struct spdk_io_channel)); TAILQ_INIT(&g_sw_ch->tasks_to_complete); g_module.supports_opcode = _supports_opcode; return 0; } static int test_cleanup(void) { free(g_ch); free(g_module_ch); return 0; } #define DUMMY_ARG 0xDEADBEEF static bool g_dummy_cb_called = false; static void dummy_cb_fn(void *cb_arg, int status) { CU_ASSERT(*(uint32_t *)cb_arg == DUMMY_ARG); CU_ASSERT(status == 0); g_dummy_cb_called = true; } static void test_spdk_accel_task_complete(void) { struct spdk_accel_task accel_task = {}; struct spdk_accel_task *expected_accel_task = NULL; uint32_t cb_arg = DUMMY_ARG; int status = 0; accel_task.accel_ch = g_accel_ch; accel_task.cb_fn = dummy_cb_fn; accel_task.cb_arg = &cb_arg; TAILQ_INIT(&g_accel_ch->task_pool); /* Confirm cb is called and task added to list. */ spdk_accel_task_complete(&accel_task, status); CU_ASSERT(g_dummy_cb_called == true); expected_accel_task = TAILQ_FIRST(&g_accel_ch->task_pool); TAILQ_REMOVE(&g_accel_ch->task_pool, expected_accel_task, link); CU_ASSERT(expected_accel_task == &accel_task); } static void test_get_task(void) { struct spdk_accel_task *task; struct spdk_accel_task _task; void *cb_arg = NULL; TAILQ_INIT(&g_accel_ch->task_pool); /* no tasks left, return NULL. */ task = _get_task(g_accel_ch, dummy_cb_fn, cb_arg); CU_ASSERT(task == NULL); _task.cb_fn = dummy_cb_fn; _task.cb_arg = cb_arg; _task.accel_ch = g_accel_ch; TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &_task, link); /* Get a valid task. */ task = _get_task(g_accel_ch, dummy_cb_fn, cb_arg); CU_ASSERT(task == &_task); CU_ASSERT(_task.cb_fn == dummy_cb_fn); CU_ASSERT(_task.cb_arg == cb_arg); CU_ASSERT(_task.accel_ch == g_accel_ch); } #define TEST_SUBMIT_SIZE 64 static void test_spdk_accel_submit_copy(void) { const uint64_t nbytes = TEST_SUBMIT_SIZE; uint8_t dst[TEST_SUBMIT_SIZE] = {0}; uint8_t src[TEST_SUBMIT_SIZE] = {0}; void *cb_arg = NULL; int rc; struct spdk_accel_task task; struct spdk_accel_task *expected_accel_task = NULL; int flags = 0; TAILQ_INIT(&g_accel_ch->task_pool); /* Fail with no tasks on _get_task() */ rc = spdk_accel_submit_copy(g_ch, src, dst, nbytes, flags, NULL, cb_arg); CU_ASSERT(rc == -ENOMEM); task.accel_ch = g_accel_ch; task.flags = 1; TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link); /* submission OK. */ rc = spdk_accel_submit_copy(g_ch, dst, src, nbytes, flags, NULL, cb_arg); CU_ASSERT(rc == 0); CU_ASSERT(task.dst == dst); CU_ASSERT(task.src == src); CU_ASSERT(task.op_code == ACCEL_OPC_COPY); CU_ASSERT(task.nbytes == nbytes); CU_ASSERT(task.flags == 0); CU_ASSERT(memcmp(dst, src, TEST_SUBMIT_SIZE) == 0); expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete); TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link); CU_ASSERT(expected_accel_task == &task); } static void test_spdk_accel_submit_dualcast(void) { void *dst1; void *dst2; void *src; uint32_t align = ALIGN_4K; uint64_t nbytes = TEST_SUBMIT_SIZE; void *cb_arg = NULL; int rc; struct spdk_accel_task task; struct spdk_accel_task *expected_accel_task = NULL; int flags = 0; TAILQ_INIT(&g_accel_ch->task_pool); /* Dualcast requires 4K alignment on dst addresses, * hence using the hard coded address to test the buffer alignment */ dst1 = (void *)0x5000; dst2 = (void *)0x60f0; src = calloc(1, TEST_SUBMIT_SIZE); SPDK_CU_ASSERT_FATAL(src != NULL); memset(src, 0x5A, TEST_SUBMIT_SIZE); /* This should fail since dst2 is not 4k aligned */ rc = spdk_accel_submit_dualcast(g_ch, dst1, dst2, src, nbytes, flags, NULL, cb_arg); CU_ASSERT(rc == -EINVAL); dst1 = (void *)0x7010; dst2 = (void *)0x6000; /* This should fail since dst1 is not 4k aligned */ rc = spdk_accel_submit_dualcast(g_ch, dst1, dst2, src, nbytes, flags, NULL, cb_arg); CU_ASSERT(rc == -EINVAL); /* Dualcast requires 4K alignment on dst addresses */ dst1 = (void *)0x7000; dst2 = (void *)0x6000; /* Fail with no tasks on _get_task() */ rc = spdk_accel_submit_dualcast(g_ch, dst1, dst2, src, nbytes, flags, NULL, cb_arg); CU_ASSERT(rc == -ENOMEM); TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link); /* accel submission OK., since we test the SW path , need to use valid memory addresses * cannot hardcode them anymore */ dst1 = spdk_dma_zmalloc(nbytes, align, NULL); SPDK_CU_ASSERT_FATAL(dst1 != NULL); dst2 = spdk_dma_zmalloc(nbytes, align, NULL); SPDK_CU_ASSERT_FATAL(dst2 != NULL); /* SW module does the dualcast. */ rc = spdk_accel_submit_dualcast(g_ch, dst1, dst2, src, nbytes, flags, NULL, cb_arg); CU_ASSERT(rc == 0); CU_ASSERT(task.dst == dst1); CU_ASSERT(task.dst2 == dst2); CU_ASSERT(task.src == src); CU_ASSERT(task.op_code == ACCEL_OPC_DUALCAST); CU_ASSERT(task.nbytes == nbytes); CU_ASSERT(task.flags == 0); CU_ASSERT(memcmp(dst1, src, TEST_SUBMIT_SIZE) == 0); CU_ASSERT(memcmp(dst2, src, TEST_SUBMIT_SIZE) == 0); expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete); TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link); CU_ASSERT(expected_accel_task == &task); free(src); spdk_free(dst1); spdk_free(dst2); } static void test_spdk_accel_submit_compare(void) { void *src1; void *src2; uint64_t nbytes = TEST_SUBMIT_SIZE; void *cb_arg = NULL; int rc; struct spdk_accel_task task; struct spdk_accel_task *expected_accel_task = NULL; TAILQ_INIT(&g_accel_ch->task_pool); src1 = calloc(1, TEST_SUBMIT_SIZE); SPDK_CU_ASSERT_FATAL(src1 != NULL); src2 = calloc(1, TEST_SUBMIT_SIZE); SPDK_CU_ASSERT_FATAL(src2 != NULL); /* Fail with no tasks on _get_task() */ rc = spdk_accel_submit_compare(g_ch, src1, src2, nbytes, NULL, cb_arg); CU_ASSERT(rc == -ENOMEM); TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link); /* accel submission OK. */ rc = spdk_accel_submit_compare(g_ch, src1, src2, nbytes, NULL, cb_arg); CU_ASSERT(rc == 0); CU_ASSERT(task.src == src1); CU_ASSERT(task.src2 == src2); CU_ASSERT(task.op_code == ACCEL_OPC_COMPARE); CU_ASSERT(task.nbytes == nbytes); CU_ASSERT(memcmp(src1, src2, TEST_SUBMIT_SIZE) == 0); expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete); TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link); CU_ASSERT(expected_accel_task == &task); free(src1); free(src2); } static void test_spdk_accel_submit_fill(void) { void *dst; void *src; uint8_t fill = 0xf; uint64_t fill64; uint64_t nbytes = TEST_SUBMIT_SIZE; void *cb_arg = NULL; int rc; struct spdk_accel_task task; struct spdk_accel_task *expected_accel_task = NULL; int flags = 0; TAILQ_INIT(&g_accel_ch->task_pool); dst = calloc(1, TEST_SUBMIT_SIZE); SPDK_CU_ASSERT_FATAL(dst != NULL); src = calloc(1, TEST_SUBMIT_SIZE); SPDK_CU_ASSERT_FATAL(src != NULL); memset(src, fill, TEST_SUBMIT_SIZE); memset(&fill64, fill, sizeof(uint64_t)); /* Fail with no tasks on _get_task() */ rc = spdk_accel_submit_fill(g_ch, dst, fill, nbytes, flags, NULL, cb_arg); CU_ASSERT(rc == -ENOMEM); TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link); /* accel submission OK. */ rc = spdk_accel_submit_fill(g_ch, dst, fill, nbytes, flags, NULL, cb_arg); CU_ASSERT(rc == 0); CU_ASSERT(task.dst == dst); CU_ASSERT(task.fill_pattern == fill64); CU_ASSERT(task.op_code == ACCEL_OPC_FILL); CU_ASSERT(task.nbytes == nbytes); CU_ASSERT(task.flags == 0); CU_ASSERT(memcmp(dst, src, TEST_SUBMIT_SIZE) == 0); expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete); TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link); CU_ASSERT(expected_accel_task == &task); free(dst); free(src); } static void test_spdk_accel_submit_crc32c(void) { const uint64_t nbytes = TEST_SUBMIT_SIZE; uint32_t crc_dst; uint8_t src[TEST_SUBMIT_SIZE]; uint32_t seed = 1; void *cb_arg = NULL; int rc; struct spdk_accel_task task; struct spdk_accel_task *expected_accel_task = NULL; TAILQ_INIT(&g_accel_ch->task_pool); /* Fail with no tasks on _get_task() */ rc = spdk_accel_submit_crc32c(g_ch, &crc_dst, src, seed, nbytes, NULL, cb_arg); CU_ASSERT(rc == -ENOMEM); TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link); /* accel submission OK. */ rc = spdk_accel_submit_crc32c(g_ch, &crc_dst, src, seed, nbytes, NULL, cb_arg); CU_ASSERT(rc == 0); CU_ASSERT(task.crc_dst == &crc_dst); CU_ASSERT(task.src == src); CU_ASSERT(task.s.iovcnt == 0); CU_ASSERT(task.seed == seed); CU_ASSERT(task.op_code == ACCEL_OPC_CRC32C); CU_ASSERT(task.nbytes == nbytes); expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete); TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link); CU_ASSERT(expected_accel_task == &task); } static void test_spdk_accel_submit_crc32cv(void) { uint32_t crc_dst; uint32_t seed = 0; uint32_t iov_cnt = 32; void *cb_arg = NULL; int rc; uint32_t i = 0; struct spdk_accel_task task; struct iovec iov[32]; struct spdk_accel_task *expected_accel_task = NULL; TAILQ_INIT(&g_accel_ch->task_pool); for (i = 0; i < iov_cnt; i++) { iov[i].iov_base = calloc(1, TEST_SUBMIT_SIZE); SPDK_CU_ASSERT_FATAL(iov[i].iov_base != NULL); iov[i].iov_len = TEST_SUBMIT_SIZE; } task.nbytes = TEST_SUBMIT_SIZE; TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link); /* accel submission OK. */ rc = spdk_accel_submit_crc32cv(g_ch, &crc_dst, iov, iov_cnt, seed, NULL, cb_arg); CU_ASSERT(rc == 0); CU_ASSERT(task.s.iovs == iov); CU_ASSERT(task.s.iovcnt == iov_cnt); CU_ASSERT(task.crc_dst == &crc_dst); CU_ASSERT(task.seed == seed); CU_ASSERT(task.op_code == ACCEL_OPC_CRC32C); CU_ASSERT(task.cb_arg == cb_arg); CU_ASSERT(task.nbytes == iov[0].iov_len); expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete); TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link); CU_ASSERT(expected_accel_task == &task); for (i = 0; i < iov_cnt; i++) { free(iov[i].iov_base); } } static void test_spdk_accel_submit_copy_crc32c(void) { const uint64_t nbytes = TEST_SUBMIT_SIZE; uint32_t crc_dst; uint8_t dst[TEST_SUBMIT_SIZE]; uint8_t src[TEST_SUBMIT_SIZE]; uint32_t seed = 0; void *cb_arg = NULL; int rc; struct spdk_accel_task task; struct spdk_accel_task *expected_accel_task = NULL; int flags = 0; TAILQ_INIT(&g_accel_ch->task_pool); /* Fail with no tasks on _get_task() */ rc = spdk_accel_submit_copy_crc32c(g_ch, dst, src, &crc_dst, seed, nbytes, flags, NULL, cb_arg); CU_ASSERT(rc == -ENOMEM); TAILQ_INSERT_TAIL(&g_accel_ch->task_pool, &task, link); /* accel submission OK. */ rc = spdk_accel_submit_copy_crc32c(g_ch, dst, src, &crc_dst, seed, nbytes, flags, NULL, cb_arg); CU_ASSERT(rc == 0); CU_ASSERT(task.dst == dst); CU_ASSERT(task.src == src); CU_ASSERT(task.crc_dst == &crc_dst); CU_ASSERT(task.s.iovcnt == 0); CU_ASSERT(task.seed == seed); CU_ASSERT(task.nbytes == nbytes); CU_ASSERT(task.flags == 0); CU_ASSERT(task.op_code == ACCEL_OPC_COPY_CRC32C); expected_accel_task = TAILQ_FIRST(&g_sw_ch->tasks_to_complete); TAILQ_REMOVE(&g_sw_ch->tasks_to_complete, expected_accel_task, link); CU_ASSERT(expected_accel_task == &task); } static void test_spdk_accel_module_find_by_name(void) { struct spdk_accel_module_if mod1 = {}; struct spdk_accel_module_if mod2 = {}; struct spdk_accel_module_if mod3 = {}; struct spdk_accel_module_if *accel_module = NULL; mod1.name = "ioat"; mod2.name = "idxd"; mod3.name = "software"; TAILQ_INIT(&spdk_accel_module_list); TAILQ_INSERT_TAIL(&spdk_accel_module_list, &mod1, tailq); TAILQ_INSERT_TAIL(&spdk_accel_module_list, &mod2, tailq); TAILQ_INSERT_TAIL(&spdk_accel_module_list, &mod3, tailq); /* Now let's find a valid engine */ accel_module = _module_find_by_name("ioat"); CU_ASSERT(accel_module != NULL); /* Try to find one that doesn't exist */ accel_module = _module_find_by_name("XXX"); CU_ASSERT(accel_module == NULL); } static void test_spdk_accel_module_register(void) { struct spdk_accel_module_if mod1 = {}; struct spdk_accel_module_if mod2 = {}; struct spdk_accel_module_if mod3 = {}; struct spdk_accel_module_if mod4 = {}; struct spdk_accel_module_if *accel_module = NULL; int i = 0; mod1.name = "ioat"; mod2.name = "idxd"; mod3.name = "software"; mod4.name = "nothing"; TAILQ_INIT(&spdk_accel_module_list); spdk_accel_module_list_add(&mod1); spdk_accel_module_list_add(&mod2); spdk_accel_module_list_add(&mod3); spdk_accel_module_list_add(&mod4); /* Now confirm they're in the right order. */ TAILQ_FOREACH(accel_module, &spdk_accel_module_list, tailq) { switch (i++) { case 0: CU_ASSERT(strcmp(accel_module->name, "software") == 0); break; case 1: CU_ASSERT(strcmp(accel_module->name, "ioat") == 0); break; case 2: CU_ASSERT(strcmp(accel_module->name, "idxd") == 0); break; case 3: CU_ASSERT(strcmp(accel_module->name, "nothing") == 0); break; default: CU_ASSERT(false); break; } } CU_ASSERT(i == 4); } struct ut_sequence { bool complete; int status; }; static void ut_sequence_step_cb(void *cb_arg) { int *completed = cb_arg; (*completed)++; } static void ut_sequence_complete_cb(void *cb_arg, int status) { struct ut_sequence *seq = cb_arg; seq->complete = true; seq->status = status; } static void test_sequence_fill_copy(void) { struct spdk_accel_sequence *seq = NULL; struct spdk_io_channel *ioch; struct ut_sequence ut_seq; char buf[4096], tmp[2][4096], expected[4096]; struct iovec src_iovs[2], dst_iovs[2]; int rc, completed; ioch = spdk_accel_get_io_channel(); SPDK_CU_ASSERT_FATAL(ioch != NULL); /* First check the simplest case - single task in a sequence */ memset(buf, 0, sizeof(buf)); memset(expected, 0xa5, sizeof(expected)); completed = 0; rc = spdk_accel_append_fill(&seq, ioch, buf, sizeof(buf), NULL, NULL, 0xa5, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); CU_ASSERT_EQUAL(completed, 0); ut_seq.complete = false; rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq); CU_ASSERT_EQUAL(rc, 0); poll_threads(); CU_ASSERT_EQUAL(completed, 1); CU_ASSERT(ut_seq.complete); CU_ASSERT_EQUAL(ut_seq.status, 0); CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0); /* Check a single copy operation */ memset(buf, 0, sizeof(buf)); memset(tmp[0], 0xa5, sizeof(tmp[0])); memset(expected, 0xa5, sizeof(expected)); completed = 0; seq = NULL; dst_iovs[0].iov_base = buf; dst_iovs[0].iov_len = sizeof(buf); src_iovs[0].iov_base = tmp[0]; src_iovs[0].iov_len = sizeof(tmp[0]); rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[0], 1, NULL, NULL, &src_iovs[0], 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); ut_seq.complete = false; rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq); CU_ASSERT_EQUAL(rc, 0); poll_threads(); CU_ASSERT_EQUAL(completed, 1); CU_ASSERT(ut_seq.complete); CU_ASSERT_EQUAL(ut_seq.status, 0); CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0); /* Check multiple fill operations */ memset(buf, 0, sizeof(buf)); memset(expected, 0xfe, 4096); memset(expected, 0xde, 2048); memset(expected, 0xa5, 1024); seq = NULL; completed = 0; rc = spdk_accel_append_fill(&seq, ioch, buf, 4096, NULL, NULL, 0xfe, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); rc = spdk_accel_append_fill(&seq, ioch, buf, 2048, NULL, NULL, 0xde, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); rc = spdk_accel_append_fill(&seq, ioch, buf, 1024, NULL, NULL, 0xa5, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); ut_seq.complete = false; rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq); CU_ASSERT_EQUAL(rc, 0); poll_threads(); CU_ASSERT_EQUAL(completed, 3); CU_ASSERT(ut_seq.complete); CU_ASSERT_EQUAL(ut_seq.status, 0); CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0); /* Check multiple copy operations */ memset(buf, 0, sizeof(buf)); memset(tmp[0], 0, sizeof(tmp[0])); memset(tmp[1], 0, sizeof(tmp[1])); memset(expected, 0xa5, sizeof(expected)); seq = NULL; completed = 0; rc = spdk_accel_append_fill(&seq, ioch, tmp[0], sizeof(tmp[0]), NULL, NULL, 0xa5, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); dst_iovs[0].iov_base = tmp[1]; dst_iovs[0].iov_len = sizeof(tmp[1]); src_iovs[0].iov_base = tmp[0]; src_iovs[0].iov_len = sizeof(tmp[0]); rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[0], 1, NULL, NULL, &src_iovs[0], 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); dst_iovs[1].iov_base = buf; dst_iovs[1].iov_len = sizeof(buf); src_iovs[1].iov_base = tmp[1]; src_iovs[1].iov_len = sizeof(tmp[1]); rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[1], 1, NULL, NULL, &src_iovs[1], 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); ut_seq.complete = false; rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq); CU_ASSERT_EQUAL(rc, 0); poll_threads(); CU_ASSERT_EQUAL(completed, 3); CU_ASSERT(ut_seq.complete); CU_ASSERT_EQUAL(ut_seq.status, 0); CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0); /* Check that adding a copy operation at the end will change destination buffer */ memset(buf, 0, sizeof(buf)); memset(tmp[0], 0, sizeof(tmp[0])); memset(expected, 0xa5, sizeof(buf)); seq = NULL; completed = 0; rc = spdk_accel_append_fill(&seq, ioch, tmp[0], sizeof(tmp[0]), NULL, NULL, 0xa5, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); dst_iovs[0].iov_base = buf; dst_iovs[0].iov_len = sizeof(buf); src_iovs[0].iov_base = tmp[0]; src_iovs[0].iov_len = sizeof(tmp[0]); rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[0], 1, NULL, NULL, &src_iovs[0], 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); ut_seq.complete = false; rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq); CU_ASSERT_EQUAL(rc, 0); poll_threads(); CU_ASSERT_EQUAL(completed, 2); CU_ASSERT(ut_seq.complete); CU_ASSERT_EQUAL(ut_seq.status, 0); CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0); /* Check that it's also possible to add copy operation at the beginning */ memset(buf, 0, sizeof(buf)); memset(tmp[0], 0xde, sizeof(tmp[0])); memset(tmp[1], 0, sizeof(tmp[1])); memset(expected, 0xa5, sizeof(expected)); seq = NULL; completed = 0; dst_iovs[0].iov_base = tmp[1]; dst_iovs[0].iov_len = sizeof(tmp[1]); src_iovs[0].iov_base = tmp[0]; src_iovs[0].iov_len = sizeof(tmp[0]); rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[0], 1, NULL, NULL, &src_iovs[0], 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); rc = spdk_accel_append_fill(&seq, ioch, tmp[1], sizeof(tmp[1]), NULL, NULL, 0xa5, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); dst_iovs[1].iov_base = buf; dst_iovs[1].iov_len = sizeof(buf); src_iovs[1].iov_base = tmp[1]; src_iovs[1].iov_len = sizeof(tmp[1]); rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[1], 1, NULL, NULL, &src_iovs[1], 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); ut_seq.complete = false; rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq); CU_ASSERT_EQUAL(rc, 0); poll_threads(); CU_ASSERT_EQUAL(completed, 3); CU_ASSERT(ut_seq.complete); CU_ASSERT_EQUAL(ut_seq.status, 0); CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0); spdk_put_io_channel(ioch); poll_threads(); } static void test_sequence_abort(void) { struct spdk_accel_sequence *seq = NULL; struct spdk_io_channel *ioch; char buf[4096], tmp[2][4096], expected[4096]; struct iovec src_iovs[2], dst_iovs[2]; int rc, completed; ioch = spdk_accel_get_io_channel(); SPDK_CU_ASSERT_FATAL(ioch != NULL); /* Check that aborting a sequence calls operation's callback, the operation is not executed * and the sequence is freed */ memset(buf, 0, sizeof(buf)); memset(expected, 0, sizeof(buf)); completed = 0; seq = NULL; rc = spdk_accel_append_fill(&seq, ioch, buf, sizeof(buf), NULL, NULL, 0xa5, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); spdk_accel_sequence_abort(seq); CU_ASSERT_EQUAL(completed, 1); CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0); /* Check sequence with multiple operations */ memset(buf, 0, sizeof(buf)); memset(expected, 0, sizeof(buf)); completed = 0; seq = NULL; dst_iovs[0].iov_base = tmp[1]; dst_iovs[0].iov_len = sizeof(tmp[1]); src_iovs[0].iov_base = tmp[0]; src_iovs[0].iov_len = sizeof(tmp[0]); rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[0], 1, NULL, NULL, &src_iovs[0], 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); rc = spdk_accel_append_fill(&seq, ioch, tmp[1], 4096, NULL, NULL, 0xa5, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); rc = spdk_accel_append_fill(&seq, ioch, tmp[1], 2048, NULL, NULL, 0xde, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); dst_iovs[1].iov_base = buf; dst_iovs[1].iov_len = sizeof(buf); src_iovs[1].iov_base = tmp[1]; src_iovs[1].iov_len = sizeof(tmp[1]); rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[1], 1, NULL, NULL, &src_iovs[1], 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); spdk_accel_sequence_abort(seq); CU_ASSERT_EQUAL(completed, 4); CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0); /* This should be a no-op */ spdk_accel_sequence_abort(NULL); spdk_put_io_channel(ioch); poll_threads(); } static void test_sequence_append_error(void) { struct spdk_accel_sequence *seq = NULL; struct spdk_io_channel *ioch; struct accel_io_channel *accel_ch; struct iovec src_iovs, dst_iovs; char buf[4096]; TAILQ_HEAD(, spdk_accel_task) tasks = TAILQ_HEAD_INITIALIZER(tasks); TAILQ_HEAD(, spdk_accel_sequence) seqs = TAILQ_HEAD_INITIALIZER(seqs); int rc; ioch = spdk_accel_get_io_channel(); SPDK_CU_ASSERT_FATAL(ioch != NULL); accel_ch = spdk_io_channel_get_ctx(ioch); /* Check that append fails and no sequence object is allocated when there are no more free * tasks */ TAILQ_SWAP(&tasks, &accel_ch->task_pool, spdk_accel_task, link); rc = spdk_accel_append_fill(&seq, ioch, buf, sizeof(buf), NULL, NULL, 0xa5, 0, ut_sequence_step_cb, NULL); CU_ASSERT_EQUAL(rc, -ENOMEM); CU_ASSERT_PTR_NULL(seq); dst_iovs.iov_base = buf; dst_iovs.iov_len = 2048; src_iovs.iov_base = &buf[2048]; src_iovs.iov_len = 2048; rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs, 1, NULL, NULL, &src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, NULL); CU_ASSERT_EQUAL(rc, -ENOMEM); CU_ASSERT_PTR_NULL(seq); dst_iovs.iov_base = buf; dst_iovs.iov_len = 2048; src_iovs.iov_base = &buf[2048]; src_iovs.iov_len = 2048; rc = spdk_accel_append_decompress(&seq, ioch, &dst_iovs, 1, NULL, NULL, &src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, NULL); CU_ASSERT_EQUAL(rc, -ENOMEM); CU_ASSERT_PTR_NULL(seq); /* Check that the same happens when the sequence queue is empty */ TAILQ_SWAP(&tasks, &accel_ch->task_pool, spdk_accel_task, link); TAILQ_SWAP(&seqs, &accel_ch->seq_pool, spdk_accel_sequence, link); rc = spdk_accel_append_fill(&seq, ioch, buf, sizeof(buf), NULL, NULL, 0xa5, 0, ut_sequence_step_cb, NULL); CU_ASSERT_EQUAL(rc, -ENOMEM); CU_ASSERT_PTR_NULL(seq); dst_iovs.iov_base = buf; dst_iovs.iov_len = 2048; src_iovs.iov_base = &buf[2048]; src_iovs.iov_len = 2048; rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs, 1, NULL, NULL, &src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, NULL); CU_ASSERT_EQUAL(rc, -ENOMEM); CU_ASSERT_PTR_NULL(seq); dst_iovs.iov_base = buf; dst_iovs.iov_len = 2048; src_iovs.iov_base = &buf[2048]; src_iovs.iov_len = 2048; rc = spdk_accel_append_decompress(&seq, ioch, &dst_iovs, 1, NULL, NULL, &src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, NULL); CU_ASSERT_EQUAL(rc, -ENOMEM); CU_ASSERT_PTR_NULL(seq); TAILQ_SWAP(&tasks, &accel_ch->task_pool, spdk_accel_task, link); spdk_put_io_channel(ioch); poll_threads(); } struct ut_sequence_operation { int complete_status; int submit_status; }; static struct ut_sequence_operation g_seq_operations[ACCEL_OPC_LAST]; static int ut_sequnce_submit_tasks(struct spdk_io_channel *ch, struct spdk_accel_task *task) { struct ut_sequence_operation *op = &g_seq_operations[task->op_code]; if (op->submit_status != 0) { return op->submit_status; } spdk_accel_task_complete(task, op->complete_status); return 0; } static void test_sequence_completion_error(void) { struct spdk_accel_sequence *seq = NULL; struct spdk_io_channel *ioch; struct ut_sequence ut_seq; struct iovec src_iovs, dst_iovs; char buf[4096], tmp[4096]; struct spdk_accel_module_if *modules[ACCEL_OPC_LAST]; int i, rc, completed; ioch = spdk_accel_get_io_channel(); SPDK_CU_ASSERT_FATAL(ioch != NULL); /* Override the submit_tasks function */ g_module.submit_tasks = ut_sequnce_submit_tasks; for (i = 0; i < ACCEL_OPC_LAST; ++i) { modules[i] = g_modules_opc[i]; g_modules_opc[i] = &g_module; } memset(buf, 0, sizeof(buf)); memset(tmp, 0, sizeof(tmp)); /* Check that if the first operation completes with an error, the whole sequence is * completed with that error and that all operations' completion callbacks are executed */ g_seq_operations[ACCEL_OPC_FILL].complete_status = -E2BIG; completed = 0; seq = NULL; rc = spdk_accel_append_fill(&seq, ioch, tmp, sizeof(tmp), NULL, NULL, 0xa5, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); dst_iovs.iov_base = buf; dst_iovs.iov_len = sizeof(buf); src_iovs.iov_base = tmp; src_iovs.iov_len = sizeof(tmp); rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs, 1, NULL, NULL, &src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); ut_seq.complete = false; rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq); CU_ASSERT_EQUAL(rc, 0); poll_threads(); CU_ASSERT_EQUAL(completed, 2); CU_ASSERT_EQUAL(ut_seq.status, -E2BIG); /* Check the same with a second operation in the sequence */ g_seq_operations[ACCEL_OPC_COPY].complete_status = -EACCES; g_seq_operations[ACCEL_OPC_FILL].complete_status = 0; completed = 0; seq = NULL; rc = spdk_accel_append_fill(&seq, ioch, tmp, sizeof(tmp), NULL, NULL, 0xa5, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); dst_iovs.iov_base = buf; dst_iovs.iov_len = sizeof(buf); src_iovs.iov_base = tmp; src_iovs.iov_len = sizeof(tmp); rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs, 1, NULL, NULL, &src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); ut_seq.complete = false; rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq); CU_ASSERT_EQUAL(rc, 0); poll_threads(); CU_ASSERT_EQUAL(completed, 2); CU_ASSERT_EQUAL(ut_seq.status, -EACCES); g_seq_operations[ACCEL_OPC_COPY].complete_status = 0; g_seq_operations[ACCEL_OPC_FILL].complete_status = 0; /* Check submission failure of the first operation */ g_seq_operations[ACCEL_OPC_FILL].submit_status = -EADDRINUSE; completed = 0; seq = NULL; rc = spdk_accel_append_fill(&seq, ioch, tmp, sizeof(tmp), NULL, NULL, 0xa5, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); dst_iovs.iov_base = buf; dst_iovs.iov_len = sizeof(buf); src_iovs.iov_base = tmp; src_iovs.iov_len = sizeof(tmp); rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs, 1, NULL, NULL, &src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); ut_seq.complete = false; rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq); CU_ASSERT_EQUAL(rc, 0); poll_threads(); CU_ASSERT_EQUAL(completed, 2); CU_ASSERT_EQUAL(ut_seq.status, -EADDRINUSE); /* Check the same with a second operation */ g_seq_operations[ACCEL_OPC_COPY].submit_status = -EADDRNOTAVAIL; g_seq_operations[ACCEL_OPC_FILL].submit_status = 0; completed = 0; seq = NULL; rc = spdk_accel_append_fill(&seq, ioch, tmp, sizeof(tmp), NULL, NULL, 0xa5, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); dst_iovs.iov_base = buf; dst_iovs.iov_len = sizeof(buf); src_iovs.iov_base = tmp; src_iovs.iov_len = sizeof(tmp); rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs, 1, NULL, NULL, &src_iovs, 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); ut_seq.complete = false; rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq); CU_ASSERT_EQUAL(rc, 0); poll_threads(); CU_ASSERT_EQUAL(completed, 2); CU_ASSERT_EQUAL(ut_seq.status, -EADDRNOTAVAIL); /* Cleanup module pointers to make subsequent tests work correctly */ for (i = 0; i < ACCEL_OPC_LAST; ++i) { g_modules_opc[i] = modules[i]; } spdk_put_io_channel(ioch); poll_threads(); } #ifdef SPDK_CONFIG_ISAL static void ut_compress_cb(void *cb_arg, int status) { int *completed = cb_arg; CU_ASSERT_EQUAL(status, 0); *completed = 1; } static void test_sequence_decompress(void) { struct spdk_accel_sequence *seq = NULL; struct spdk_io_channel *ioch; struct ut_sequence ut_seq; char buf[4096], tmp[2][4096], expected[4096]; struct iovec src_iovs[2], dst_iovs[2]; uint32_t compressed_size; int rc, completed = 0; ioch = spdk_accel_get_io_channel(); SPDK_CU_ASSERT_FATAL(ioch != NULL); memset(expected, 0xa5, sizeof(expected)); src_iovs[0].iov_base = expected; src_iovs[0].iov_len = sizeof(expected); rc = spdk_accel_submit_compress(ioch, tmp[0], sizeof(tmp[0]), &src_iovs[0], 1, &compressed_size, 0, ut_compress_cb, &completed); CU_ASSERT_EQUAL(rc, 0); while (!completed) { poll_threads(); } /* Check a single decompress operation in a sequence */ seq = NULL; completed = 0; dst_iovs[0].iov_base = buf; dst_iovs[0].iov_len = sizeof(buf); src_iovs[0].iov_base = tmp[0]; src_iovs[0].iov_len = compressed_size; rc = spdk_accel_append_decompress(&seq, ioch, &dst_iovs[0], 1, NULL, NULL, &src_iovs[0], 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); ut_seq.complete = false; rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq); CU_ASSERT_EQUAL(rc, 0); poll_threads(); CU_ASSERT_EQUAL(completed, 1); CU_ASSERT(ut_seq.complete); CU_ASSERT_EQUAL(ut_seq.status, 0); CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0); /* Put the decompress operation in the middle of a sequence with a copy operation at the * beginning and a fill at the end modifying the first 2048B of the buffer. */ memset(expected, 0xfe, 2048); memset(buf, 0, sizeof(buf)); seq = NULL; completed = 0; dst_iovs[0].iov_base = tmp[1]; dst_iovs[0].iov_len = compressed_size; src_iovs[0].iov_base = tmp[0]; src_iovs[0].iov_len = compressed_size; rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[0], 1, NULL, NULL, &src_iovs[0], 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); dst_iovs[1].iov_base = buf; dst_iovs[1].iov_len = sizeof(buf); src_iovs[1].iov_base = tmp[1]; src_iovs[1].iov_len = compressed_size; rc = spdk_accel_append_decompress(&seq, ioch, &dst_iovs[1], 1, NULL, NULL, &src_iovs[1], 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); rc = spdk_accel_append_fill(&seq, ioch, buf, 2048, NULL, NULL, 0xfe, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); ut_seq.complete = false; rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq); CU_ASSERT_EQUAL(rc, 0); poll_threads(); CU_ASSERT_EQUAL(completed, 3); CU_ASSERT(ut_seq.complete); CU_ASSERT_EQUAL(ut_seq.status, 0); CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0); /* Check sequence with decompress at the beginning: decompress -> copy */ memset(expected, 0xa5, sizeof(expected)); memset(buf, 0, sizeof(buf)); seq = NULL; completed = 0; dst_iovs[0].iov_base = tmp[1]; dst_iovs[0].iov_len = sizeof(tmp[1]); src_iovs[0].iov_base = tmp[0]; src_iovs[0].iov_len = compressed_size; rc = spdk_accel_append_decompress(&seq, ioch, &dst_iovs[0], 1, NULL, NULL, &src_iovs[0], 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); dst_iovs[1].iov_base = buf; dst_iovs[1].iov_len = sizeof(buf); src_iovs[1].iov_base = tmp[1]; src_iovs[1].iov_len = sizeof(tmp[1]); rc = spdk_accel_append_copy(&seq, ioch, &dst_iovs[1], 1, NULL, NULL, &src_iovs[1], 1, NULL, NULL, 0, ut_sequence_step_cb, &completed); CU_ASSERT_EQUAL(rc, 0); ut_seq.complete = false; rc = spdk_accel_sequence_finish(seq, ut_sequence_complete_cb, &ut_seq); CU_ASSERT_EQUAL(rc, 0); poll_threads(); CU_ASSERT_EQUAL(completed, 2); CU_ASSERT(ut_seq.complete); CU_ASSERT_EQUAL(ut_seq.status, 0); CU_ASSERT_EQUAL(memcmp(buf, expected, sizeof(buf)), 0); spdk_put_io_channel(ioch); poll_threads(); } #endif static int test_sequence_setup(void) { int rc; allocate_cores(1); allocate_threads(1); set_thread(0); rc = spdk_accel_initialize(); if (rc != 0) { CU_ASSERT(false); return -1; } return 0; } static void accel_finish_cb(void *cb_arg) { bool *done = cb_arg; *done = true; } static int test_sequence_cleanup(void) { bool done = false; spdk_accel_finish(accel_finish_cb, &done); while (!done) { poll_threads(); } free_threads(); free_cores(); return 0; } int main(int argc, char **argv) { CU_pSuite suite = NULL, seq_suite; unsigned int num_failures; CU_set_error_action(CUEA_ABORT); CU_initialize_registry(); /* Sequence tests require accel to be initialized normally, so run them before the other * tests which register accel modules which aren't fully implemented, causing accel * initialization to fail. */ seq_suite = CU_add_suite("accel_sequence", test_sequence_setup, test_sequence_cleanup); CU_ADD_TEST(seq_suite, test_sequence_fill_copy); CU_ADD_TEST(seq_suite, test_sequence_abort); CU_ADD_TEST(seq_suite, test_sequence_append_error); CU_ADD_TEST(seq_suite, test_sequence_completion_error); #ifdef SPDK_CONFIG_ISAL /* accel_sw requires isa-l for compression */ CU_ADD_TEST(seq_suite, test_sequence_decompress); #endif suite = CU_add_suite("accel", test_setup, test_cleanup); CU_ADD_TEST(suite, test_spdk_accel_task_complete); CU_ADD_TEST(suite, test_get_task); CU_ADD_TEST(suite, test_spdk_accel_submit_copy); CU_ADD_TEST(suite, test_spdk_accel_submit_dualcast); CU_ADD_TEST(suite, test_spdk_accel_submit_compare); CU_ADD_TEST(suite, test_spdk_accel_submit_fill); CU_ADD_TEST(suite, test_spdk_accel_submit_crc32c); CU_ADD_TEST(suite, test_spdk_accel_submit_crc32cv); CU_ADD_TEST(suite, test_spdk_accel_submit_copy_crc32c); CU_ADD_TEST(suite, test_spdk_accel_module_find_by_name); CU_ADD_TEST(suite, test_spdk_accel_module_register); CU_basic_set_mode(CU_BRM_VERBOSE); CU_basic_run_tests(); num_failures = CU_get_number_of_failures(); CU_cleanup_registry(); return num_failures; }