/*- * BSD LICENSE * * Copyright (c) Intel Corporation. All rights reserved. * Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved. * Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "bdev_nvme.h" #include "spdk/accel_engine.h" #include "spdk/config.h" #include "spdk/endian.h" #include "spdk/bdev.h" #include "spdk/json.h" #include "spdk/likely.h" #include "spdk/nvme.h" #include "spdk/nvme_ocssd.h" #include "spdk/nvme_zns.h" #include "spdk/opal.h" #include "spdk/thread.h" #include "spdk/string.h" #include "spdk/util.h" #include "spdk/bdev_module.h" #include "spdk/log.h" #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS (10000) static int bdev_nvme_config_json(struct spdk_json_write_ctx *w); struct nvme_bdev_io { /** array of iovecs to transfer. */ struct iovec *iovs; /** Number of iovecs in iovs array. */ int iovcnt; /** Current iovec position. */ int iovpos; /** Offset in current iovec. */ uint32_t iov_offset; /** array of iovecs to transfer. */ struct iovec *fused_iovs; /** Number of iovecs in iovs array. */ int fused_iovcnt; /** Current iovec position. */ int fused_iovpos; /** Offset in current iovec. */ uint32_t fused_iov_offset; /** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */ struct spdk_nvme_cpl cpl; /** Extended IO opts passed by the user to bdev layer and mapped to NVME format */ struct spdk_nvme_ns_cmd_ext_io_opts ext_opts; /** Originating thread */ struct spdk_thread *orig_thread; /** Keeps track if first of fused commands was submitted */ bool first_fused_submitted; /** Temporary pointer to zone report buffer */ struct spdk_nvme_zns_zone_report *zone_report_buf; /** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */ uint64_t handled_zones; }; struct nvme_probe_ctx { size_t count; struct spdk_nvme_transport_id trids[NVME_MAX_CONTROLLERS]; struct spdk_nvme_host_id hostids[NVME_MAX_CONTROLLERS]; const char *names[NVME_MAX_CONTROLLERS]; uint32_t prchk_flags[NVME_MAX_CONTROLLERS]; const char *hostnqn; }; struct nvme_probe_skip_entry { struct spdk_nvme_transport_id trid; TAILQ_ENTRY(nvme_probe_skip_entry) tailq; }; /* All the controllers deleted by users via RPC are skipped by hotplug monitor */ static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER( g_skipped_nvme_ctrlrs); static struct spdk_bdev_nvme_opts g_opts = { .action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE, .timeout_us = 0, .timeout_admin_us = 0, .keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS, .retry_count = 4, .arbitration_burst = 0, .low_priority_weight = 0, .medium_priority_weight = 0, .high_priority_weight = 0, .nvme_adminq_poll_period_us = 10000ULL, .nvme_ioq_poll_period_us = 0, .io_queue_requests = 0, .delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT, }; #define NVME_HOTPLUG_POLL_PERIOD_MAX 10000000ULL #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT 100000ULL static int g_hot_insert_nvme_controller_index = 0; static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT; static bool g_nvme_hotplug_enabled = false; static struct spdk_thread *g_bdev_nvme_init_thread; static struct spdk_poller *g_hotplug_poller; static struct spdk_poller *g_hotplug_probe_poller; static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx; static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr, struct nvme_async_probe_ctx *ctx); static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr, struct nvme_async_probe_ctx *ctx); static int bdev_nvme_library_init(void); static void bdev_nvme_library_fini(void); static int bdev_nvme_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts); static int bdev_nvme_no_pi_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba); static int bdev_nvme_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts); static int bdev_nvme_zone_appendv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t zslba, uint32_t flags); static int bdev_nvme_comparev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags); static int bdev_nvme_comparev_and_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov, int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags); static int bdev_nvme_get_zone_info(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones, struct spdk_bdev_zone_info *info); static int bdev_nvme_zone_management(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, uint64_t zone_id, enum spdk_bdev_zone_action action); static int bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes); static int bdev_nvme_io_passthru(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes); static int bdev_nvme_io_passthru_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len); static int bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort); static int bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio); static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove); static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr); struct spdk_nvme_qpair * bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch) { struct nvme_ctrlr_channel *ctrlr_ch; assert(ctrlr_io_ch != NULL); ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch); return ctrlr_ch->qpair; } static int bdev_nvme_get_ctx_size(void) { return sizeof(struct nvme_bdev_io); } static struct spdk_bdev_module nvme_if = { .name = "nvme", .async_fini = true, .module_init = bdev_nvme_library_init, .module_fini = bdev_nvme_library_fini, .config_json = bdev_nvme_config_json, .get_ctx_size = bdev_nvme_get_ctx_size, }; SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if) struct nvme_ctrlrs g_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_ctrlrs); pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER; bool g_bdev_nvme_module_finish; struct nvme_ns * nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid) { assert(nsid > 0); assert(nsid <= nvme_ctrlr->num_ns); if (nsid == 0 || nsid > nvme_ctrlr->num_ns) { return NULL; } return nvme_ctrlr->namespaces[nsid - 1]; } struct nvme_ns * nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr) { uint32_t i; for (i = 0; i < nvme_ctrlr->num_ns; i++) { if (nvme_ctrlr->namespaces[i] != NULL) { return nvme_ctrlr->namespaces[i]; } } return NULL; } struct nvme_ns * nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns) { uint32_t i; if (ns == NULL) { return NULL; } /* ns->id is a 1's based value and we want to start at the next * entry in this array, so we start at ns->id and don't subtract to * convert to 0's based. */ for (i = ns->id; i < nvme_ctrlr->num_ns; i++) { if (nvme_ctrlr->namespaces[i] != NULL) { return nvme_ctrlr->namespaces[i]; } } return NULL; } static struct nvme_ctrlr * nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid) { struct nvme_ctrlr *nvme_ctrlr; pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_FOREACH(nvme_ctrlr, &g_nvme_ctrlrs, tailq) { if (spdk_nvme_transport_id_compare(trid, nvme_ctrlr->connected_trid) == 0) { break; } } pthread_mutex_unlock(&g_bdev_nvme_mutex); return nvme_ctrlr; } struct nvme_ctrlr * nvme_ctrlr_get_by_name(const char *name) { struct nvme_ctrlr *nvme_ctrlr; if (name == NULL) { return NULL; } pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_FOREACH(nvme_ctrlr, &g_nvme_ctrlrs, tailq) { if (strcmp(name, nvme_ctrlr->name) == 0) { break; } } pthread_mutex_unlock(&g_bdev_nvme_mutex); return nvme_ctrlr; } void nvme_ctrlr_for_each(nvme_ctrlr_for_each_fn fn, void *ctx) { struct nvme_ctrlr *nvme_ctrlr; pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_FOREACH(nvme_ctrlr, &g_nvme_ctrlrs, tailq) { fn(nvme_ctrlr, ctx); } pthread_mutex_unlock(&g_bdev_nvme_mutex); } void nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w) { const char *trtype_str; const char *adrfam_str; trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype); if (trtype_str) { spdk_json_write_named_string(w, "trtype", trtype_str); } adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam); if (adrfam_str) { spdk_json_write_named_string(w, "adrfam", adrfam_str); } if (trid->traddr[0] != '\0') { spdk_json_write_named_string(w, "traddr", trid->traddr); } if (trid->trsvcid[0] != '\0') { spdk_json_write_named_string(w, "trsvcid", trid->trsvcid); } if (trid->subnqn[0] != '\0') { spdk_json_write_named_string(w, "subnqn", trid->subnqn); } } static void nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr) { struct nvme_ctrlr_trid *trid, *tmp_trid; uint32_t i; free(nvme_ctrlr->copied_ana_desc); spdk_free(nvme_ctrlr->ana_log_page); if (nvme_ctrlr->opal_dev) { spdk_opal_dev_destruct(nvme_ctrlr->opal_dev); nvme_ctrlr->opal_dev = NULL; } pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_REMOVE(&g_nvme_ctrlrs, nvme_ctrlr, tailq); pthread_mutex_unlock(&g_bdev_nvme_mutex); spdk_nvme_detach(nvme_ctrlr->ctrlr); spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller); free(nvme_ctrlr->name); for (i = 0; i < nvme_ctrlr->num_ns; i++) { free(nvme_ctrlr->namespaces[i]); } TAILQ_FOREACH_SAFE(trid, &nvme_ctrlr->trids, link, tmp_trid) { TAILQ_REMOVE(&nvme_ctrlr->trids, trid, link); free(trid); } pthread_mutex_destroy(&nvme_ctrlr->mutex); free(nvme_ctrlr->namespaces); free(nvme_ctrlr); } static void nvme_ctrlr_unregister_cb(void *io_device) { struct nvme_ctrlr *nvme_ctrlr = io_device; nvme_ctrlr_delete(nvme_ctrlr); pthread_mutex_lock(&g_bdev_nvme_mutex); if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_ctrlrs)) { pthread_mutex_unlock(&g_bdev_nvme_mutex); spdk_io_device_unregister(&g_nvme_ctrlrs, NULL); spdk_bdev_module_fini_done(); return; } pthread_mutex_unlock(&g_bdev_nvme_mutex); } static void nvme_ctrlr_unregister(void *ctx) { struct nvme_ctrlr *nvme_ctrlr = ctx; spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb); } static void nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr) { pthread_mutex_lock(&nvme_ctrlr->mutex); assert(nvme_ctrlr->ref > 0); nvme_ctrlr->ref--; if (nvme_ctrlr->ref > 0 || !nvme_ctrlr->destruct || nvme_ctrlr->resetting) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return; } pthread_mutex_unlock(&nvme_ctrlr->mutex); nvme_ctrlr_unregister(nvme_ctrlr); } static int bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf) { struct nvme_bdev_channel *nbdev_ch = ctx_buf; struct nvme_bdev *nbdev = io_device; struct nvme_ns *nvme_ns; struct spdk_io_channel *ch; nvme_ns = nbdev->nvme_ns; ch = spdk_get_io_channel(nvme_ns->ctrlr); if (ch == NULL) { SPDK_ERRLOG("Failed to alloc io_channel.\n"); return -ENOMEM; } nbdev_ch->ctrlr_ch = spdk_io_channel_get_ctx(ch); nbdev_ch->nvme_ns = nvme_ns; return 0; } static void bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf) { struct nvme_bdev_channel *nbdev_ch = ctx_buf; struct spdk_io_channel *ch; ch = spdk_io_channel_from_ctx(nbdev_ch->ctrlr_ch); spdk_put_io_channel(ch); } static inline bool bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch, struct spdk_nvme_ns **_ns, struct spdk_nvme_qpair **_qpair) { if (spdk_unlikely(nbdev_ch->ctrlr_ch->qpair == NULL)) { /* The device is currently resetting. */ return false; } *_ns = nbdev_ch->nvme_ns->ns; *_qpair = nbdev_ch->ctrlr_ch->qpair; return true; } static inline bool bdev_nvme_find_admin_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ctrlr **_nvme_ctrlr) { *_nvme_ctrlr = nbdev_ch->ctrlr_ch->ctrlr; return true; } static inline void bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio, const struct spdk_nvme_cpl *cpl) { spdk_bdev_io_complete_nvme_status(spdk_bdev_io_from_ctx(bio), cpl->cdw0, cpl->status.sct, cpl->status.sc); } static inline void bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc) { enum spdk_bdev_io_status io_status; if (rc == 0) { io_status = SPDK_BDEV_IO_STATUS_SUCCESS; } else if (rc == -ENOMEM) { io_status = SPDK_BDEV_IO_STATUS_NOMEM; } else { io_status = SPDK_BDEV_IO_STATUS_FAILED; } spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), io_status); } static void bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx) { int rc; SPDK_DEBUGLOG(bdev_nvme, "qpair %p is disconnected, attempting reconnect.\n", qpair); /* * Currently, just try to reconnect indefinitely. If we are doing a reset, the reset will * reconnect a qpair and we will stop getting a callback for this one. */ rc = spdk_nvme_ctrlr_reconnect_io_qpair(qpair); if (rc != 0) { SPDK_DEBUGLOG(bdev_nvme, "Failed to reconnect to qpair %p, errno %d\n", qpair, -rc); } } static int bdev_nvme_poll(void *arg) { struct nvme_poll_group *group = arg; int64_t num_completions; if (group->collect_spin_stat && group->start_ticks == 0) { group->start_ticks = spdk_get_ticks(); } num_completions = spdk_nvme_poll_group_process_completions(group->group, 0, bdev_nvme_disconnected_qpair_cb); if (group->collect_spin_stat) { if (num_completions > 0) { if (group->end_ticks != 0) { group->spin_ticks += (group->end_ticks - group->start_ticks); group->end_ticks = 0; } group->start_ticks = 0; } else { group->end_ticks = spdk_get_ticks(); } } return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; } static int bdev_nvme_poll_adminq(void *arg) { int32_t rc; struct nvme_ctrlr *nvme_ctrlr = arg; assert(nvme_ctrlr != NULL); rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr); if (rc < 0) { bdev_nvme_failover(nvme_ctrlr, false); } return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY; } static void _bdev_nvme_unregister_dev_cb(void *io_device) { struct nvme_bdev *nvme_disk = io_device; free(nvme_disk->disk.name); free(nvme_disk); } static int bdev_nvme_destruct(void *ctx) { struct nvme_bdev *nvme_disk = ctx; struct nvme_ns *nvme_ns = nvme_disk->nvme_ns; pthread_mutex_lock(&nvme_ns->ctrlr->mutex); nvme_ns->bdev = NULL; assert(nvme_ns->id > 0); if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) { pthread_mutex_unlock(&nvme_ns->ctrlr->mutex); nvme_ctrlr_release(nvme_ns->ctrlr); free(nvme_ns); } else { pthread_mutex_unlock(&nvme_ns->ctrlr->mutex); } spdk_io_device_unregister(nvme_disk, _bdev_nvme_unregister_dev_cb); return 0; } static int bdev_nvme_flush(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, uint64_t offset, uint64_t nbytes) { bdev_nvme_io_complete(bio, 0); return 0; } static int bdev_nvme_create_qpair(struct nvme_ctrlr_channel *ctrlr_ch) { struct spdk_nvme_ctrlr *ctrlr = ctrlr_ch->ctrlr->ctrlr; struct spdk_nvme_io_qpair_opts opts; struct spdk_nvme_qpair *qpair; int rc; spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts)); opts.delay_cmd_submit = g_opts.delay_cmd_submit; opts.create_only = true; opts.async_mode = true; opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests); g_opts.io_queue_requests = opts.io_queue_requests; qpair = spdk_nvme_ctrlr_alloc_io_qpair(ctrlr, &opts, sizeof(opts)); if (qpair == NULL) { return -1; } assert(ctrlr_ch->group != NULL); rc = spdk_nvme_poll_group_add(ctrlr_ch->group->group, qpair); if (rc != 0) { SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n"); goto err; } rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair); if (rc != 0) { SPDK_ERRLOG("Unable to connect I/O qpair.\n"); goto err; } ctrlr_ch->qpair = qpair; return 0; err: spdk_nvme_ctrlr_free_io_qpair(qpair); return rc; } static void bdev_nvme_destroy_qpair(struct nvme_ctrlr_channel *ctrlr_ch) { if (ctrlr_ch->qpair != NULL) { spdk_nvme_ctrlr_free_io_qpair(ctrlr_ch->qpair); ctrlr_ch->qpair = NULL; } } static void _bdev_nvme_check_pending_destruct(struct nvme_ctrlr *nvme_ctrlr) { pthread_mutex_lock(&nvme_ctrlr->mutex); if (nvme_ctrlr->destruct_after_reset) { assert(nvme_ctrlr->ref == 0 && nvme_ctrlr->destruct); pthread_mutex_unlock(&nvme_ctrlr->mutex); spdk_thread_send_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr); } else { pthread_mutex_unlock(&nvme_ctrlr->mutex); } } static void bdev_nvme_check_pending_destruct(struct spdk_io_channel_iter *i, int status) { struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); _bdev_nvme_check_pending_destruct(nvme_ctrlr); } static void _bdev_nvme_complete_pending_resets(struct nvme_ctrlr_channel *ctrlr_ch, enum spdk_bdev_io_status status) { struct spdk_bdev_io *bdev_io; while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) { bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets); TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link); spdk_bdev_io_complete(bdev_io, status); } } static void bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i) { struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch); _bdev_nvme_complete_pending_resets(ctrlr_ch, SPDK_BDEV_IO_STATUS_SUCCESS); spdk_for_each_channel_continue(i, 0); } static void bdev_nvme_abort_pending_resets(struct spdk_io_channel_iter *i) { struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch); _bdev_nvme_complete_pending_resets(ctrlr_ch, SPDK_BDEV_IO_STATUS_FAILED); spdk_for_each_channel_continue(i, 0); } static void bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, int rc) { struct nvme_ctrlr_trid *curr_trid; bdev_nvme_reset_cb reset_cb_fn = nvme_ctrlr->reset_cb_fn; void *reset_cb_arg = nvme_ctrlr->reset_cb_arg; nvme_ctrlr->reset_cb_fn = NULL; nvme_ctrlr->reset_cb_arg = NULL; if (rc) { SPDK_ERRLOG("Resetting controller failed.\n"); } else { SPDK_NOTICELOG("Resetting controller successful.\n"); } pthread_mutex_lock(&nvme_ctrlr->mutex); nvme_ctrlr->resetting = false; nvme_ctrlr->failover_in_progress = false; curr_trid = TAILQ_FIRST(&nvme_ctrlr->trids); assert(curr_trid != NULL); assert(&curr_trid->trid == nvme_ctrlr->connected_trid); curr_trid->is_failed = rc != 0 ? true : false; if (nvme_ctrlr->ref == 0 && nvme_ctrlr->destruct) { /* Destruct ctrlr after clearing pending resets. */ nvme_ctrlr->destruct_after_reset = true; } pthread_mutex_unlock(&nvme_ctrlr->mutex); if (reset_cb_fn) { reset_cb_fn(reset_cb_arg, rc); } /* Make sure we clear any pending resets before returning. */ spdk_for_each_channel(nvme_ctrlr, rc == 0 ? bdev_nvme_complete_pending_resets : bdev_nvme_abort_pending_resets, NULL, bdev_nvme_check_pending_destruct); } static void bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status) { struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); bdev_nvme_reset_complete(nvme_ctrlr, status); } static void bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i) { struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch); int rc; rc = bdev_nvme_create_qpair(ctrlr_ch); spdk_for_each_channel_continue(i, rc); } static int bdev_nvme_ctrlr_reset_poll(void *arg) { struct nvme_ctrlr *nvme_ctrlr = arg; int rc; rc = spdk_nvme_ctrlr_reset_poll_async(nvme_ctrlr->reset_ctx); if (rc == -EAGAIN) { return SPDK_POLLER_BUSY; } spdk_poller_unregister(&nvme_ctrlr->reset_poller); if (rc == 0) { /* Recreate all of the I/O queue pairs */ spdk_for_each_channel(nvme_ctrlr, bdev_nvme_reset_create_qpair, NULL, bdev_nvme_reset_create_qpairs_done); } else { bdev_nvme_reset_complete(nvme_ctrlr, rc); } return SPDK_POLLER_BUSY; } static void bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status) { struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); int rc; if (status) { rc = status; goto err; } rc = spdk_nvme_ctrlr_reset_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->reset_ctx); if (rc != 0) { SPDK_ERRLOG("Create controller reset context failed\n"); goto err; } assert(nvme_ctrlr->reset_poller == NULL); nvme_ctrlr->reset_poller = SPDK_POLLER_REGISTER(bdev_nvme_ctrlr_reset_poll, nvme_ctrlr, 0); return; err: bdev_nvme_reset_complete(nvme_ctrlr, rc); } static void bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i) { struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch); bdev_nvme_destroy_qpair(ctrlr_ch); spdk_for_each_channel_continue(i, 0); } static int bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr) { pthread_mutex_lock(&nvme_ctrlr->mutex); if (nvme_ctrlr->destruct) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return -ENXIO; } if (nvme_ctrlr->resetting) { pthread_mutex_unlock(&nvme_ctrlr->mutex); SPDK_NOTICELOG("Unable to perform reset, already in progress.\n"); return -EBUSY; } nvme_ctrlr->resetting = true; pthread_mutex_unlock(&nvme_ctrlr->mutex); spdk_nvme_ctrlr_prepare_for_reset(nvme_ctrlr->ctrlr); /* First, delete all NVMe I/O queue pairs. */ spdk_for_each_channel(nvme_ctrlr, bdev_nvme_reset_destroy_qpair, NULL, bdev_nvme_reset_ctrlr); return 0; } int bdev_nvme_reset_rpc(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_reset_cb cb_fn, void *cb_arg) { int rc; rc = bdev_nvme_reset(nvme_ctrlr); if (rc == 0) { nvme_ctrlr->reset_cb_fn = cb_fn; nvme_ctrlr->reset_cb_arg = cb_arg; } return rc; } static void bdev_nvme_reset_io_complete(void *cb_arg, int rc) { struct nvme_bdev_io *bio = cb_arg; bdev_nvme_io_complete(bio, rc); } static int bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio) { struct nvme_ctrlr_channel *ctrlr_ch = nbdev_ch->ctrlr_ch; struct spdk_bdev_io *bdev_io; int rc; rc = bdev_nvme_reset(ctrlr_ch->ctrlr); if (rc == 0) { assert(ctrlr_ch->ctrlr->reset_cb_fn == NULL); assert(ctrlr_ch->ctrlr->reset_cb_arg == NULL); ctrlr_ch->ctrlr->reset_cb_fn = bdev_nvme_reset_io_complete; ctrlr_ch->ctrlr->reset_cb_arg = bio; } else if (rc == -EBUSY) { /* * Reset call is queued only if it is from the app framework. This is on purpose so that * we don't interfere with the app framework reset strategy. i.e. we are deferring to the * upper level. If they are in the middle of a reset, we won't try to schedule another one. */ bdev_io = spdk_bdev_io_from_ctx(bio); TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link); } else { return rc; } return 0; } static int bdev_nvme_failover_start(struct nvme_ctrlr *nvme_ctrlr, bool remove) { struct nvme_ctrlr_trid *curr_trid = NULL, *next_trid = NULL; int rc; pthread_mutex_lock(&nvme_ctrlr->mutex); if (nvme_ctrlr->destruct) { pthread_mutex_unlock(&nvme_ctrlr->mutex); /* Don't bother resetting if the controller is in the process of being destructed. */ return -ENXIO; } curr_trid = TAILQ_FIRST(&nvme_ctrlr->trids); assert(curr_trid); assert(&curr_trid->trid == nvme_ctrlr->connected_trid); next_trid = TAILQ_NEXT(curr_trid, link); if (nvme_ctrlr->resetting) { if (next_trid && !nvme_ctrlr->failover_in_progress) { rc = -EBUSY; } else { rc = -EALREADY; } pthread_mutex_unlock(&nvme_ctrlr->mutex); SPDK_NOTICELOG("Unable to perform reset, already in progress.\n"); return rc; } nvme_ctrlr->resetting = true; curr_trid->is_failed = true; if (next_trid) { assert(curr_trid->trid.trtype != SPDK_NVME_TRANSPORT_PCIE); SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", curr_trid->trid.traddr, curr_trid->trid.trsvcid, next_trid->trid.traddr, next_trid->trid.trsvcid); nvme_ctrlr->failover_in_progress = true; spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr); nvme_ctrlr->connected_trid = &next_trid->trid; rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_trid->trid); assert(rc == 0); TAILQ_REMOVE(&nvme_ctrlr->trids, curr_trid, link); if (!remove) { /** Shuffle the old trid to the end of the list and use the new one. * Allows for round robin through multiple connections. */ TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, curr_trid, link); } else { free(curr_trid); } } pthread_mutex_unlock(&nvme_ctrlr->mutex); return 0; } static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove) { int rc; rc = bdev_nvme_failover_start(nvme_ctrlr, remove); if (rc == 0) { /* First, delete all NVMe I/O queue pairs. */ spdk_for_each_channel(nvme_ctrlr, bdev_nvme_reset_destroy_qpair, NULL, bdev_nvme_reset_ctrlr); } else if (rc != -EALREADY) { return rc; } return 0; } static int bdev_nvme_unmap(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks); static int bdev_nvme_write_zeroes(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks); static void bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success) { struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx; struct spdk_bdev *bdev = bdev_io->bdev; struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch); struct spdk_nvme_ns *ns; struct spdk_nvme_qpair *qpair; int ret; if (!success) { ret = -EINVAL; goto exit; } if (spdk_unlikely(!bdev_nvme_find_io_path(nbdev_ch, &ns, &qpair))) { ret = -ENXIO; goto exit; } ret = bdev_nvme_readv(ns, qpair, bio, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks, bdev->dif_check_flags, bdev_io->internal.ext_opts); exit: if (spdk_unlikely(ret != 0)) { bdev_nvme_io_complete(bio, ret); } } static void bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io) { struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch); struct spdk_bdev *bdev = bdev_io->bdev; struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx; struct nvme_bdev_io *nbdev_io_to_abort; struct spdk_nvme_ns *ns; struct spdk_nvme_qpair *qpair; int rc = 0; if (spdk_unlikely(!bdev_nvme_find_io_path(nbdev_ch, &ns, &qpair))) { rc = -ENXIO; goto exit; } switch (bdev_io->type) { case SPDK_BDEV_IO_TYPE_READ: if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) { rc = bdev_nvme_readv(ns, qpair, nbdev_io, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks, bdev->dif_check_flags, bdev_io->internal.ext_opts); } else { spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb, bdev_io->u.bdev.num_blocks * bdev->blocklen); rc = 0; } break; case SPDK_BDEV_IO_TYPE_WRITE: rc = bdev_nvme_writev(ns, qpair, nbdev_io, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks, bdev->dif_check_flags, bdev_io->internal.ext_opts); break; case SPDK_BDEV_IO_TYPE_COMPARE: rc = bdev_nvme_comparev(ns, qpair, nbdev_io, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks, bdev->dif_check_flags); break; case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE: rc = bdev_nvme_comparev_and_writev(ns, qpair, nbdev_io, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.fused_iovs, bdev_io->u.bdev.fused_iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks, bdev->dif_check_flags); break; case SPDK_BDEV_IO_TYPE_UNMAP: rc = bdev_nvme_unmap(ns, qpair, nbdev_io, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks); break; case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: rc = bdev_nvme_write_zeroes(ns, qpair, nbdev_io, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks); break; case SPDK_BDEV_IO_TYPE_RESET: rc = bdev_nvme_reset_io(nbdev_ch, nbdev_io); break; case SPDK_BDEV_IO_TYPE_FLUSH: rc = bdev_nvme_flush(ns, qpair, nbdev_io, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks); break; case SPDK_BDEV_IO_TYPE_ZONE_APPEND: rc = bdev_nvme_zone_appendv(ns, qpair, nbdev_io, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks, bdev->dif_check_flags); break; case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO: rc = bdev_nvme_get_zone_info(ns, qpair, nbdev_io, bdev_io->u.zone_mgmt.zone_id, bdev_io->u.zone_mgmt.num_zones, bdev_io->u.zone_mgmt.buf); break; case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT: rc = bdev_nvme_zone_management(ns, qpair, nbdev_io, bdev_io->u.zone_mgmt.zone_id, bdev_io->u.zone_mgmt.zone_action); break; case SPDK_BDEV_IO_TYPE_NVME_ADMIN: rc = bdev_nvme_admin_passthru(nbdev_ch, nbdev_io, &bdev_io->u.nvme_passthru.cmd, bdev_io->u.nvme_passthru.buf, bdev_io->u.nvme_passthru.nbytes); break; case SPDK_BDEV_IO_TYPE_NVME_IO: rc = bdev_nvme_io_passthru(ns, qpair, nbdev_io, &bdev_io->u.nvme_passthru.cmd, bdev_io->u.nvme_passthru.buf, bdev_io->u.nvme_passthru.nbytes); break; case SPDK_BDEV_IO_TYPE_NVME_IO_MD: rc = bdev_nvme_io_passthru_md(ns, qpair, nbdev_io, &bdev_io->u.nvme_passthru.cmd, bdev_io->u.nvme_passthru.buf, bdev_io->u.nvme_passthru.nbytes, bdev_io->u.nvme_passthru.md_buf, bdev_io->u.nvme_passthru.md_len); break; case SPDK_BDEV_IO_TYPE_ABORT: nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx; rc = bdev_nvme_abort(nbdev_ch, nbdev_io, nbdev_io_to_abort); break; default: rc = -EINVAL; break; } exit: if (spdk_unlikely(rc != 0)) { bdev_nvme_io_complete(nbdev_io, rc); } } static bool bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type) { struct nvme_bdev *nbdev = ctx; struct nvme_ns *nvme_ns; struct spdk_nvme_ns *ns; struct spdk_nvme_ctrlr *ctrlr; const struct spdk_nvme_ctrlr_data *cdata; nvme_ns = nbdev->nvme_ns; assert(nvme_ns != NULL); ns = nvme_ns->ns; ctrlr = spdk_nvme_ns_get_ctrlr(ns); switch (io_type) { case SPDK_BDEV_IO_TYPE_READ: case SPDK_BDEV_IO_TYPE_WRITE: case SPDK_BDEV_IO_TYPE_RESET: case SPDK_BDEV_IO_TYPE_FLUSH: case SPDK_BDEV_IO_TYPE_NVME_ADMIN: case SPDK_BDEV_IO_TYPE_NVME_IO: case SPDK_BDEV_IO_TYPE_ABORT: return true; case SPDK_BDEV_IO_TYPE_COMPARE: return spdk_nvme_ns_supports_compare(ns); case SPDK_BDEV_IO_TYPE_NVME_IO_MD: return spdk_nvme_ns_get_md_size(ns) ? true : false; case SPDK_BDEV_IO_TYPE_UNMAP: cdata = spdk_nvme_ctrlr_get_data(ctrlr); return cdata->oncs.dsm; case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: cdata = spdk_nvme_ctrlr_get_data(ctrlr); return cdata->oncs.write_zeroes; case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE: if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) { return true; } return false; case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO: case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT: return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS; case SPDK_BDEV_IO_TYPE_ZONE_APPEND: return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS && spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED; default: return false; } } static int bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf) { struct nvme_ctrlr *nvme_ctrlr = io_device; struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf; struct spdk_io_channel *pg_ch; int rc; pg_ch = spdk_get_io_channel(&g_nvme_ctrlrs); if (!pg_ch) { return -1; } ctrlr_ch->group = spdk_io_channel_get_ctx(pg_ch); #ifdef SPDK_CONFIG_VTUNE ctrlr_ch->group->collect_spin_stat = true; #else ctrlr_ch->group->collect_spin_stat = false; #endif TAILQ_INIT(&ctrlr_ch->pending_resets); ctrlr_ch->ctrlr = nvme_ctrlr; rc = bdev_nvme_create_qpair(ctrlr_ch); if (rc != 0) { goto err_qpair; } return 0; err_qpair: spdk_put_io_channel(pg_ch); return rc; } static void bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf) { struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf; assert(ctrlr_ch->group != NULL); bdev_nvme_destroy_qpair(ctrlr_ch); spdk_put_io_channel(spdk_io_channel_from_ctx(ctrlr_ch->group)); } static void bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov, uint32_t iov_cnt, uint32_t seed, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg) { struct nvme_poll_group *group = ctx; int rc; assert(group->accel_channel != NULL); assert(cb_fn != NULL); rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg); if (rc) { /* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */ if (rc == -ENOMEM || rc == -EINVAL) { cb_fn(cb_arg, rc); } SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov); } } static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = { .table_size = sizeof(struct spdk_nvme_accel_fn_table), .submit_accel_crc32c = bdev_nvme_submit_accel_crc32c, }; static int bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf) { struct nvme_poll_group *group = ctx_buf; group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table); if (group->group == NULL) { return -1; } group->accel_channel = spdk_accel_engine_get_io_channel(); if (!group->accel_channel) { spdk_nvme_poll_group_destroy(group->group); SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n", group); return -1; } group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us); if (group->poller == NULL) { spdk_put_io_channel(group->accel_channel); spdk_nvme_poll_group_destroy(group->group); return -1; } return 0; } static void bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf) { struct nvme_poll_group *group = ctx_buf; if (group->accel_channel) { spdk_put_io_channel(group->accel_channel); } spdk_poller_unregister(&group->poller); if (spdk_nvme_poll_group_destroy(group->group)) { SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n"); assert(false); } } static struct spdk_io_channel * bdev_nvme_get_io_channel(void *ctx) { struct nvme_bdev *nvme_bdev = ctx; return spdk_get_io_channel(nvme_bdev); } static void * bdev_nvme_get_module_ctx(void *ctx) { struct nvme_bdev *nvme_bdev = ctx; if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if || !nvme_bdev->nvme_ns) { return NULL; } return nvme_bdev->nvme_ns->ns; } static const char * _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state) { switch (ana_state) { case SPDK_NVME_ANA_OPTIMIZED_STATE: return "optimized"; case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: return "non_optimized"; case SPDK_NVME_ANA_INACCESSIBLE_STATE: return "inaccessible"; case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE: return "persistent_loss"; case SPDK_NVME_ANA_CHANGE_STATE: return "change"; default: return NULL; } } static int bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size) { struct nvme_bdev *nbdev = ctx; struct spdk_memory_domain *domain; domain = spdk_nvme_ctrlr_get_memory_domain(nbdev->nvme_ns->ctrlr->ctrlr); if (domain) { if (array_size > 0 && domains) { domains[0] = domain; } return 1; } return 0; } static int bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w) { struct nvme_bdev *nvme_bdev = ctx; struct nvme_ns *nvme_ns; struct spdk_nvme_ns *ns; struct spdk_nvme_ctrlr *ctrlr; const struct spdk_nvme_ctrlr_data *cdata; const struct spdk_nvme_transport_id *trid; union spdk_nvme_vs_register vs; union spdk_nvme_csts_register csts; char buf[128]; nvme_ns = nvme_bdev->nvme_ns; assert(nvme_ns != NULL); ns = nvme_ns->ns; ctrlr = spdk_nvme_ns_get_ctrlr(ns); cdata = spdk_nvme_ctrlr_get_data(ctrlr); trid = spdk_nvme_ctrlr_get_transport_id(ctrlr); vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr); csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr); spdk_json_write_named_object_begin(w, "nvme"); if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { spdk_json_write_named_string(w, "pci_address", trid->traddr); } spdk_json_write_named_object_begin(w, "trid"); nvme_bdev_dump_trid_json(trid, w); spdk_json_write_object_end(w); #ifdef SPDK_CONFIG_NVME_CUSE size_t cuse_name_size = 128; char cuse_name[cuse_name_size]; int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns), cuse_name, &cuse_name_size); if (rc == 0) { spdk_json_write_named_string(w, "cuse_device", cuse_name); } #endif spdk_json_write_named_object_begin(w, "ctrlr_data"); spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid); snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn); spdk_str_trim(buf); spdk_json_write_named_string(w, "model_number", buf); snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn); spdk_str_trim(buf); spdk_json_write_named_string(w, "serial_number", buf); snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr); spdk_str_trim(buf); spdk_json_write_named_string(w, "firmware_revision", buf); if (cdata->subnqn[0] != '\0') { spdk_json_write_named_string(w, "subnqn", cdata->subnqn); } spdk_json_write_named_object_begin(w, "oacs"); spdk_json_write_named_uint32(w, "security", cdata->oacs.security); spdk_json_write_named_uint32(w, "format", cdata->oacs.format); spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware); spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage); spdk_json_write_object_end(w); spdk_json_write_object_end(w); spdk_json_write_named_object_begin(w, "vs"); spdk_json_write_name(w, "nvme_version"); if (vs.bits.ter) { spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter); } else { spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr); } spdk_json_write_object_end(w); spdk_json_write_named_object_begin(w, "csts"); spdk_json_write_named_uint32(w, "rdy", csts.bits.rdy); spdk_json_write_named_uint32(w, "cfs", csts.bits.cfs); spdk_json_write_object_end(w); spdk_json_write_named_object_begin(w, "ns_data"); spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns)); if (cdata->cmic.ana_reporting) { spdk_json_write_named_string(w, "ana_state", _nvme_ana_state_str(nvme_ns->ana_state)); } spdk_json_write_object_end(w); if (cdata->oacs.security) { spdk_json_write_named_object_begin(w, "security"); spdk_json_write_named_bool(w, "opal", nvme_bdev->opal); spdk_json_write_object_end(w); } spdk_json_write_object_end(w); return 0; } static void bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) { /* No config per bdev needed */ } static uint64_t bdev_nvme_get_spin_time(struct spdk_io_channel *ch) { struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch); struct nvme_ctrlr_channel *ctrlr_ch = nbdev_ch->ctrlr_ch; struct nvme_poll_group *group = ctrlr_ch->group; uint64_t spin_time; if (!group || !group->collect_spin_stat) { return 0; } if (group->end_ticks != 0) { group->spin_ticks += (group->end_ticks - group->start_ticks); group->end_ticks = 0; } spin_time = (group->spin_ticks * 1000000ULL) / spdk_get_ticks_hz(); group->start_ticks = 0; group->spin_ticks = 0; return spin_time; } static const struct spdk_bdev_fn_table nvmelib_fn_table = { .destruct = bdev_nvme_destruct, .submit_request = bdev_nvme_submit_request, .io_type_supported = bdev_nvme_io_type_supported, .get_io_channel = bdev_nvme_get_io_channel, .dump_info_json = bdev_nvme_dump_info_json, .write_config_json = bdev_nvme_write_config_json, .get_spin_time = bdev_nvme_get_spin_time, .get_module_ctx = bdev_nvme_get_module_ctx, .get_memory_domains = bdev_nvme_get_memory_domains, }; typedef int (*bdev_nvme_parse_ana_log_page_cb)( const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg); static int bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg) { struct spdk_nvme_ana_group_descriptor *copied_desc; uint8_t *orig_desc; uint32_t i, desc_size, copy_len; int rc = 0; if (nvme_ctrlr->ana_log_page == NULL) { return -EINVAL; } copied_desc = nvme_ctrlr->copied_ana_desc; orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page); copy_len = nvme_ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page); for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) { memcpy(copied_desc, orig_desc, copy_len); rc = cb_fn(copied_desc, cb_arg); if (rc != 0) { break; } desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) + copied_desc->num_of_nsid * sizeof(uint32_t); orig_desc += desc_size; copy_len -= desc_size; } return rc; } static int nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg) { struct nvme_ns *nvme_ns = cb_arg; uint32_t i; for (i = 0; i < desc->num_of_nsid; i++) { if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) { continue; } nvme_ns->ana_group_id = desc->ana_group_id; nvme_ns->ana_state = desc->ana_state; return 1; } return 0; } static int nvme_disk_create(struct spdk_bdev *disk, const char *base_name, struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns, uint32_t prchk_flags, void *ctx) { const struct spdk_uuid *uuid; const uint8_t *nguid; const struct spdk_nvme_ctrlr_data *cdata; const struct spdk_nvme_ns_data *nsdata; enum spdk_nvme_csi csi; uint32_t atomic_bs, phys_bs, bs; cdata = spdk_nvme_ctrlr_get_data(ctrlr); csi = spdk_nvme_ns_get_csi(ns); switch (csi) { case SPDK_NVME_CSI_NVM: disk->product_name = "NVMe disk"; break; case SPDK_NVME_CSI_ZNS: disk->product_name = "NVMe ZNS disk"; disk->zoned = true; disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns); disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) / spdk_nvme_ns_get_extended_sector_size(ns); disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns); disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns); break; default: SPDK_ERRLOG("unsupported CSI: %u\n", csi); return -ENOTSUP; } disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns)); if (!disk->name) { return -ENOMEM; } disk->write_cache = 0; if (cdata->vwc.present) { /* Enable if the Volatile Write Cache exists */ disk->write_cache = 1; } if (cdata->oncs.write_zeroes) { disk->max_write_zeroes = UINT16_MAX + 1; } disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns); disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns); disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns); nguid = spdk_nvme_ns_get_nguid(ns); if (!nguid) { uuid = spdk_nvme_ns_get_uuid(ns); if (uuid) { disk->uuid = *uuid; } } else { memcpy(&disk->uuid, nguid, sizeof(disk->uuid)); } nsdata = spdk_nvme_ns_get_data(ns); bs = spdk_nvme_ns_get_sector_size(ns); atomic_bs = bs; phys_bs = bs; if (nsdata->nabo == 0) { if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) { atomic_bs = bs * (1 + nsdata->nawupf); } else { atomic_bs = bs * (1 + cdata->awupf); } } if (nsdata->nsfeat.optperf) { phys_bs = bs * (1 + nsdata->npwg); } disk->phys_blocklen = spdk_min(phys_bs, atomic_bs); disk->md_len = spdk_nvme_ns_get_md_size(ns); if (disk->md_len != 0) { disk->md_interleave = nsdata->flbas.extended; disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns); if (disk->dif_type != SPDK_DIF_DISABLE) { disk->dif_is_head_of_md = nsdata->dps.md_start; disk->dif_check_flags = prchk_flags; } } if (!(spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) { disk->acwu = 0; } else if (nsdata->nsfeat.ns_atomic_write_unit) { disk->acwu = nsdata->nacwu; } else { disk->acwu = cdata->acwu; } disk->ctxt = ctx; disk->fn_table = &nvmelib_fn_table; disk->module = &nvme_if; return 0; } static int nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns) { struct nvme_bdev *bdev; int rc; bdev = calloc(1, sizeof(*bdev)); if (!bdev) { SPDK_ERRLOG("bdev calloc() failed\n"); return -ENOMEM; } bdev->nvme_ns = nvme_ns; bdev->opal = nvme_ctrlr->opal_dev != NULL; rc = nvme_disk_create(&bdev->disk, nvme_ctrlr->name, nvme_ctrlr->ctrlr, nvme_ns->ns, nvme_ctrlr->prchk_flags, bdev); if (rc != 0) { SPDK_ERRLOG("Failed to create NVMe disk\n"); free(bdev); return rc; } spdk_io_device_register(bdev, bdev_nvme_create_bdev_channel_cb, bdev_nvme_destroy_bdev_channel_cb, sizeof(struct nvme_bdev_channel), bdev->disk.name); rc = spdk_bdev_register(&bdev->disk); if (rc != 0) { SPDK_ERRLOG("spdk_bdev_register() failed\n"); spdk_io_device_unregister(bdev, NULL); free(bdev->disk.name); free(bdev); return rc; } nvme_ns->bdev = bdev; return 0; } static bool bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2) { const struct spdk_nvme_ns_data *nsdata1, *nsdata2; const struct spdk_uuid *uuid1, *uuid2; nsdata1 = spdk_nvme_ns_get_data(ns1); nsdata2 = spdk_nvme_ns_get_data(ns2); uuid1 = spdk_nvme_ns_get_uuid(ns1); uuid2 = spdk_nvme_ns_get_uuid(ns2); return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 && nsdata1->eui64 == nsdata2->eui64 && uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0; } static bool hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr_opts *opts) { struct nvme_probe_skip_entry *entry; TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) { if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) { return false; } } opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst; opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight; opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight; opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight; opts->disable_read_ana_log_page = true; SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr); return true; } static void nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl) { struct nvme_ctrlr *nvme_ctrlr = ctx; if (spdk_nvme_cpl_is_error(cpl)) { SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc, cpl->status.sct); bdev_nvme_reset(nvme_ctrlr); } else if (cpl->cdw0 & 0x1) { SPDK_WARNLOG("Specified command could not be aborted.\n"); bdev_nvme_reset(nvme_ctrlr); } } static void timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, uint16_t cid) { struct nvme_ctrlr *nvme_ctrlr = cb_arg; union spdk_nvme_csts_register csts; int rc; assert(nvme_ctrlr->ctrlr == ctrlr); SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid); /* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O * queue. (Note: qpair == NULL when there's an admin cmd timeout.) Otherwise we * would submit another fabrics cmd on the admin queue to read CSTS and check for its * completion recursively. */ if (nvme_ctrlr->connected_trid->trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) { csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr); if (csts.bits.cfs) { SPDK_ERRLOG("Controller Fatal Status, reset required\n"); bdev_nvme_reset(nvme_ctrlr); return; } } switch (g_opts.action_on_timeout) { case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT: if (qpair) { /* Don't send abort to ctrlr when reset is running. */ pthread_mutex_lock(&nvme_ctrlr->mutex); if (nvme_ctrlr->resetting) { pthread_mutex_unlock(&nvme_ctrlr->mutex); SPDK_NOTICELOG("Quit abort. Ctrlr is in the process of reseting.\n"); return; } pthread_mutex_unlock(&nvme_ctrlr->mutex); rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid, nvme_abort_cpl, nvme_ctrlr); if (rc == 0) { return; } SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc); } /* FALLTHROUGH */ case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET: bdev_nvme_reset(nvme_ctrlr); break; case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE: SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n"); break; default: SPDK_ERRLOG("An invalid timeout action value is found.\n"); break; } } static void nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc) { struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr; struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx; if (rc == 0) { nvme_ns->probe_ctx = NULL; pthread_mutex_lock(&nvme_ctrlr->mutex); nvme_ctrlr->ref++; pthread_mutex_unlock(&nvme_ctrlr->mutex); } else { nvme_ctrlr->namespaces[nvme_ns->id - 1] = NULL; free(nvme_ns); } if (ctx) { ctx->populates_in_progress--; if (ctx->populates_in_progress == 0) { nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx); } } } static void nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns) { struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; struct spdk_nvme_ns *ns; int rc = 0; ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id); if (!ns) { SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id); rc = -EINVAL; goto done; } nvme_ns->ns = ns; nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE; if (nvme_ctrlr->ana_log_page != NULL) { bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns); } rc = nvme_bdev_create(nvme_ctrlr, nvme_ns); done: nvme_ctrlr_populate_namespace_done(nvme_ns, rc); } static void nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns) { struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr; assert(nvme_ctrlr != NULL); pthread_mutex_lock(&nvme_ctrlr->mutex); nvme_ctrlr->namespaces[nvme_ns->id - 1] = NULL; if (nvme_ns->bdev != NULL) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return; } free(nvme_ns); pthread_mutex_unlock(&nvme_ctrlr->mutex); nvme_ctrlr_release(nvme_ctrlr); } static void nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns) { struct nvme_bdev *bdev; bdev = nvme_ns->bdev; if (bdev != NULL) { spdk_bdev_unregister(&bdev->disk, NULL, NULL); } nvme_ctrlr_depopulate_namespace_done(nvme_ns); } static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr, struct nvme_async_probe_ctx *ctx) { struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; struct nvme_ns *nvme_ns, *next; struct spdk_nvme_ns *ns; struct nvme_bdev *bdev; uint32_t nsid; int rc; uint64_t num_sectors; if (ctx) { /* Initialize this count to 1 to handle the populate functions * calling nvme_ctrlr_populate_namespace_done() immediately. */ ctx->populates_in_progress = 1; } /* First loop over our existing namespaces and see if they have been * removed. */ nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); while (nvme_ns != NULL) { next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns); if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) { /* NS is still there but attributes may have changed */ ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id); num_sectors = spdk_nvme_ns_get_num_sectors(ns); bdev = nvme_ns->bdev; assert(bdev != NULL); if (bdev->disk.blockcnt != num_sectors) { SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n", nvme_ns->id, bdev->disk.name, bdev->disk.blockcnt, num_sectors); rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors); if (rc != 0) { SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n", bdev->disk.name, rc); } } } else { /* Namespace was removed */ nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns); } nvme_ns = next; } /* Loop through all of the namespaces at the nvme level and see if any of them are new */ nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); while (nsid != 0) { nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid); if (nvme_ns == NULL) { /* Found a new one */ nvme_ns = calloc(1, sizeof(struct nvme_ns)); if (nvme_ns == NULL) { SPDK_ERRLOG("Failed to allocate namespace\n"); /* This just fails to attach the namespace. It may work on a future attempt. */ continue; } nvme_ctrlr->namespaces[nsid - 1] = nvme_ns; nvme_ns->id = nsid; nvme_ns->ctrlr = nvme_ctrlr; nvme_ns->bdev = NULL; if (ctx) { ctx->populates_in_progress++; } nvme_ns->probe_ctx = ctx; nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns); } nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid); } if (ctx) { /* Decrement this count now that the loop is over to account * for the one we started with. If the count is then 0, we * know any populate_namespace functions completed immediately, * so we'll kick the callback here. */ ctx->populates_in_progress--; if (ctx->populates_in_progress == 0) { nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx); } } } static void nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr) { uint32_t i; struct nvme_ns *nvme_ns; for (i = 0; i < nvme_ctrlr->num_ns; i++) { uint32_t nsid = i + 1; nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid); if (nvme_ns != NULL) { assert(nvme_ns->id == nsid); nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns); } } } static bool nvme_ctrlr_acquire(struct nvme_ctrlr *nvme_ctrlr) { pthread_mutex_lock(&nvme_ctrlr->mutex); if (nvme_ctrlr->destruct || nvme_ctrlr->resetting) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return false; } nvme_ctrlr->ref++; pthread_mutex_unlock(&nvme_ctrlr->mutex); return true; } static int nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg) { struct nvme_ctrlr *nvme_ctrlr = cb_arg; struct nvme_ns *nvme_ns; uint32_t i, nsid; for (i = 0; i < desc->num_of_nsid; i++) { nsid = desc->nsid[i]; if (nsid == 0 || nsid > nvme_ctrlr->num_ns) { continue; } nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid); assert(nvme_ns != NULL); if (nvme_ns == NULL) { /* Target told us that an inactive namespace had an ANA change */ continue; } nvme_ns->ana_group_id = desc->ana_group_id; nvme_ns->ana_state = desc->ana_state; } return 0; } static void nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl) { struct nvme_ctrlr *nvme_ctrlr = ctx; if (spdk_nvme_cpl_is_success(cpl)) { bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states, nvme_ctrlr); } nvme_ctrlr_release(nvme_ctrlr); } static void nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr) { int rc; if (nvme_ctrlr->ana_log_page == NULL) { return; } if (!nvme_ctrlr_acquire(nvme_ctrlr)) { return; } rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS, SPDK_NVME_GLOBAL_NS_TAG, nvme_ctrlr->ana_log_page, nvme_ctrlr->ana_log_page_size, 0, nvme_ctrlr_read_ana_log_page_done, nvme_ctrlr); if (rc != 0) { nvme_ctrlr_release(nvme_ctrlr); } } static void aer_cb(void *arg, const struct spdk_nvme_cpl *cpl) { struct nvme_ctrlr *nvme_ctrlr = arg; union spdk_nvme_async_event_completion event; if (spdk_nvme_cpl_is_error(cpl)) { SPDK_WARNLOG("AER request execute failed"); return; } event.raw = cpl->cdw0; if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) && (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) { nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL); } else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) && (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) { nvme_ctrlr_read_ana_log_page(nvme_ctrlr); } } static void populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc) { if (ctx->cb_fn) { ctx->cb_fn(ctx->cb_ctx, count, rc); } ctx->namespaces_populated = true; if (ctx->probe_done) { /* The probe was already completed, so we need to free the context * here. This can happen for cases like OCSSD, where we need to * send additional commands to the SSD after attach. */ free(ctx); } } static void nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr, struct nvme_async_probe_ctx *ctx) { spdk_io_device_register(nvme_ctrlr, bdev_nvme_create_ctrlr_channel_cb, bdev_nvme_destroy_ctrlr_channel_cb, sizeof(struct nvme_ctrlr_channel), nvme_ctrlr->name); nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx); } static void nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl) { struct nvme_ctrlr *nvme_ctrlr = _ctx; struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx; nvme_ctrlr->probe_ctx = NULL; if (spdk_nvme_cpl_is_error(cpl)) { nvme_ctrlr_delete(nvme_ctrlr); if (ctx != NULL) { populate_namespaces_cb(ctx, 0, -1); } return; } nvme_ctrlr_create_done(nvme_ctrlr, ctx); } static int nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr, struct nvme_async_probe_ctx *ctx) { struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; const struct spdk_nvme_ctrlr_data *cdata; uint32_t ana_log_page_size; cdata = spdk_nvme_ctrlr_get_data(ctrlr); ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid * sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->nn * sizeof(uint32_t); nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); if (nvme_ctrlr->ana_log_page == NULL) { SPDK_ERRLOG("could not allocate ANA log page buffer\n"); return -ENXIO; } /* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned. * Hence copy each descriptor to a temporary area when parsing it. * * Allocate a buffer whose size is as large as ANA log page buffer because * we do not know the size of a descriptor until actually reading it. */ nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size); if (nvme_ctrlr->copied_ana_desc == NULL) { SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n"); return -ENOMEM; } nvme_ctrlr->ana_log_page_size = ana_log_page_size; nvme_ctrlr->probe_ctx = ctx; return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS, SPDK_NVME_GLOBAL_NS_TAG, nvme_ctrlr->ana_log_page, nvme_ctrlr->ana_log_page_size, 0, nvme_ctrlr_init_ana_log_page_done, nvme_ctrlr); } static int nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr, const char *name, const struct spdk_nvme_transport_id *trid, uint32_t prchk_flags, struct nvme_async_probe_ctx *ctx) { struct nvme_ctrlr *nvme_ctrlr; struct nvme_ctrlr_trid *trid_entry; uint32_t num_ns; const struct spdk_nvme_ctrlr_data *cdata; int rc; nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr)); if (nvme_ctrlr == NULL) { SPDK_ERRLOG("Failed to allocate device struct\n"); return -ENOMEM; } rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL); if (rc != 0) { free(nvme_ctrlr); return rc; } TAILQ_INIT(&nvme_ctrlr->trids); num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr); if (num_ns != 0) { nvme_ctrlr->namespaces = calloc(num_ns, sizeof(struct nvme_ns *)); if (!nvme_ctrlr->namespaces) { SPDK_ERRLOG("Failed to allocate block namespaces pointer\n"); rc = -ENOMEM; goto err; } nvme_ctrlr->num_ns = num_ns; } trid_entry = calloc(1, sizeof(*trid_entry)); if (trid_entry == NULL) { SPDK_ERRLOG("Failed to allocate trid entry pointer\n"); rc = -ENOMEM; goto err; } trid_entry->trid = *trid; nvme_ctrlr->connected_trid = &trid_entry->trid; TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, trid_entry, link); nvme_ctrlr->thread = spdk_get_thread(); nvme_ctrlr->ctrlr = ctrlr; nvme_ctrlr->ref = 1; nvme_ctrlr->name = strdup(name); if (nvme_ctrlr->name == NULL) { rc = -ENOMEM; goto err; } if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) { SPDK_ERRLOG("OCSSDs are not supported"); rc = -ENOTSUP; goto err; } nvme_ctrlr->prchk_flags = prchk_flags; nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr, g_opts.nvme_adminq_poll_period_us); pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_INSERT_TAIL(&g_nvme_ctrlrs, nvme_ctrlr, tailq); pthread_mutex_unlock(&g_bdev_nvme_mutex); if (g_opts.timeout_us > 0) { /* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */ /* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */ uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ? g_opts.timeout_us : g_opts.timeout_admin_us; spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us, adm_timeout_us, timeout_cb, nvme_ctrlr); } spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr); spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr); if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) { nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr); } cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (cdata->cmic.ana_reporting) { rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx); if (rc == 0) { return 0; } } else { nvme_ctrlr_create_done(nvme_ctrlr, ctx); return 0; } err: nvme_ctrlr_delete(nvme_ctrlr); return rc; } static void attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { struct nvme_probe_ctx *ctx = cb_ctx; char *name = NULL; uint32_t prchk_flags = 0; size_t i; if (ctx) { for (i = 0; i < ctx->count; i++) { if (spdk_nvme_transport_id_compare(trid, &ctx->trids[i]) == 0) { prchk_flags = ctx->prchk_flags[i]; name = strdup(ctx->names[i]); break; } } } else { name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++); } if (!name) { SPDK_ERRLOG("Failed to assign name to NVMe device\n"); return; } SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name); nvme_ctrlr_create(ctrlr, name, trid, prchk_flags, NULL); free(name); } static void _nvme_ctrlr_destruct(void *ctx) { struct nvme_ctrlr *nvme_ctrlr = ctx; nvme_ctrlr_depopulate_namespaces(nvme_ctrlr); nvme_ctrlr_release(nvme_ctrlr); } static int _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug) { struct nvme_probe_skip_entry *entry; pthread_mutex_lock(&nvme_ctrlr->mutex); /* The controller's destruction was already started */ if (nvme_ctrlr->destruct) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return 0; } if (!hotplug && nvme_ctrlr->connected_trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { entry = calloc(1, sizeof(*entry)); if (!entry) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return -ENOMEM; } entry->trid = *nvme_ctrlr->connected_trid; TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq); } nvme_ctrlr->destruct = true; pthread_mutex_unlock(&nvme_ctrlr->mutex); _nvme_ctrlr_destruct(nvme_ctrlr); return 0; } static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr) { struct nvme_ctrlr *nvme_ctrlr = cb_ctx; _bdev_nvme_delete(nvme_ctrlr, true); } static int bdev_nvme_hotplug_probe(void *arg) { if (g_hotplug_probe_ctx == NULL) { spdk_poller_unregister(&g_hotplug_probe_poller); return SPDK_POLLER_IDLE; } if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) { g_hotplug_probe_ctx = NULL; spdk_poller_unregister(&g_hotplug_probe_poller); } return SPDK_POLLER_BUSY; } static int bdev_nvme_hotplug(void *arg) { struct spdk_nvme_transport_id trid_pcie; if (g_hotplug_probe_ctx) { return SPDK_POLLER_BUSY; } memset(&trid_pcie, 0, sizeof(trid_pcie)); spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE); g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL, hotplug_probe_cb, attach_cb, NULL); if (g_hotplug_probe_ctx) { assert(g_hotplug_probe_poller == NULL); g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000); } return SPDK_POLLER_BUSY; } void bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts) { *opts = g_opts; } static int bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts) { if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) { /* Can't set timeout_admin_us without also setting timeout_us */ SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n"); return -EINVAL; } return 0; } int bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts) { int ret = bdev_nvme_validate_opts(opts); if (ret) { SPDK_WARNLOG("Failed to set nvme opts.\n"); return ret; } if (g_bdev_nvme_init_thread != NULL) { if (!TAILQ_EMPTY(&g_nvme_ctrlrs)) { return -EPERM; } } g_opts = *opts; return 0; } struct set_nvme_hotplug_ctx { uint64_t period_us; bool enabled; spdk_msg_fn fn; void *fn_ctx; }; static void set_nvme_hotplug_period_cb(void *_ctx) { struct set_nvme_hotplug_ctx *ctx = _ctx; spdk_poller_unregister(&g_hotplug_poller); if (ctx->enabled) { g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us); } g_nvme_hotplug_poll_period_us = ctx->period_us; g_nvme_hotplug_enabled = ctx->enabled; if (ctx->fn) { ctx->fn(ctx->fn_ctx); } free(ctx); } int bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx) { struct set_nvme_hotplug_ctx *ctx; if (enabled == true && !spdk_process_is_primary()) { return -EPERM; } ctx = calloc(1, sizeof(*ctx)); if (ctx == NULL) { return -ENOMEM; } period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us; ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX); ctx->enabled = enabled; ctx->fn = cb; ctx->fn_ctx = cb_ctx; spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx); return 0; } static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr, struct nvme_async_probe_ctx *ctx) { struct nvme_ns *nvme_ns; struct nvme_bdev *nvme_bdev; size_t j; assert(nvme_ctrlr != NULL); /* * Report the new bdevs that were created in this call. * There can be more than one bdev per NVMe controller. */ j = 0; nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); while (nvme_ns != NULL) { nvme_bdev = nvme_ns->bdev; if (j < ctx->count) { ctx->names[j] = nvme_bdev->disk.name; j++; } else { SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n", ctx->count); populate_namespaces_cb(ctx, 0, -ERANGE); return; } nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns); } populate_namespaces_cb(ctx, j, 0); } static int bdev_nvme_compare_trids(struct nvme_ctrlr *nvme_ctrlr, struct spdk_nvme_ctrlr *new_ctrlr, struct spdk_nvme_transport_id *trid) { struct nvme_ctrlr_trid *tmp_trid; if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { SPDK_ERRLOG("PCIe failover is not supported.\n"); return -ENOTSUP; } /* Currently we only support failover to the same transport type. */ if (nvme_ctrlr->connected_trid->trtype != trid->trtype) { return -EINVAL; } /* Currently we only support failover to the same NQN. */ if (strncmp(trid->subnqn, nvme_ctrlr->connected_trid->subnqn, SPDK_NVMF_NQN_MAX_LEN)) { return -EINVAL; } /* Skip all the other checks if we've already registered this path. */ TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) { if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) { return -EEXIST; } } return 0; } static int bdev_nvme_compare_namespaces(struct nvme_ctrlr *nvme_ctrlr, struct spdk_nvme_ctrlr *new_ctrlr) { struct nvme_ns *nvme_ns; struct spdk_nvme_ns *new_ns; if (spdk_nvme_ctrlr_get_num_ns(new_ctrlr) != nvme_ctrlr->num_ns) { return -EINVAL; } nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); while (nvme_ns != NULL) { new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id); assert(new_ns != NULL); if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) { return -EINVAL; } nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns); } return 0; } static int _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr, struct spdk_nvme_transport_id *trid) { struct nvme_ctrlr_trid *new_trid, *tmp_trid; new_trid = calloc(1, sizeof(*new_trid)); if (new_trid == NULL) { return -ENOMEM; } new_trid->trid = *trid; new_trid->is_failed = false; TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) { if (tmp_trid->is_failed) { TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link); return 0; } } TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link); return 0; } /* This is the case that a secondary path is added to an existing * nvme_ctrlr for failover. After checking if it can access the same * namespaces as the primary path, it is disconnected until failover occurs. */ static int bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr, struct spdk_nvme_ctrlr *new_ctrlr, struct spdk_nvme_transport_id *trid) { int rc; assert(nvme_ctrlr != NULL); pthread_mutex_lock(&nvme_ctrlr->mutex); rc = bdev_nvme_compare_trids(nvme_ctrlr, new_ctrlr, trid); if (rc != 0) { goto exit; } rc = bdev_nvme_compare_namespaces(nvme_ctrlr, new_ctrlr); if (rc != 0) { goto exit; } rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid); exit: pthread_mutex_unlock(&nvme_ctrlr->mutex); spdk_nvme_detach(new_ctrlr); return rc; } static void connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx; struct nvme_async_probe_ctx *ctx; int rc; ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, opts); ctx->ctrlr_attached = true; rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx->prchk_flags, ctx); if (rc != 0) { populate_namespaces_cb(ctx, 0, rc); } } static void connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx; struct nvme_ctrlr *nvme_ctrlr; struct nvme_async_probe_ctx *ctx; int rc; ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, opts); ctx->ctrlr_attached = true; nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name); if (nvme_ctrlr) { rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid); } else { rc = -ENODEV; } populate_namespaces_cb(ctx, 0, rc); } static int bdev_nvme_async_poll(void *arg) { struct nvme_async_probe_ctx *ctx = arg; int rc; rc = spdk_nvme_probe_poll_async(ctx->probe_ctx); if (spdk_unlikely(rc != -EAGAIN)) { ctx->probe_done = true; spdk_poller_unregister(&ctx->poller); if (!ctx->ctrlr_attached) { /* The probe is done, but no controller was attached. * That means we had a failure, so report -EIO back to * the caller (usually the RPC). populate_namespaces_cb() * will take care of freeing the nvme_async_probe_ctx. */ populate_namespaces_cb(ctx, 0, -EIO); } else if (ctx->namespaces_populated) { /* The namespaces for the attached controller were all * populated and the response was already sent to the * caller (usually the RPC). So free the context here. */ free(ctx); } } return SPDK_POLLER_BUSY; } int bdev_nvme_create(struct spdk_nvme_transport_id *trid, const char *base_name, const char **names, uint32_t count, uint32_t prchk_flags, spdk_bdev_create_nvme_fn cb_fn, void *cb_ctx, struct spdk_nvme_ctrlr_opts *opts) { struct nvme_probe_skip_entry *entry, *tmp; struct nvme_async_probe_ctx *ctx; spdk_nvme_attach_cb attach_cb; /* TODO expand this check to include both the host and target TRIDs. * Only if both are the same should we fail. */ if (nvme_ctrlr_get(trid) != NULL) { SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr); return -EEXIST; } ctx = calloc(1, sizeof(*ctx)); if (!ctx) { return -ENOMEM; } ctx->base_name = base_name; ctx->names = names; ctx->count = count; ctx->cb_fn = cb_fn; ctx->cb_ctx = cb_ctx; ctx->prchk_flags = prchk_flags; ctx->trid = *trid; if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) { if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) { TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq); free(entry); break; } } } if (opts) { memcpy(&ctx->opts, opts, sizeof(*opts)); } else { spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->opts, sizeof(ctx->opts)); } ctx->opts.transport_retry_count = g_opts.retry_count; ctx->opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms; ctx->opts.disable_read_ana_log_page = true; if (nvme_ctrlr_get_by_name(base_name) == NULL) { attach_cb = connect_attach_cb; } else { attach_cb = connect_set_failover_cb; } ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->opts, attach_cb); if (ctx->probe_ctx == NULL) { SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr); free(ctx); return -ENODEV; } ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000); return 0; } static int bdev_nvme_delete_secondary_trid(struct nvme_ctrlr *nvme_ctrlr, const struct spdk_nvme_transport_id *trid) { struct nvme_ctrlr_trid *ctrlr_trid, *tmp_trid; if (!spdk_nvme_transport_id_compare(trid, nvme_ctrlr->connected_trid)) { return -EBUSY; } TAILQ_FOREACH_SAFE(ctrlr_trid, &nvme_ctrlr->trids, link, tmp_trid) { if (!spdk_nvme_transport_id_compare(&ctrlr_trid->trid, trid)) { TAILQ_REMOVE(&nvme_ctrlr->trids, ctrlr_trid, link); free(ctrlr_trid); return 0; } } return -ENXIO; } int bdev_nvme_delete(const char *name, const struct spdk_nvme_transport_id *trid) { struct nvme_ctrlr *nvme_ctrlr; struct nvme_ctrlr_trid *ctrlr_trid; if (name == NULL) { return -EINVAL; } nvme_ctrlr = nvme_ctrlr_get_by_name(name); if (nvme_ctrlr == NULL) { SPDK_ERRLOG("Failed to find NVMe controller\n"); return -ENODEV; } /* case 1: remove the controller itself. */ if (trid == NULL) { return _bdev_nvme_delete(nvme_ctrlr, false); } /* case 2: we are currently using the path to be removed. */ if (!spdk_nvme_transport_id_compare(trid, nvme_ctrlr->connected_trid)) { ctrlr_trid = TAILQ_FIRST(&nvme_ctrlr->trids); assert(nvme_ctrlr->connected_trid == &ctrlr_trid->trid); /* case 2A: the current path is the only path. */ if (!TAILQ_NEXT(ctrlr_trid, link)) { return _bdev_nvme_delete(nvme_ctrlr, false); } /* case 2B: there is an alternative path. */ return bdev_nvme_failover(nvme_ctrlr, true); } /* case 3: We are not using the specified path. */ return bdev_nvme_delete_secondary_trid(nvme_ctrlr, trid); } static int bdev_nvme_library_init(void) { g_bdev_nvme_init_thread = spdk_get_thread(); spdk_io_device_register(&g_nvme_ctrlrs, bdev_nvme_create_poll_group_cb, bdev_nvme_destroy_poll_group_cb, sizeof(struct nvme_poll_group), "nvme_poll_groups"); return 0; } static void bdev_nvme_library_fini(void) { struct nvme_ctrlr *nvme_ctrlr, *tmp; struct nvme_probe_skip_entry *entry, *entry_tmp; spdk_poller_unregister(&g_hotplug_poller); free(g_hotplug_probe_ctx); g_hotplug_probe_ctx = NULL; TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) { TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq); free(entry); } pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_FOREACH_SAFE(nvme_ctrlr, &g_nvme_ctrlrs, tailq, tmp) { pthread_mutex_lock(&nvme_ctrlr->mutex); if (nvme_ctrlr->destruct) { /* This controller's destruction was already started * before the application started shutting down */ pthread_mutex_unlock(&nvme_ctrlr->mutex); continue; } nvme_ctrlr->destruct = true; pthread_mutex_unlock(&nvme_ctrlr->mutex); spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct, nvme_ctrlr); } g_bdev_nvme_module_finish = true; if (TAILQ_EMPTY(&g_nvme_ctrlrs)) { pthread_mutex_unlock(&g_bdev_nvme_mutex); spdk_io_device_unregister(&g_nvme_ctrlrs, NULL); spdk_bdev_module_fini_done(); return; } pthread_mutex_unlock(&g_bdev_nvme_mutex); } static void bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio) { struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); struct spdk_bdev *bdev = bdev_io->bdev; struct spdk_dif_ctx dif_ctx; struct spdk_dif_error err_blk = {}; int rc; rc = spdk_dif_ctx_init(&dif_ctx, bdev->blocklen, bdev->md_len, bdev->md_interleave, bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags, bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0); if (rc != 0) { SPDK_ERRLOG("Initialization of DIF context failed\n"); return; } if (bdev->md_interleave) { rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk); } else { struct iovec md_iov = { .iov_base = bdev_io->u.bdev.md_buf, .iov_len = bdev_io->u.bdev.num_blocks * bdev->md_len, }; rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk); } if (rc != 0) { SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", err_blk.err_type, err_blk.err_offset); } else { SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n"); } } static void bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; if (spdk_nvme_cpl_is_success(cpl)) { /* Run PI verification for read data buffer. */ bdev_nvme_verify_pi_error(bio); } /* Return original completion status */ bdev_nvme_io_complete_nvme_status(bio, &bio->cpl); } static void bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); struct nvme_bdev_channel *nbdev_ch; struct spdk_nvme_ns *ns; struct spdk_nvme_qpair *qpair; int ret; if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) { SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n", cpl->status.sct, cpl->status.sc); /* Save completion status to use after verifying PI error. */ bio->cpl = *cpl; nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io)); if (spdk_likely(bdev_nvme_find_io_path(nbdev_ch, &ns, &qpair))) { /* Read without PI checking to verify PI error. */ ret = bdev_nvme_no_pi_readv(ns, qpair, bio, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks); if (ret == 0) { return; } } } bdev_nvme_io_complete_nvme_status(bio, cpl); } static void bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; if (spdk_nvme_cpl_is_pi_error(cpl)) { SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n", cpl->status.sct, cpl->status.sc); /* Run PI verification for write data buffer if PI error is detected. */ bdev_nvme_verify_pi_error(bio); } bdev_nvme_io_complete_nvme_status(bio, cpl); } static void bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); /* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks. * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error(). */ bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0; if (spdk_nvme_cpl_is_pi_error(cpl)) { SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n", cpl->status.sct, cpl->status.sc); /* Run PI verification for zone append data buffer if PI error is detected. */ bdev_nvme_verify_pi_error(bio); } bdev_nvme_io_complete_nvme_status(bio, cpl); } static void bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; if (spdk_nvme_cpl_is_pi_error(cpl)) { SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n", cpl->status.sct, cpl->status.sc); /* Run PI verification for compare data buffer if PI error is detected. */ bdev_nvme_verify_pi_error(bio); } bdev_nvme_io_complete_nvme_status(bio, cpl); } static void bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; /* Compare operation completion */ if ((cpl->cdw0 & 0xFF) == SPDK_NVME_OPC_COMPARE) { /* Save compare result for write callback */ bio->cpl = *cpl; return; } /* Write operation completion */ if (spdk_nvme_cpl_is_error(&bio->cpl)) { /* If bio->cpl is already an error, it means the compare operation failed. In that case, * complete the IO with the compare operation's status. */ if (!spdk_nvme_cpl_is_error(cpl)) { SPDK_ERRLOG("Unexpected write success after compare failure.\n"); } bdev_nvme_io_complete_nvme_status(bio, &bio->cpl); } else { bdev_nvme_io_complete_nvme_status(bio, cpl); } } static void bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; bdev_nvme_io_complete_nvme_status(bio, cpl); } static int fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc) { switch (desc->zs) { case SPDK_NVME_ZONE_STATE_EMPTY: info->state = SPDK_BDEV_ZONE_STATE_EMPTY; break; case SPDK_NVME_ZONE_STATE_IOPEN: info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN; break; case SPDK_NVME_ZONE_STATE_EOPEN: info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN; break; case SPDK_NVME_ZONE_STATE_CLOSED: info->state = SPDK_BDEV_ZONE_STATE_CLOSED; break; case SPDK_NVME_ZONE_STATE_RONLY: info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY; break; case SPDK_NVME_ZONE_STATE_FULL: info->state = SPDK_BDEV_ZONE_STATE_FULL; break; case SPDK_NVME_ZONE_STATE_OFFLINE: info->state = SPDK_BDEV_ZONE_STATE_OFFLINE; break; default: SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs); return -EIO; } info->zone_id = desc->zslba; info->write_pointer = desc->wp; info->capacity = desc->zcap; return 0; } static void bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); struct spdk_io_channel *ch = spdk_bdev_io_get_io_channel(bdev_io); struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch); uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id; uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones; struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf; uint64_t max_zones_per_buf, i; uint32_t zone_report_bufsize; struct spdk_nvme_ns *ns; struct spdk_nvme_qpair *qpair; int ret; if (spdk_nvme_cpl_is_error(cpl)) { goto out_complete_io_nvme_cpl; } if (!bdev_nvme_find_io_path(nbdev_ch, &ns, &qpair)) { ret = -ENXIO; goto out_complete_io_ret; } zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns); max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) / sizeof(bio->zone_report_buf->descs[0]); if (bio->zone_report_buf->nr_zones > max_zones_per_buf) { ret = -EINVAL; goto out_complete_io_ret; } if (!bio->zone_report_buf->nr_zones) { ret = -EINVAL; goto out_complete_io_ret; } for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) { ret = fill_zone_from_report(&info[bio->handled_zones], &bio->zone_report_buf->descs[i]); if (ret) { goto out_complete_io_ret; } bio->handled_zones++; } if (bio->handled_zones < zones_to_copy) { uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns); uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones); memset(bio->zone_report_buf, 0, zone_report_bufsize); ret = spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize, slba, SPDK_NVME_ZRA_LIST_ALL, true, bdev_nvme_get_zone_info_done, bio); if (!ret) { return; } else { goto out_complete_io_ret; } } out_complete_io_nvme_cpl: free(bio->zone_report_buf); bio->zone_report_buf = NULL; bdev_nvme_io_complete_nvme_status(bio, cpl); return; out_complete_io_ret: free(bio->zone_report_buf); bio->zone_report_buf = NULL; bdev_nvme_io_complete(bio, ret); } static void bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; bdev_nvme_io_complete_nvme_status(bio, cpl); } static void bdev_nvme_admin_passthru_completion(void *ctx) { struct nvme_bdev_io *bio = ctx; bdev_nvme_io_complete_nvme_status(bio, &bio->cpl); } static void bdev_nvme_abort_completion(void *ctx) { struct nvme_bdev_io *bio = ctx; struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) { spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS); } else { spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); } } static void bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; bio->cpl = *cpl; spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_completion, bio); } static void bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; bio->cpl = *cpl; spdk_thread_send_msg(bio->orig_thread, bdev_nvme_admin_passthru_completion, bio); } static void bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset) { struct nvme_bdev_io *bio = ref; struct iovec *iov; bio->iov_offset = sgl_offset; for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) { iov = &bio->iovs[bio->iovpos]; if (bio->iov_offset < iov->iov_len) { break; } bio->iov_offset -= iov->iov_len; } } static int bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length) { struct nvme_bdev_io *bio = ref; struct iovec *iov; assert(bio->iovpos < bio->iovcnt); iov = &bio->iovs[bio->iovpos]; *address = iov->iov_base; *length = iov->iov_len; if (bio->iov_offset) { assert(bio->iov_offset <= iov->iov_len); *address += bio->iov_offset; *length -= bio->iov_offset; } bio->iov_offset += *length; if (bio->iov_offset == iov->iov_len) { bio->iovpos++; bio->iov_offset = 0; } return 0; } static void bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset) { struct nvme_bdev_io *bio = ref; struct iovec *iov; bio->fused_iov_offset = sgl_offset; for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) { iov = &bio->fused_iovs[bio->fused_iovpos]; if (bio->fused_iov_offset < iov->iov_len) { break; } bio->fused_iov_offset -= iov->iov_len; } } static int bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length) { struct nvme_bdev_io *bio = ref; struct iovec *iov; assert(bio->fused_iovpos < bio->fused_iovcnt); iov = &bio->fused_iovs[bio->fused_iovpos]; *address = iov->iov_base; *length = iov->iov_len; if (bio->fused_iov_offset) { assert(bio->fused_iov_offset <= iov->iov_len); *address += bio->fused_iov_offset; *length -= bio->fused_iov_offset; } bio->fused_iov_offset += *length; if (bio->fused_iov_offset == iov->iov_len) { bio->fused_iovpos++; bio->fused_iov_offset = 0; } return 0; } static int bdev_nvme_no_pi_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba) { int rc; SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n", lba_count, lba); bio->iovs = iov; bio->iovcnt = iovcnt; bio->iovpos = 0; bio->iov_offset = 0; rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count, bdev_nvme_no_pi_readv_done, bio, 0, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); if (rc != 0 && rc != -ENOMEM) { SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc); } return rc; } static int bdev_nvme_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts) { int rc; SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n", lba_count, lba); bio->iovs = iov; bio->iovcnt = iovcnt; bio->iovpos = 0; bio->iov_offset = 0; if (ext_opts) { bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts); bio->ext_opts.memory_domain = ext_opts->memory_domain; bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx; bio->ext_opts.io_flags = flags; bio->ext_opts.metadata = md; rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count, bdev_nvme_readv_done, bio, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, &bio->ext_opts); } else if (iovcnt == 1) { rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba, lba_count, bdev_nvme_readv_done, bio, flags, 0, 0); } else { rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count, bdev_nvme_readv_done, bio, flags, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); } if (rc != 0 && rc != -ENOMEM) { SPDK_ERRLOG("readv failed: rc = %d\n", rc); } return rc; } static int bdev_nvme_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts) { int rc; SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n", lba_count, lba); bio->iovs = iov; bio->iovcnt = iovcnt; bio->iovpos = 0; bio->iov_offset = 0; if (ext_opts) { bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts); bio->ext_opts.memory_domain = ext_opts->memory_domain; bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx; bio->ext_opts.io_flags = flags; bio->ext_opts.metadata = md; rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count, bdev_nvme_readv_done, bio, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, &bio->ext_opts); } else if (iovcnt == 1) { rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba, lba_count, bdev_nvme_writev_done, bio, flags, 0, 0); } else { rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count, bdev_nvme_writev_done, bio, flags, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); } if (rc != 0 && rc != -ENOMEM) { SPDK_ERRLOG("writev failed: rc = %d\n", rc); } return rc; } static int bdev_nvme_zone_appendv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t zslba, uint32_t flags) { int rc; SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n", lba_count, zslba); bio->iovs = iov; bio->iovcnt = iovcnt; bio->iovpos = 0; bio->iov_offset = 0; if (iovcnt == 1) { rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba, lba_count, bdev_nvme_zone_appendv_done, bio, flags, 0, 0); } else { rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count, bdev_nvme_zone_appendv_done, bio, flags, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); } if (rc != 0 && rc != -ENOMEM) { SPDK_ERRLOG("zone append failed: rc = %d\n", rc); } return rc; } static int bdev_nvme_comparev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags) { int rc; SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n", lba_count, lba); bio->iovs = iov; bio->iovcnt = iovcnt; bio->iovpos = 0; bio->iov_offset = 0; rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count, bdev_nvme_comparev_done, bio, flags, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); if (rc != 0 && rc != -ENOMEM) { SPDK_ERRLOG("comparev failed: rc = %d\n", rc); } return rc; } static int bdev_nvme_comparev_and_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov, int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags) { struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); int rc; SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n", lba_count, lba); bio->iovs = cmp_iov; bio->iovcnt = cmp_iovcnt; bio->iovpos = 0; bio->iov_offset = 0; bio->fused_iovs = write_iov; bio->fused_iovcnt = write_iovcnt; bio->fused_iovpos = 0; bio->fused_iov_offset = 0; if (bdev_io->num_retries == 0) { bio->first_fused_submitted = false; } if (!bio->first_fused_submitted) { flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST; memset(&bio->cpl, 0, sizeof(bio->cpl)); rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count, bdev_nvme_comparev_and_writev_done, bio, flags, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); if (rc == 0) { bio->first_fused_submitted = true; flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST; } else { if (rc != -ENOMEM) { SPDK_ERRLOG("compare failed: rc = %d\n", rc); } return rc; } } flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND; rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count, bdev_nvme_comparev_and_writev_done, bio, flags, bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0); if (rc != 0 && rc != -ENOMEM) { SPDK_ERRLOG("write failed: rc = %d\n", rc); rc = 0; } return rc; } static int bdev_nvme_unmap(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks) { struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES]; struct spdk_nvme_dsm_range *range; uint64_t offset, remaining; uint64_t num_ranges_u64; uint16_t num_ranges; int rc; num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) / SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) { SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks); return -EINVAL; } num_ranges = (uint16_t)num_ranges_u64; offset = offset_blocks; remaining = num_blocks; range = &dsm_ranges[0]; /* Fill max-size ranges until the remaining blocks fit into one range */ while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) { range->attributes.raw = 0; range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; range->starting_lba = offset; offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; range++; } /* Final range describes the remaining blocks */ range->attributes.raw = 0; range->length = remaining; range->starting_lba = offset; rc = spdk_nvme_ns_cmd_dataset_management(ns, qpair, SPDK_NVME_DSM_ATTR_DEALLOCATE, dsm_ranges, num_ranges, bdev_nvme_queued_done, bio); return rc; } static int bdev_nvme_write_zeroes(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks) { if (num_blocks > UINT16_MAX + 1) { SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n"); return -EINVAL; } return spdk_nvme_ns_cmd_write_zeroes(ns, qpair, offset_blocks, num_blocks, bdev_nvme_queued_done, bio, 0); } static int bdev_nvme_get_zone_info(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones, struct spdk_bdev_zone_info *info) { uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns); uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns); uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns); if (zone_id % zone_size != 0) { return -EINVAL; } if (num_zones > total_zones || !num_zones) { return -EINVAL; } assert(!bio->zone_report_buf); bio->zone_report_buf = calloc(1, zone_report_bufsize); if (!bio->zone_report_buf) { return -ENOMEM; } bio->handled_zones = 0; return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize, zone_id, SPDK_NVME_ZRA_LIST_ALL, true, bdev_nvme_get_zone_info_done, bio); } static int bdev_nvme_zone_management(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, uint64_t zone_id, enum spdk_bdev_zone_action action) { switch (action) { case SPDK_BDEV_ZONE_CLOSE: return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false, bdev_nvme_zone_management_done, bio); case SPDK_BDEV_ZONE_FINISH: return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false, bdev_nvme_zone_management_done, bio); case SPDK_BDEV_ZONE_OPEN: return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false, bdev_nvme_zone_management_done, bio); case SPDK_BDEV_ZONE_RESET: return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false, bdev_nvme_zone_management_done, bio); case SPDK_BDEV_ZONE_OFFLINE: return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false, bdev_nvme_zone_management_done, bio); default: return -EINVAL; } } static int bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes) { struct nvme_ctrlr *nvme_ctrlr; uint32_t max_xfer_size; if (!bdev_nvme_find_admin_path(nbdev_ch, &nvme_ctrlr)) { return -EINVAL; } max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr); if (nbytes > max_xfer_size) { SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size); return -EINVAL; } bio->orig_thread = spdk_get_thread(); return spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes, bdev_nvme_admin_passthru_done, bio); } static int bdev_nvme_io_passthru(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes) { uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns); if (nbytes > max_xfer_size) { SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size); return -EINVAL; } /* * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid, * so fill it out automatically. */ cmd->nsid = spdk_nvme_ns_get_id(ns); return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf, (uint32_t)nbytes, bdev_nvme_queued_done, bio); } static int bdev_nvme_io_passthru_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len) { size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns); uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns); if (nbytes > max_xfer_size) { SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size); return -EINVAL; } if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) { SPDK_ERRLOG("invalid meta data buffer size\n"); return -EINVAL; } /* * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid, * so fill it out automatically. */ cmd->nsid = spdk_nvme_ns_get_id(ns); return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio); } static int bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort) { struct nvme_ctrlr_channel *ctrlr_ch = nbdev_ch->ctrlr_ch; int rc; bio->orig_thread = spdk_get_thread(); rc = spdk_nvme_ctrlr_cmd_abort_ext(ctrlr_ch->ctrlr->ctrlr, ctrlr_ch->qpair, bio_to_abort, bdev_nvme_abort_done, bio); if (rc == -ENOENT) { /* If no command was found in I/O qpair, the target command may be * admin command. */ rc = spdk_nvme_ctrlr_cmd_abort_ext(ctrlr_ch->ctrlr->ctrlr, NULL, bio_to_abort, bdev_nvme_abort_done, bio); } if (rc == -ENOENT) { /* If no command was found, complete the abort request with failure. */ bio->cpl.cdw0 |= 1U; bio->cpl.status.sc = SPDK_NVME_SC_SUCCESS; bio->cpl.status.sct = SPDK_NVME_SCT_GENERIC; bdev_nvme_abort_completion(bio); rc = 0; } return rc; } static void bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w) { const char *action; if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) { action = "reset"; } else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) { action = "abort"; } else { action = "none"; } spdk_json_write_object_begin(w); spdk_json_write_named_string(w, "method", "bdev_nvme_set_options"); spdk_json_write_named_object_begin(w, "params"); spdk_json_write_named_string(w, "action_on_timeout", action); spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us); spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us); spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms); spdk_json_write_named_uint32(w, "retry_count", g_opts.retry_count); spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst); spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight); spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight); spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight); spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us); spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us); spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests); spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit); spdk_json_write_object_end(w); spdk_json_write_object_end(w); } static void nvme_ctrlr_config_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr) { struct spdk_nvme_transport_id *trid; trid = nvme_ctrlr->connected_trid; spdk_json_write_object_begin(w); spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller"); spdk_json_write_named_object_begin(w, "params"); spdk_json_write_named_string(w, "name", nvme_ctrlr->name); nvme_bdev_dump_trid_json(trid, w); spdk_json_write_named_bool(w, "prchk_reftag", (nvme_ctrlr->prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0); spdk_json_write_named_bool(w, "prchk_guard", (nvme_ctrlr->prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0); spdk_json_write_object_end(w); spdk_json_write_object_end(w); } static void bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w) { spdk_json_write_object_begin(w); spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug"); spdk_json_write_named_object_begin(w, "params"); spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us); spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled); spdk_json_write_object_end(w); spdk_json_write_object_end(w); } static int bdev_nvme_config_json(struct spdk_json_write_ctx *w) { struct nvme_ctrlr *nvme_ctrlr; bdev_nvme_opts_config_json(w); pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_FOREACH(nvme_ctrlr, &g_nvme_ctrlrs, tailq) { nvme_ctrlr_config_json(w, nvme_ctrlr); } /* Dump as last parameter to give all NVMe bdevs chance to be constructed * before enabling hotplug poller. */ bdev_nvme_hotplug_config_json(w); pthread_mutex_unlock(&g_bdev_nvme_mutex); return 0; } struct spdk_nvme_ctrlr * bdev_nvme_get_ctrlr(struct spdk_bdev *bdev) { if (!bdev || bdev->module != &nvme_if) { return NULL; } return SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk)->nvme_ns->ctrlr->ctrlr; } SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)