Spdk/test/unit/lib/nvme/nvme_rdma.c/nvme_rdma_ut.c

1375 lines
47 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "nvme/nvme_rdma.c"
#include "common/lib/nvme/common_stubs.h"
#include "common/lib/test_rdma.c"
SPDK_LOG_REGISTER_COMPONENT(nvme)
DEFINE_STUB(spdk_mem_map_set_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
uint64_t size, uint64_t translation), 0);
DEFINE_STUB(spdk_mem_map_clear_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
uint64_t size), 0);
DEFINE_STUB(spdk_mem_map_alloc, struct spdk_mem_map *, (uint64_t default_translation,
const struct spdk_mem_map_ops *ops, void *cb_ctx), NULL);
DEFINE_STUB_V(spdk_mem_map_free, (struct spdk_mem_map **pmap));
DEFINE_STUB(nvme_poll_group_connect_qpair, int, (struct spdk_nvme_qpair *qpair), 0);
DEFINE_STUB_V(nvme_qpair_resubmit_requests, (struct spdk_nvme_qpair *qpair, uint32_t num_requests));
DEFINE_STUB(spdk_nvme_poll_group_process_completions, int64_t, (struct spdk_nvme_poll_group *group,
uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb), 0);
DEFINE_STUB(rdma_ack_cm_event, int, (struct rdma_cm_event *event), 0);
DEFINE_STUB_V(rdma_free_devices, (struct ibv_context **list));
DEFINE_STUB(fcntl, int, (int fd, int cmd, ...), 0);
DEFINE_STUB_V(rdma_destroy_event_channel, (struct rdma_event_channel *channel));
DEFINE_STUB(ibv_dereg_mr, int, (struct ibv_mr *mr), 0);
DEFINE_STUB(ibv_resize_cq, int, (struct ibv_cq *cq, int cqe), 0);
DEFINE_STUB(spdk_memory_domain_get_context, struct spdk_memory_domain_ctx *,
(struct spdk_memory_domain *device), NULL);
DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
(struct spdk_memory_domain *device), SPDK_DMA_DEVICE_TYPE_RDMA);
DEFINE_STUB_V(spdk_memory_domain_destroy, (struct spdk_memory_domain *device));
DEFINE_STUB(spdk_memory_domain_fetch_data, int, (struct spdk_memory_domain *src_domain,
void *src_domain_ctx, struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov,
uint32_t dst_iov_cnt, spdk_memory_domain_fetch_data_cpl_cb cpl_cb, void *cpl_cb_arg), 0);
DEFINE_RETURN_MOCK(spdk_memory_domain_create, int);
int
spdk_memory_domain_create(struct spdk_memory_domain **domain, enum spdk_dma_device_type type,
struct spdk_memory_domain_ctx *ctx, const char *id)
{
static struct spdk_memory_domain *__dma_dev = (struct spdk_memory_domain *)0xdeaddead;
HANDLE_RETURN_MOCK(spdk_memory_domain_create);
*domain = __dma_dev;
return 0;
}
static struct spdk_memory_domain_translation_result g_memory_translation_translation = {.size = sizeof(struct spdk_memory_domain_translation_result) };
DEFINE_RETURN_MOCK(spdk_memory_domain_translate_data, int);
int
spdk_memory_domain_translate_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
struct spdk_memory_domain *dst_domain, struct spdk_memory_domain_translation_ctx *dst_domain_ctx,
void *addr, size_t len, struct spdk_memory_domain_translation_result *result)
{
HANDLE_RETURN_MOCK(spdk_memory_domain_translate_data);
memcpy(result, &g_memory_translation_translation, sizeof(g_memory_translation_translation));
return 0;
}
/* ibv_reg_mr can be a macro, need to undefine it */
#ifdef ibv_reg_mr
#undef ibv_reg_mr
#endif
DEFINE_RETURN_MOCK(ibv_reg_mr, struct ibv_mr *);
struct ibv_mr *
ibv_reg_mr(struct ibv_pd *pd, void *addr, size_t length, int access)
{
HANDLE_RETURN_MOCK(ibv_reg_mr);
if (length > 0) {
return &g_rdma_mr;
} else {
return NULL;
}
}
struct nvme_rdma_ut_bdev_io {
struct iovec iovs[NVME_RDMA_MAX_SGL_DESCRIPTORS];
int iovpos;
int iovcnt;
};
DEFINE_RETURN_MOCK(rdma_get_devices, struct ibv_context **);
struct ibv_context **
rdma_get_devices(int *num_devices)
{
static struct ibv_context *_contexts[] = {
(struct ibv_context *)0xDEADBEEF,
(struct ibv_context *)0xFEEDBEEF,
NULL
};
HANDLE_RETURN_MOCK(rdma_get_devices);
return _contexts;
}
DEFINE_RETURN_MOCK(rdma_create_event_channel, struct rdma_event_channel *);
struct rdma_event_channel *
rdma_create_event_channel(void)
{
HANDLE_RETURN_MOCK(rdma_create_event_channel);
return NULL;
}
DEFINE_RETURN_MOCK(ibv_query_device, int);
int
ibv_query_device(struct ibv_context *context,
struct ibv_device_attr *device_attr)
{
if (device_attr) {
device_attr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS;
}
HANDLE_RETURN_MOCK(ibv_query_device);
return 0;
}
/* essentially a simplification of bdev_nvme_next_sge and bdev_nvme_reset_sgl */
static void nvme_rdma_ut_reset_sgl(void *cb_arg, uint32_t offset)
{
struct nvme_rdma_ut_bdev_io *bio = cb_arg;
struct iovec *iov;
for (bio->iovpos = 0; bio->iovpos < NVME_RDMA_MAX_SGL_DESCRIPTORS; bio->iovpos++) {
iov = &bio->iovs[bio->iovpos];
/* Only provide offsets at the beginning of an iov */
if (offset == 0) {
break;
}
offset -= iov->iov_len;
}
SPDK_CU_ASSERT_FATAL(bio->iovpos < NVME_RDMA_MAX_SGL_DESCRIPTORS);
}
static int nvme_rdma_ut_next_sge(void *cb_arg, void **address, uint32_t *length)
{
struct nvme_rdma_ut_bdev_io *bio = cb_arg;
struct iovec *iov;
SPDK_CU_ASSERT_FATAL(bio->iovpos < NVME_RDMA_MAX_SGL_DESCRIPTORS);
if (bio->iovpos == bio->iovcnt) {
return -1;
}
iov = &bio->iovs[bio->iovpos];
*address = iov->iov_base;
*length = iov->iov_len;
bio->iovpos++;
return 0;
}
static void
test_nvme_rdma_build_sgl_request(void)
{
struct nvme_rdma_qpair rqpair;
struct spdk_nvme_ctrlr ctrlr = {0};
struct spdk_nvmf_cmd cmd = {{0}};
struct spdk_nvme_rdma_req rdma_req = {0};
struct nvme_request req = {{0}};
struct nvme_rdma_ut_bdev_io bio = { .iovcnt = NVME_RDMA_MAX_SGL_DESCRIPTORS };
uint64_t i;
int rc;
ctrlr.max_sges = NVME_RDMA_MAX_SGL_DESCRIPTORS;
ctrlr.cdata.nvmf_specific.msdbd = 16;
ctrlr.ioccsz_bytes = 4096;
rqpair.mr_map = (struct spdk_rdma_mem_map *)0xdeadbeef;
rqpair.rdma_qp = (struct spdk_rdma_qp *)0xdeadbeef;
rqpair.qpair.ctrlr = &ctrlr;
rqpair.cmds = &cmd;
cmd.sgl[0].address = 0x1111;
rdma_req.id = 0;
rdma_req.req = &req;
req.payload.reset_sgl_fn = nvme_rdma_ut_reset_sgl;
req.payload.next_sge_fn = nvme_rdma_ut_next_sge;
req.payload.contig_or_cb_arg = &bio;
req.qpair = &rqpair.qpair;
for (i = 0; i < NVME_RDMA_MAX_SGL_DESCRIPTORS; i++) {
bio.iovs[i].iov_base = (void *)i + 1;
bio.iovs[i].iov_len = 0;
}
/* Test case 1: single SGL. Expected: PASS */
bio.iovpos = 0;
req.payload_offset = 0;
req.payload_size = 0x1000;
bio.iovs[0].iov_len = 0x1000;
rc = nvme_rdma_build_sgl_request(&rqpair, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(bio.iovpos == 1);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.length == req.payload_size);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.key == RDMA_UT_RKEY);
CU_ASSERT(req.cmd.dptr.sgl1.address == (uint64_t)bio.iovs[0].iov_base);
CU_ASSERT(rdma_req.send_sgl[0].length == sizeof(struct spdk_nvme_cmd));
/* Test case 2: multiple SGL. Expected: PASS */
bio.iovpos = 0;
req.payload_offset = 0;
req.payload_size = 0x4000;
for (i = 0; i < 4; i++) {
bio.iovs[i].iov_len = 0x1000;
}
rc = nvme_rdma_build_sgl_request(&rqpair, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(bio.iovpos == 4);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.length == 4 * sizeof(struct spdk_nvme_sgl_descriptor));
CU_ASSERT(req.cmd.dptr.sgl1.address == (uint64_t)0);
CU_ASSERT(rdma_req.send_sgl[0].length == 4 * sizeof(struct spdk_nvme_sgl_descriptor) + sizeof(
struct spdk_nvme_cmd))
for (i = 0; i < 4; i++) {
CU_ASSERT(cmd.sgl[i].keyed.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK);
CU_ASSERT(cmd.sgl[i].keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS);
CU_ASSERT(cmd.sgl[i].keyed.length == bio.iovs[i].iov_len);
CU_ASSERT(cmd.sgl[i].keyed.key == RDMA_UT_RKEY);
CU_ASSERT(cmd.sgl[i].address == (uint64_t)bio.iovs[i].iov_base);
}
/* Test case 3: Multiple SGL, SGL 2X mr size. Expected: FAIL */
bio.iovpos = 0;
req.payload_offset = 0;
g_mr_size = 0x800;
rc = nvme_rdma_build_sgl_request(&rqpair, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc != 0);
CU_ASSERT(bio.iovpos == 1);
/* Test case 4: Multiple SGL, SGL size smaller than I/O size. Expected: FAIL */
bio.iovpos = 0;
bio.iovcnt = 4;
req.payload_offset = 0;
req.payload_size = 0x6000;
g_mr_size = 0x0;
rc = nvme_rdma_build_sgl_request(&rqpair, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc != 0);
CU_ASSERT(bio.iovpos == bio.iovcnt);
bio.iovcnt = NVME_RDMA_MAX_SGL_DESCRIPTORS;
/* Test case 5: SGL length exceeds 3 bytes. Expected: FAIL */
req.payload_size = 0x1000 + (1 << 24);
bio.iovs[0].iov_len = 0x1000;
bio.iovs[1].iov_len = 1 << 24;
rc = nvme_rdma_build_sgl_request(&rqpair, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc != 0);
/* Test case 6: 4 SGL descriptors, size of SGL descriptors exceeds ICD. Expected: FAIL */
ctrlr.ioccsz_bytes = 60;
bio.iovpos = 0;
req.payload_offset = 0;
req.payload_size = 0x4000;
for (i = 0; i < 4; i++) {
bio.iovs[i].iov_len = 0x1000;
}
rc = nvme_rdma_build_sgl_request(&rqpair, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == -1);
}
static void
test_nvme_rdma_build_sgl_inline_request(void)
{
struct nvme_rdma_qpair rqpair;
struct spdk_nvme_ctrlr ctrlr = {0};
struct spdk_nvmf_cmd cmd = {{0}};
struct spdk_nvme_rdma_req rdma_req = {0};
struct nvme_request req = {{0}};
struct nvme_rdma_ut_bdev_io bio = { .iovcnt = NVME_RDMA_MAX_SGL_DESCRIPTORS };
int rc;
ctrlr.max_sges = NVME_RDMA_MAX_SGL_DESCRIPTORS;
ctrlr.cdata.nvmf_specific.msdbd = 16;
rqpair.mr_map = (struct spdk_rdma_mem_map *)0xdeadbeef;
rqpair.rdma_qp = (struct spdk_rdma_qp *)0xdeadbeef;
rqpair.qpair.ctrlr = &ctrlr;
rqpair.cmds = &cmd;
cmd.sgl[0].address = 0x1111;
rdma_req.id = 0;
rdma_req.req = &req;
req.payload.reset_sgl_fn = nvme_rdma_ut_reset_sgl;
req.payload.next_sge_fn = nvme_rdma_ut_next_sge;
req.payload.contig_or_cb_arg = &bio;
req.qpair = &rqpair.qpair;
/* Test case 1: single inline SGL. Expected: PASS */
bio.iovpos = 0;
req.payload_offset = 0;
req.payload_size = 0x1000;
bio.iovs[0].iov_base = (void *)0xdeadbeef;
bio.iovs[0].iov_len = 0x1000;
rc = nvme_rdma_build_sgl_inline_request(&rqpair, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(bio.iovpos == 1);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.length == req.payload_size);
CU_ASSERT(req.cmd.dptr.sgl1.address == 0);
CU_ASSERT(rdma_req.send_sgl[0].length == sizeof(struct spdk_nvme_cmd));
CU_ASSERT(rdma_req.send_sgl[1].length == req.payload_size);
CU_ASSERT(rdma_req.send_sgl[1].addr == (uint64_t)bio.iovs[0].iov_base);
CU_ASSERT(rdma_req.send_sgl[1].lkey == RDMA_UT_LKEY);
/* Test case 2: SGL length exceeds 3 bytes. Expected: PASS */
bio.iovpos = 0;
req.payload_offset = 0;
req.payload_size = 1 << 24;
bio.iovs[0].iov_len = 1 << 24;
rc = nvme_rdma_build_sgl_inline_request(&rqpair, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(bio.iovpos == 1);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.length == req.payload_size);
CU_ASSERT(req.cmd.dptr.sgl1.address == 0);
CU_ASSERT(rdma_req.send_sgl[0].length == sizeof(struct spdk_nvme_cmd));
CU_ASSERT(rdma_req.send_sgl[1].length == req.payload_size);
CU_ASSERT(rdma_req.send_sgl[1].addr == (uint64_t)bio.iovs[0].iov_base);
CU_ASSERT(rdma_req.send_sgl[1].lkey == RDMA_UT_LKEY);
}
static void
test_nvme_rdma_build_contig_request(void)
{
struct nvme_rdma_qpair rqpair;
struct spdk_nvme_ctrlr ctrlr = {0};
struct spdk_nvmf_cmd cmd = {{0}};
struct spdk_nvme_rdma_req rdma_req = {0};
struct nvme_request req = {{0}};
int rc;
ctrlr.max_sges = NVME_RDMA_MAX_SGL_DESCRIPTORS;
ctrlr.cdata.nvmf_specific.msdbd = 16;
rqpair.mr_map = (struct spdk_rdma_mem_map *)0xdeadbeef;
rqpair.rdma_qp = (struct spdk_rdma_qp *)0xdeadbeef;
rqpair.qpair.ctrlr = &ctrlr;
rqpair.cmds = &cmd;
cmd.sgl[0].address = 0x1111;
rdma_req.id = 0;
rdma_req.req = &req;
req.payload.contig_or_cb_arg = (void *)0xdeadbeef;
req.qpair = &rqpair.qpair;
/* Test case 1: contig request. Expected: PASS */
req.payload_offset = 0;
req.payload_size = 0x1000;
rc = nvme_rdma_build_contig_request(&rqpair, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.length == req.payload_size);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.key == RDMA_UT_RKEY);
CU_ASSERT(req.cmd.dptr.sgl1.address == (uint64_t)req.payload.contig_or_cb_arg);
CU_ASSERT(rdma_req.send_sgl[0].length == sizeof(struct spdk_nvme_cmd));
/* Test case 2: SGL length exceeds 3 bytes. Expected: FAIL */
req.payload_offset = 0;
req.payload_size = 1 << 24;
rc = nvme_rdma_build_contig_request(&rqpair, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc != 0);
}
static void
test_nvme_rdma_build_contig_inline_request(void)
{
struct nvme_rdma_qpair rqpair;
struct spdk_nvme_ctrlr ctrlr = {0};
struct spdk_nvmf_cmd cmd = {{0}};
struct spdk_nvme_rdma_req rdma_req = {0};
struct nvme_request req = {{0}};
int rc;
ctrlr.max_sges = NVME_RDMA_MAX_SGL_DESCRIPTORS;
ctrlr.cdata.nvmf_specific.msdbd = 16;
rqpair.mr_map = (struct spdk_rdma_mem_map *)0xdeadbeef;
rqpair.rdma_qp = (struct spdk_rdma_qp *)0xdeadbeef;
rqpair.qpair.ctrlr = &ctrlr;
rqpair.cmds = &cmd;
cmd.sgl[0].address = 0x1111;
rdma_req.id = 0;
rdma_req.req = &req;
req.payload.contig_or_cb_arg = (void *)0xdeadbeef;
req.qpair = &rqpair.qpair;
/* Test case 1: single inline SGL. Expected: PASS */
req.payload_offset = 0;
req.payload_size = 0x1000;
rc = nvme_rdma_build_contig_inline_request(&rqpair, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.length == req.payload_size);
CU_ASSERT(req.cmd.dptr.sgl1.address == 0);
CU_ASSERT(rdma_req.send_sgl[0].length == sizeof(struct spdk_nvme_cmd));
CU_ASSERT(rdma_req.send_sgl[1].length == req.payload_size);
CU_ASSERT(rdma_req.send_sgl[1].addr == (uint64_t)req.payload.contig_or_cb_arg);
CU_ASSERT(rdma_req.send_sgl[1].lkey == RDMA_UT_LKEY);
/* Test case 2: SGL length exceeds 3 bytes. Expected: PASS */
req.payload_offset = 0;
req.payload_size = 1 << 24;
rc = nvme_rdma_build_contig_inline_request(&rqpair, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.length == req.payload_size);
CU_ASSERT(req.cmd.dptr.sgl1.address == 0);
CU_ASSERT(rdma_req.send_sgl[0].length == sizeof(struct spdk_nvme_cmd));
CU_ASSERT(rdma_req.send_sgl[1].length == req.payload_size);
CU_ASSERT(rdma_req.send_sgl[1].addr == (uint64_t)req.payload.contig_or_cb_arg);
CU_ASSERT(rdma_req.send_sgl[1].lkey == RDMA_UT_LKEY);
}
static void
test_nvme_rdma_alloc_reqs(void)
{
struct nvme_rdma_qpair rqpair = {};
int rc;
memset(&g_nvme_hooks, 0, sizeof(g_nvme_hooks));
/* Test case 1: zero entry. Expect: FAIL */
rqpair.num_entries = 0;
rc = nvme_rdma_alloc_reqs(&rqpair);
CU_ASSERT(rqpair.rdma_reqs == NULL);
SPDK_CU_ASSERT_FATAL(rc == -ENOMEM);
/* Test case 2: single entry. Expect: PASS */
memset(&rqpair, 0, sizeof(rqpair));
rqpair.num_entries = 1;
rc = nvme_rdma_alloc_reqs(&rqpair);
CU_ASSERT(rc == 0);
CU_ASSERT(rqpair.rdma_reqs[0].send_sgl[0].addr
== (uint64_t)&rqpair.cmds[0]);
CU_ASSERT(rqpair.rdma_reqs[0].send_wr.wr_id
== (uint64_t)&rqpair.rdma_reqs[0].rdma_wr);
CU_ASSERT(rqpair.rdma_reqs[0].send_wr.next == NULL);
CU_ASSERT(rqpair.rdma_reqs[0].send_wr.opcode == IBV_WR_SEND);
CU_ASSERT(rqpair.rdma_reqs[0].send_wr.send_flags == IBV_SEND_SIGNALED);
CU_ASSERT(rqpair.rdma_reqs[0].send_wr.sg_list
== rqpair.rdma_reqs[0].send_sgl);
CU_ASSERT(rqpair.rdma_reqs[0].send_wr.imm_data == 0);
spdk_free(rqpair.rdma_reqs);
spdk_free(rqpair.cmds);
/* Test case 3: multiple entries. Expect: PASS */
memset(&rqpair, 0, sizeof(rqpair));
rqpair.num_entries = 5;
rc = nvme_rdma_alloc_reqs(&rqpair);
CU_ASSERT(rc == 0);
for (int i = 0; i < 5; i++) {
CU_ASSERT(rqpair.rdma_reqs[i].send_sgl[0].addr
== (uint64_t)&rqpair.cmds[i]);
CU_ASSERT(rqpair.rdma_reqs[i].send_wr.wr_id
== (uint64_t)&rqpair.rdma_reqs[i].rdma_wr);
CU_ASSERT(rqpair.rdma_reqs[i].send_wr.next == NULL);
CU_ASSERT(rqpair.rdma_reqs[i].send_wr.opcode == IBV_WR_SEND);
CU_ASSERT(rqpair.rdma_reqs[i].send_wr.send_flags
== IBV_SEND_SIGNALED);
CU_ASSERT(rqpair.rdma_reqs[i].send_wr.sg_list
== rqpair.rdma_reqs[i].send_sgl);
CU_ASSERT(rqpair.rdma_reqs[i].send_wr.imm_data == 0);
}
spdk_free(rqpair.rdma_reqs);
spdk_free(rqpair.cmds);
}
static void
test_nvme_rdma_alloc_rsps(void)
{
struct nvme_rdma_qpair rqpair = {};
int rc;
memset(&g_nvme_hooks, 0, sizeof(g_nvme_hooks));
/* Test case 1 calloc false */
rqpair.num_entries = 0;
rc = nvme_rdma_alloc_rsps(&rqpair);
CU_ASSERT(rqpair.rsp_sgls == NULL);
SPDK_CU_ASSERT_FATAL(rc == -ENOMEM);
/* Test case 2 calloc success */
memset(&rqpair, 0, sizeof(rqpair));
rqpair.num_entries = 1;
rc = nvme_rdma_alloc_rsps(&rqpair);
CU_ASSERT(rc == 0);
CU_ASSERT(rqpair.rsp_sgls != NULL);
CU_ASSERT(rqpair.rsp_recv_wrs != NULL);
CU_ASSERT(rqpair.rsps != NULL);
nvme_rdma_free_rsps(&rqpair);
}
static void
test_nvme_rdma_ctrlr_create_qpair(void)
{
struct spdk_nvme_ctrlr ctrlr = {};
uint16_t qid, qsize;
struct spdk_nvme_qpair *qpair;
struct nvme_rdma_qpair *rqpair;
/* Test case 1: max qsize. Expect: PASS */
qsize = 0xffff;
qid = 1;
qpair = nvme_rdma_ctrlr_create_qpair(&ctrlr, qid, qsize,
SPDK_NVME_QPRIO_URGENT, 1,
false);
CU_ASSERT(qpair != NULL);
rqpair = SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
CU_ASSERT(qpair == &rqpair->qpair);
CU_ASSERT(rqpair->num_entries == qsize);
CU_ASSERT(rqpair->delay_cmd_submit == false);
CU_ASSERT(rqpair->rsp_sgls != NULL);
CU_ASSERT(rqpair->rsp_recv_wrs != NULL);
CU_ASSERT(rqpair->rsps != NULL);
nvme_rdma_free_reqs(rqpair);
nvme_rdma_free_rsps(rqpair);
nvme_rdma_free(rqpair);
rqpair = NULL;
/* Test case 2: queue qsize zero. ExpectL FAIL */
qsize = 0;
qpair = nvme_rdma_ctrlr_create_qpair(&ctrlr, qid, qsize,
SPDK_NVME_QPRIO_URGENT, 1,
false);
SPDK_CU_ASSERT_FATAL(qpair == NULL);
}
DEFINE_STUB(ibv_create_cq, struct ibv_cq *, (struct ibv_context *context, int cqe, void *cq_context,
struct ibv_comp_channel *channel, int comp_vector), (struct ibv_cq *)0xFEEDBEEF);
DEFINE_STUB(ibv_destroy_cq, int, (struct ibv_cq *cq), 0);
static void
test_nvme_rdma_poller_create(void)
{
struct nvme_rdma_poll_group group = {};
struct ibv_context *contexts = (struct ibv_context *)0xDEADBEEF;
/* Case: calloc and ibv not need to fail test */
STAILQ_INIT(&group.pollers);
group.num_pollers = 1;
int rc = nvme_rdma_poller_create(&group, contexts);
CU_ASSERT(rc == 0);
CU_ASSERT(group.num_pollers = 2);
CU_ASSERT(&group.pollers != NULL);
CU_ASSERT(group.pollers.stqh_first->device == contexts);
CU_ASSERT(group.pollers.stqh_first->cq == (struct ibv_cq *)0xFEEDBEEF);
CU_ASSERT(group.pollers.stqh_first->current_num_wc == DEFAULT_NVME_RDMA_CQ_SIZE);
CU_ASSERT(group.pollers.stqh_first->required_num_wc == 0);
nvme_rdma_poll_group_free_pollers(&group);
}
static void
test_nvme_rdma_qpair_process_cm_event(void)
{
struct nvme_rdma_qpair rqpair = {};
struct rdma_cm_event event = {};
struct spdk_nvmf_rdma_accept_private_data accept_data = {};
int rc = 0;
/* case1: event == RDMA_CM_EVENT_ADDR_RESOLVED */
rqpair.evt = &event;
event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
rc = nvme_rdma_qpair_process_cm_event(&rqpair);
CU_ASSERT(rc == 0);
/* case2: event == RDMA_CM_EVENT_CONNECT_REQUEST */
rqpair.evt = &event;
event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
rc = nvme_rdma_qpair_process_cm_event(&rqpair);
CU_ASSERT(rc == 0);
/* case3: event == RDMA_CM_EVENT_CONNECT_ERROR */
rqpair.evt = &event;
event.event = RDMA_CM_EVENT_CONNECT_ERROR;
rc = nvme_rdma_qpair_process_cm_event(&rqpair);
CU_ASSERT(rc == 0);
/* case4: event == RDMA_CM_EVENT_UNREACHABLE */
rqpair.evt = &event;
event.event = RDMA_CM_EVENT_UNREACHABLE;
rc = nvme_rdma_qpair_process_cm_event(&rqpair);
CU_ASSERT(rc == 0);
/* case5: event == RDMA_CM_EVENT_CONNECT_RESPONSE */
rqpair.evt = &event;
event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
event.param.conn.private_data = NULL;
rc = nvme_rdma_qpair_process_cm_event(&rqpair);
CU_ASSERT(rc == -1);
rqpair.evt = &event;
event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
event.param.conn.private_data = &accept_data;
accept_data.crqsize = 512;
rqpair.num_entries = 1024;
rc = nvme_rdma_qpair_process_cm_event(&rqpair);
CU_ASSERT(rc == 0);
CU_ASSERT(rqpair.num_entries == 512);
/* case6: event == RDMA_CM_EVENT_DISCONNECTED */
rqpair.evt = &event;
event.event = RDMA_CM_EVENT_DISCONNECTED;
rc = nvme_rdma_qpair_process_cm_event(&rqpair);
CU_ASSERT(rc == 0);
CU_ASSERT(rqpair.qpair.transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_REMOTE);
/* case7: event == RDMA_CM_EVENT_DEVICE_REMOVAL */
rqpair.evt = &event;
event.event = RDMA_CM_EVENT_DEVICE_REMOVAL;
rc = nvme_rdma_qpair_process_cm_event(&rqpair);
CU_ASSERT(rc == 0);
CU_ASSERT(rqpair.qpair.transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_LOCAL);
/* case8: event == RDMA_CM_EVENT_MULTICAST_JOIN */
rqpair.evt = &event;
event.event = RDMA_CM_EVENT_MULTICAST_JOIN;
rc = nvme_rdma_qpair_process_cm_event(&rqpair);
CU_ASSERT(rc == 0);
/* case9: event == RDMA_CM_EVENT_ADDR_CHANGE */
rqpair.evt = &event;
event.event = RDMA_CM_EVENT_ADDR_CHANGE;
rc = nvme_rdma_qpair_process_cm_event(&rqpair);
CU_ASSERT(rc == 0);
CU_ASSERT(rqpair.qpair.transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_LOCAL);
/* case10: event == RDMA_CM_EVENT_TIMEWAIT_EXIT */
rqpair.evt = &event;
event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
rc = nvme_rdma_qpair_process_cm_event(&rqpair);
CU_ASSERT(rc == 0);
/* case11: default event == 0xFF */
rqpair.evt = &event;
event.event = 0xFF;
rc = nvme_rdma_qpair_process_cm_event(&rqpair);
CU_ASSERT(rc == 0);
}
static void
test_nvme_rdma_mr_get_lkey(void)
{
union nvme_rdma_mr mr = {};
struct ibv_mr ibv_mr = {};
uint64_t mr_key;
uint32_t lkey;
memset(&g_nvme_hooks, 0, sizeof(g_nvme_hooks));
ibv_mr.lkey = 1;
mr_key = 2;
/* Case 1: get key form key address */
mr.key = (uint64_t)&mr_key;
g_nvme_hooks.get_rkey = (void *)0xAEADBEEF;
lkey = nvme_rdma_mr_get_lkey(&mr);
CU_ASSERT(lkey == mr_key);
/* Case 2: Get key from ibv_mr */
g_nvme_hooks.get_rkey = NULL;
mr.mr = &ibv_mr;
lkey = nvme_rdma_mr_get_lkey(&mr);
CU_ASSERT(lkey == ibv_mr.lkey);
}
static void
test_nvme_rdma_ctrlr_construct(void)
{
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_transport_id trid = {};
struct spdk_nvme_ctrlr_opts opts = {};
struct nvme_rdma_qpair *rqpair = NULL;
struct nvme_rdma_ctrlr *rctrlr = NULL;
struct rdma_event_channel cm_channel = {};
void *devhandle = NULL;
int rc;
opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT + 1;
opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT + 1;
opts.admin_queue_size = 0xFFFF;
trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
trid.adrfam = SPDK_NVMF_ADRFAM_IPV4;
MOCK_SET(rdma_create_event_channel, &cm_channel);
ctrlr = nvme_rdma_ctrlr_construct(&trid, &opts, devhandle);
SPDK_CU_ASSERT_FATAL(ctrlr != NULL);
CU_ASSERT(ctrlr->opts.transport_retry_count ==
NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT);
CU_ASSERT(ctrlr->opts.transport_ack_timeout ==
NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT);
CU_ASSERT(ctrlr->opts.admin_queue_size == opts.admin_queue_size);
rctrlr = SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
CU_ASSERT(rctrlr->max_sge == NVME_RDMA_MAX_SGL_DESCRIPTORS);
CU_ASSERT(rctrlr->cm_channel == &cm_channel);
CU_ASSERT(!strncmp((char *)&rctrlr->ctrlr.trid,
(char *)&trid, sizeof(trid)));
SPDK_CU_ASSERT_FATAL(ctrlr->adminq != NULL);
rqpair = SPDK_CONTAINEROF(ctrlr->adminq, struct nvme_rdma_qpair, qpair);
CU_ASSERT(rqpair->num_entries == opts.admin_queue_size);
CU_ASSERT(rqpair->delay_cmd_submit == false);
CU_ASSERT(rqpair->rsp_sgls != NULL);
CU_ASSERT(rqpair->rsp_recv_wrs != NULL);
CU_ASSERT(rqpair->rsps != NULL);
MOCK_CLEAR(rdma_create_event_channel);
/* Hardcode the trtype, because nvme_qpair_init() is stub function. */
rqpair->qpair.trtype = SPDK_NVME_TRANSPORT_RDMA;
rc = nvme_rdma_ctrlr_destruct(ctrlr);
CU_ASSERT(rc == 0);
}
static void
test_nvme_rdma_req_put_and_get(void)
{
struct nvme_rdma_qpair rqpair = {};
struct spdk_nvme_rdma_req rdma_req = {};
struct spdk_nvme_rdma_req *rdma_req_get;
/* case 1: nvme_rdma_req_put */
TAILQ_INIT(&rqpair.free_reqs);
rdma_req.completion_flags = 1;
rdma_req.req = (struct nvme_request *)0xDEADBEFF;
rdma_req.id = 10086;
nvme_rdma_req_put(&rqpair, &rdma_req);
CU_ASSERT(rqpair.free_reqs.tqh_first == &rdma_req);
CU_ASSERT(rqpair.free_reqs.tqh_first->completion_flags == 0);
CU_ASSERT(rqpair.free_reqs.tqh_first->req == NULL);
CU_ASSERT(rqpair.free_reqs.tqh_first->id == 10086);
CU_ASSERT(rdma_req.completion_flags == 0);
CU_ASSERT(rdma_req.req == NULL);
/* case 2: nvme_rdma_req_get */
TAILQ_INIT(&rqpair.outstanding_reqs);
rdma_req_get = nvme_rdma_req_get(&rqpair);
CU_ASSERT(rdma_req_get == &rdma_req);
CU_ASSERT(rdma_req_get->id == 10086);
CU_ASSERT(rqpair.free_reqs.tqh_first == NULL);
CU_ASSERT(rqpair.outstanding_reqs.tqh_first == rdma_req_get);
}
static void
test_nvme_rdma_req_init(void)
{
struct nvme_rdma_qpair rqpair = {};
struct spdk_nvme_ctrlr ctrlr = {};
struct spdk_nvmf_cmd cmd = {};
struct spdk_nvme_rdma_req rdma_req = {};
struct nvme_request req = {};
struct nvme_rdma_ut_bdev_io bio = { .iovcnt = NVME_RDMA_MAX_SGL_DESCRIPTORS };
int rc = 1;
ctrlr.max_sges = NVME_RDMA_MAX_SGL_DESCRIPTORS;
ctrlr.cdata.nvmf_specific.msdbd = 16;
rqpair.mr_map = (struct spdk_rdma_mem_map *)0xdeadbeef;
rqpair.rdma_qp = (struct spdk_rdma_qp *)0xdeadbeef;
rqpair.qpair.ctrlr = &ctrlr;
rqpair.cmds = &cmd;
cmd.sgl[0].address = 0x1111;
rdma_req.id = 0;
req.cmd.opc = SPDK_NVME_DATA_HOST_TO_CONTROLLER;
req.payload.contig_or_cb_arg = (void *)0xdeadbeef;
/* case 1: req->payload_size == 0, expect: pass. */
req.payload_size = 0;
rqpair.qpair.ctrlr->ioccsz_bytes = 1024;
rqpair.qpair.ctrlr->icdoff = 0;
rc = nvme_rdma_req_init(&rqpair, &req, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(req.cmd.psdt == SPDK_NVME_PSDT_SGL_MPTR_CONTIG);
CU_ASSERT(rdma_req.send_sgl[0].length == sizeof(struct spdk_nvme_cmd));
CU_ASSERT(rdma_req.send_wr.num_sge == 1);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.length == 0);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.key == 0);
CU_ASSERT(req.cmd.dptr.sgl1.address == 0);
/* case 2: payload_type == NVME_PAYLOAD_TYPE_CONTIG, expect: pass. */
/* icd_supported is true */
rdma_req.req = NULL;
rqpair.qpair.ctrlr->icdoff = 0;
req.payload_offset = 0;
req.payload_size = 1024;
req.payload.reset_sgl_fn = NULL;
rc = nvme_rdma_req_init(&rqpair, &req, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.length == req.payload_size);
CU_ASSERT(req.cmd.dptr.sgl1.address == 0);
CU_ASSERT(rdma_req.send_sgl[0].length == sizeof(struct spdk_nvme_cmd));
CU_ASSERT(rdma_req.send_sgl[1].length == req.payload_size);
CU_ASSERT(rdma_req.send_sgl[1].addr == (uint64_t)req.payload.contig_or_cb_arg);
CU_ASSERT(rdma_req.send_sgl[1].lkey == RDMA_UT_LKEY);
/* icd_supported is false */
rdma_req.req = NULL;
rqpair.qpair.ctrlr->icdoff = 1;
req.payload_offset = 0;
req.payload_size = 1024;
req.payload.reset_sgl_fn = NULL;
rc = nvme_rdma_req_init(&rqpair, &req, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.length == req.payload_size);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.key == RDMA_UT_RKEY);
CU_ASSERT(req.cmd.dptr.sgl1.address == (uint64_t)req.payload.contig_or_cb_arg);
CU_ASSERT(rdma_req.send_sgl[0].length == sizeof(struct spdk_nvme_cmd));
/* case 3: payload_type == NVME_PAYLOAD_TYPE_SGL, expect: pass. */
/* icd_supported is true */
rdma_req.req = NULL;
rqpair.qpair.ctrlr->icdoff = 0;
req.payload.reset_sgl_fn = nvme_rdma_ut_reset_sgl;
req.payload.next_sge_fn = nvme_rdma_ut_next_sge;
req.payload.contig_or_cb_arg = &bio;
req.qpair = &rqpair.qpair;
bio.iovpos = 0;
req.payload_offset = 0;
req.payload_size = 1024;
bio.iovs[0].iov_base = (void *)0xdeadbeef;
bio.iovs[0].iov_len = 1024;
rc = nvme_rdma_req_init(&rqpair, &req, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(bio.iovpos == 1);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
CU_ASSERT(req.cmd.dptr.sgl1.unkeyed.length == req.payload_size);
CU_ASSERT(req.cmd.dptr.sgl1.address == 0);
CU_ASSERT(rdma_req.send_sgl[0].length == sizeof(struct spdk_nvme_cmd));
CU_ASSERT(rdma_req.send_sgl[1].length == req.payload_size);
CU_ASSERT(rdma_req.send_sgl[1].addr == (uint64_t)bio.iovs[0].iov_base);
CU_ASSERT(rdma_req.send_sgl[1].lkey == RDMA_UT_LKEY);
/* icd_supported is false */
rdma_req.req = NULL;
rqpair.qpair.ctrlr->icdoff = 1;
req.payload.reset_sgl_fn = nvme_rdma_ut_reset_sgl;
req.payload.next_sge_fn = nvme_rdma_ut_next_sge;
req.payload.contig_or_cb_arg = &bio;
req.qpair = &rqpair.qpair;
bio.iovpos = 0;
req.payload_offset = 0;
req.payload_size = 1024;
bio.iovs[0].iov_base = (void *)0xdeadbeef;
bio.iovs[0].iov_len = 1024;
rc = nvme_rdma_req_init(&rqpair, &req, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(bio.iovpos == 1);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.length == req.payload_size);
CU_ASSERT(req.cmd.dptr.sgl1.keyed.key == RDMA_UT_RKEY);
CU_ASSERT(req.cmd.dptr.sgl1.address == (uint64_t)bio.iovs[0].iov_base);
CU_ASSERT(rdma_req.send_sgl[0].length == sizeof(struct spdk_nvme_cmd));
}
static void
test_nvme_rdma_validate_cm_event(void)
{
enum rdma_cm_event_type expected_evt_type;
struct rdma_cm_event reaped_evt = {};
int rc;
/* case 1: expected_evt_type == reaped_evt->event, expect: pass */
expected_evt_type = RDMA_CM_EVENT_ADDR_RESOLVED;
reaped_evt.event = RDMA_CM_EVENT_ADDR_RESOLVED;
rc = nvme_rdma_validate_cm_event(expected_evt_type, &reaped_evt);
CU_ASSERT(rc == 0);
/* case 2: expected_evt_type != RDMA_CM_EVENT_ESTABLISHED and is not equal to reaped_evt->event, expect: fail */
reaped_evt.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
rc = nvme_rdma_validate_cm_event(expected_evt_type, &reaped_evt);
CU_ASSERT(rc == -EBADMSG);
/* case 3: expected_evt_type == RDMA_CM_EVENT_ESTABLISHED */
expected_evt_type = RDMA_CM_EVENT_ESTABLISHED;
/* reaped_evt->event == RDMA_CM_EVENT_REJECTED and reaped_evt->status == 10, expect: fail */
reaped_evt.event = RDMA_CM_EVENT_REJECTED;
reaped_evt.status = 10;
rc = nvme_rdma_validate_cm_event(expected_evt_type, &reaped_evt);
CU_ASSERT(rc == -ESTALE);
/* reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE, expect: pass */
reaped_evt.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
rc = nvme_rdma_validate_cm_event(expected_evt_type, &reaped_evt);
CU_ASSERT(rc == 0);
}
static void
test_nvme_rdma_register_and_unregister_reqs(void)
{
struct nvme_rdma_qpair rqpair = {};
struct spdk_nvmf_cmd cmds = {};
struct rdma_cm_id cm_id = {};
struct spdk_nvme_rdma_req rdma_reqs[50] = {};
int rc;
rqpair.cm_id = &cm_id;
rqpair.cmds = &cmds;
g_nvme_hooks.get_rkey = NULL;
rqpair.rdma_reqs = rdma_reqs;
/* case 1: nvme_rdma_register_req: nvme_rdma_reg_mr fail, expect: fail */
rqpair.num_entries = 0;
rc = nvme_rdma_register_reqs(&rqpair);
CU_ASSERT(rc == -ENOMEM);
CU_ASSERT(rqpair.cmd_mr.mr == NULL);
/* case 2: nvme_rdma_register_req: single entry, expect: PASS */
rqpair.num_entries = 1;
rc = nvme_rdma_register_reqs(&rqpair);
CU_ASSERT(rc == 0);
CU_ASSERT(rqpair.cmd_mr.mr == &g_rdma_mr);
CU_ASSERT(rqpair.rdma_reqs[0].send_sgl[0].lkey == rqpair.cmd_mr.mr->lkey);
/* case 3: nvme_rdma_register_req: multiple entry, expect: PASS */
rqpair.num_entries = 50;
rc = nvme_rdma_register_reqs(&rqpair);
CU_ASSERT(rc == 0);
CU_ASSERT(rqpair.cmd_mr.mr == &g_rdma_mr);
for (int i = 0; i < rqpair.num_entries; i++) {
CU_ASSERT(rqpair.rdma_reqs[i].send_sgl[0].lkey == rqpair.cmd_mr.mr->lkey);
}
/* case4: nvme_rdma_unregister_reqs, expect: PASS */
nvme_rdma_unregister_reqs(&rqpair);
CU_ASSERT(rqpair.cmd_mr.mr == NULL);
}
static void
test_nvme_rdma_poll_group_connect_disconnect_qpair(void)
{
int rc;
struct nvme_rdma_poll_group group = {};
struct rdma_cm_id cm_id = {};
struct nvme_rdma_qpair *rqpair = NULL;
struct nvme_rdma_destroyed_qpair *qpair_tracker = NULL;
struct ibv_context *contexts = (void *)0xDEADBEEF;
/* Allocate memory for deleting qpair to free */
rqpair = calloc(1, sizeof(struct nvme_rdma_qpair));
rqpair->cm_id = &cm_id;
rqpair->qpair.trtype = SPDK_NVME_TRANSPORT_RDMA;
rqpair->qpair.poll_group = &group.group;
rqpair->qpair.state = NVME_QPAIR_DESTROYING;
cm_id.verbs = (void *)0xDEADBEEF;
STAILQ_INIT(&group.destroyed_qpairs);
STAILQ_INIT(&group.pollers);
rc = nvme_rdma_poller_create(&group, contexts);
SPDK_CU_ASSERT_FATAL(rc == 0);
rc = nvme_rdma_poll_group_connect_qpair(&rqpair->qpair);
CU_ASSERT(rc == 0);
CU_ASSERT(rqpair->cq == (void *)0xFEEDBEEF);
CU_ASSERT(rqpair->poller != NULL);
MOCK_SET(spdk_get_ticks, 10);
rc = nvme_rdma_poll_group_disconnect_qpair(&rqpair->qpair);
CU_ASSERT(rc == 0);
CU_ASSERT(rqpair->defer_deletion_to_pg == true);
CU_ASSERT(rqpair->poll_group_disconnect_in_progress == false);
CU_ASSERT(rqpair->cq == NULL);
CU_ASSERT(!STAILQ_EMPTY(&group.destroyed_qpairs));
qpair_tracker = STAILQ_FIRST(&group.destroyed_qpairs);
CU_ASSERT(qpair_tracker->destroyed_qpair_tracker == rqpair);
CU_ASSERT(qpair_tracker->timeout_ticks == 10 + (NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US *
spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC);
nvme_rdma_poll_group_delete_qpair(&group, qpair_tracker);
CU_ASSERT(rc == 0);
CU_ASSERT(STAILQ_EMPTY(&group.destroyed_qpairs));
nvme_rdma_poll_group_free_pollers(&group);
CU_ASSERT(STAILQ_EMPTY(&group.pollers));
MOCK_CLEAR(spdk_get_ticks);
/* No available poller */
rqpair = calloc(1, sizeof(struct nvme_rdma_qpair));
rqpair->cm_id = &cm_id;
rqpair->qpair.trtype = SPDK_NVME_TRANSPORT_RDMA;
rqpair->qpair.poll_group = &group.group;
rqpair->qpair.state = NVME_QPAIR_DESTROYING;
cm_id.verbs = (void *)0xDEADBEEF;
rc = nvme_rdma_poll_group_connect_qpair(&rqpair->qpair);
CU_ASSERT(rc == -EINVAL);
CU_ASSERT(rqpair->cq == NULL);
/* Poll group disconnect in progress */
rqpair->poll_group_disconnect_in_progress = true;
rc = nvme_rdma_poll_group_disconnect_qpair(&rqpair->qpair);
CU_ASSERT(rc == -EINPROGRESS);
free(rqpair);
}
static void
test_nvme_rdma_parse_addr(void)
{
struct sockaddr_storage dst_addr;
int rc = 0;
memset(&dst_addr, 0, sizeof(dst_addr));
/* case1: getaddrinfo failed */
rc = nvme_rdma_parse_addr(&dst_addr, AF_INET, NULL, NULL);
CU_ASSERT(rc != 0);
/* case2: res->ai_addrlen < sizeof(*sa). Expect: Pass. */
rc = nvme_rdma_parse_addr(&dst_addr, AF_INET, "12.34.56.78", "23");
CU_ASSERT(rc == 0);
CU_ASSERT(dst_addr.ss_family == AF_INET);
}
static void
test_nvme_rdma_qpair_init(void)
{
struct nvme_rdma_qpair rqpair = {};
struct rdma_cm_id cm_id = {};
struct ibv_pd *pd = (struct ibv_pd *)0xfeedbeef;
struct ibv_qp qp = { .pd = pd };
struct nvme_rdma_ctrlr rctrlr = {};
int rc = 0;
rctrlr.ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
rqpair.cm_id = &cm_id;
g_nvme_hooks.get_ibv_pd = NULL;
rqpair.qpair.poll_group = NULL;
rqpair.qpair.ctrlr = &rctrlr.ctrlr;
g_spdk_rdma_qp.qp = &qp;
rc = nvme_rdma_qpair_init(&rqpair);
CU_ASSERT(rc == 0);
CU_ASSERT(rqpair.cm_id->context == &rqpair.qpair);
CU_ASSERT(rqpair.max_send_sge == NVME_RDMA_DEFAULT_TX_SGE);
CU_ASSERT(rqpair.max_recv_sge == NVME_RDMA_DEFAULT_RX_SGE);
CU_ASSERT(rqpair.current_num_sends == 0);
CU_ASSERT(rqpair.current_num_recvs == 0);
CU_ASSERT(rqpair.cq == (struct ibv_cq *)0xFEEDBEEF);
CU_ASSERT(rqpair.memory_domain != NULL);
}
static void
test_nvme_rdma_qpair_submit_request(void)
{
int rc;
struct nvme_rdma_qpair rqpair = {};
struct spdk_nvme_ctrlr ctrlr = {};
struct nvme_request req = {};
struct nvme_rdma_poller poller = {};
struct spdk_nvme_rdma_req *rdma_req = NULL;
req.cmd.opc = SPDK_NVME_DATA_HOST_TO_CONTROLLER;
req.payload.contig_or_cb_arg = (void *)0xdeadbeef;
req.payload_size = 0;
rqpair.mr_map = (struct spdk_rdma_mem_map *)0xdeadbeef;
rqpair.rdma_qp = (struct spdk_rdma_qp *)0xdeadbeef;
rqpair.qpair.ctrlr = &ctrlr;
rqpair.num_entries = 1;
rqpair.qpair.trtype = SPDK_NVME_TRANSPORT_RDMA;
rqpair.poller = &poller;
rc = nvme_rdma_alloc_reqs(&rqpair);
CU_ASSERT(rc == 0);
/* Give send_wr.next a non null value */
rdma_req = TAILQ_FIRST(&rqpair.free_reqs);
SPDK_CU_ASSERT_FATAL(rdma_req != NULL);
rdma_req->send_wr.next = (void *)0xdeadbeef;
rc = nvme_rdma_qpair_submit_request(&rqpair.qpair, &req);
CU_ASSERT(rc == 0);
CU_ASSERT(rqpair.current_num_sends == 1);
CU_ASSERT(rdma_req->send_wr.next == NULL);
TAILQ_REMOVE(&rqpair.outstanding_reqs, rdma_req, link);
CU_ASSERT(TAILQ_EMPTY(&rqpair.outstanding_reqs));
/* No request available */
rc = nvme_rdma_qpair_submit_request(&rqpair.qpair, &req);
CU_ASSERT(rc == -EAGAIN);
CU_ASSERT(rqpair.poller->stats.queued_requests == 1);
nvme_rdma_free_reqs(&rqpair);
}
static void
test_nvme_rdma_memory_domain(void)
{
struct nvme_rdma_memory_domain *domain_1 = NULL, *domain_2 = NULL, *domain_tmp;
struct ibv_pd *pd_1 = (struct ibv_pd *)0x1, *pd_2 = (struct ibv_pd *)0x2;
/* Counters below are used to check the number of created/destroyed rdma_dma_device objects.
* Since other unit tests may create dma_devices, we can't just check that the queue is empty or not */
uint32_t dma_dev_count_start = 0, dma_dev_count = 0, dma_dev_count_end = 0;
TAILQ_FOREACH(domain_tmp, &g_memory_domains, link) {
dma_dev_count_start++;
}
/* spdk_memory_domain_create failed, expect fail */
MOCK_SET(spdk_memory_domain_create, -1);
domain_1 = nvme_rdma_get_memory_domain(pd_1);
CU_ASSERT(domain_1 == NULL);
MOCK_CLEAR(spdk_memory_domain_create);
/* Normal scenario */
domain_1 = nvme_rdma_get_memory_domain(pd_1);
SPDK_CU_ASSERT_FATAL(domain_1 != NULL);
CU_ASSERT(domain_1->domain != NULL);
CU_ASSERT(domain_1->pd == pd_1);
CU_ASSERT(domain_1->ref == 1);
/* Request the same pd, ref counter increased */
CU_ASSERT(nvme_rdma_get_memory_domain(pd_1) == domain_1);
CU_ASSERT(domain_1->ref == 2);
/* Request another pd */
domain_2 = nvme_rdma_get_memory_domain(pd_2);
SPDK_CU_ASSERT_FATAL(domain_2 != NULL);
CU_ASSERT(domain_2->domain != NULL);
CU_ASSERT(domain_2->pd == pd_2);
CU_ASSERT(domain_2->ref == 1);
TAILQ_FOREACH(domain_tmp, &g_memory_domains, link) {
dma_dev_count++;
}
CU_ASSERT(dma_dev_count == dma_dev_count_start + 2);
/* put domain_1, decrement refcount */
nvme_rdma_put_memory_domain(domain_1);
/* Release both devices */
CU_ASSERT(domain_2->ref == 1);
nvme_rdma_put_memory_domain(domain_1);
nvme_rdma_put_memory_domain(domain_2);
TAILQ_FOREACH(domain_tmp, &g_memory_domains, link) {
dma_dev_count_end++;
}
CU_ASSERT(dma_dev_count_start == dma_dev_count_end);
}
static void
test_rdma_ctrlr_get_memory_domain(void)
{
struct nvme_rdma_ctrlr rctrlr = {};
struct nvme_rdma_qpair rqpair = {};
struct spdk_memory_domain *domain = (struct spdk_memory_domain *)0xbaadbeef;
struct nvme_rdma_memory_domain rdma_domain = { .domain = domain };
rqpair.memory_domain = &rdma_domain;
rqpair.qpair.trtype = SPDK_NVME_TRANSPORT_RDMA;
rctrlr.ctrlr.adminq = &rqpair.qpair;
CU_ASSERT(nvme_rdma_ctrlr_get_memory_domain(&rctrlr.ctrlr) == domain);
}
static void
test_rdma_get_memory_translation(void)
{
struct ibv_qp qp = {.pd = (struct ibv_pd *) 0xfeedbeef};
struct spdk_rdma_qp rdma_qp = {.qp = &qp};
struct nvme_rdma_qpair rqpair = {.rdma_qp = &rdma_qp};
struct spdk_nvme_ns_cmd_ext_io_opts io_opts = {
.memory_domain = (struct spdk_memory_domain *) 0xdeaddead
};
struct nvme_request req = {.payload = {.opts = &io_opts}};
struct nvme_rdma_memory_translation_ctx ctx = {
.addr = (void *) 0xBAADF00D,
.length = 0x100
};
int rc;
rqpair.memory_domain = nvme_rdma_get_memory_domain(rqpair.rdma_qp->qp->pd);
SPDK_CU_ASSERT_FATAL(rqpair.memory_domain != NULL);
/* case 1, using extended IO opts with DMA device.
* Test 1 - spdk_dma_translate_data error, expect fail */
MOCK_SET(spdk_memory_domain_translate_data, -1);
rc = nvme_rdma_get_memory_translation(&req, &rqpair, &ctx);
CU_ASSERT(rc != 0);
MOCK_CLEAR(spdk_memory_domain_translate_data);
/* Test 2 - expect pass */
g_memory_translation_translation.rdma.lkey = 123;
g_memory_translation_translation.rdma.rkey = 321;
rc = nvme_rdma_get_memory_translation(&req, &rqpair, &ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(ctx.lkey == g_memory_translation_translation.rdma.lkey);
CU_ASSERT(ctx.rkey == g_memory_translation_translation.rdma.rkey);
/* case 2, using rdma translation
* Test 1 - spdk_rdma_get_translation error, expect fail */
req.payload.opts = NULL;
MOCK_SET(spdk_rdma_get_translation, -1);
rc = nvme_rdma_get_memory_translation(&req, &rqpair, &ctx);
CU_ASSERT(rc != 0);
MOCK_CLEAR(spdk_rdma_get_translation);
/* Test 2 - expect pass */
rc = nvme_rdma_get_memory_translation(&req, &rqpair, &ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(ctx.lkey == RDMA_UT_LKEY);
CU_ASSERT(ctx.rkey == RDMA_UT_RKEY);
/* Cleanup */
nvme_rdma_put_memory_domain(rqpair.memory_domain);
}
static void
test_nvme_rdma_poll_group_get_qpair_by_id(void)
{
const uint32_t test_qp_num = 123;
struct nvme_rdma_poll_group group = {};
struct nvme_rdma_destroyed_qpair tracker = {};
struct nvme_rdma_qpair rqpair = {};
struct spdk_rdma_qp rdma_qp = {};
struct ibv_qp qp = { .qp_num = test_qp_num };
STAILQ_INIT(&group.group.disconnected_qpairs);
STAILQ_INIT(&group.group.connected_qpairs);
STAILQ_INIT(&group.destroyed_qpairs);
rqpair.qpair.trtype = SPDK_NVME_TRANSPORT_RDMA;
tracker.destroyed_qpair_tracker = &rqpair;
/* Test 1 - Simulate case when nvme_rdma_qpair is disconnected but still in one of lists.
* nvme_rdma_poll_group_get_qpair_by_id must return NULL */
STAILQ_INSERT_HEAD(&group.group.disconnected_qpairs, &rqpair.qpair, poll_group_stailq);
CU_ASSERT(nvme_rdma_poll_group_get_qpair_by_id(&group, test_qp_num) == NULL);
STAILQ_REMOVE_HEAD(&group.group.disconnected_qpairs, poll_group_stailq);
STAILQ_INSERT_HEAD(&group.group.connected_qpairs, &rqpair.qpair, poll_group_stailq);
CU_ASSERT(nvme_rdma_poll_group_get_qpair_by_id(&group, test_qp_num) == NULL);
STAILQ_REMOVE_HEAD(&group.group.connected_qpairs, poll_group_stailq);
STAILQ_INSERT_HEAD(&group.destroyed_qpairs, &tracker, link);
CU_ASSERT(nvme_rdma_poll_group_get_qpair_by_id(&group, test_qp_num) == NULL);
STAILQ_REMOVE_HEAD(&group.destroyed_qpairs, link);
/* Test 2 - nvme_rdma_qpair with valid rdma_qp/ibv_qp and qp_num */
rdma_qp.qp = &qp;
rqpair.rdma_qp = &rdma_qp;
STAILQ_INSERT_HEAD(&group.group.disconnected_qpairs, &rqpair.qpair, poll_group_stailq);
CU_ASSERT(nvme_rdma_poll_group_get_qpair_by_id(&group, test_qp_num) == &rqpair);
STAILQ_REMOVE_HEAD(&group.group.disconnected_qpairs, poll_group_stailq);
STAILQ_INSERT_HEAD(&group.group.connected_qpairs, &rqpair.qpair, poll_group_stailq);
CU_ASSERT(nvme_rdma_poll_group_get_qpair_by_id(&group, test_qp_num) == &rqpair);
STAILQ_REMOVE_HEAD(&group.group.connected_qpairs, poll_group_stailq);
STAILQ_INSERT_HEAD(&group.destroyed_qpairs, &tracker, link);
CU_ASSERT(nvme_rdma_poll_group_get_qpair_by_id(&group, test_qp_num) == &rqpair);
STAILQ_REMOVE_HEAD(&group.destroyed_qpairs, link);
}
int main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
CU_set_error_action(CUEA_ABORT);
CU_initialize_registry();
suite = CU_add_suite("nvme_rdma", NULL, NULL);
CU_ADD_TEST(suite, test_nvme_rdma_build_sgl_request);
CU_ADD_TEST(suite, test_nvme_rdma_build_sgl_inline_request);
CU_ADD_TEST(suite, test_nvme_rdma_build_contig_request);
CU_ADD_TEST(suite, test_nvme_rdma_build_contig_inline_request);
CU_ADD_TEST(suite, test_nvme_rdma_alloc_reqs);
CU_ADD_TEST(suite, test_nvme_rdma_alloc_rsps);
CU_ADD_TEST(suite, test_nvme_rdma_ctrlr_create_qpair);
CU_ADD_TEST(suite, test_nvme_rdma_poller_create);
CU_ADD_TEST(suite, test_nvme_rdma_qpair_process_cm_event);
CU_ADD_TEST(suite, test_nvme_rdma_mr_get_lkey);
CU_ADD_TEST(suite, test_nvme_rdma_ctrlr_construct);
CU_ADD_TEST(suite, test_nvme_rdma_req_put_and_get);
CU_ADD_TEST(suite, test_nvme_rdma_req_init);
CU_ADD_TEST(suite, test_nvme_rdma_validate_cm_event);
CU_ADD_TEST(suite, test_nvme_rdma_register_and_unregister_reqs);
CU_ADD_TEST(suite, test_nvme_rdma_poll_group_connect_disconnect_qpair);
CU_ADD_TEST(suite, test_nvme_rdma_parse_addr);
CU_ADD_TEST(suite, test_nvme_rdma_qpair_init);
CU_ADD_TEST(suite, test_nvme_rdma_qpair_submit_request);
CU_ADD_TEST(suite, test_nvme_rdma_memory_domain);
CU_ADD_TEST(suite, test_rdma_ctrlr_get_memory_domain);
CU_ADD_TEST(suite, test_rdma_get_memory_translation);
CU_ADD_TEST(suite, test_nvme_rdma_poll_group_get_qpair_by_id);
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}