Spdk/test/unit/lib/nvme/nvme.c/nvme_ut.c

1634 lines
53 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2015 Intel Corporation. All rights reserved.
* Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
*/
#include "spdk_cunit.h"
#include "spdk/env.h"
#include "nvme/nvme.c"
#include "spdk_internal/mock.h"
#include "common/lib/test_env.c"
DEFINE_STUB_V(nvme_ctrlr_proc_get_ref, (struct spdk_nvme_ctrlr *ctrlr));
DEFINE_STUB_V(nvme_ctrlr_proc_put_ref, (struct spdk_nvme_ctrlr *ctrlr));
DEFINE_STUB_V(nvme_ctrlr_fail, (struct spdk_nvme_ctrlr *ctrlr, bool hotremove));
DEFINE_STUB(spdk_nvme_transport_available_by_name, bool,
(const char *transport_name), true);
/* return anything non-NULL, this won't be dereferenced anywhere in this test */
DEFINE_STUB(nvme_ctrlr_get_current_process, struct spdk_nvme_ctrlr_process *,
(struct spdk_nvme_ctrlr *ctrlr), (struct spdk_nvme_ctrlr_process *)(uintptr_t)0x1);
DEFINE_STUB(nvme_ctrlr_process_init, int,
(struct spdk_nvme_ctrlr *ctrlr), 0);
DEFINE_STUB(nvme_ctrlr_get_ref_count, int,
(struct spdk_nvme_ctrlr *ctrlr), 0);
DEFINE_STUB(dummy_probe_cb, bool,
(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts), false);
DEFINE_STUB(nvme_transport_ctrlr_construct, struct spdk_nvme_ctrlr *,
(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle), NULL);
DEFINE_STUB_V(nvme_io_msg_ctrlr_detach, (struct spdk_nvme_ctrlr *ctrlr));
DEFINE_STUB(spdk_nvme_transport_available, bool,
(enum spdk_nvme_transport_type trtype), true);
DEFINE_STUB(spdk_pci_event_listen, int, (void), 0);
DEFINE_STUB(spdk_nvme_poll_group_process_completions, int64_t, (struct spdk_nvme_poll_group *group,
uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb), 0);
static bool ut_destruct_called = false;
void
nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
ut_destruct_called = true;
}
void
nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr, struct nvme_ctrlr_detach_ctx *ctx)
{
ut_destruct_called = true;
ctrlr->is_destructed = true;
ctx->shutdown_complete = true;
}
int
nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
struct nvme_ctrlr_detach_ctx *ctx)
{
if (!ctx->shutdown_complete) {
return -EAGAIN;
}
if (ctx->cb_fn) {
ctx->cb_fn(ctrlr);
}
return 0;
}
union spdk_nvme_csts_register
spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
{
union spdk_nvme_csts_register csts = {};
return csts;
}
void
spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
{
memset(opts, 0, opts_size);
opts->opts_size = opts_size;
}
static void
memset_trid(struct spdk_nvme_transport_id *trid1, struct spdk_nvme_transport_id *trid2)
{
memset(trid1, 0, sizeof(struct spdk_nvme_transport_id));
memset(trid2, 0, sizeof(struct spdk_nvme_transport_id));
}
static bool ut_check_trtype = false;
static bool ut_test_probe_internal = false;
static int
ut_nvme_pcie_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx,
bool direct_connect)
{
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_qpair qpair = {};
int rc;
if (probe_ctx->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
return -1;
}
ctrlr = calloc(1, sizeof(*ctrlr));
CU_ASSERT(ctrlr != NULL);
ctrlr->adminq = &qpair;
/* happy path with first controller */
MOCK_SET(nvme_transport_ctrlr_construct, ctrlr);
rc = nvme_ctrlr_probe(&probe_ctx->trid, probe_ctx, NULL);
CU_ASSERT(rc == 0);
/* failed with the second controller */
MOCK_SET(nvme_transport_ctrlr_construct, NULL);
rc = nvme_ctrlr_probe(&probe_ctx->trid, probe_ctx, NULL);
CU_ASSERT(rc != 0);
MOCK_CLEAR_P(nvme_transport_ctrlr_construct);
return -1;
}
int
nvme_transport_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
free(ctrlr);
return 0;
}
int
nvme_transport_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx,
bool direct_connect)
{
struct spdk_nvme_ctrlr *ctrlr = NULL;
if (ut_check_trtype == true) {
CU_ASSERT(probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE);
}
if (ut_test_probe_internal) {
return ut_nvme_pcie_ctrlr_scan(probe_ctx, direct_connect);
}
if (direct_connect == true && probe_ctx->probe_cb) {
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
ctrlr = nvme_get_ctrlr_by_trid(&probe_ctx->trid);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
probe_ctx->probe_cb(probe_ctx->cb_ctx, &probe_ctx->trid, &ctrlr->opts);
}
return 0;
}
static bool ut_attach_cb_called = false;
static void
dummy_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
ut_attach_cb_called = true;
}
static void
test_spdk_nvme_probe(void)
{
int rc = 0;
const struct spdk_nvme_transport_id *trid = NULL;
void *cb_ctx = NULL;
spdk_nvme_probe_cb probe_cb = NULL;
spdk_nvme_attach_cb attach_cb = dummy_attach_cb;
spdk_nvme_remove_cb remove_cb = NULL;
struct spdk_nvme_ctrlr ctrlr;
pthread_mutexattr_t attr;
struct nvme_driver dummy;
g_spdk_nvme_driver = &dummy;
/* driver init fails */
MOCK_SET(spdk_process_is_primary, false);
MOCK_SET(spdk_memzone_lookup, NULL);
rc = spdk_nvme_probe(trid, cb_ctx, probe_cb, attach_cb, remove_cb);
CU_ASSERT(rc == -1);
/*
* For secondary processes, the attach_cb should automatically get
* called for any controllers already initialized by the primary
* process.
*/
MOCK_SET(spdk_nvme_transport_available_by_name, false);
MOCK_SET(spdk_process_is_primary, true);
dummy.initialized = true;
g_spdk_nvme_driver = &dummy;
rc = spdk_nvme_probe(trid, cb_ctx, probe_cb, attach_cb, remove_cb);
CU_ASSERT(rc == -1);
/* driver init passes, transport available, secondary call attach_cb */
MOCK_SET(spdk_nvme_transport_available_by_name, true);
MOCK_SET(spdk_process_is_primary, false);
MOCK_SET(spdk_memzone_lookup, g_spdk_nvme_driver);
dummy.initialized = true;
memset(&ctrlr, 0, sizeof(struct spdk_nvme_ctrlr));
CU_ASSERT(pthread_mutexattr_init(&attr) == 0);
CU_ASSERT(pthread_mutex_init(&dummy.lock, &attr) == 0);
TAILQ_INIT(&dummy.shared_attached_ctrlrs);
TAILQ_INSERT_TAIL(&dummy.shared_attached_ctrlrs, &ctrlr, tailq);
ut_attach_cb_called = false;
/* setup nvme_transport_ctrlr_scan() stub to also check the trype */
ut_check_trtype = true;
rc = spdk_nvme_probe(trid, cb_ctx, probe_cb, attach_cb, remove_cb);
CU_ASSERT(rc == 0);
CU_ASSERT(ut_attach_cb_called == true);
/* driver init passes, transport available, we are primary */
MOCK_SET(spdk_process_is_primary, true);
rc = spdk_nvme_probe(trid, cb_ctx, probe_cb, attach_cb, remove_cb);
CU_ASSERT(rc == 0);
g_spdk_nvme_driver = NULL;
/* reset to pre-test values */
MOCK_CLEAR(spdk_memzone_lookup);
ut_check_trtype = false;
pthread_mutex_destroy(&dummy.lock);
pthread_mutexattr_destroy(&attr);
}
static void
test_spdk_nvme_connect(void)
{
struct spdk_nvme_ctrlr *ret_ctrlr = NULL;
struct spdk_nvme_transport_id trid = {};
struct spdk_nvme_ctrlr_opts opts = {};
struct spdk_nvme_ctrlr ctrlr;
pthread_mutexattr_t attr;
struct nvme_driver dummy;
/* initialize the variable to prepare the test */
dummy.initialized = true;
TAILQ_INIT(&dummy.shared_attached_ctrlrs);
g_spdk_nvme_driver = &dummy;
CU_ASSERT(pthread_mutexattr_init(&attr) == 0);
CU_ASSERT(pthread_mutex_init(&g_spdk_nvme_driver->lock, &attr) == 0);
/* set NULL trid pointer to test immediate return */
ret_ctrlr = spdk_nvme_connect(NULL, NULL, 0);
CU_ASSERT(ret_ctrlr == NULL);
/* driver init passes, transport available, secondary process connects ctrlr */
MOCK_SET(spdk_process_is_primary, false);
MOCK_SET(spdk_memzone_lookup, g_spdk_nvme_driver);
MOCK_SET(spdk_nvme_transport_available_by_name, true);
memset(&trid, 0, sizeof(trid));
trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
ret_ctrlr = spdk_nvme_connect(&trid, NULL, 0);
CU_ASSERT(ret_ctrlr == NULL);
/* driver init passes, setup one ctrlr on the attached_list */
memset(&ctrlr, 0, sizeof(struct spdk_nvme_ctrlr));
snprintf(ctrlr.trid.traddr, sizeof(ctrlr.trid.traddr), "0000:01:00.0");
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, &ctrlr, tailq);
/* get the ctrlr from the attached list */
snprintf(trid.traddr, sizeof(trid.traddr), "0000:01:00.0");
ret_ctrlr = spdk_nvme_connect(&trid, NULL, 0);
CU_ASSERT(ret_ctrlr == &ctrlr);
/* get the ctrlr from the attached list with default ctrlr opts */
ctrlr.opts.num_io_queues = DEFAULT_MAX_IO_QUEUES;
ret_ctrlr = spdk_nvme_connect(&trid, NULL, 0);
CU_ASSERT(ret_ctrlr == &ctrlr);
CU_ASSERT_EQUAL(ret_ctrlr->opts.num_io_queues, DEFAULT_MAX_IO_QUEUES);
/* get the ctrlr from the attached list with default ctrlr opts and consistent opts_size */
opts.num_io_queues = 1;
ret_ctrlr = spdk_nvme_connect(&trid, &opts, sizeof(opts));
CU_ASSERT(ret_ctrlr == &ctrlr);
CU_ASSERT_EQUAL(ret_ctrlr->opts.num_io_queues, 1);
CU_ASSERT_EQUAL(ret_ctrlr->opts.opts_size, sizeof(opts));
/* opts_size is 0 */
ret_ctrlr = spdk_nvme_connect(&trid, &opts, 0);
CU_ASSERT(ret_ctrlr == &ctrlr);
CU_ASSERT_EQUAL(ret_ctrlr->opts.opts_size, 0);
/* opts_size is less than sizeof(*opts) if opts != NULL */
ret_ctrlr = spdk_nvme_connect(&trid, &opts, 4);
CU_ASSERT(ret_ctrlr == &ctrlr);
CU_ASSERT_EQUAL(ret_ctrlr->opts.num_io_queues, 1);
CU_ASSERT_EQUAL(ret_ctrlr->opts.opts_size, 4);
/* remove the attached ctrlr on the attached_list */
MOCK_SET(nvme_ctrlr_get_ref_count, 1);
CU_ASSERT(spdk_nvme_detach(&ctrlr) == 0);
CU_ASSERT(TAILQ_EMPTY(&g_spdk_nvme_driver->shared_attached_ctrlrs));
/* driver init passes, transport available, primary process connects ctrlr */
MOCK_SET(spdk_process_is_primary, true);
/* setup one ctrlr on the attached_list */
memset(&ctrlr, 0, sizeof(struct spdk_nvme_ctrlr));
snprintf(ctrlr.trid.traddr, sizeof(ctrlr.trid.traddr), "0000:02:00.0");
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, &ctrlr, tailq);
/* get the ctrlr from the attached list */
snprintf(trid.traddr, sizeof(trid.traddr), "0000:02:00.0");
ret_ctrlr = spdk_nvme_connect(&trid, NULL, 0);
CU_ASSERT(ret_ctrlr == &ctrlr);
/* get the ctrlr from the attached list with default ctrlr opts */
ctrlr.opts.num_io_queues = DEFAULT_MAX_IO_QUEUES;
ret_ctrlr = spdk_nvme_connect(&trid, NULL, 0);
CU_ASSERT(ret_ctrlr == &ctrlr);
CU_ASSERT_EQUAL(ret_ctrlr->opts.num_io_queues, DEFAULT_MAX_IO_QUEUES);
/* get the ctrlr from the attached list with default ctrlr opts and consistent opts_size */
opts.num_io_queues = 2;
ret_ctrlr = spdk_nvme_connect(&trid, &opts, sizeof(opts));
CU_ASSERT(ret_ctrlr == &ctrlr);
CU_ASSERT_EQUAL(ret_ctrlr->opts.num_io_queues, 2);
/* remove the attached ctrlr on the attached_list */
CU_ASSERT(spdk_nvme_detach(ret_ctrlr) == 0);
CU_ASSERT(TAILQ_EMPTY(&g_spdk_nvme_driver->shared_attached_ctrlrs));
/* test driver init failure return */
MOCK_SET(spdk_process_is_primary, false);
MOCK_SET(spdk_memzone_lookup, NULL);
ret_ctrlr = spdk_nvme_connect(&trid, NULL, 0);
CU_ASSERT(ret_ctrlr == NULL);
}
static struct spdk_nvme_probe_ctx *
test_nvme_init_get_probe_ctx(void)
{
struct spdk_nvme_probe_ctx *probe_ctx;
probe_ctx = calloc(1, sizeof(*probe_ctx));
SPDK_CU_ASSERT_FATAL(probe_ctx != NULL);
TAILQ_INIT(&probe_ctx->init_ctrlrs);
return probe_ctx;
}
static void
test_nvme_init_controllers(void)
{
int rc = 0;
struct nvme_driver test_driver;
void *cb_ctx = NULL;
spdk_nvme_attach_cb attach_cb = dummy_attach_cb;
struct spdk_nvme_probe_ctx *probe_ctx;
struct spdk_nvme_ctrlr *ctrlr;
pthread_mutexattr_t attr;
g_spdk_nvme_driver = &test_driver;
ctrlr = calloc(1, sizeof(*ctrlr));
SPDK_CU_ASSERT_FATAL(ctrlr != NULL);
ctrlr->trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
CU_ASSERT(pthread_mutexattr_init(&attr) == 0);
CU_ASSERT(pthread_mutex_init(&ctrlr->ctrlr_lock, &attr) == 0);
CU_ASSERT(pthread_mutex_init(&test_driver.lock, &attr) == 0);
TAILQ_INIT(&test_driver.shared_attached_ctrlrs);
/*
* Try to initialize, but nvme_ctrlr_process_init will fail.
* Verify correct behavior when it does.
*/
MOCK_SET(nvme_ctrlr_process_init, 1);
MOCK_SET(spdk_process_is_primary, 1);
g_spdk_nvme_driver->initialized = false;
ut_destruct_called = false;
probe_ctx = test_nvme_init_get_probe_ctx();
TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
probe_ctx->cb_ctx = cb_ctx;
probe_ctx->attach_cb = attach_cb;
probe_ctx->trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
rc = nvme_init_controllers(probe_ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(g_spdk_nvme_driver->initialized == true);
CU_ASSERT(ut_destruct_called == true);
/*
* Controller init OK, need to move the controller state machine
* forward by setting the ctrl state so that it can be moved
* the shared_attached_ctrlrs list.
*/
probe_ctx = test_nvme_init_get_probe_ctx();
TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
ctrlr->state = NVME_CTRLR_STATE_READY;
MOCK_SET(nvme_ctrlr_process_init, 0);
rc = nvme_init_controllers(probe_ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(ut_attach_cb_called == true);
CU_ASSERT(TAILQ_EMPTY(&g_nvme_attached_ctrlrs));
CU_ASSERT(TAILQ_FIRST(&g_spdk_nvme_driver->shared_attached_ctrlrs) == ctrlr);
TAILQ_REMOVE(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
/*
* Reset to initial state
*/
CU_ASSERT(pthread_mutex_destroy(&ctrlr->ctrlr_lock) == 0);
memset(ctrlr, 0, sizeof(struct spdk_nvme_ctrlr));
CU_ASSERT(pthread_mutex_init(&ctrlr->ctrlr_lock, &attr) == 0);
/*
* Non-PCIe controllers should be added to the per-process list, not the shared list.
*/
ctrlr->trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
probe_ctx = test_nvme_init_get_probe_ctx();
TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
ctrlr->state = NVME_CTRLR_STATE_READY;
MOCK_SET(nvme_ctrlr_process_init, 0);
rc = nvme_init_controllers(probe_ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(ut_attach_cb_called == true);
CU_ASSERT(TAILQ_EMPTY(&g_spdk_nvme_driver->shared_attached_ctrlrs));
CU_ASSERT(TAILQ_FIRST(&g_nvme_attached_ctrlrs) == ctrlr);
TAILQ_REMOVE(&g_nvme_attached_ctrlrs, ctrlr, tailq);
CU_ASSERT(pthread_mutex_destroy(&ctrlr->ctrlr_lock) == 0);
free(ctrlr);
CU_ASSERT(TAILQ_EMPTY(&g_nvme_attached_ctrlrs));
g_spdk_nvme_driver = NULL;
pthread_mutexattr_destroy(&attr);
pthread_mutex_destroy(&test_driver.lock);
}
static void
test_nvme_driver_init(void)
{
int rc;
struct nvme_driver dummy;
g_spdk_nvme_driver = &dummy;
/* adjust this so testing doesn't take so long */
g_nvme_driver_timeout_ms = 100;
/* process is primary and mem already reserved */
MOCK_SET(spdk_process_is_primary, true);
dummy.initialized = true;
rc = nvme_driver_init();
CU_ASSERT(rc == 0);
/*
* Process is primary and mem not yet reserved but the call
* to spdk_memzone_reserve() returns NULL.
*/
g_spdk_nvme_driver = NULL;
MOCK_SET(spdk_process_is_primary, true);
MOCK_SET(spdk_memzone_reserve, NULL);
rc = nvme_driver_init();
CU_ASSERT(rc == -1);
/* process is not primary, no mem already reserved */
MOCK_SET(spdk_process_is_primary, false);
MOCK_SET(spdk_memzone_lookup, NULL);
g_spdk_nvme_driver = NULL;
rc = nvme_driver_init();
CU_ASSERT(rc == -1);
/* process is not primary, mem is already reserved & init'd */
MOCK_SET(spdk_process_is_primary, false);
MOCK_SET(spdk_memzone_lookup, (void *)&dummy);
dummy.initialized = true;
rc = nvme_driver_init();
CU_ASSERT(rc == 0);
/* process is not primary, mem is reserved but not initialized */
/* and times out */
MOCK_SET(spdk_process_is_primary, false);
MOCK_SET(spdk_memzone_reserve, (void *)&dummy);
dummy.initialized = false;
rc = nvme_driver_init();
CU_ASSERT(rc == -1);
/* process is primary, got mem but mutex won't init */
MOCK_SET(spdk_process_is_primary, true);
MOCK_SET(spdk_memzone_reserve, (void *)&dummy);
MOCK_SET(pthread_mutexattr_init, -1);
g_spdk_nvme_driver = NULL;
dummy.initialized = true;
rc = nvme_driver_init();
/* for FreeBSD we can't can't effectively mock this path */
#ifndef __FreeBSD__
CU_ASSERT(rc != 0);
#else
CU_ASSERT(rc == 0);
#endif
/* process is primary, got mem, mutex OK */
MOCK_SET(spdk_process_is_primary, true);
MOCK_CLEAR(pthread_mutexattr_init);
g_spdk_nvme_driver = NULL;
rc = nvme_driver_init();
CU_ASSERT(g_spdk_nvme_driver->initialized == false);
CU_ASSERT(TAILQ_EMPTY(&g_spdk_nvme_driver->shared_attached_ctrlrs));
CU_ASSERT(rc == 0);
g_spdk_nvme_driver = NULL;
MOCK_CLEAR(spdk_memzone_reserve);
MOCK_CLEAR(spdk_memzone_lookup);
}
static void
test_spdk_nvme_detach(void)
{
int rc = 1;
struct spdk_nvme_ctrlr ctrlr;
struct spdk_nvme_ctrlr *ret_ctrlr;
struct nvme_driver test_driver;
memset(&ctrlr, 0, sizeof(ctrlr));
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
g_spdk_nvme_driver = &test_driver;
TAILQ_INIT(&test_driver.shared_attached_ctrlrs);
TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr, tailq);
CU_ASSERT(pthread_mutex_init(&test_driver.lock, NULL) == 0);
/*
* Controllers are ref counted so mock the function that returns
* the ref count so that detach will actually call the destruct
* function which we've mocked simply to verify that it gets
* called (we aren't testing what the real destruct function does
* here.)
*/
MOCK_SET(nvme_ctrlr_get_ref_count, 1);
rc = spdk_nvme_detach(&ctrlr);
ret_ctrlr = TAILQ_FIRST(&test_driver.shared_attached_ctrlrs);
CU_ASSERT(ret_ctrlr == NULL);
CU_ASSERT(ut_destruct_called == true);
CU_ASSERT(rc == 0);
/*
* Mock the ref count to 1 so we confirm that the destruct
* function is not called and that attached ctrl list is
* not empty.
*/
MOCK_SET(nvme_ctrlr_get_ref_count, 2);
TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr, tailq);
ut_destruct_called = false;
rc = spdk_nvme_detach(&ctrlr);
ret_ctrlr = TAILQ_FIRST(&test_driver.shared_attached_ctrlrs);
CU_ASSERT(ret_ctrlr != NULL);
CU_ASSERT(ut_destruct_called == false);
CU_ASSERT(rc == 0);
/*
* Non-PCIe controllers should be on the per-process attached_ctrlrs list, not the
* shared_attached_ctrlrs list. Test an RDMA controller and ensure it is removed
* from the correct list.
*/
memset(&ctrlr, 0, sizeof(ctrlr));
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
TAILQ_INIT(&g_nvme_attached_ctrlrs);
TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, &ctrlr, tailq);
MOCK_SET(nvme_ctrlr_get_ref_count, 1);
rc = spdk_nvme_detach(&ctrlr);
CU_ASSERT(TAILQ_EMPTY(&g_nvme_attached_ctrlrs));
CU_ASSERT(ut_destruct_called == true);
CU_ASSERT(rc == 0);
g_spdk_nvme_driver = NULL;
pthread_mutex_destroy(&test_driver.lock);
}
static void
test_nvme_completion_poll_cb(void)
{
struct nvme_completion_poll_status *status;
struct spdk_nvme_cpl cpl;
status = calloc(1, sizeof(*status));
SPDK_CU_ASSERT_FATAL(status != NULL);
memset(&cpl, 0xff, sizeof(cpl));
nvme_completion_poll_cb(status, &cpl);
CU_ASSERT(status->done == true);
CU_ASSERT(memcmp(&cpl, &status->cpl,
sizeof(struct spdk_nvme_cpl)) == 0);
free(status);
}
/* stub callback used by test_nvme_user_copy_cmd_complete() */
static struct spdk_nvme_cpl ut_spdk_nvme_cpl = {0};
static void
dummy_cb(void *user_cb_arg, struct spdk_nvme_cpl *cpl)
{
ut_spdk_nvme_cpl = *cpl;
}
static void
test_nvme_user_copy_cmd_complete(void)
{
struct nvme_request req;
int test_data = 0xdeadbeef;
int buff_size = sizeof(int);
void *buff;
static struct spdk_nvme_cpl cpl;
memset(&req, 0, sizeof(req));
memset(&cpl, 0x5a, sizeof(cpl));
/* test without a user buffer provided */
req.user_cb_fn = (void *)dummy_cb;
nvme_user_copy_cmd_complete(&req, &cpl);
CU_ASSERT(memcmp(&ut_spdk_nvme_cpl, &cpl, sizeof(cpl)) == 0);
/* test with a user buffer provided */
req.user_buffer = malloc(buff_size);
SPDK_CU_ASSERT_FATAL(req.user_buffer != NULL);
memset(req.user_buffer, 0, buff_size);
req.payload_size = buff_size;
buff = spdk_zmalloc(buff_size, 0x100, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
SPDK_CU_ASSERT_FATAL(buff != NULL);
req.payload = NVME_PAYLOAD_CONTIG(buff, NULL);
memcpy(buff, &test_data, buff_size);
req.cmd.opc = SPDK_NVME_OPC_GET_LOG_PAGE;
req.pid = getpid();
/* zero out the test value set in the callback */
memset(&ut_spdk_nvme_cpl, 0, sizeof(ut_spdk_nvme_cpl));
nvme_user_copy_cmd_complete(&req, &cpl);
CU_ASSERT(memcmp(req.user_buffer, &test_data, buff_size) == 0);
CU_ASSERT(memcmp(&ut_spdk_nvme_cpl, &cpl, sizeof(cpl)) == 0);
/*
* Now test the same path as above but this time choose an opc
* that results in a different data transfer type.
*/
memset(&ut_spdk_nvme_cpl, 0, sizeof(ut_spdk_nvme_cpl));
memset(req.user_buffer, 0, buff_size);
buff = spdk_zmalloc(buff_size, 0x100, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
SPDK_CU_ASSERT_FATAL(buff != NULL);
req.payload = NVME_PAYLOAD_CONTIG(buff, NULL);
memcpy(buff, &test_data, buff_size);
req.cmd.opc = SPDK_NVME_OPC_SET_FEATURES;
nvme_user_copy_cmd_complete(&req, &cpl);
CU_ASSERT(memcmp(req.user_buffer, &test_data, buff_size) != 0);
CU_ASSERT(memcmp(&ut_spdk_nvme_cpl, &cpl, sizeof(cpl)) == 0);
/* clean up */
free(req.user_buffer);
}
static void
test_nvme_allocate_request_null(void)
{
struct spdk_nvme_qpair qpair;
spdk_nvme_cmd_cb cb_fn = (spdk_nvme_cmd_cb)0x1234;
void *cb_arg = (void *)0x5678;
struct nvme_request *req = NULL;
struct nvme_request dummy_req;
STAILQ_INIT(&qpair.free_req);
STAILQ_INIT(&qpair.queued_req);
/*
* Put a dummy on the queue so we can make a request
* and confirm that what comes back is what we expect.
*/
STAILQ_INSERT_HEAD(&qpair.free_req, &dummy_req, stailq);
req = nvme_allocate_request_null(&qpair, cb_fn, cb_arg);
/*
* Compare the req with the parameters that we passed in
* as well as what the function is supposed to update.
*/
SPDK_CU_ASSERT_FATAL(req != NULL);
CU_ASSERT(req->cb_fn == cb_fn);
CU_ASSERT(req->cb_arg == cb_arg);
CU_ASSERT(req->pid == getpid());
CU_ASSERT(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
CU_ASSERT(req->payload.md == NULL);
CU_ASSERT(req->payload.contig_or_cb_arg == NULL);
}
static void
test_nvme_allocate_request(void)
{
struct spdk_nvme_qpair qpair;
struct nvme_payload payload;
uint32_t payload_struct_size = sizeof(payload);
spdk_nvme_cmd_cb cb_fn = (spdk_nvme_cmd_cb)0x1234;
void *cb_arg = (void *)0x6789;
struct nvme_request *req = NULL;
struct nvme_request dummy_req;
/* Fill the whole payload struct with a known pattern */
memset(&payload, 0x5a, payload_struct_size);
STAILQ_INIT(&qpair.free_req);
STAILQ_INIT(&qpair.queued_req);
qpair.num_outstanding_reqs = 0;
/* Test trying to allocate a request when no requests are available */
req = nvme_allocate_request(&qpair, &payload, payload_struct_size, 0,
cb_fn, cb_arg);
CU_ASSERT(req == NULL);
CU_ASSERT(qpair.num_outstanding_reqs == 0);
/* put a dummy on the queue, and then allocate one */
STAILQ_INSERT_HEAD(&qpair.free_req, &dummy_req, stailq);
req = nvme_allocate_request(&qpair, &payload, payload_struct_size, 0,
cb_fn, cb_arg);
/* all the req elements should now match the passed in parameters */
SPDK_CU_ASSERT_FATAL(req != NULL);
CU_ASSERT(qpair.num_outstanding_reqs == 1);
CU_ASSERT(req->cb_fn == cb_fn);
CU_ASSERT(req->cb_arg == cb_arg);
CU_ASSERT(memcmp(&req->payload, &payload, payload_struct_size) == 0);
CU_ASSERT(req->payload_size == payload_struct_size);
CU_ASSERT(req->pid == getpid());
}
static void
test_nvme_free_request(void)
{
struct nvme_request match_req;
struct spdk_nvme_qpair qpair = {0};
struct nvme_request *req;
/* put a req on the Q, take it off and compare */
memset(&match_req.cmd, 0x5a, sizeof(struct spdk_nvme_cmd));
match_req.qpair = &qpair;
qpair.num_outstanding_reqs = 1;
/* the code under tests asserts this condition */
match_req.num_children = 0;
STAILQ_INIT(&qpair.free_req);
match_req.qpair->reserved_req = NULL;
nvme_free_request(&match_req);
req = STAILQ_FIRST(&match_req.qpair->free_req);
CU_ASSERT(req == &match_req);
CU_ASSERT(qpair.num_outstanding_reqs == 0);
}
static void
test_nvme_allocate_request_user_copy(void)
{
struct spdk_nvme_qpair qpair;
spdk_nvme_cmd_cb cb_fn = (spdk_nvme_cmd_cb)0x12345;
void *cb_arg = (void *)0x12345;
bool host_to_controller = true;
struct nvme_request *req;
struct nvme_request dummy_req;
int test_data = 0xdeadbeef;
void *buffer = NULL;
uint32_t payload_size = sizeof(int);
STAILQ_INIT(&qpair.free_req);
STAILQ_INIT(&qpair.queued_req);
/* no buffer or valid payload size, early NULL return */
req = nvme_allocate_request_user_copy(&qpair, buffer, payload_size, cb_fn,
cb_arg, host_to_controller);
CU_ASSERT(req == NULL);
/* good buffer and valid payload size */
buffer = malloc(payload_size);
SPDK_CU_ASSERT_FATAL(buffer != NULL);
memcpy(buffer, &test_data, payload_size);
/* put a dummy on the queue */
STAILQ_INSERT_HEAD(&qpair.free_req, &dummy_req, stailq);
MOCK_CLEAR(spdk_malloc);
MOCK_CLEAR(spdk_zmalloc);
req = nvme_allocate_request_user_copy(&qpair, buffer, payload_size, cb_fn,
cb_arg, host_to_controller);
SPDK_CU_ASSERT_FATAL(req != NULL);
CU_ASSERT(req->user_cb_fn == cb_fn);
CU_ASSERT(req->user_cb_arg == cb_arg);
CU_ASSERT(req->user_buffer == buffer);
CU_ASSERT(req->cb_arg == req);
CU_ASSERT(memcmp(req->payload.contig_or_cb_arg, buffer, payload_size) == 0);
spdk_free(req->payload.contig_or_cb_arg);
/* same thing but additional path coverage, no copy */
host_to_controller = false;
STAILQ_INSERT_HEAD(&qpair.free_req, &dummy_req, stailq);
req = nvme_allocate_request_user_copy(&qpair, buffer, payload_size, cb_fn,
cb_arg, host_to_controller);
SPDK_CU_ASSERT_FATAL(req != NULL);
CU_ASSERT(req->user_cb_fn == cb_fn);
CU_ASSERT(req->user_cb_arg == cb_arg);
CU_ASSERT(req->user_buffer == buffer);
CU_ASSERT(req->cb_arg == req);
CU_ASSERT(memcmp(req->payload.contig_or_cb_arg, buffer, payload_size) != 0);
spdk_free(req->payload.contig_or_cb_arg);
/* good buffer and valid payload size but make spdk_zmalloc fail */
/* set the mock pointer to NULL for spdk_zmalloc */
MOCK_SET(spdk_zmalloc, NULL);
req = nvme_allocate_request_user_copy(&qpair, buffer, payload_size, cb_fn,
cb_arg, host_to_controller);
CU_ASSERT(req == NULL);
free(buffer);
MOCK_CLEAR(spdk_zmalloc);
}
static void
test_nvme_ctrlr_probe(void)
{
int rc = 0;
struct spdk_nvme_ctrlr ctrlr = {};
struct spdk_nvme_qpair qpair = {};
const struct spdk_nvme_transport_id trid = {};
struct spdk_nvme_probe_ctx probe_ctx = {};
void *devhandle = NULL;
void *cb_ctx = NULL;
struct spdk_nvme_ctrlr *dummy = NULL;
ctrlr.adminq = &qpair;
TAILQ_INIT(&probe_ctx.init_ctrlrs);
nvme_driver_init();
/* test when probe_cb returns false */
MOCK_SET(dummy_probe_cb, false);
nvme_probe_ctx_init(&probe_ctx, &trid, cb_ctx, dummy_probe_cb, NULL, NULL);
rc = nvme_ctrlr_probe(&trid, &probe_ctx, devhandle);
CU_ASSERT(rc == 1);
/* probe_cb returns true but we can't construct a ctrl */
MOCK_SET(dummy_probe_cb, true);
MOCK_SET(nvme_transport_ctrlr_construct, NULL);
nvme_probe_ctx_init(&probe_ctx, &trid, cb_ctx, dummy_probe_cb, NULL, NULL);
rc = nvme_ctrlr_probe(&trid, &probe_ctx, devhandle);
CU_ASSERT(rc == -1);
/* happy path */
MOCK_SET(dummy_probe_cb, true);
MOCK_SET(nvme_transport_ctrlr_construct, &ctrlr);
nvme_probe_ctx_init(&probe_ctx, &trid, cb_ctx, dummy_probe_cb, NULL, NULL);
rc = nvme_ctrlr_probe(&trid, &probe_ctx, devhandle);
CU_ASSERT(rc == 0);
dummy = TAILQ_FIRST(&probe_ctx.init_ctrlrs);
SPDK_CU_ASSERT_FATAL(dummy != NULL);
CU_ASSERT(dummy == ut_nvme_transport_ctrlr_construct);
TAILQ_REMOVE(&probe_ctx.init_ctrlrs, dummy, tailq);
MOCK_CLEAR_P(nvme_transport_ctrlr_construct);
free(g_spdk_nvme_driver);
}
static void
test_nvme_robust_mutex_init_shared(void)
{
pthread_mutex_t mtx;
int rc = 0;
/* test where both pthread calls succeed */
MOCK_SET(pthread_mutexattr_init, 0);
MOCK_SET(pthread_mutex_init, 0);
rc = nvme_robust_mutex_init_shared(&mtx);
CU_ASSERT(rc == 0);
/* test where we can't init attr's but init mutex works */
MOCK_SET(pthread_mutexattr_init, -1);
MOCK_SET(pthread_mutex_init, 0);
rc = nvme_robust_mutex_init_shared(&mtx);
/* for FreeBSD the only possible return value is 0 */
#ifndef __FreeBSD__
CU_ASSERT(rc != 0);
#else
CU_ASSERT(rc == 0);
#endif
/* test where we can init attr's but the mutex init fails */
MOCK_SET(pthread_mutexattr_init, 0);
MOCK_SET(pthread_mutex_init, -1);
rc = nvme_robust_mutex_init_shared(&mtx);
/* for FreeBSD the only possible return value is 0 */
#ifndef __FreeBSD__
CU_ASSERT(rc != 0);
#else
CU_ASSERT(rc == 0);
#endif
MOCK_CLEAR(pthread_mutex_init);
}
static void
test_opc_data_transfer(void)
{
enum spdk_nvme_data_transfer xfer;
xfer = spdk_nvme_opc_get_data_transfer(SPDK_NVME_OPC_FLUSH);
CU_ASSERT(xfer == SPDK_NVME_DATA_NONE);
xfer = spdk_nvme_opc_get_data_transfer(SPDK_NVME_OPC_WRITE);
CU_ASSERT(xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
xfer = spdk_nvme_opc_get_data_transfer(SPDK_NVME_OPC_READ);
CU_ASSERT(xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST);
xfer = spdk_nvme_opc_get_data_transfer(SPDK_NVME_OPC_GET_LOG_PAGE);
CU_ASSERT(xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST);
}
static void
test_trid_parse_and_compare(void)
{
struct spdk_nvme_transport_id trid1, trid2;
int ret;
/* set trid1 trid2 value to id parse */
ret = spdk_nvme_transport_id_parse(NULL, "trtype:PCIe traddr:0000:04:00.0");
CU_ASSERT(ret == -EINVAL);
memset(&trid1, 0, sizeof(trid1));
ret = spdk_nvme_transport_id_parse(&trid1, NULL);
CU_ASSERT(ret == -EINVAL);
ret = spdk_nvme_transport_id_parse(NULL, NULL);
CU_ASSERT(ret == -EINVAL);
memset(&trid1, 0, sizeof(trid1));
ret = spdk_nvme_transport_id_parse(&trid1, "trtype-PCIe traddr-0000-04-00.0");
CU_ASSERT(ret == -EINVAL);
memset(&trid1, 0, sizeof(trid1));
ret = spdk_nvme_transport_id_parse(&trid1, "trtype-PCIe traddr-0000-04-00.0-:");
CU_ASSERT(ret == -EINVAL);
memset(&trid1, 0, sizeof(trid1));
ret = spdk_nvme_transport_id_parse(&trid1, " \t\n:");
CU_ASSERT(ret == -EINVAL);
memset(&trid1, 0, sizeof(trid1));
CU_ASSERT(spdk_nvme_transport_id_parse(&trid1,
"trtype:rdma\n"
"adrfam:ipv4\n"
"traddr:192.168.100.8\n"
"trsvcid:4420\n"
"subnqn:nqn.2014-08.org.nvmexpress.discovery") == 0);
CU_ASSERT(trid1.trtype == SPDK_NVME_TRANSPORT_RDMA);
CU_ASSERT(trid1.adrfam == SPDK_NVMF_ADRFAM_IPV4);
CU_ASSERT(strcmp(trid1.traddr, "192.168.100.8") == 0);
CU_ASSERT(strcmp(trid1.trsvcid, "4420") == 0);
CU_ASSERT(strcmp(trid1.subnqn, "nqn.2014-08.org.nvmexpress.discovery") == 0);
memset(&trid2, 0, sizeof(trid2));
CU_ASSERT(spdk_nvme_transport_id_parse(&trid2, "trtype:PCIe traddr:0000:04:00.0") == 0);
CU_ASSERT(trid2.trtype == SPDK_NVME_TRANSPORT_PCIE);
CU_ASSERT(strcmp(trid2.traddr, "0000:04:00.0") == 0);
CU_ASSERT(spdk_nvme_transport_id_compare(&trid1, &trid2) != 0);
/* set trid1 trid2 and test id_compare */
memset_trid(&trid1, &trid2);
trid1.adrfam = SPDK_NVMF_ADRFAM_IPV6;
trid2.adrfam = SPDK_NVMF_ADRFAM_IPV4;
ret = spdk_nvme_transport_id_compare(&trid1, &trid2);
CU_ASSERT(ret > 0);
memset_trid(&trid1, &trid2);
snprintf(trid1.traddr, sizeof(trid1.traddr), "192.168.100.8");
snprintf(trid2.traddr, sizeof(trid2.traddr), "192.168.100.9");
ret = spdk_nvme_transport_id_compare(&trid1, &trid2);
CU_ASSERT(ret < 0);
memset_trid(&trid1, &trid2);
snprintf(trid1.trsvcid, sizeof(trid1.trsvcid), "4420");
snprintf(trid2.trsvcid, sizeof(trid2.trsvcid), "4421");
ret = spdk_nvme_transport_id_compare(&trid1, &trid2);
CU_ASSERT(ret < 0);
memset_trid(&trid1, &trid2);
snprintf(trid1.subnqn, sizeof(trid1.subnqn), "subnqn:nqn.2016-08.org.nvmexpress.discovery");
snprintf(trid2.subnqn, sizeof(trid2.subnqn), "subnqn:nqn.2017-08.org.nvmexpress.discovery");
ret = spdk_nvme_transport_id_compare(&trid1, &trid2);
CU_ASSERT(ret < 0);
memset_trid(&trid1, &trid2);
snprintf(trid1.subnqn, sizeof(trid1.subnqn), "subnqn:nqn.2016-08.org.nvmexpress.discovery");
snprintf(trid2.subnqn, sizeof(trid2.subnqn), "subnqn:nqn.2016-08.org.nvmexpress.discovery");
ret = spdk_nvme_transport_id_compare(&trid1, &trid2);
CU_ASSERT(ret == 0);
memset_trid(&trid1, &trid2);
snprintf(trid1.subnqn, sizeof(trid1.subnqn), "subnqn:nqn.2016-08.org.nvmexpress.discovery");
snprintf(trid2.subnqn, sizeof(trid2.subnqn), "subnqn:nqn.2016-08.org.Nvmexpress.discovery");
ret = spdk_nvme_transport_id_compare(&trid1, &trid2);
CU_ASSERT(ret > 0);
memset_trid(&trid1, &trid2);
ret = spdk_nvme_transport_id_compare(&trid1, &trid2);
CU_ASSERT(ret == 0);
/* Compare PCI addresses via spdk_pci_addr_compare (rather than as strings) */
memset_trid(&trid1, &trid2);
CU_ASSERT(spdk_nvme_transport_id_parse(&trid1, "trtype:PCIe traddr:0000:04:00.0") == 0);
CU_ASSERT(spdk_nvme_transport_id_parse(&trid2, "trtype:PCIe traddr:04:00.0") == 0);
CU_ASSERT(spdk_nvme_transport_id_compare(&trid1, &trid2) == 0);
memset_trid(&trid1, &trid2);
CU_ASSERT(spdk_nvme_transport_id_parse(&trid1, "trtype:PCIe traddr:0000:05:00.0") == 0);
CU_ASSERT(spdk_nvme_transport_id_parse(&trid2, "trtype:PCIe traddr:04:00.0") == 0);
CU_ASSERT(spdk_nvme_transport_id_compare(&trid1, &trid2) > 0);
memset_trid(&trid1, &trid2);
CU_ASSERT(spdk_nvme_transport_id_parse(&trid1, "trtype:PCIe traddr:0000:04:00.0") == 0);
CU_ASSERT(spdk_nvme_transport_id_parse(&trid2, "trtype:PCIe traddr:05:00.0") == 0);
CU_ASSERT(spdk_nvme_transport_id_compare(&trid1, &trid2) < 0);
memset_trid(&trid1, &trid2);
CU_ASSERT(spdk_nvme_transport_id_parse(&trid1, "trtype=PCIe traddr=0000:04:00.0") == 0);
CU_ASSERT(spdk_nvme_transport_id_parse(&trid2, "trtype=PCIe traddr=05:00.0") == 0);
CU_ASSERT(spdk_nvme_transport_id_compare(&trid1, &trid2) < 0);
CU_ASSERT(spdk_nvme_transport_id_parse(&trid1,
"trtype:tcp\n"
"adrfam:ipv4\n"
"traddr:192.168.100.8\n"
"trsvcid:4420\n"
"priority:2\n"
"subnqn:nqn.2014-08.org.nvmexpress.discovery") == 0);
CU_ASSERT(trid1.priority == 2);
}
static void
test_spdk_nvme_transport_id_parse_trtype(void)
{
enum spdk_nvme_transport_type *trtype;
enum spdk_nvme_transport_type sct;
char *str;
trtype = NULL;
str = "unit_test";
/* test function returned value when trtype is NULL but str not NULL */
CU_ASSERT(spdk_nvme_transport_id_parse_trtype(trtype, str) == (-EINVAL));
/* test function returned value when str is NULL but trtype not NULL */
trtype = &sct;
str = NULL;
CU_ASSERT(spdk_nvme_transport_id_parse_trtype(trtype, str) == (-EINVAL));
/* test function returned value when str and strtype not NULL, but str value
* not "PCIe" or "RDMA" */
str = "unit_test";
CU_ASSERT(spdk_nvme_transport_id_parse_trtype(trtype, str) == 0);
CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_CUSTOM);
/* test trtype value when use function "strcasecmp" to compare str and "PCIe"not case-sensitive */
str = "PCIe";
spdk_nvme_transport_id_parse_trtype(trtype, str);
CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_PCIE);
str = "pciE";
spdk_nvme_transport_id_parse_trtype(trtype, str);
CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_PCIE);
/* test trtype value when use function "strcasecmp" to compare str and "RDMA"not case-sensitive */
str = "RDMA";
spdk_nvme_transport_id_parse_trtype(trtype, str);
CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_RDMA);
str = "rdma";
spdk_nvme_transport_id_parse_trtype(trtype, str);
CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_RDMA);
/* test trtype value when use function "strcasecmp" to compare str and "FC"not case-sensitive */
str = "FC";
spdk_nvme_transport_id_parse_trtype(trtype, str);
CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_FC);
str = "fc";
spdk_nvme_transport_id_parse_trtype(trtype, str);
CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_FC);
/* test trtype value when use function "strcasecmp" to compare str and "TCP"not case-sensitive */
str = "TCP";
spdk_nvme_transport_id_parse_trtype(trtype, str);
CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_TCP);
str = "tcp";
spdk_nvme_transport_id_parse_trtype(trtype, str);
CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_TCP);
}
static void
test_spdk_nvme_transport_id_parse_adrfam(void)
{
enum spdk_nvmf_adrfam *adrfam;
enum spdk_nvmf_adrfam sct;
char *str;
adrfam = NULL;
str = "unit_test";
/* test function returned value when adrfam is NULL but str not NULL */
CU_ASSERT(spdk_nvme_transport_id_parse_adrfam(adrfam, str) == (-EINVAL));
/* test function returned value when str is NULL but adrfam not NULL */
adrfam = &sct;
str = NULL;
CU_ASSERT(spdk_nvme_transport_id_parse_adrfam(adrfam, str) == (-EINVAL));
/* test function returned value when str and adrfam not NULL, but str value
* not "IPv4" or "IPv6" or "IB" or "FC" */
str = "unit_test";
CU_ASSERT(spdk_nvme_transport_id_parse_adrfam(adrfam, str) == (-ENOENT));
/* test adrfam value when use function "strcasecmp" to compare str and "IPv4"not case-sensitive */
str = "IPv4";
spdk_nvme_transport_id_parse_adrfam(adrfam, str);
CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_IPV4);
str = "ipV4";
spdk_nvme_transport_id_parse_adrfam(adrfam, str);
CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_IPV4);
/* test adrfam value when use function "strcasecmp" to compare str and "IPv6"not case-sensitive */
str = "IPv6";
spdk_nvme_transport_id_parse_adrfam(adrfam, str);
CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_IPV6);
str = "ipV6";
spdk_nvme_transport_id_parse_adrfam(adrfam, str);
CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_IPV6);
/* test adrfam value when use function "strcasecmp" to compare str and "IB"not case-sensitive */
str = "IB";
spdk_nvme_transport_id_parse_adrfam(adrfam, str);
CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_IB);
str = "ib";
spdk_nvme_transport_id_parse_adrfam(adrfam, str);
CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_IB);
/* test adrfam value when use function "strcasecmp" to compare str and "FC"not case-sensitive */
str = "FC";
spdk_nvme_transport_id_parse_adrfam(adrfam, str);
CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_FC);
str = "fc";
spdk_nvme_transport_id_parse_adrfam(adrfam, str);
CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_FC);
}
static void
test_trid_trtype_str(void)
{
const char *s;
s = spdk_nvme_transport_id_trtype_str(-5);
CU_ASSERT(s == NULL);
s = spdk_nvme_transport_id_trtype_str(SPDK_NVME_TRANSPORT_PCIE);
SPDK_CU_ASSERT_FATAL(s != NULL);
CU_ASSERT(strcmp(s, "PCIe") == 0);
s = spdk_nvme_transport_id_trtype_str(SPDK_NVME_TRANSPORT_RDMA);
SPDK_CU_ASSERT_FATAL(s != NULL);
CU_ASSERT(strcmp(s, "RDMA") == 0);
s = spdk_nvme_transport_id_trtype_str(SPDK_NVME_TRANSPORT_FC);
SPDK_CU_ASSERT_FATAL(s != NULL);
CU_ASSERT(strcmp(s, "FC") == 0);
s = spdk_nvme_transport_id_trtype_str(SPDK_NVME_TRANSPORT_TCP);
SPDK_CU_ASSERT_FATAL(s != NULL);
CU_ASSERT(strcmp(s, "TCP") == 0);
}
static void
test_trid_adrfam_str(void)
{
const char *s;
s = spdk_nvme_transport_id_adrfam_str(-5);
CU_ASSERT(s == NULL);
s = spdk_nvme_transport_id_adrfam_str(SPDK_NVMF_ADRFAM_IPV4);
SPDK_CU_ASSERT_FATAL(s != NULL);
CU_ASSERT(strcmp(s, "IPv4") == 0);
s = spdk_nvme_transport_id_adrfam_str(SPDK_NVMF_ADRFAM_IPV6);
SPDK_CU_ASSERT_FATAL(s != NULL);
CU_ASSERT(strcmp(s, "IPv6") == 0);
s = spdk_nvme_transport_id_adrfam_str(SPDK_NVMF_ADRFAM_IB);
SPDK_CU_ASSERT_FATAL(s != NULL);
CU_ASSERT(strcmp(s, "IB") == 0);
s = spdk_nvme_transport_id_adrfam_str(SPDK_NVMF_ADRFAM_FC);
SPDK_CU_ASSERT_FATAL(s != NULL);
CU_ASSERT(strcmp(s, "FC") == 0);
}
/* stub callback used by the test_nvme_request_check_timeout */
static bool ut_timeout_cb_call = false;
static void
dummy_timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair, uint16_t cid)
{
ut_timeout_cb_call = true;
}
static void
test_nvme_request_check_timeout(void)
{
int rc;
struct spdk_nvme_qpair qpair;
struct nvme_request req;
struct spdk_nvme_ctrlr_process active_proc;
uint16_t cid = 0;
uint64_t now_tick = 0;
memset(&qpair, 0x0, sizeof(qpair));
memset(&req, 0x0, sizeof(req));
memset(&active_proc, 0x0, sizeof(active_proc));
req.qpair = &qpair;
active_proc.timeout_cb_fn = dummy_timeout_cb;
/* if have called timeout_cb_fn then return directly */
req.timed_out = true;
rc = nvme_request_check_timeout(&req, cid, &active_proc, now_tick);
CU_ASSERT(rc == 0);
CU_ASSERT(ut_timeout_cb_call == false);
/* if timeout isn't enabled then return directly */
req.timed_out = false;
req.submit_tick = 0;
rc = nvme_request_check_timeout(&req, cid, &active_proc, now_tick);
CU_ASSERT(rc == 0);
CU_ASSERT(ut_timeout_cb_call == false);
/* req->pid isn't right then return directly */
req.submit_tick = 1;
req.pid = g_spdk_nvme_pid + 1;
rc = nvme_request_check_timeout(&req, cid, &active_proc, now_tick);
CU_ASSERT(rc == 0);
CU_ASSERT(ut_timeout_cb_call == false);
/* AER command has no timeout */
req.pid = g_spdk_nvme_pid;
req.cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
rc = nvme_request_check_timeout(&req, cid, &active_proc, now_tick);
CU_ASSERT(rc == 0);
CU_ASSERT(ut_timeout_cb_call == false);
/* time isn't out */
qpair.id = 1;
rc = nvme_request_check_timeout(&req, cid, &active_proc, now_tick);
CU_ASSERT(rc == 1);
CU_ASSERT(ut_timeout_cb_call == false);
now_tick = 2;
rc = nvme_request_check_timeout(&req, cid, &active_proc, now_tick);
CU_ASSERT(req.timed_out == true);
CU_ASSERT(ut_timeout_cb_call == true);
CU_ASSERT(rc == 0);
}
struct nvme_completion_poll_status g_status;
uint64_t completion_delay_us, timeout_in_usecs;
int g_process_comp_result;
pthread_mutex_t g_robust_lock = PTHREAD_MUTEX_INITIALIZER;
int
spdk_nvme_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
spdk_delay_us(completion_delay_us);
g_status.done = completion_delay_us < timeout_in_usecs && g_process_comp_result == 0 ? true : false;
return g_process_comp_result;
}
static void
test_nvme_wait_for_completion(void)
{
struct spdk_nvme_qpair qpair;
struct spdk_nvme_ctrlr ctrlr;
int rc = 0;
memset(&ctrlr, 0, sizeof(ctrlr));
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
memset(&qpair, 0, sizeof(qpair));
qpair.ctrlr = &ctrlr;
/* completion timeout */
memset(&g_status, 0, sizeof(g_status));
completion_delay_us = 2000000;
timeout_in_usecs = 1000000;
rc = nvme_wait_for_completion_timeout(&qpair, &g_status, timeout_in_usecs);
CU_ASSERT(g_status.timed_out == true);
CU_ASSERT(g_status.done == false);
CU_ASSERT(rc == -ECANCELED);
/* spdk_nvme_qpair_process_completions returns error */
memset(&g_status, 0, sizeof(g_status));
g_process_comp_result = -1;
completion_delay_us = 1000000;
timeout_in_usecs = 2000000;
rc = nvme_wait_for_completion_timeout(&qpair, &g_status, timeout_in_usecs);
CU_ASSERT(rc == -ECANCELED);
CU_ASSERT(g_status.timed_out == true);
CU_ASSERT(g_status.done == false);
CU_ASSERT(g_status.cpl.status.sct == SPDK_NVME_SCT_GENERIC);
CU_ASSERT(g_status.cpl.status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION);
g_process_comp_result = 0;
/* complete in time */
memset(&g_status, 0, sizeof(g_status));
completion_delay_us = 1000000;
timeout_in_usecs = 2000000;
rc = nvme_wait_for_completion_timeout(&qpair, &g_status, timeout_in_usecs);
CU_ASSERT(g_status.timed_out == false);
CU_ASSERT(g_status.done == true);
CU_ASSERT(rc == 0);
/* nvme_wait_for_completion */
/* spdk_nvme_qpair_process_completions returns error */
memset(&g_status, 0, sizeof(g_status));
g_process_comp_result = -1;
rc = nvme_wait_for_completion(&qpair, &g_status);
CU_ASSERT(rc == -ECANCELED);
CU_ASSERT(g_status.timed_out == true);
CU_ASSERT(g_status.done == false);
CU_ASSERT(g_status.cpl.status.sct == SPDK_NVME_SCT_GENERIC);
CU_ASSERT(g_status.cpl.status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION);
/* successful completion */
memset(&g_status, 0, sizeof(g_status));
g_process_comp_result = 0;
rc = nvme_wait_for_completion(&qpair, &g_status);
CU_ASSERT(rc == 0);
CU_ASSERT(g_status.timed_out == false);
CU_ASSERT(g_status.done == true);
/* completion timeout */
memset(&g_status, 0, sizeof(g_status));
completion_delay_us = 2000000;
timeout_in_usecs = 1000000;
rc = nvme_wait_for_completion_robust_lock_timeout(&qpair, &g_status, &g_robust_lock,
timeout_in_usecs);
CU_ASSERT(g_status.timed_out == true);
CU_ASSERT(g_status.done == false);
CU_ASSERT(rc == -ECANCELED);
/* spdk_nvme_qpair_process_completions returns error */
memset(&g_status, 0, sizeof(g_status));
g_process_comp_result = -1;
completion_delay_us = 1000000;
timeout_in_usecs = 2000000;
rc = nvme_wait_for_completion_robust_lock_timeout(&qpair, &g_status, &g_robust_lock,
timeout_in_usecs);
CU_ASSERT(rc == -ECANCELED);
CU_ASSERT(g_status.timed_out == true);
CU_ASSERT(g_status.done == false);
CU_ASSERT(g_status.cpl.status.sct == SPDK_NVME_SCT_GENERIC);
CU_ASSERT(g_status.cpl.status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION);
g_process_comp_result = 0;
/* complete in time */
memset(&g_status, 0, sizeof(g_status));
completion_delay_us = 1000000;
timeout_in_usecs = 2000000;
rc = nvme_wait_for_completion_robust_lock_timeout(&qpair, &g_status, &g_robust_lock,
timeout_in_usecs);
CU_ASSERT(g_status.timed_out == false);
CU_ASSERT(g_status.done == true);
CU_ASSERT(rc == 0);
/* nvme_wait_for_completion */
/* spdk_nvme_qpair_process_completions returns error */
memset(&g_status, 0, sizeof(g_status));
g_process_comp_result = -1;
rc = nvme_wait_for_completion_robust_lock(&qpair, &g_status, &g_robust_lock);
CU_ASSERT(rc == -ECANCELED);
CU_ASSERT(g_status.timed_out == true);
CU_ASSERT(g_status.done == false);
CU_ASSERT(g_status.cpl.status.sct == SPDK_NVME_SCT_GENERIC);
CU_ASSERT(g_status.cpl.status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION);
/* successful completion */
memset(&g_status, 0, sizeof(g_status));
g_process_comp_result = 0;
rc = nvme_wait_for_completion_robust_lock(&qpair, &g_status, &g_robust_lock);
CU_ASSERT(rc == 0);
CU_ASSERT(g_status.timed_out == false);
CU_ASSERT(g_status.done == true);
}
static void
test_nvme_ctrlr_probe_internal(void)
{
struct spdk_nvme_probe_ctx *probe_ctx;
struct spdk_nvme_transport_id trid = {};
struct nvme_driver dummy;
int rc;
probe_ctx = calloc(1, sizeof(*probe_ctx));
CU_ASSERT(probe_ctx != NULL);
MOCK_SET(spdk_process_is_primary, true);
MOCK_SET(spdk_memzone_reserve, (void *)&dummy);
g_spdk_nvme_driver = NULL;
rc = nvme_driver_init();
CU_ASSERT(rc == 0);
ut_test_probe_internal = true;
MOCK_SET(dummy_probe_cb, true);
trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
nvme_probe_ctx_init(probe_ctx, &trid, NULL, dummy_probe_cb, NULL, NULL);
rc = nvme_probe_internal(probe_ctx, false);
CU_ASSERT(rc < 0);
CU_ASSERT(TAILQ_EMPTY(&probe_ctx->init_ctrlrs));
free(probe_ctx);
ut_test_probe_internal = false;
}
static void
test_spdk_nvme_parse_func(void)
{
struct spdk_nvme_host_id hostid = {};
char str[64] = {};
const char *rt_str = NULL;
uint32_t prchk_flags;
int rc;
/* Parse prchk flags. */
prchk_flags = 0;
rt_str = spdk_nvme_prchk_flags_str(SPDK_NVME_IO_FLAGS_PRCHK_REFTAG);
memcpy(str, rt_str, strlen(rt_str));
rc = spdk_nvme_prchk_flags_parse(&prchk_flags, str);
CU_ASSERT(rc == 0);
CU_ASSERT(prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG);
prchk_flags = 0;
rt_str = spdk_nvme_prchk_flags_str(SPDK_NVME_IO_FLAGS_PRCHK_GUARD);
memcpy(str, rt_str, strlen(rt_str));
rc = spdk_nvme_prchk_flags_parse(&prchk_flags, str);
CU_ASSERT(prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD);
CU_ASSERT(rc == 0);
prchk_flags = 0;
rt_str = spdk_nvme_prchk_flags_str(SPDK_NVME_IO_FLAGS_PRCHK_REFTAG |
SPDK_NVME_IO_FLAGS_PRCHK_GUARD);
memcpy(str, rt_str, strlen(rt_str));
rc = spdk_nvme_prchk_flags_parse(&prchk_flags, str);
CU_ASSERT(rc == 0);
CU_ASSERT(prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG);
CU_ASSERT(prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD);
rc = spdk_nvme_prchk_flags_parse(NULL, NULL);
CU_ASSERT(rc == -EINVAL);
/* Parse host id. */
memcpy(str, "hostaddr:192.168.1.1", sizeof("hostaddr:192.168.1.1"));
rc = spdk_nvme_host_id_parse(&hostid, str);
CU_ASSERT(rc == 0);
CU_ASSERT(!strncmp(hostid.hostaddr, "192.168.1.1", sizeof("192.168.1.1")));
memset(&hostid, 0, sizeof(hostid));
memcpy(str, "hostsvcid:192.168.1.2", sizeof("hostsvcid:192.168.1.2"));
rc = spdk_nvme_host_id_parse(&hostid, str);
CU_ASSERT(rc == 0);
CU_ASSERT(!strncmp(hostid.hostsvcid, "192.168.1.2", sizeof("192.168.1.2")));
/* Unknown transport ID key */
memset(&hostid, 0, sizeof(hostid));
memcpy(str, "trtype:xxx", sizeof("trtype:xxx"));
rc = spdk_nvme_host_id_parse(&hostid, str);
CU_ASSERT(rc == 0);
CU_ASSERT(hostid.hostaddr[0] == '\0' && hostid.hostsvcid[0] == '\0');
}
static void
test_spdk_nvme_detach_async(void)
{
int rc = 1;
struct spdk_nvme_ctrlr ctrlr1, ctrlr2;
struct nvme_driver test_driver;
struct spdk_nvme_detach_ctx *detach_ctx;
struct nvme_ctrlr_detach_ctx *ctx;
detach_ctx = NULL;
memset(&ctrlr1, 0, sizeof(ctrlr1));
ctrlr1.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
memset(&ctrlr2, 0, sizeof(ctrlr2));
ctrlr2.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
g_spdk_nvme_driver = &test_driver;
TAILQ_INIT(&test_driver.shared_attached_ctrlrs);
TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr1, tailq);
TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr2, tailq);
CU_ASSERT(pthread_mutex_init(&test_driver.lock, NULL) == 0);
MOCK_SET(nvme_ctrlr_get_ref_count, 1);
rc = spdk_nvme_detach_async(&ctrlr1, &detach_ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(ctrlr1.is_destructed == true);
CU_ASSERT(detach_ctx != NULL);
rc = spdk_nvme_detach_async(&ctrlr2, &detach_ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(ctrlr2.is_destructed == true);
CU_ASSERT(detach_ctx != NULL);
CU_ASSERT(TAILQ_EMPTY(&test_driver.shared_attached_ctrlrs) == false);
rc = spdk_nvme_detach_poll_async(detach_ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(TAILQ_EMPTY(&test_driver.shared_attached_ctrlrs) == true);
/* ctrlr1 is a PCIe controller but ctrlr2 is an non-PCIe controller.
* Even for this case, detachment should complete successfully.
*/
detach_ctx = NULL;
memset(&ctrlr1, 0, sizeof(ctrlr1));
ctrlr1.trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
memset(&ctrlr2, 0, sizeof(ctrlr2));
ctrlr2.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
TAILQ_INIT(&g_nvme_attached_ctrlrs);
TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, &ctrlr1, tailq);
TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr2, tailq);
rc = spdk_nvme_detach_async(&ctrlr1, &detach_ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(ctrlr1.is_destructed == true);
CU_ASSERT(detach_ctx != NULL);
rc = spdk_nvme_detach_async(&ctrlr2, &detach_ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(ctrlr2.is_destructed == true);
CU_ASSERT(detach_ctx != NULL);
CU_ASSERT(TAILQ_EMPTY(&g_nvme_attached_ctrlrs) == false);
CU_ASSERT(TAILQ_EMPTY(&test_driver.shared_attached_ctrlrs) == false);
rc = spdk_nvme_detach_poll_async(detach_ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(TAILQ_EMPTY(&g_nvme_attached_ctrlrs) == true);
CU_ASSERT(TAILQ_EMPTY(&test_driver.shared_attached_ctrlrs) == true);
/* Test if ctrlr2 can be detached by using the same context that
* ctrlr1 uses while ctrlr1 is being detached.
*/
detach_ctx = NULL;
memset(&ctrlr1, 0, sizeof(ctrlr1));
ctrlr1.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
memset(&ctrlr2, 0, sizeof(ctrlr2));
ctrlr2.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr1, tailq);
TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr2, tailq);
rc = spdk_nvme_detach_async(&ctrlr1, &detach_ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(ctrlr1.is_destructed == true);
SPDK_CU_ASSERT_FATAL(detach_ctx != NULL);
ctx = TAILQ_FIRST(&detach_ctx->head);
SPDK_CU_ASSERT_FATAL(ctx != NULL);
CU_ASSERT(ctx->ctrlr == &ctrlr1);
CU_ASSERT(ctx->shutdown_complete == true);
/* Set ctx->shutdown_complete for ctrlr1 to false to allow ctrlr2 to
* add to detach_ctx while spdk_nvme_detach_poll_async() is being
* executed.
*/
ctx->shutdown_complete = false;
rc = spdk_nvme_detach_poll_async(detach_ctx);
CU_ASSERT(rc == -EAGAIN);
rc = spdk_nvme_detach_async(&ctrlr2, &detach_ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(ctrlr2.is_destructed == true);
/* After ctrlr2 is added to detach_ctx, set ctx->shutdown_complete for
* ctrlr1 to true to complete spdk_nvme_detach_poll_async().
*/
ctx->shutdown_complete = true;
rc = spdk_nvme_detach_poll_async(detach_ctx);
CU_ASSERT(rc == 0);
CU_ASSERT(TAILQ_EMPTY(&test_driver.shared_attached_ctrlrs) == true);
g_spdk_nvme_driver = NULL;
pthread_mutex_destroy(&test_driver.lock);
MOCK_CLEAR(nvme_ctrlr_get_ref_count);
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
CU_set_error_action(CUEA_ABORT);
CU_initialize_registry();
suite = CU_add_suite("nvme", NULL, NULL);
CU_ADD_TEST(suite, test_opc_data_transfer);
CU_ADD_TEST(suite, test_spdk_nvme_transport_id_parse_trtype);
CU_ADD_TEST(suite, test_spdk_nvme_transport_id_parse_adrfam);
CU_ADD_TEST(suite, test_trid_parse_and_compare);
CU_ADD_TEST(suite, test_trid_trtype_str);
CU_ADD_TEST(suite, test_trid_adrfam_str);
CU_ADD_TEST(suite, test_nvme_ctrlr_probe);
CU_ADD_TEST(suite, test_spdk_nvme_probe);
CU_ADD_TEST(suite, test_spdk_nvme_connect);
CU_ADD_TEST(suite, test_nvme_ctrlr_probe_internal);
CU_ADD_TEST(suite, test_nvme_init_controllers);
CU_ADD_TEST(suite, test_nvme_driver_init);
CU_ADD_TEST(suite, test_spdk_nvme_detach);
CU_ADD_TEST(suite, test_nvme_completion_poll_cb);
CU_ADD_TEST(suite, test_nvme_user_copy_cmd_complete);
CU_ADD_TEST(suite, test_nvme_allocate_request_null);
CU_ADD_TEST(suite, test_nvme_allocate_request);
CU_ADD_TEST(suite, test_nvme_free_request);
CU_ADD_TEST(suite, test_nvme_allocate_request_user_copy);
CU_ADD_TEST(suite, test_nvme_robust_mutex_init_shared);
CU_ADD_TEST(suite, test_nvme_request_check_timeout);
CU_ADD_TEST(suite, test_nvme_wait_for_completion);
CU_ADD_TEST(suite, test_spdk_nvme_parse_func);
CU_ADD_TEST(suite, test_spdk_nvme_detach_async);
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}