Spdk/module/bdev/nvme/bdev_nvme.c
Shuhei Matsumoto 2ee6ab36f9 bdev/nvme: bdev_nvme_reset() follow spdk_nvme_ctrlr_reset() about return value
Previously bdev_nvme_reset() returned -EBUSY if ctrlr is being
destructed and returned -EAGAIN if ctrlr is being reset.

These did not match what spdk_nvme_ctrlr_reset() returned.

Reset operation will be more important than current when multipath
is supported and reset operation is made asynchronous.

Hence change bdev_nvme_reset() to follow spdk_nvme_ctrlr_reset().
bdev_nvme_reset() returns -ENXIO if ctrlr is being destructed and
returns -EBUSY if ctrlr is being reset.

Additionally change the return value of bdev_nvme_failover()
accordingly. After the change bdev_nvme_failover() returns -ENXIO
if being destructed and returns -EBUSY if ctrlr is being reset.

Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Change-Id: Ie2c6f8601050b1043d83de9cf01490751784e4e5
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/8859
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com>
Community-CI: Mellanox Build Bot
Reviewed-by: Konrad Sztyber <konrad.sztyber@gmail.com>
Reviewed-by: Paul Luse <paul.e.luse@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Krzysztof Karas <krzysztof.karas@intel.com>
Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
2021-09-14 07:30:10 +00:00

4055 lines
107 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
* Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "bdev_nvme.h"
#include "spdk/accel_engine.h"
#include "spdk/config.h"
#include "spdk/endian.h"
#include "spdk/bdev.h"
#include "spdk/json.h"
#include "spdk/likely.h"
#include "spdk/nvme.h"
#include "spdk/nvme_ocssd.h"
#include "spdk/nvme_zns.h"
#include "spdk/opal.h"
#include "spdk/thread.h"
#include "spdk/string.h"
#include "spdk/util.h"
#include "spdk/bdev_module.h"
#include "spdk/log.h"
#define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
#define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS (10000)
static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
struct nvme_bdev_io {
/** array of iovecs to transfer. */
struct iovec *iovs;
/** Number of iovecs in iovs array. */
int iovcnt;
/** Current iovec position. */
int iovpos;
/** Offset in current iovec. */
uint32_t iov_offset;
/** array of iovecs to transfer. */
struct iovec *fused_iovs;
/** Number of iovecs in iovs array. */
int fused_iovcnt;
/** Current iovec position. */
int fused_iovpos;
/** Offset in current iovec. */
uint32_t fused_iov_offset;
/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
struct spdk_nvme_cpl cpl;
/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
/** Originating thread */
struct spdk_thread *orig_thread;
/** Keeps track if first of fused commands was submitted */
bool first_fused_submitted;
/** Temporary pointer to zone report buffer */
struct spdk_nvme_zns_zone_report *zone_report_buf;
/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
uint64_t handled_zones;
};
struct nvme_probe_ctx {
size_t count;
struct spdk_nvme_transport_id trids[NVME_MAX_CONTROLLERS];
struct spdk_nvme_host_id hostids[NVME_MAX_CONTROLLERS];
const char *names[NVME_MAX_CONTROLLERS];
uint32_t prchk_flags[NVME_MAX_CONTROLLERS];
const char *hostnqn;
};
struct nvme_probe_skip_entry {
struct spdk_nvme_transport_id trid;
TAILQ_ENTRY(nvme_probe_skip_entry) tailq;
};
/* All the controllers deleted by users via RPC are skipped by hotplug monitor */
static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
g_skipped_nvme_ctrlrs);
static struct spdk_bdev_nvme_opts g_opts = {
.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
.timeout_us = 0,
.timeout_admin_us = 0,
.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
.retry_count = 4,
.arbitration_burst = 0,
.low_priority_weight = 0,
.medium_priority_weight = 0,
.high_priority_weight = 0,
.nvme_adminq_poll_period_us = 10000ULL,
.nvme_ioq_poll_period_us = 0,
.io_queue_requests = 0,
.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
};
#define NVME_HOTPLUG_POLL_PERIOD_MAX 10000000ULL
#define NVME_HOTPLUG_POLL_PERIOD_DEFAULT 100000ULL
static int g_hot_insert_nvme_controller_index = 0;
static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
static bool g_nvme_hotplug_enabled = false;
static struct spdk_thread *g_bdev_nvme_init_thread;
static struct spdk_poller *g_hotplug_poller;
static struct spdk_poller *g_hotplug_probe_poller;
static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
struct nvme_async_probe_ctx *ctx);
static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
struct nvme_async_probe_ctx *ctx);
static int bdev_nvme_library_init(void);
static void bdev_nvme_library_fini(void);
static int bdev_nvme_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
static int bdev_nvme_no_pi_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba);
static int bdev_nvme_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
static int bdev_nvme_zone_appendv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count,
uint64_t zslba, uint32_t flags);
static int bdev_nvme_comparev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags);
static int bdev_nvme_comparev_and_writev(struct spdk_nvme_ns *ns,
struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags);
static int bdev_nvme_get_zone_info(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
struct spdk_bdev_zone_info *info);
static int bdev_nvme_zone_management(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, uint64_t zone_id,
enum spdk_bdev_zone_action action);
static int bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
static int bdev_nvme_io_passthru(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
static int bdev_nvme_io_passthru_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len);
static int bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
static int bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove);
static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
struct spdk_nvme_qpair *
bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
{
struct nvme_ctrlr_channel *ctrlr_ch;
assert(ctrlr_io_ch != NULL);
ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
return ctrlr_ch->qpair;
}
static int
bdev_nvme_get_ctx_size(void)
{
return sizeof(struct nvme_bdev_io);
}
static struct spdk_bdev_module nvme_if = {
.name = "nvme",
.async_fini = true,
.module_init = bdev_nvme_library_init,
.module_fini = bdev_nvme_library_fini,
.config_json = bdev_nvme_config_json,
.get_ctx_size = bdev_nvme_get_ctx_size,
};
SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
struct nvme_ctrlrs g_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_ctrlrs);
pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
bool g_bdev_nvme_module_finish;
struct nvme_ns *
nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
{
assert(nsid > 0);
assert(nsid <= nvme_ctrlr->num_ns);
if (nsid == 0 || nsid > nvme_ctrlr->num_ns) {
return NULL;
}
return nvme_ctrlr->namespaces[nsid - 1];
}
struct nvme_ns *
nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
{
uint32_t i;
for (i = 0; i < nvme_ctrlr->num_ns; i++) {
if (nvme_ctrlr->namespaces[i] != NULL) {
return nvme_ctrlr->namespaces[i];
}
}
return NULL;
}
struct nvme_ns *
nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
{
uint32_t i;
if (ns == NULL) {
return NULL;
}
/* ns->id is a 1's based value and we want to start at the next
* entry in this array, so we start at ns->id and don't subtract to
* convert to 0's based. */
for (i = ns->id; i < nvme_ctrlr->num_ns; i++) {
if (nvme_ctrlr->namespaces[i] != NULL) {
return nvme_ctrlr->namespaces[i];
}
}
return NULL;
}
static struct nvme_ctrlr *
nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
{
struct nvme_ctrlr *nvme_ctrlr;
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(nvme_ctrlr, &g_nvme_ctrlrs, tailq) {
if (spdk_nvme_transport_id_compare(trid, nvme_ctrlr->connected_trid) == 0) {
break;
}
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return nvme_ctrlr;
}
struct nvme_ctrlr *
nvme_ctrlr_get_by_name(const char *name)
{
struct nvme_ctrlr *nvme_ctrlr;
if (name == NULL) {
return NULL;
}
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(nvme_ctrlr, &g_nvme_ctrlrs, tailq) {
if (strcmp(name, nvme_ctrlr->name) == 0) {
break;
}
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return nvme_ctrlr;
}
void
nvme_ctrlr_for_each(nvme_ctrlr_for_each_fn fn, void *ctx)
{
struct nvme_ctrlr *nvme_ctrlr;
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(nvme_ctrlr, &g_nvme_ctrlrs, tailq) {
fn(nvme_ctrlr, ctx);
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
}
void
nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
{
const char *trtype_str;
const char *adrfam_str;
trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
if (trtype_str) {
spdk_json_write_named_string(w, "trtype", trtype_str);
}
adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
if (adrfam_str) {
spdk_json_write_named_string(w, "adrfam", adrfam_str);
}
if (trid->traddr[0] != '\0') {
spdk_json_write_named_string(w, "traddr", trid->traddr);
}
if (trid->trsvcid[0] != '\0') {
spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
}
if (trid->subnqn[0] != '\0') {
spdk_json_write_named_string(w, "subnqn", trid->subnqn);
}
}
static void
nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
{
struct nvme_ctrlr_trid *trid, *tmp_trid;
uint32_t i;
free(nvme_ctrlr->copied_ana_desc);
spdk_free(nvme_ctrlr->ana_log_page);
if (nvme_ctrlr->opal_dev) {
spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
nvme_ctrlr->opal_dev = NULL;
}
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_REMOVE(&g_nvme_ctrlrs, nvme_ctrlr, tailq);
pthread_mutex_unlock(&g_bdev_nvme_mutex);
spdk_nvme_detach(nvme_ctrlr->ctrlr);
spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
free(nvme_ctrlr->name);
for (i = 0; i < nvme_ctrlr->num_ns; i++) {
free(nvme_ctrlr->namespaces[i]);
}
TAILQ_FOREACH_SAFE(trid, &nvme_ctrlr->trids, link, tmp_trid) {
TAILQ_REMOVE(&nvme_ctrlr->trids, trid, link);
free(trid);
}
pthread_mutex_destroy(&nvme_ctrlr->mutex);
free(nvme_ctrlr->namespaces);
free(nvme_ctrlr);
}
static void
nvme_ctrlr_unregister_cb(void *io_device)
{
struct nvme_ctrlr *nvme_ctrlr = io_device;
nvme_ctrlr_delete(nvme_ctrlr);
pthread_mutex_lock(&g_bdev_nvme_mutex);
if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_ctrlrs)) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
spdk_io_device_unregister(&g_nvme_ctrlrs, NULL);
spdk_bdev_module_fini_done();
return;
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
}
static void
nvme_ctrlr_unregister(void *ctx)
{
struct nvme_ctrlr *nvme_ctrlr = ctx;
spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
}
static void
nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
{
pthread_mutex_lock(&nvme_ctrlr->mutex);
assert(nvme_ctrlr->ref > 0);
nvme_ctrlr->ref--;
if (nvme_ctrlr->ref > 0 || !nvme_ctrlr->destruct ||
nvme_ctrlr->resetting) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return;
}
pthread_mutex_unlock(&nvme_ctrlr->mutex);
nvme_ctrlr_unregister(nvme_ctrlr);
}
static int
bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
{
struct nvme_bdev_channel *nbdev_ch = ctx_buf;
struct nvme_bdev *nbdev = io_device;
struct nvme_ns *nvme_ns;
struct spdk_io_channel *ch;
nvme_ns = nbdev->nvme_ns;
ch = spdk_get_io_channel(nvme_ns->ctrlr);
if (ch == NULL) {
SPDK_ERRLOG("Failed to alloc io_channel.\n");
return -ENOMEM;
}
nbdev_ch->ctrlr_ch = spdk_io_channel_get_ctx(ch);
nbdev_ch->nvme_ns = nvme_ns;
return 0;
}
static void
bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
{
struct nvme_bdev_channel *nbdev_ch = ctx_buf;
struct spdk_io_channel *ch;
ch = spdk_io_channel_from_ctx(nbdev_ch->ctrlr_ch);
spdk_put_io_channel(ch);
}
static inline bool
bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch,
struct spdk_nvme_ns **_ns, struct spdk_nvme_qpair **_qpair)
{
if (spdk_unlikely(nbdev_ch->ctrlr_ch->qpair == NULL)) {
/* The device is currently resetting. */
return false;
}
*_ns = nbdev_ch->nvme_ns->ns;
*_qpair = nbdev_ch->ctrlr_ch->qpair;
return true;
}
static inline bool
bdev_nvme_find_admin_path(struct nvme_bdev_channel *nbdev_ch,
struct nvme_ctrlr **_nvme_ctrlr)
{
*_nvme_ctrlr = nbdev_ch->ctrlr_ch->ctrlr;
return true;
}
static inline void
bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
const struct spdk_nvme_cpl *cpl)
{
spdk_bdev_io_complete_nvme_status(spdk_bdev_io_from_ctx(bio), cpl->cdw0,
cpl->status.sct, cpl->status.sc);
}
static inline void
bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
{
enum spdk_bdev_io_status io_status;
if (rc == 0) {
io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
} else if (rc == -ENOMEM) {
io_status = SPDK_BDEV_IO_STATUS_NOMEM;
} else {
io_status = SPDK_BDEV_IO_STATUS_FAILED;
}
spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), io_status);
}
static void
bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "qpair %p is disconnected, attempting reconnect.\n", qpair);
/*
* Currently, just try to reconnect indefinitely. If we are doing a reset, the reset will
* reconnect a qpair and we will stop getting a callback for this one.
*/
rc = spdk_nvme_ctrlr_reconnect_io_qpair(qpair);
if (rc != 0) {
SPDK_DEBUGLOG(bdev_nvme, "Failed to reconnect to qpair %p, errno %d\n", qpair, -rc);
}
}
static int
bdev_nvme_poll(void *arg)
{
struct nvme_poll_group *group = arg;
int64_t num_completions;
if (group->collect_spin_stat && group->start_ticks == 0) {
group->start_ticks = spdk_get_ticks();
}
num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
bdev_nvme_disconnected_qpair_cb);
if (group->collect_spin_stat) {
if (num_completions > 0) {
if (group->end_ticks != 0) {
group->spin_ticks += (group->end_ticks - group->start_ticks);
group->end_ticks = 0;
}
group->start_ticks = 0;
} else {
group->end_ticks = spdk_get_ticks();
}
}
return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
}
static int
bdev_nvme_poll_adminq(void *arg)
{
int32_t rc;
struct nvme_ctrlr *nvme_ctrlr = arg;
assert(nvme_ctrlr != NULL);
rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
if (rc < 0) {
bdev_nvme_failover(nvme_ctrlr, false);
}
return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
}
static void
_bdev_nvme_unregister_dev_cb(void *io_device)
{
struct nvme_bdev *nvme_disk = io_device;
free(nvme_disk->disk.name);
free(nvme_disk);
}
static int
bdev_nvme_destruct(void *ctx)
{
struct nvme_bdev *nvme_disk = ctx;
struct nvme_ns *nvme_ns = nvme_disk->nvme_ns;
pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
nvme_ns->bdev = NULL;
assert(nvme_ns->id > 0);
if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
nvme_ctrlr_release(nvme_ns->ctrlr);
free(nvme_ns);
} else {
pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
}
spdk_io_device_unregister(nvme_disk, _bdev_nvme_unregister_dev_cb);
return 0;
}
static int
bdev_nvme_flush(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, uint64_t offset, uint64_t nbytes)
{
bdev_nvme_io_complete(bio, 0);
return 0;
}
static int
bdev_nvme_create_qpair(struct nvme_ctrlr_channel *ctrlr_ch)
{
struct spdk_nvme_ctrlr *ctrlr = ctrlr_ch->ctrlr->ctrlr;
struct spdk_nvme_io_qpair_opts opts;
struct spdk_nvme_qpair *qpair;
int rc;
spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
opts.delay_cmd_submit = g_opts.delay_cmd_submit;
opts.create_only = true;
opts.async_mode = true;
opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
g_opts.io_queue_requests = opts.io_queue_requests;
qpair = spdk_nvme_ctrlr_alloc_io_qpair(ctrlr, &opts, sizeof(opts));
if (qpair == NULL) {
return -1;
}
assert(ctrlr_ch->group != NULL);
rc = spdk_nvme_poll_group_add(ctrlr_ch->group->group, qpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
goto err;
}
rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to connect I/O qpair.\n");
goto err;
}
ctrlr_ch->qpair = qpair;
return 0;
err:
spdk_nvme_ctrlr_free_io_qpair(qpair);
return rc;
}
static void
bdev_nvme_destroy_qpair(struct nvme_ctrlr_channel *ctrlr_ch)
{
if (ctrlr_ch->qpair != NULL) {
spdk_nvme_ctrlr_free_io_qpair(ctrlr_ch->qpair);
ctrlr_ch->qpair = NULL;
}
}
static void
_bdev_nvme_check_pending_destruct(struct nvme_ctrlr *nvme_ctrlr)
{
pthread_mutex_lock(&nvme_ctrlr->mutex);
if (nvme_ctrlr->destruct_after_reset) {
assert(nvme_ctrlr->ref == 0 && nvme_ctrlr->destruct);
pthread_mutex_unlock(&nvme_ctrlr->mutex);
spdk_thread_send_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister,
nvme_ctrlr);
} else {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
}
}
static void
bdev_nvme_check_pending_destruct(struct spdk_io_channel_iter *i, int status)
{
struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
_bdev_nvme_check_pending_destruct(nvme_ctrlr);
}
static void
_bdev_nvme_complete_pending_resets(struct nvme_ctrlr_channel *ctrlr_ch,
enum spdk_bdev_io_status status)
{
struct spdk_bdev_io *bdev_io;
while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
spdk_bdev_io_complete(bdev_io, status);
}
}
static void
bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
_bdev_nvme_complete_pending_resets(ctrlr_ch, SPDK_BDEV_IO_STATUS_SUCCESS);
spdk_for_each_channel_continue(i, 0);
}
static void
bdev_nvme_abort_pending_resets(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
_bdev_nvme_complete_pending_resets(ctrlr_ch, SPDK_BDEV_IO_STATUS_FAILED);
spdk_for_each_channel_continue(i, 0);
}
static void
bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, int rc)
{
struct nvme_ctrlr_trid *curr_trid;
bdev_nvme_reset_cb reset_cb_fn = nvme_ctrlr->reset_cb_fn;
void *reset_cb_arg = nvme_ctrlr->reset_cb_arg;
nvme_ctrlr->reset_cb_fn = NULL;
nvme_ctrlr->reset_cb_arg = NULL;
if (rc) {
SPDK_ERRLOG("Resetting controller failed.\n");
} else {
SPDK_NOTICELOG("Resetting controller successful.\n");
}
pthread_mutex_lock(&nvme_ctrlr->mutex);
nvme_ctrlr->resetting = false;
nvme_ctrlr->failover_in_progress = false;
curr_trid = TAILQ_FIRST(&nvme_ctrlr->trids);
assert(curr_trid != NULL);
assert(&curr_trid->trid == nvme_ctrlr->connected_trid);
curr_trid->is_failed = rc != 0 ? true : false;
if (nvme_ctrlr->ref == 0 && nvme_ctrlr->destruct) {
/* Destruct ctrlr after clearing pending resets. */
nvme_ctrlr->destruct_after_reset = true;
}
pthread_mutex_unlock(&nvme_ctrlr->mutex);
if (reset_cb_fn) {
reset_cb_fn(reset_cb_arg, rc);
}
/* Make sure we clear any pending resets before returning. */
spdk_for_each_channel(nvme_ctrlr,
rc == 0 ? bdev_nvme_complete_pending_resets :
bdev_nvme_abort_pending_resets,
NULL,
bdev_nvme_check_pending_destruct);
}
static void
bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
{
struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
bdev_nvme_reset_complete(nvme_ctrlr, status);
}
static void
bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
int rc;
rc = bdev_nvme_create_qpair(ctrlr_ch);
spdk_for_each_channel_continue(i, rc);
}
static int
bdev_nvme_ctrlr_reset_poll(void *arg)
{
struct nvme_ctrlr *nvme_ctrlr = arg;
int rc;
rc = spdk_nvme_ctrlr_reset_poll_async(nvme_ctrlr->reset_ctx);
if (rc == -EAGAIN) {
return SPDK_POLLER_BUSY;
}
spdk_poller_unregister(&nvme_ctrlr->reset_poller);
if (rc == 0) {
/* Recreate all of the I/O queue pairs */
spdk_for_each_channel(nvme_ctrlr,
bdev_nvme_reset_create_qpair,
NULL,
bdev_nvme_reset_create_qpairs_done);
} else {
bdev_nvme_reset_complete(nvme_ctrlr, rc);
}
return SPDK_POLLER_BUSY;
}
static void
bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status)
{
struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
int rc;
if (status) {
rc = status;
goto err;
}
rc = spdk_nvme_ctrlr_reset_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->reset_ctx);
if (rc != 0) {
SPDK_ERRLOG("Create controller reset context failed\n");
goto err;
}
assert(nvme_ctrlr->reset_poller == NULL);
nvme_ctrlr->reset_poller = SPDK_POLLER_REGISTER(bdev_nvme_ctrlr_reset_poll,
nvme_ctrlr, 0);
return;
err:
bdev_nvme_reset_complete(nvme_ctrlr, rc);
}
static void
bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
bdev_nvme_destroy_qpair(ctrlr_ch);
spdk_for_each_channel_continue(i, 0);
}
static int
bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr)
{
pthread_mutex_lock(&nvme_ctrlr->mutex);
if (nvme_ctrlr->destruct) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return -ENXIO;
}
if (nvme_ctrlr->resetting) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
return -EBUSY;
}
nvme_ctrlr->resetting = true;
pthread_mutex_unlock(&nvme_ctrlr->mutex);
spdk_nvme_ctrlr_prepare_for_reset(nvme_ctrlr->ctrlr);
/* First, delete all NVMe I/O queue pairs. */
spdk_for_each_channel(nvme_ctrlr,
bdev_nvme_reset_destroy_qpair,
NULL,
bdev_nvme_reset_ctrlr);
return 0;
}
int
bdev_nvme_reset_rpc(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_reset_cb cb_fn, void *cb_arg)
{
int rc;
rc = bdev_nvme_reset(nvme_ctrlr);
if (rc == 0) {
nvme_ctrlr->reset_cb_fn = cb_fn;
nvme_ctrlr->reset_cb_arg = cb_arg;
}
return rc;
}
static void
bdev_nvme_reset_io_complete(void *cb_arg, int rc)
{
struct nvme_bdev_io *bio = cb_arg;
bdev_nvme_io_complete(bio, rc);
}
static int
bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
{
struct nvme_ctrlr_channel *ctrlr_ch = nbdev_ch->ctrlr_ch;
struct spdk_bdev_io *bdev_io;
int rc;
rc = bdev_nvme_reset(ctrlr_ch->ctrlr);
if (rc == 0) {
assert(ctrlr_ch->ctrlr->reset_cb_fn == NULL);
assert(ctrlr_ch->ctrlr->reset_cb_arg == NULL);
ctrlr_ch->ctrlr->reset_cb_fn = bdev_nvme_reset_io_complete;
ctrlr_ch->ctrlr->reset_cb_arg = bio;
} else if (rc == -EBUSY) {
/*
* Reset call is queued only if it is from the app framework. This is on purpose so that
* we don't interfere with the app framework reset strategy. i.e. we are deferring to the
* upper level. If they are in the middle of a reset, we won't try to schedule another one.
*/
bdev_io = spdk_bdev_io_from_ctx(bio);
TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
} else {
return rc;
}
return 0;
}
static int
bdev_nvme_failover_start(struct nvme_ctrlr *nvme_ctrlr, bool remove)
{
struct nvme_ctrlr_trid *curr_trid = NULL, *next_trid = NULL;
int rc;
pthread_mutex_lock(&nvme_ctrlr->mutex);
if (nvme_ctrlr->destruct) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
/* Don't bother resetting if the controller is in the process of being destructed. */
return -ENXIO;
}
curr_trid = TAILQ_FIRST(&nvme_ctrlr->trids);
assert(curr_trid);
assert(&curr_trid->trid == nvme_ctrlr->connected_trid);
next_trid = TAILQ_NEXT(curr_trid, link);
if (nvme_ctrlr->resetting) {
if (next_trid && !nvme_ctrlr->failover_in_progress) {
rc = -EBUSY;
} else {
rc = -EALREADY;
}
pthread_mutex_unlock(&nvme_ctrlr->mutex);
SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
return rc;
}
nvme_ctrlr->resetting = true;
curr_trid->is_failed = true;
if (next_trid) {
assert(curr_trid->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", curr_trid->trid.traddr,
curr_trid->trid.trsvcid, next_trid->trid.traddr, next_trid->trid.trsvcid);
nvme_ctrlr->failover_in_progress = true;
spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
nvme_ctrlr->connected_trid = &next_trid->trid;
rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_trid->trid);
assert(rc == 0);
TAILQ_REMOVE(&nvme_ctrlr->trids, curr_trid, link);
if (!remove) {
/** Shuffle the old trid to the end of the list and use the new one.
* Allows for round robin through multiple connections.
*/
TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, curr_trid, link);
} else {
free(curr_trid);
}
}
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return 0;
}
static int
bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove)
{
int rc;
rc = bdev_nvme_failover_start(nvme_ctrlr, remove);
if (rc == 0) {
/* First, delete all NVMe I/O queue pairs. */
spdk_for_each_channel(nvme_ctrlr,
bdev_nvme_reset_destroy_qpair,
NULL,
bdev_nvme_reset_ctrlr);
} else if (rc != -EALREADY) {
return rc;
}
return 0;
}
static int
bdev_nvme_unmap(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
uint64_t offset_blocks,
uint64_t num_blocks);
static int
bdev_nvme_write_zeroes(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
uint64_t offset_blocks,
uint64_t num_blocks);
static void
bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
bool success)
{
struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
struct spdk_bdev *bdev = bdev_io->bdev;
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
struct spdk_nvme_ns *ns;
struct spdk_nvme_qpair *qpair;
int ret;
if (!success) {
ret = -EINVAL;
goto exit;
}
if (spdk_unlikely(!bdev_nvme_find_io_path(nbdev_ch, &ns, &qpair))) {
ret = -ENXIO;
goto exit;
}
ret = bdev_nvme_readv(ns,
qpair,
bio,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags,
bdev_io->internal.ext_opts);
exit:
if (spdk_unlikely(ret != 0)) {
bdev_nvme_io_complete(bio, ret);
}
}
static void
bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
{
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
struct spdk_bdev *bdev = bdev_io->bdev;
struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
struct nvme_bdev_io *nbdev_io_to_abort;
struct spdk_nvme_ns *ns;
struct spdk_nvme_qpair *qpair;
int rc = 0;
if (spdk_unlikely(!bdev_nvme_find_io_path(nbdev_ch, &ns, &qpair))) {
rc = -ENXIO;
goto exit;
}
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
rc = bdev_nvme_readv(ns,
qpair,
nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags,
bdev_io->internal.ext_opts);
} else {
spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
bdev_io->u.bdev.num_blocks * bdev->blocklen);
rc = 0;
}
break;
case SPDK_BDEV_IO_TYPE_WRITE:
rc = bdev_nvme_writev(ns,
qpair,
nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags,
bdev_io->internal.ext_opts);
break;
case SPDK_BDEV_IO_TYPE_COMPARE:
rc = bdev_nvme_comparev(ns,
qpair,
nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
break;
case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
rc = bdev_nvme_comparev_and_writev(ns,
qpair,
nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.fused_iovs,
bdev_io->u.bdev.fused_iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
break;
case SPDK_BDEV_IO_TYPE_UNMAP:
rc = bdev_nvme_unmap(ns,
qpair,
nbdev_io,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
break;
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
rc = bdev_nvme_write_zeroes(ns, qpair,
nbdev_io,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
break;
case SPDK_BDEV_IO_TYPE_RESET:
rc = bdev_nvme_reset_io(nbdev_ch, nbdev_io);
break;
case SPDK_BDEV_IO_TYPE_FLUSH:
rc = bdev_nvme_flush(ns,
qpair,
nbdev_io,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
break;
case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
rc = bdev_nvme_zone_appendv(ns,
qpair,
nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
break;
case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
rc = bdev_nvme_get_zone_info(ns,
qpair,
nbdev_io,
bdev_io->u.zone_mgmt.zone_id,
bdev_io->u.zone_mgmt.num_zones,
bdev_io->u.zone_mgmt.buf);
break;
case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
rc = bdev_nvme_zone_management(ns,
qpair,
nbdev_io,
bdev_io->u.zone_mgmt.zone_id,
bdev_io->u.zone_mgmt.zone_action);
break;
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
rc = bdev_nvme_admin_passthru(nbdev_ch,
nbdev_io,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes);
break;
case SPDK_BDEV_IO_TYPE_NVME_IO:
rc = bdev_nvme_io_passthru(ns,
qpair,
nbdev_io,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes);
break;
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
rc = bdev_nvme_io_passthru_md(ns,
qpair,
nbdev_io,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes,
bdev_io->u.nvme_passthru.md_buf,
bdev_io->u.nvme_passthru.md_len);
break;
case SPDK_BDEV_IO_TYPE_ABORT:
nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
rc = bdev_nvme_abort(nbdev_ch,
nbdev_io,
nbdev_io_to_abort);
break;
default:
rc = -EINVAL;
break;
}
exit:
if (spdk_unlikely(rc != 0)) {
bdev_nvme_io_complete(nbdev_io, rc);
}
}
static bool
bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
{
struct nvme_bdev *nbdev = ctx;
struct nvme_ns *nvme_ns;
struct spdk_nvme_ns *ns;
struct spdk_nvme_ctrlr *ctrlr;
const struct spdk_nvme_ctrlr_data *cdata;
nvme_ns = nbdev->nvme_ns;
assert(nvme_ns != NULL);
ns = nvme_ns->ns;
ctrlr = spdk_nvme_ns_get_ctrlr(ns);
switch (io_type) {
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
case SPDK_BDEV_IO_TYPE_RESET:
case SPDK_BDEV_IO_TYPE_FLUSH:
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
case SPDK_BDEV_IO_TYPE_NVME_IO:
case SPDK_BDEV_IO_TYPE_ABORT:
return true;
case SPDK_BDEV_IO_TYPE_COMPARE:
return spdk_nvme_ns_supports_compare(ns);
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
return spdk_nvme_ns_get_md_size(ns) ? true : false;
case SPDK_BDEV_IO_TYPE_UNMAP:
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
return cdata->oncs.dsm;
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
return cdata->oncs.write_zeroes;
case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
if (spdk_nvme_ctrlr_get_flags(ctrlr) &
SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
return true;
}
return false;
case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
default:
return false;
}
}
static int
bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
{
struct nvme_ctrlr *nvme_ctrlr = io_device;
struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
struct spdk_io_channel *pg_ch;
int rc;
pg_ch = spdk_get_io_channel(&g_nvme_ctrlrs);
if (!pg_ch) {
return -1;
}
ctrlr_ch->group = spdk_io_channel_get_ctx(pg_ch);
#ifdef SPDK_CONFIG_VTUNE
ctrlr_ch->group->collect_spin_stat = true;
#else
ctrlr_ch->group->collect_spin_stat = false;
#endif
TAILQ_INIT(&ctrlr_ch->pending_resets);
ctrlr_ch->ctrlr = nvme_ctrlr;
rc = bdev_nvme_create_qpair(ctrlr_ch);
if (rc != 0) {
goto err_qpair;
}
return 0;
err_qpair:
spdk_put_io_channel(pg_ch);
return rc;
}
static void
bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
{
struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
assert(ctrlr_ch->group != NULL);
bdev_nvme_destroy_qpair(ctrlr_ch);
spdk_put_io_channel(spdk_io_channel_from_ctx(ctrlr_ch->group));
}
static void
bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
uint32_t iov_cnt, uint32_t seed,
spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
{
struct nvme_poll_group *group = ctx;
int rc;
assert(group->accel_channel != NULL);
assert(cb_fn != NULL);
rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
if (rc) {
/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
if (rc == -ENOMEM || rc == -EINVAL) {
cb_fn(cb_arg, rc);
}
SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
}
}
static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
.table_size = sizeof(struct spdk_nvme_accel_fn_table),
.submit_accel_crc32c = bdev_nvme_submit_accel_crc32c,
};
static int
bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
{
struct nvme_poll_group *group = ctx_buf;
group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
if (group->group == NULL) {
return -1;
}
group->accel_channel = spdk_accel_engine_get_io_channel();
if (!group->accel_channel) {
spdk_nvme_poll_group_destroy(group->group);
SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
group);
return -1;
}
group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
if (group->poller == NULL) {
spdk_put_io_channel(group->accel_channel);
spdk_nvme_poll_group_destroy(group->group);
return -1;
}
return 0;
}
static void
bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
{
struct nvme_poll_group *group = ctx_buf;
if (group->accel_channel) {
spdk_put_io_channel(group->accel_channel);
}
spdk_poller_unregister(&group->poller);
if (spdk_nvme_poll_group_destroy(group->group)) {
SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
assert(false);
}
}
static struct spdk_io_channel *
bdev_nvme_get_io_channel(void *ctx)
{
struct nvme_bdev *nvme_bdev = ctx;
return spdk_get_io_channel(nvme_bdev);
}
static void *
bdev_nvme_get_module_ctx(void *ctx)
{
struct nvme_bdev *nvme_bdev = ctx;
if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if || !nvme_bdev->nvme_ns) {
return NULL;
}
return nvme_bdev->nvme_ns->ns;
}
static const char *
_nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
{
switch (ana_state) {
case SPDK_NVME_ANA_OPTIMIZED_STATE:
return "optimized";
case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
return "non_optimized";
case SPDK_NVME_ANA_INACCESSIBLE_STATE:
return "inaccessible";
case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
return "persistent_loss";
case SPDK_NVME_ANA_CHANGE_STATE:
return "change";
default:
return NULL;
}
}
static int
bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
{
struct nvme_bdev *nbdev = ctx;
struct spdk_memory_domain *domain;
domain = spdk_nvme_ctrlr_get_memory_domain(nbdev->nvme_ns->ctrlr->ctrlr);
if (domain) {
if (array_size > 0 && domains) {
domains[0] = domain;
}
return 1;
}
return 0;
}
static int
bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
{
struct nvme_bdev *nvme_bdev = ctx;
struct nvme_ns *nvme_ns;
struct spdk_nvme_ns *ns;
struct spdk_nvme_ctrlr *ctrlr;
const struct spdk_nvme_ctrlr_data *cdata;
const struct spdk_nvme_transport_id *trid;
union spdk_nvme_vs_register vs;
union spdk_nvme_csts_register csts;
char buf[128];
nvme_ns = nvme_bdev->nvme_ns;
assert(nvme_ns != NULL);
ns = nvme_ns->ns;
ctrlr = spdk_nvme_ns_get_ctrlr(ns);
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
spdk_json_write_named_object_begin(w, "nvme");
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
spdk_json_write_named_string(w, "pci_address", trid->traddr);
}
spdk_json_write_named_object_begin(w, "trid");
nvme_bdev_dump_trid_json(trid, w);
spdk_json_write_object_end(w);
#ifdef SPDK_CONFIG_NVME_CUSE
size_t cuse_name_size = 128;
char cuse_name[cuse_name_size];
int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
cuse_name, &cuse_name_size);
if (rc == 0) {
spdk_json_write_named_string(w, "cuse_device", cuse_name);
}
#endif
spdk_json_write_named_object_begin(w, "ctrlr_data");
spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "model_number", buf);
snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "serial_number", buf);
snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "firmware_revision", buf);
if (cdata->subnqn[0] != '\0') {
spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
}
spdk_json_write_named_object_begin(w, "oacs");
spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "vs");
spdk_json_write_name(w, "nvme_version");
if (vs.bits.ter) {
spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
} else {
spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
}
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "csts");
spdk_json_write_named_uint32(w, "rdy", csts.bits.rdy);
spdk_json_write_named_uint32(w, "cfs", csts.bits.cfs);
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "ns_data");
spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
if (cdata->cmic.ana_reporting) {
spdk_json_write_named_string(w, "ana_state",
_nvme_ana_state_str(nvme_ns->ana_state));
}
spdk_json_write_object_end(w);
if (cdata->oacs.security) {
spdk_json_write_named_object_begin(w, "security");
spdk_json_write_named_bool(w, "opal", nvme_bdev->opal);
spdk_json_write_object_end(w);
}
spdk_json_write_object_end(w);
return 0;
}
static void
bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
{
/* No config per bdev needed */
}
static uint64_t
bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
{
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
struct nvme_ctrlr_channel *ctrlr_ch = nbdev_ch->ctrlr_ch;
struct nvme_poll_group *group = ctrlr_ch->group;
uint64_t spin_time;
if (!group || !group->collect_spin_stat) {
return 0;
}
if (group->end_ticks != 0) {
group->spin_ticks += (group->end_ticks - group->start_ticks);
group->end_ticks = 0;
}
spin_time = (group->spin_ticks * 1000000ULL) / spdk_get_ticks_hz();
group->start_ticks = 0;
group->spin_ticks = 0;
return spin_time;
}
static const struct spdk_bdev_fn_table nvmelib_fn_table = {
.destruct = bdev_nvme_destruct,
.submit_request = bdev_nvme_submit_request,
.io_type_supported = bdev_nvme_io_type_supported,
.get_io_channel = bdev_nvme_get_io_channel,
.dump_info_json = bdev_nvme_dump_info_json,
.write_config_json = bdev_nvme_write_config_json,
.get_spin_time = bdev_nvme_get_spin_time,
.get_module_ctx = bdev_nvme_get_module_ctx,
.get_memory_domains = bdev_nvme_get_memory_domains,
};
typedef int (*bdev_nvme_parse_ana_log_page_cb)(
const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
static int
bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
{
struct spdk_nvme_ana_group_descriptor *copied_desc;
uint8_t *orig_desc;
uint32_t i, desc_size, copy_len;
int rc = 0;
if (nvme_ctrlr->ana_log_page == NULL) {
return -EINVAL;
}
copied_desc = nvme_ctrlr->copied_ana_desc;
orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
copy_len = nvme_ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
memcpy(copied_desc, orig_desc, copy_len);
rc = cb_fn(copied_desc, cb_arg);
if (rc != 0) {
break;
}
desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
copied_desc->num_of_nsid * sizeof(uint32_t);
orig_desc += desc_size;
copy_len -= desc_size;
}
return rc;
}
static int
nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
{
struct nvme_ns *nvme_ns = cb_arg;
uint32_t i;
for (i = 0; i < desc->num_of_nsid; i++) {
if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
continue;
}
nvme_ns->ana_group_id = desc->ana_group_id;
nvme_ns->ana_state = desc->ana_state;
return 1;
}
return 0;
}
static int
nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
uint32_t prchk_flags, void *ctx)
{
const struct spdk_uuid *uuid;
const uint8_t *nguid;
const struct spdk_nvme_ctrlr_data *cdata;
const struct spdk_nvme_ns_data *nsdata;
enum spdk_nvme_csi csi;
uint32_t atomic_bs, phys_bs, bs;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
csi = spdk_nvme_ns_get_csi(ns);
switch (csi) {
case SPDK_NVME_CSI_NVM:
disk->product_name = "NVMe disk";
break;
case SPDK_NVME_CSI_ZNS:
disk->product_name = "NVMe ZNS disk";
disk->zoned = true;
disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
spdk_nvme_ns_get_extended_sector_size(ns);
disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
break;
default:
SPDK_ERRLOG("unsupported CSI: %u\n", csi);
return -ENOTSUP;
}
disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
if (!disk->name) {
return -ENOMEM;
}
disk->write_cache = 0;
if (cdata->vwc.present) {
/* Enable if the Volatile Write Cache exists */
disk->write_cache = 1;
}
if (cdata->oncs.write_zeroes) {
disk->max_write_zeroes = UINT16_MAX + 1;
}
disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
nguid = spdk_nvme_ns_get_nguid(ns);
if (!nguid) {
uuid = spdk_nvme_ns_get_uuid(ns);
if (uuid) {
disk->uuid = *uuid;
}
} else {
memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
}
nsdata = spdk_nvme_ns_get_data(ns);
bs = spdk_nvme_ns_get_sector_size(ns);
atomic_bs = bs;
phys_bs = bs;
if (nsdata->nabo == 0) {
if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
atomic_bs = bs * (1 + nsdata->nawupf);
} else {
atomic_bs = bs * (1 + cdata->awupf);
}
}
if (nsdata->nsfeat.optperf) {
phys_bs = bs * (1 + nsdata->npwg);
}
disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
disk->md_len = spdk_nvme_ns_get_md_size(ns);
if (disk->md_len != 0) {
disk->md_interleave = nsdata->flbas.extended;
disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
if (disk->dif_type != SPDK_DIF_DISABLE) {
disk->dif_is_head_of_md = nsdata->dps.md_start;
disk->dif_check_flags = prchk_flags;
}
}
if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
disk->acwu = 0;
} else if (nsdata->nsfeat.ns_atomic_write_unit) {
disk->acwu = nsdata->nacwu;
} else {
disk->acwu = cdata->acwu;
}
disk->ctxt = ctx;
disk->fn_table = &nvmelib_fn_table;
disk->module = &nvme_if;
return 0;
}
static int
nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
{
struct nvme_bdev *bdev;
int rc;
bdev = calloc(1, sizeof(*bdev));
if (!bdev) {
SPDK_ERRLOG("bdev calloc() failed\n");
return -ENOMEM;
}
bdev->nvme_ns = nvme_ns;
bdev->opal = nvme_ctrlr->opal_dev != NULL;
rc = nvme_disk_create(&bdev->disk, nvme_ctrlr->name, nvme_ctrlr->ctrlr,
nvme_ns->ns, nvme_ctrlr->prchk_flags, bdev);
if (rc != 0) {
SPDK_ERRLOG("Failed to create NVMe disk\n");
free(bdev);
return rc;
}
spdk_io_device_register(bdev,
bdev_nvme_create_bdev_channel_cb,
bdev_nvme_destroy_bdev_channel_cb,
sizeof(struct nvme_bdev_channel),
bdev->disk.name);
rc = spdk_bdev_register(&bdev->disk);
if (rc != 0) {
SPDK_ERRLOG("spdk_bdev_register() failed\n");
spdk_io_device_unregister(bdev, NULL);
free(bdev->disk.name);
free(bdev);
return rc;
}
nvme_ns->bdev = bdev;
return 0;
}
static bool
bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
{
const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
const struct spdk_uuid *uuid1, *uuid2;
nsdata1 = spdk_nvme_ns_get_data(ns1);
nsdata2 = spdk_nvme_ns_get_data(ns2);
uuid1 = spdk_nvme_ns_get_uuid(ns1);
uuid2 = spdk_nvme_ns_get_uuid(ns2);
return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
nsdata1->eui64 == nsdata2->eui64 &&
uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0;
}
static bool
hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
struct nvme_probe_skip_entry *entry;
TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
return false;
}
}
opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
opts->disable_read_ana_log_page = true;
SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
return true;
}
static void
nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct nvme_ctrlr *nvme_ctrlr = ctx;
if (spdk_nvme_cpl_is_error(cpl)) {
SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
cpl->status.sct);
bdev_nvme_reset(nvme_ctrlr);
} else if (cpl->cdw0 & 0x1) {
SPDK_WARNLOG("Specified command could not be aborted.\n");
bdev_nvme_reset(nvme_ctrlr);
}
}
static void
timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair, uint16_t cid)
{
struct nvme_ctrlr *nvme_ctrlr = cb_arg;
union spdk_nvme_csts_register csts;
int rc;
assert(nvme_ctrlr->ctrlr == ctrlr);
SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
* queue. (Note: qpair == NULL when there's an admin cmd timeout.) Otherwise we
* would submit another fabrics cmd on the admin queue to read CSTS and check for its
* completion recursively.
*/
if (nvme_ctrlr->connected_trid->trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
if (csts.bits.cfs) {
SPDK_ERRLOG("Controller Fatal Status, reset required\n");
bdev_nvme_reset(nvme_ctrlr);
return;
}
}
switch (g_opts.action_on_timeout) {
case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
if (qpair) {
/* Don't send abort to ctrlr when reset is running. */
pthread_mutex_lock(&nvme_ctrlr->mutex);
if (nvme_ctrlr->resetting) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
SPDK_NOTICELOG("Quit abort. Ctrlr is in the process of reseting.\n");
return;
}
pthread_mutex_unlock(&nvme_ctrlr->mutex);
rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
nvme_abort_cpl, nvme_ctrlr);
if (rc == 0) {
return;
}
SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
}
/* FALLTHROUGH */
case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
bdev_nvme_reset(nvme_ctrlr);
break;
case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
break;
default:
SPDK_ERRLOG("An invalid timeout action value is found.\n");
break;
}
}
static void
nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
{
struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
if (rc == 0) {
nvme_ns->probe_ctx = NULL;
pthread_mutex_lock(&nvme_ctrlr->mutex);
nvme_ctrlr->ref++;
pthread_mutex_unlock(&nvme_ctrlr->mutex);
} else {
nvme_ctrlr->namespaces[nvme_ns->id - 1] = NULL;
free(nvme_ns);
}
if (ctx) {
ctx->populates_in_progress--;
if (ctx->populates_in_progress == 0) {
nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
}
}
}
static void
nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
{
struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
struct spdk_nvme_ns *ns;
int rc = 0;
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
if (!ns) {
SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
rc = -EINVAL;
goto done;
}
nvme_ns->ns = ns;
nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
if (nvme_ctrlr->ana_log_page != NULL) {
bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
}
rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
done:
nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
}
static void
nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
{
struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
assert(nvme_ctrlr != NULL);
pthread_mutex_lock(&nvme_ctrlr->mutex);
nvme_ctrlr->namespaces[nvme_ns->id - 1] = NULL;
if (nvme_ns->bdev != NULL) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return;
}
free(nvme_ns);
pthread_mutex_unlock(&nvme_ctrlr->mutex);
nvme_ctrlr_release(nvme_ctrlr);
}
static void
nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
{
struct nvme_bdev *bdev;
bdev = nvme_ns->bdev;
if (bdev != NULL) {
spdk_bdev_unregister(&bdev->disk, NULL, NULL);
}
nvme_ctrlr_depopulate_namespace_done(nvme_ns);
}
static void
nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
struct nvme_async_probe_ctx *ctx)
{
struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
struct nvme_ns *nvme_ns, *next;
struct spdk_nvme_ns *ns;
struct nvme_bdev *bdev;
uint32_t nsid;
int rc;
uint64_t num_sectors;
if (ctx) {
/* Initialize this count to 1 to handle the populate functions
* calling nvme_ctrlr_populate_namespace_done() immediately.
*/
ctx->populates_in_progress = 1;
}
/* First loop over our existing namespaces and see if they have been
* removed. */
nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
while (nvme_ns != NULL) {
next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
/* NS is still there but attributes may have changed */
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
num_sectors = spdk_nvme_ns_get_num_sectors(ns);
bdev = nvme_ns->bdev;
assert(bdev != NULL);
if (bdev->disk.blockcnt != num_sectors) {
SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
nvme_ns->id,
bdev->disk.name,
bdev->disk.blockcnt,
num_sectors);
rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
if (rc != 0) {
SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
bdev->disk.name, rc);
}
}
} else {
/* Namespace was removed */
nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
}
nvme_ns = next;
}
/* Loop through all of the namespaces at the nvme level and see if any of them are new */
nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
while (nsid != 0) {
nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
if (nvme_ns == NULL) {
/* Found a new one */
nvme_ns = calloc(1, sizeof(struct nvme_ns));
if (nvme_ns == NULL) {
SPDK_ERRLOG("Failed to allocate namespace\n");
/* This just fails to attach the namespace. It may work on a future attempt. */
continue;
}
nvme_ctrlr->namespaces[nsid - 1] = nvme_ns;
nvme_ns->id = nsid;
nvme_ns->ctrlr = nvme_ctrlr;
nvme_ns->bdev = NULL;
if (ctx) {
ctx->populates_in_progress++;
}
nvme_ns->probe_ctx = ctx;
nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
}
nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
}
if (ctx) {
/* Decrement this count now that the loop is over to account
* for the one we started with. If the count is then 0, we
* know any populate_namespace functions completed immediately,
* so we'll kick the callback here.
*/
ctx->populates_in_progress--;
if (ctx->populates_in_progress == 0) {
nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
}
}
}
static void
nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
{
uint32_t i;
struct nvme_ns *nvme_ns;
for (i = 0; i < nvme_ctrlr->num_ns; i++) {
uint32_t nsid = i + 1;
nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
if (nvme_ns != NULL) {
assert(nvme_ns->id == nsid);
nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
}
}
}
static bool
nvme_ctrlr_acquire(struct nvme_ctrlr *nvme_ctrlr)
{
pthread_mutex_lock(&nvme_ctrlr->mutex);
if (nvme_ctrlr->destruct || nvme_ctrlr->resetting) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return false;
}
nvme_ctrlr->ref++;
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return true;
}
static int
nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
void *cb_arg)
{
struct nvme_ctrlr *nvme_ctrlr = cb_arg;
struct nvme_ns *nvme_ns;
uint32_t i, nsid;
for (i = 0; i < desc->num_of_nsid; i++) {
nsid = desc->nsid[i];
if (nsid == 0 || nsid > nvme_ctrlr->num_ns) {
continue;
}
nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
assert(nvme_ns != NULL);
if (nvme_ns == NULL) {
/* Target told us that an inactive namespace had an ANA change */
continue;
}
nvme_ns->ana_group_id = desc->ana_group_id;
nvme_ns->ana_state = desc->ana_state;
}
return 0;
}
static void
nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct nvme_ctrlr *nvme_ctrlr = ctx;
if (spdk_nvme_cpl_is_success(cpl)) {
bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
nvme_ctrlr);
}
nvme_ctrlr_release(nvme_ctrlr);
}
static void
nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
{
int rc;
if (nvme_ctrlr->ana_log_page == NULL) {
return;
}
if (!nvme_ctrlr_acquire(nvme_ctrlr)) {
return;
}
rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
SPDK_NVME_GLOBAL_NS_TAG,
nvme_ctrlr->ana_log_page,
nvme_ctrlr->ana_log_page_size, 0,
nvme_ctrlr_read_ana_log_page_done,
nvme_ctrlr);
if (rc != 0) {
nvme_ctrlr_release(nvme_ctrlr);
}
}
static void
aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_ctrlr *nvme_ctrlr = arg;
union spdk_nvme_async_event_completion event;
if (spdk_nvme_cpl_is_error(cpl)) {
SPDK_WARNLOG("AER request execute failed");
return;
}
event.raw = cpl->cdw0;
if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
(event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
(event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
}
}
static void
populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
{
if (ctx->cb_fn) {
ctx->cb_fn(ctx->cb_ctx, count, rc);
}
ctx->namespaces_populated = true;
if (ctx->probe_done) {
/* The probe was already completed, so we need to free the context
* here. This can happen for cases like OCSSD, where we need to
* send additional commands to the SSD after attach.
*/
free(ctx);
}
}
static void
nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
struct nvme_async_probe_ctx *ctx)
{
spdk_io_device_register(nvme_ctrlr,
bdev_nvme_create_ctrlr_channel_cb,
bdev_nvme_destroy_ctrlr_channel_cb,
sizeof(struct nvme_ctrlr_channel),
nvme_ctrlr->name);
nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
}
static void
nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
{
struct nvme_ctrlr *nvme_ctrlr = _ctx;
struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
nvme_ctrlr->probe_ctx = NULL;
if (spdk_nvme_cpl_is_error(cpl)) {
nvme_ctrlr_delete(nvme_ctrlr);
if (ctx != NULL) {
populate_namespaces_cb(ctx, 0, -1);
}
return;
}
nvme_ctrlr_create_done(nvme_ctrlr, ctx);
}
static int
nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
struct nvme_async_probe_ctx *ctx)
{
struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
const struct spdk_nvme_ctrlr_data *cdata;
uint32_t ana_log_page_size;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->nn *
sizeof(uint32_t);
nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
if (nvme_ctrlr->ana_log_page == NULL) {
SPDK_ERRLOG("could not allocate ANA log page buffer\n");
return -ENXIO;
}
/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
* Hence copy each descriptor to a temporary area when parsing it.
*
* Allocate a buffer whose size is as large as ANA log page buffer because
* we do not know the size of a descriptor until actually reading it.
*/
nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
if (nvme_ctrlr->copied_ana_desc == NULL) {
SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
return -ENOMEM;
}
nvme_ctrlr->ana_log_page_size = ana_log_page_size;
nvme_ctrlr->probe_ctx = ctx;
return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
SPDK_NVME_GLOBAL_NS_TAG,
nvme_ctrlr->ana_log_page,
nvme_ctrlr->ana_log_page_size, 0,
nvme_ctrlr_init_ana_log_page_done,
nvme_ctrlr);
}
static int
nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
const char *name,
const struct spdk_nvme_transport_id *trid,
uint32_t prchk_flags,
struct nvme_async_probe_ctx *ctx)
{
struct nvme_ctrlr *nvme_ctrlr;
struct nvme_ctrlr_trid *trid_entry;
uint32_t num_ns;
const struct spdk_nvme_ctrlr_data *cdata;
int rc;
nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
if (nvme_ctrlr == NULL) {
SPDK_ERRLOG("Failed to allocate device struct\n");
return -ENOMEM;
}
rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
if (rc != 0) {
free(nvme_ctrlr);
return rc;
}
TAILQ_INIT(&nvme_ctrlr->trids);
num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
if (num_ns != 0) {
nvme_ctrlr->namespaces = calloc(num_ns, sizeof(struct nvme_ns *));
if (!nvme_ctrlr->namespaces) {
SPDK_ERRLOG("Failed to allocate block namespaces pointer\n");
rc = -ENOMEM;
goto err;
}
nvme_ctrlr->num_ns = num_ns;
}
trid_entry = calloc(1, sizeof(*trid_entry));
if (trid_entry == NULL) {
SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
rc = -ENOMEM;
goto err;
}
trid_entry->trid = *trid;
nvme_ctrlr->connected_trid = &trid_entry->trid;
TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, trid_entry, link);
nvme_ctrlr->thread = spdk_get_thread();
nvme_ctrlr->ctrlr = ctrlr;
nvme_ctrlr->ref = 1;
nvme_ctrlr->name = strdup(name);
if (nvme_ctrlr->name == NULL) {
rc = -ENOMEM;
goto err;
}
if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
SPDK_ERRLOG("OCSSDs are not supported");
rc = -ENOTSUP;
goto err;
}
nvme_ctrlr->prchk_flags = prchk_flags;
nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
g_opts.nvme_adminq_poll_period_us);
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_INSERT_TAIL(&g_nvme_ctrlrs, nvme_ctrlr, tailq);
pthread_mutex_unlock(&g_bdev_nvme_mutex);
if (g_opts.timeout_us > 0) {
/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
g_opts.timeout_us : g_opts.timeout_admin_us;
spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
adm_timeout_us, timeout_cb, nvme_ctrlr);
}
spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
if (spdk_nvme_ctrlr_get_flags(ctrlr) &
SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
}
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (cdata->cmic.ana_reporting) {
rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
if (rc == 0) {
return 0;
}
} else {
nvme_ctrlr_create_done(nvme_ctrlr, ctx);
return 0;
}
err:
nvme_ctrlr_delete(nvme_ctrlr);
return rc;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct nvme_probe_ctx *ctx = cb_ctx;
char *name = NULL;
uint32_t prchk_flags = 0;
size_t i;
if (ctx) {
for (i = 0; i < ctx->count; i++) {
if (spdk_nvme_transport_id_compare(trid, &ctx->trids[i]) == 0) {
prchk_flags = ctx->prchk_flags[i];
name = strdup(ctx->names[i]);
break;
}
}
} else {
name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
}
if (!name) {
SPDK_ERRLOG("Failed to assign name to NVMe device\n");
return;
}
SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
nvme_ctrlr_create(ctrlr, name, trid, prchk_flags, NULL);
free(name);
}
static void
_nvme_ctrlr_destruct(void *ctx)
{
struct nvme_ctrlr *nvme_ctrlr = ctx;
nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
nvme_ctrlr_release(nvme_ctrlr);
}
static int
_bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
{
struct nvme_probe_skip_entry *entry;
pthread_mutex_lock(&nvme_ctrlr->mutex);
/* The controller's destruction was already started */
if (nvme_ctrlr->destruct) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return 0;
}
if (!hotplug &&
nvme_ctrlr->connected_trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
entry = calloc(1, sizeof(*entry));
if (!entry) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return -ENOMEM;
}
entry->trid = *nvme_ctrlr->connected_trid;
TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
}
nvme_ctrlr->destruct = true;
pthread_mutex_unlock(&nvme_ctrlr->mutex);
_nvme_ctrlr_destruct(nvme_ctrlr);
return 0;
}
static void
remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
_bdev_nvme_delete(nvme_ctrlr, true);
}
static int
bdev_nvme_hotplug_probe(void *arg)
{
if (g_hotplug_probe_ctx == NULL) {
spdk_poller_unregister(&g_hotplug_probe_poller);
return SPDK_POLLER_IDLE;
}
if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
g_hotplug_probe_ctx = NULL;
spdk_poller_unregister(&g_hotplug_probe_poller);
}
return SPDK_POLLER_BUSY;
}
static int
bdev_nvme_hotplug(void *arg)
{
struct spdk_nvme_transport_id trid_pcie;
if (g_hotplug_probe_ctx) {
return SPDK_POLLER_BUSY;
}
memset(&trid_pcie, 0, sizeof(trid_pcie));
spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
hotplug_probe_cb, attach_cb, NULL);
if (g_hotplug_probe_ctx) {
assert(g_hotplug_probe_poller == NULL);
g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
}
return SPDK_POLLER_BUSY;
}
void
bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
{
*opts = g_opts;
}
static int
bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
{
if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
/* Can't set timeout_admin_us without also setting timeout_us */
SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
return -EINVAL;
}
return 0;
}
int
bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
{
int ret = bdev_nvme_validate_opts(opts);
if (ret) {
SPDK_WARNLOG("Failed to set nvme opts.\n");
return ret;
}
if (g_bdev_nvme_init_thread != NULL) {
if (!TAILQ_EMPTY(&g_nvme_ctrlrs)) {
return -EPERM;
}
}
g_opts = *opts;
return 0;
}
struct set_nvme_hotplug_ctx {
uint64_t period_us;
bool enabled;
spdk_msg_fn fn;
void *fn_ctx;
};
static void
set_nvme_hotplug_period_cb(void *_ctx)
{
struct set_nvme_hotplug_ctx *ctx = _ctx;
spdk_poller_unregister(&g_hotplug_poller);
if (ctx->enabled) {
g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
}
g_nvme_hotplug_poll_period_us = ctx->period_us;
g_nvme_hotplug_enabled = ctx->enabled;
if (ctx->fn) {
ctx->fn(ctx->fn_ctx);
}
free(ctx);
}
int
bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
{
struct set_nvme_hotplug_ctx *ctx;
if (enabled == true && !spdk_process_is_primary()) {
return -EPERM;
}
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
return -ENOMEM;
}
period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
ctx->enabled = enabled;
ctx->fn = cb;
ctx->fn_ctx = cb_ctx;
spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
return 0;
}
static void
nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
struct nvme_async_probe_ctx *ctx)
{
struct nvme_ns *nvme_ns;
struct nvme_bdev *nvme_bdev;
size_t j;
assert(nvme_ctrlr != NULL);
/*
* Report the new bdevs that were created in this call.
* There can be more than one bdev per NVMe controller.
*/
j = 0;
nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
while (nvme_ns != NULL) {
nvme_bdev = nvme_ns->bdev;
if (j < ctx->count) {
ctx->names[j] = nvme_bdev->disk.name;
j++;
} else {
SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
ctx->count);
populate_namespaces_cb(ctx, 0, -ERANGE);
return;
}
nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
}
populate_namespaces_cb(ctx, j, 0);
}
static int
bdev_nvme_compare_trids(struct nvme_ctrlr *nvme_ctrlr,
struct spdk_nvme_ctrlr *new_ctrlr,
struct spdk_nvme_transport_id *trid)
{
struct nvme_ctrlr_trid *tmp_trid;
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
SPDK_ERRLOG("PCIe failover is not supported.\n");
return -ENOTSUP;
}
/* Currently we only support failover to the same transport type. */
if (nvme_ctrlr->connected_trid->trtype != trid->trtype) {
return -EINVAL;
}
/* Currently we only support failover to the same NQN. */
if (strncmp(trid->subnqn, nvme_ctrlr->connected_trid->subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
return -EINVAL;
}
/* Skip all the other checks if we've already registered this path. */
TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
return -EEXIST;
}
}
return 0;
}
static int
bdev_nvme_compare_namespaces(struct nvme_ctrlr *nvme_ctrlr,
struct spdk_nvme_ctrlr *new_ctrlr)
{
struct nvme_ns *nvme_ns;
struct spdk_nvme_ns *new_ns;
if (spdk_nvme_ctrlr_get_num_ns(new_ctrlr) != nvme_ctrlr->num_ns) {
return -EINVAL;
}
nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
while (nvme_ns != NULL) {
new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
assert(new_ns != NULL);
if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
return -EINVAL;
}
nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
}
return 0;
}
static int
_bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
struct spdk_nvme_transport_id *trid)
{
struct nvme_ctrlr_trid *new_trid, *tmp_trid;
new_trid = calloc(1, sizeof(*new_trid));
if (new_trid == NULL) {
return -ENOMEM;
}
new_trid->trid = *trid;
new_trid->is_failed = false;
TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
if (tmp_trid->is_failed) {
TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
return 0;
}
}
TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
return 0;
}
/* This is the case that a secondary path is added to an existing
* nvme_ctrlr for failover. After checking if it can access the same
* namespaces as the primary path, it is disconnected until failover occurs.
*/
static int
bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
struct spdk_nvme_ctrlr *new_ctrlr,
struct spdk_nvme_transport_id *trid)
{
int rc;
assert(nvme_ctrlr != NULL);
pthread_mutex_lock(&nvme_ctrlr->mutex);
rc = bdev_nvme_compare_trids(nvme_ctrlr, new_ctrlr, trid);
if (rc != 0) {
goto exit;
}
rc = bdev_nvme_compare_namespaces(nvme_ctrlr, new_ctrlr);
if (rc != 0) {
goto exit;
}
rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
exit:
pthread_mutex_unlock(&nvme_ctrlr->mutex);
spdk_nvme_detach(new_ctrlr);
return rc;
}
static void
connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
struct nvme_async_probe_ctx *ctx;
int rc;
ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, opts);
ctx->ctrlr_attached = true;
rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx->prchk_flags, ctx);
if (rc != 0) {
populate_namespaces_cb(ctx, 0, rc);
}
}
static void
connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr,
const struct spdk_nvme_ctrlr_opts *opts)
{
struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
struct nvme_ctrlr *nvme_ctrlr;
struct nvme_async_probe_ctx *ctx;
int rc;
ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, opts);
ctx->ctrlr_attached = true;
nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
if (nvme_ctrlr) {
rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
} else {
rc = -ENODEV;
}
populate_namespaces_cb(ctx, 0, rc);
}
static int
bdev_nvme_async_poll(void *arg)
{
struct nvme_async_probe_ctx *ctx = arg;
int rc;
rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
if (spdk_unlikely(rc != -EAGAIN)) {
ctx->probe_done = true;
spdk_poller_unregister(&ctx->poller);
if (!ctx->ctrlr_attached) {
/* The probe is done, but no controller was attached.
* That means we had a failure, so report -EIO back to
* the caller (usually the RPC). populate_namespaces_cb()
* will take care of freeing the nvme_async_probe_ctx.
*/
populate_namespaces_cb(ctx, 0, -EIO);
} else if (ctx->namespaces_populated) {
/* The namespaces for the attached controller were all
* populated and the response was already sent to the
* caller (usually the RPC). So free the context here.
*/
free(ctx);
}
}
return SPDK_POLLER_BUSY;
}
int
bdev_nvme_create(struct spdk_nvme_transport_id *trid,
const char *base_name,
const char **names,
uint32_t count,
uint32_t prchk_flags,
spdk_bdev_create_nvme_fn cb_fn,
void *cb_ctx,
struct spdk_nvme_ctrlr_opts *opts)
{
struct nvme_probe_skip_entry *entry, *tmp;
struct nvme_async_probe_ctx *ctx;
spdk_nvme_attach_cb attach_cb;
/* TODO expand this check to include both the host and target TRIDs.
* Only if both are the same should we fail.
*/
if (nvme_ctrlr_get(trid) != NULL) {
SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
return -EEXIST;
}
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
return -ENOMEM;
}
ctx->base_name = base_name;
ctx->names = names;
ctx->count = count;
ctx->cb_fn = cb_fn;
ctx->cb_ctx = cb_ctx;
ctx->prchk_flags = prchk_flags;
ctx->trid = *trid;
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
free(entry);
break;
}
}
}
if (opts) {
memcpy(&ctx->opts, opts, sizeof(*opts));
} else {
spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->opts, sizeof(ctx->opts));
}
ctx->opts.transport_retry_count = g_opts.retry_count;
ctx->opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
ctx->opts.disable_read_ana_log_page = true;
if (nvme_ctrlr_get_by_name(base_name) == NULL) {
attach_cb = connect_attach_cb;
} else {
attach_cb = connect_set_failover_cb;
}
ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->opts, attach_cb);
if (ctx->probe_ctx == NULL) {
SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
free(ctx);
return -ENODEV;
}
ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
return 0;
}
static int
bdev_nvme_delete_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
const struct spdk_nvme_transport_id *trid)
{
struct nvme_ctrlr_trid *ctrlr_trid, *tmp_trid;
if (!spdk_nvme_transport_id_compare(trid, nvme_ctrlr->connected_trid)) {
return -EBUSY;
}
TAILQ_FOREACH_SAFE(ctrlr_trid, &nvme_ctrlr->trids, link, tmp_trid) {
if (!spdk_nvme_transport_id_compare(&ctrlr_trid->trid, trid)) {
TAILQ_REMOVE(&nvme_ctrlr->trids, ctrlr_trid, link);
free(ctrlr_trid);
return 0;
}
}
return -ENXIO;
}
int
bdev_nvme_delete(const char *name, const struct spdk_nvme_transport_id *trid)
{
struct nvme_ctrlr *nvme_ctrlr;
struct nvme_ctrlr_trid *ctrlr_trid;
if (name == NULL) {
return -EINVAL;
}
nvme_ctrlr = nvme_ctrlr_get_by_name(name);
if (nvme_ctrlr == NULL) {
SPDK_ERRLOG("Failed to find NVMe controller\n");
return -ENODEV;
}
/* case 1: remove the controller itself. */
if (trid == NULL) {
return _bdev_nvme_delete(nvme_ctrlr, false);
}
/* case 2: we are currently using the path to be removed. */
if (!spdk_nvme_transport_id_compare(trid, nvme_ctrlr->connected_trid)) {
ctrlr_trid = TAILQ_FIRST(&nvme_ctrlr->trids);
assert(nvme_ctrlr->connected_trid == &ctrlr_trid->trid);
/* case 2A: the current path is the only path. */
if (!TAILQ_NEXT(ctrlr_trid, link)) {
return _bdev_nvme_delete(nvme_ctrlr, false);
}
/* case 2B: there is an alternative path. */
return bdev_nvme_failover(nvme_ctrlr, true);
}
/* case 3: We are not using the specified path. */
return bdev_nvme_delete_secondary_trid(nvme_ctrlr, trid);
}
static int
bdev_nvme_library_init(void)
{
g_bdev_nvme_init_thread = spdk_get_thread();
spdk_io_device_register(&g_nvme_ctrlrs, bdev_nvme_create_poll_group_cb,
bdev_nvme_destroy_poll_group_cb,
sizeof(struct nvme_poll_group), "nvme_poll_groups");
return 0;
}
static void
bdev_nvme_library_fini(void)
{
struct nvme_ctrlr *nvme_ctrlr, *tmp;
struct nvme_probe_skip_entry *entry, *entry_tmp;
spdk_poller_unregister(&g_hotplug_poller);
free(g_hotplug_probe_ctx);
g_hotplug_probe_ctx = NULL;
TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
free(entry);
}
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH_SAFE(nvme_ctrlr, &g_nvme_ctrlrs, tailq, tmp) {
pthread_mutex_lock(&nvme_ctrlr->mutex);
if (nvme_ctrlr->destruct) {
/* This controller's destruction was already started
* before the application started shutting down
*/
pthread_mutex_unlock(&nvme_ctrlr->mutex);
continue;
}
nvme_ctrlr->destruct = true;
pthread_mutex_unlock(&nvme_ctrlr->mutex);
spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
nvme_ctrlr);
}
g_bdev_nvme_module_finish = true;
if (TAILQ_EMPTY(&g_nvme_ctrlrs)) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
spdk_io_device_unregister(&g_nvme_ctrlrs, NULL);
spdk_bdev_module_fini_done();
return;
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
}
static void
bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_dif_ctx dif_ctx;
struct spdk_dif_error err_blk = {};
int rc;
rc = spdk_dif_ctx_init(&dif_ctx,
bdev->blocklen, bdev->md_len, bdev->md_interleave,
bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0);
if (rc != 0) {
SPDK_ERRLOG("Initialization of DIF context failed\n");
return;
}
if (bdev->md_interleave) {
rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
} else {
struct iovec md_iov = {
.iov_base = bdev_io->u.bdev.md_buf,
.iov_len = bdev_io->u.bdev.num_blocks * bdev->md_len,
};
rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
&md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
}
if (rc != 0) {
SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
err_blk.err_type, err_blk.err_offset);
} else {
SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
}
}
static void
bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
if (spdk_nvme_cpl_is_success(cpl)) {
/* Run PI verification for read data buffer. */
bdev_nvme_verify_pi_error(bio);
}
/* Return original completion status */
bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
}
static void
bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
struct nvme_bdev_channel *nbdev_ch;
struct spdk_nvme_ns *ns;
struct spdk_nvme_qpair *qpair;
int ret;
if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Save completion status to use after verifying PI error. */
bio->cpl = *cpl;
nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
if (spdk_likely(bdev_nvme_find_io_path(nbdev_ch, &ns, &qpair))) {
/* Read without PI checking to verify PI error. */
ret = bdev_nvme_no_pi_readv(ns,
qpair,
bio,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks);
if (ret == 0) {
return;
}
}
}
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
static void
bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
if (spdk_nvme_cpl_is_pi_error(cpl)) {
SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Run PI verification for write data buffer if PI error is detected. */
bdev_nvme_verify_pi_error(bio);
}
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
static void
bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
* Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
*/
bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
if (spdk_nvme_cpl_is_pi_error(cpl)) {
SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Run PI verification for zone append data buffer if PI error is detected. */
bdev_nvme_verify_pi_error(bio);
}
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
static void
bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
if (spdk_nvme_cpl_is_pi_error(cpl)) {
SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Run PI verification for compare data buffer if PI error is detected. */
bdev_nvme_verify_pi_error(bio);
}
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
static void
bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
/* Compare operation completion */
if ((cpl->cdw0 & 0xFF) == SPDK_NVME_OPC_COMPARE) {
/* Save compare result for write callback */
bio->cpl = *cpl;
return;
}
/* Write operation completion */
if (spdk_nvme_cpl_is_error(&bio->cpl)) {
/* If bio->cpl is already an error, it means the compare operation failed. In that case,
* complete the IO with the compare operation's status.
*/
if (!spdk_nvme_cpl_is_error(cpl)) {
SPDK_ERRLOG("Unexpected write success after compare failure.\n");
}
bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
} else {
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
}
static void
bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
static int
fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
{
switch (desc->zs) {
case SPDK_NVME_ZONE_STATE_EMPTY:
info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
break;
case SPDK_NVME_ZONE_STATE_IOPEN:
info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
break;
case SPDK_NVME_ZONE_STATE_EOPEN:
info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
break;
case SPDK_NVME_ZONE_STATE_CLOSED:
info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
break;
case SPDK_NVME_ZONE_STATE_RONLY:
info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
break;
case SPDK_NVME_ZONE_STATE_FULL:
info->state = SPDK_BDEV_ZONE_STATE_FULL;
break;
case SPDK_NVME_ZONE_STATE_OFFLINE:
info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
break;
default:
SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
return -EIO;
}
info->zone_id = desc->zslba;
info->write_pointer = desc->wp;
info->capacity = desc->zcap;
return 0;
}
static void
bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
struct spdk_io_channel *ch = spdk_bdev_io_get_io_channel(bdev_io);
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
uint64_t max_zones_per_buf, i;
uint32_t zone_report_bufsize;
struct spdk_nvme_ns *ns;
struct spdk_nvme_qpair *qpair;
int ret;
if (spdk_nvme_cpl_is_error(cpl)) {
goto out_complete_io_nvme_cpl;
}
if (!bdev_nvme_find_io_path(nbdev_ch, &ns, &qpair)) {
ret = -ENXIO;
goto out_complete_io_ret;
}
zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
sizeof(bio->zone_report_buf->descs[0]);
if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
ret = -EINVAL;
goto out_complete_io_ret;
}
if (!bio->zone_report_buf->nr_zones) {
ret = -EINVAL;
goto out_complete_io_ret;
}
for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
ret = fill_zone_from_report(&info[bio->handled_zones],
&bio->zone_report_buf->descs[i]);
if (ret) {
goto out_complete_io_ret;
}
bio->handled_zones++;
}
if (bio->handled_zones < zones_to_copy) {
uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
memset(bio->zone_report_buf, 0, zone_report_bufsize);
ret = spdk_nvme_zns_report_zones(ns, qpair,
bio->zone_report_buf, zone_report_bufsize,
slba, SPDK_NVME_ZRA_LIST_ALL, true,
bdev_nvme_get_zone_info_done, bio);
if (!ret) {
return;
} else {
goto out_complete_io_ret;
}
}
out_complete_io_nvme_cpl:
free(bio->zone_report_buf);
bio->zone_report_buf = NULL;
bdev_nvme_io_complete_nvme_status(bio, cpl);
return;
out_complete_io_ret:
free(bio->zone_report_buf);
bio->zone_report_buf = NULL;
bdev_nvme_io_complete(bio, ret);
}
static void
bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
static void
bdev_nvme_admin_passthru_completion(void *ctx)
{
struct nvme_bdev_io *bio = ctx;
bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
}
static void
bdev_nvme_abort_completion(void *ctx)
{
struct nvme_bdev_io *bio = ctx;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
} else {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
static void
bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
bio->cpl = *cpl;
spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_completion, bio);
}
static void
bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
bio->cpl = *cpl;
spdk_thread_send_msg(bio->orig_thread, bdev_nvme_admin_passthru_completion, bio);
}
static void
bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
bio->iov_offset = sgl_offset;
for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
iov = &bio->iovs[bio->iovpos];
if (bio->iov_offset < iov->iov_len) {
break;
}
bio->iov_offset -= iov->iov_len;
}
}
static int
bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
assert(bio->iovpos < bio->iovcnt);
iov = &bio->iovs[bio->iovpos];
*address = iov->iov_base;
*length = iov->iov_len;
if (bio->iov_offset) {
assert(bio->iov_offset <= iov->iov_len);
*address += bio->iov_offset;
*length -= bio->iov_offset;
}
bio->iov_offset += *length;
if (bio->iov_offset == iov->iov_len) {
bio->iovpos++;
bio->iov_offset = 0;
}
return 0;
}
static void
bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
bio->fused_iov_offset = sgl_offset;
for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
iov = &bio->fused_iovs[bio->fused_iovpos];
if (bio->fused_iov_offset < iov->iov_len) {
break;
}
bio->fused_iov_offset -= iov->iov_len;
}
}
static int
bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
assert(bio->fused_iovpos < bio->fused_iovcnt);
iov = &bio->fused_iovs[bio->fused_iovpos];
*address = iov->iov_base;
*length = iov->iov_len;
if (bio->fused_iov_offset) {
assert(bio->fused_iov_offset <= iov->iov_len);
*address += bio->fused_iov_offset;
*length -= bio->fused_iov_offset;
}
bio->fused_iov_offset += *length;
if (bio->fused_iov_offset == iov->iov_len) {
bio->fused_iovpos++;
bio->fused_iov_offset = 0;
}
return 0;
}
static int
bdev_nvme_no_pi_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
bdev_nvme_no_pi_readv_done, bio, 0,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
struct spdk_bdev_ext_io_opts *ext_opts)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
if (ext_opts) {
bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
bio->ext_opts.memory_domain = ext_opts->memory_domain;
bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
bio->ext_opts.io_flags = flags;
bio->ext_opts.metadata = md;
rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
bdev_nvme_readv_done, bio,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
&bio->ext_opts);
} else if (iovcnt == 1) {
rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba,
lba_count,
bdev_nvme_readv_done, bio,
flags,
0, 0);
} else {
rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
bdev_nvme_readv_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
}
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("readv failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
if (ext_opts) {
bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
bio->ext_opts.memory_domain = ext_opts->memory_domain;
bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
bio->ext_opts.io_flags = flags;
bio->ext_opts.metadata = md;
rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
bdev_nvme_readv_done, bio,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
&bio->ext_opts);
} else if (iovcnt == 1) {
rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba,
lba_count,
bdev_nvme_writev_done, bio,
flags,
0, 0);
} else {
rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_writev_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
}
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("writev failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_zone_appendv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t zslba,
uint32_t flags)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
lba_count, zslba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
if (iovcnt == 1) {
rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
lba_count,
bdev_nvme_zone_appendv_done, bio,
flags,
0, 0);
} else {
rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
bdev_nvme_zone_appendv_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
}
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_comparev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_comparev_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_comparev_and_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
struct iovec *write_iov, int write_iovcnt,
void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
int rc;
SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = cmp_iov;
bio->iovcnt = cmp_iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
bio->fused_iovs = write_iov;
bio->fused_iovcnt = write_iovcnt;
bio->fused_iovpos = 0;
bio->fused_iov_offset = 0;
if (bdev_io->num_retries == 0) {
bio->first_fused_submitted = false;
}
if (!bio->first_fused_submitted) {
flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
memset(&bio->cpl, 0, sizeof(bio->cpl));
rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_comparev_and_writev_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
if (rc == 0) {
bio->first_fused_submitted = true;
flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
} else {
if (rc != -ENOMEM) {
SPDK_ERRLOG("compare failed: rc = %d\n", rc);
}
return rc;
}
}
flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_comparev_and_writev_done, bio, flags,
bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("write failed: rc = %d\n", rc);
rc = 0;
}
return rc;
}
static int
bdev_nvme_unmap(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
uint64_t offset_blocks,
uint64_t num_blocks)
{
struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
struct spdk_nvme_dsm_range *range;
uint64_t offset, remaining;
uint64_t num_ranges_u64;
uint16_t num_ranges;
int rc;
num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
return -EINVAL;
}
num_ranges = (uint16_t)num_ranges_u64;
offset = offset_blocks;
remaining = num_blocks;
range = &dsm_ranges[0];
/* Fill max-size ranges until the remaining blocks fit into one range */
while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
range->attributes.raw = 0;
range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
range->starting_lba = offset;
offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
range++;
}
/* Final range describes the remaining blocks */
range->attributes.raw = 0;
range->length = remaining;
range->starting_lba = offset;
rc = spdk_nvme_ns_cmd_dataset_management(ns, qpair,
SPDK_NVME_DSM_ATTR_DEALLOCATE,
dsm_ranges, num_ranges,
bdev_nvme_queued_done, bio);
return rc;
}
static int
bdev_nvme_write_zeroes(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
uint64_t offset_blocks,
uint64_t num_blocks)
{
if (num_blocks > UINT16_MAX + 1) {
SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
return -EINVAL;
}
return spdk_nvme_ns_cmd_write_zeroes(ns, qpair,
offset_blocks, num_blocks,
bdev_nvme_queued_done, bio,
0);
}
static int
bdev_nvme_get_zone_info(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
struct spdk_bdev_zone_info *info)
{
uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
if (zone_id % zone_size != 0) {
return -EINVAL;
}
if (num_zones > total_zones || !num_zones) {
return -EINVAL;
}
assert(!bio->zone_report_buf);
bio->zone_report_buf = calloc(1, zone_report_bufsize);
if (!bio->zone_report_buf) {
return -ENOMEM;
}
bio->handled_zones = 0;
return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
bdev_nvme_get_zone_info_done, bio);
}
static int
bdev_nvme_zone_management(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, uint64_t zone_id,
enum spdk_bdev_zone_action action)
{
switch (action) {
case SPDK_BDEV_ZONE_CLOSE:
return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
case SPDK_BDEV_ZONE_FINISH:
return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
case SPDK_BDEV_ZONE_OPEN:
return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
case SPDK_BDEV_ZONE_RESET:
return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
case SPDK_BDEV_ZONE_OFFLINE:
return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
default:
return -EINVAL;
}
}
static int
bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
{
struct nvme_ctrlr *nvme_ctrlr;
uint32_t max_xfer_size;
if (!bdev_nvme_find_admin_path(nbdev_ch, &nvme_ctrlr)) {
return -EINVAL;
}
max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
bio->orig_thread = spdk_get_thread();
return spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf,
(uint32_t)nbytes, bdev_nvme_admin_passthru_done, bio);
}
static int
bdev_nvme_io_passthru(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
{
uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
/*
* Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
* so fill it out automatically.
*/
cmd->nsid = spdk_nvme_ns_get_id(ns);
return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
(uint32_t)nbytes, bdev_nvme_queued_done, bio);
}
static int
bdev_nvme_io_passthru_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len)
{
size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
SPDK_ERRLOG("invalid meta data buffer size\n");
return -EINVAL;
}
/*
* Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
* so fill it out automatically.
*/
cmd->nsid = spdk_nvme_ns_get_id(ns);
return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
}
static int
bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
struct nvme_bdev_io *bio_to_abort)
{
struct nvme_ctrlr_channel *ctrlr_ch = nbdev_ch->ctrlr_ch;
int rc;
bio->orig_thread = spdk_get_thread();
rc = spdk_nvme_ctrlr_cmd_abort_ext(ctrlr_ch->ctrlr->ctrlr,
ctrlr_ch->qpair,
bio_to_abort,
bdev_nvme_abort_done, bio);
if (rc == -ENOENT) {
/* If no command was found in I/O qpair, the target command may be
* admin command.
*/
rc = spdk_nvme_ctrlr_cmd_abort_ext(ctrlr_ch->ctrlr->ctrlr,
NULL,
bio_to_abort,
bdev_nvme_abort_done, bio);
}
if (rc == -ENOENT) {
/* If no command was found, complete the abort request with failure. */
bio->cpl.cdw0 |= 1U;
bio->cpl.status.sc = SPDK_NVME_SC_SUCCESS;
bio->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
bdev_nvme_abort_completion(bio);
rc = 0;
}
return rc;
}
static void
bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
{
const char *action;
if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
action = "reset";
} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
action = "abort";
} else {
action = "none";
}
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "action_on_timeout", action);
spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
spdk_json_write_named_uint32(w, "retry_count", g_opts.retry_count);
spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
static void
nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
struct nvme_ctrlr *nvme_ctrlr)
{
struct spdk_nvme_transport_id *trid;
trid = nvme_ctrlr->connected_trid;
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "name", nvme_ctrlr->name);
nvme_bdev_dump_trid_json(trid, w);
spdk_json_write_named_bool(w, "prchk_reftag",
(nvme_ctrlr->prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
spdk_json_write_named_bool(w, "prchk_guard",
(nvme_ctrlr->prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
static void
bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
{
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
static int
bdev_nvme_config_json(struct spdk_json_write_ctx *w)
{
struct nvme_ctrlr *nvme_ctrlr;
bdev_nvme_opts_config_json(w);
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(nvme_ctrlr, &g_nvme_ctrlrs, tailq) {
nvme_ctrlr_config_json(w, nvme_ctrlr);
}
/* Dump as last parameter to give all NVMe bdevs chance to be constructed
* before enabling hotplug poller.
*/
bdev_nvme_hotplug_config_json(w);
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return 0;
}
struct spdk_nvme_ctrlr *
bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
{
if (!bdev || bdev->module != &nvme_if) {
return NULL;
}
return SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk)->nvme_ns->ctrlr->ctrlr;
}
SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)