/* SPDX-License-Identifier: BSD-3-Clause * Copyright (C) 2015 Intel Corporation. All rights reserved. * Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved. */ #include "spdk_cunit.h" #include "spdk/env.h" #include "nvme/nvme.c" #include "spdk_internal/mock.h" #include "common/lib/test_env.c" DEFINE_STUB_V(nvme_ctrlr_proc_get_ref, (struct spdk_nvme_ctrlr *ctrlr)); DEFINE_STUB_V(nvme_ctrlr_proc_put_ref, (struct spdk_nvme_ctrlr *ctrlr)); DEFINE_STUB_V(nvme_ctrlr_fail, (struct spdk_nvme_ctrlr *ctrlr, bool hotremove)); DEFINE_STUB(spdk_nvme_transport_available_by_name, bool, (const char *transport_name), true); /* return anything non-NULL, this won't be dereferenced anywhere in this test */ DEFINE_STUB(nvme_ctrlr_get_current_process, struct spdk_nvme_ctrlr_process *, (struct spdk_nvme_ctrlr *ctrlr), (struct spdk_nvme_ctrlr_process *)(uintptr_t)0x1); DEFINE_STUB(nvme_ctrlr_process_init, int, (struct spdk_nvme_ctrlr *ctrlr), 0); DEFINE_STUB(nvme_ctrlr_get_ref_count, int, (struct spdk_nvme_ctrlr *ctrlr), 0); DEFINE_STUB(dummy_probe_cb, bool, (void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr_opts *opts), false); DEFINE_STUB(nvme_transport_ctrlr_construct, struct spdk_nvme_ctrlr *, (const struct spdk_nvme_transport_id *trid, const struct spdk_nvme_ctrlr_opts *opts, void *devhandle), NULL); DEFINE_STUB_V(nvme_io_msg_ctrlr_detach, (struct spdk_nvme_ctrlr *ctrlr)); DEFINE_STUB(spdk_nvme_transport_available, bool, (enum spdk_nvme_transport_type trtype), true); DEFINE_STUB(spdk_pci_event_listen, int, (void), 0); DEFINE_STUB(spdk_nvme_poll_group_process_completions, int64_t, (struct spdk_nvme_poll_group *group, uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb), 0); static bool ut_destruct_called = false; void nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) { ut_destruct_called = true; } void nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr, struct nvme_ctrlr_detach_ctx *ctx) { ut_destruct_called = true; ctrlr->is_destructed = true; ctx->shutdown_complete = true; } int nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr, struct nvme_ctrlr_detach_ctx *ctx) { if (!ctx->shutdown_complete) { return -EAGAIN; } if (ctx->cb_fn) { ctx->cb_fn(ctrlr); } return 0; } union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr) { union spdk_nvme_csts_register csts = {}; return csts; } void spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size) { memset(opts, 0, opts_size); opts->opts_size = opts_size; } static void memset_trid(struct spdk_nvme_transport_id *trid1, struct spdk_nvme_transport_id *trid2) { memset(trid1, 0, sizeof(struct spdk_nvme_transport_id)); memset(trid2, 0, sizeof(struct spdk_nvme_transport_id)); } static bool ut_check_trtype = false; static bool ut_test_probe_internal = false; static int ut_nvme_pcie_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx, bool direct_connect) { struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_qpair qpair = {}; int rc; if (probe_ctx->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { return -1; } ctrlr = calloc(1, sizeof(*ctrlr)); CU_ASSERT(ctrlr != NULL); ctrlr->adminq = &qpair; /* happy path with first controller */ MOCK_SET(nvme_transport_ctrlr_construct, ctrlr); rc = nvme_ctrlr_probe(&probe_ctx->trid, probe_ctx, NULL); CU_ASSERT(rc == 0); /* failed with the second controller */ MOCK_SET(nvme_transport_ctrlr_construct, NULL); rc = nvme_ctrlr_probe(&probe_ctx->trid, probe_ctx, NULL); CU_ASSERT(rc != 0); MOCK_CLEAR_P(nvme_transport_ctrlr_construct); return -1; } int nvme_transport_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) { free(ctrlr); return 0; } int nvme_transport_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx, bool direct_connect) { struct spdk_nvme_ctrlr *ctrlr = NULL; if (ut_check_trtype == true) { CU_ASSERT(probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE); } if (ut_test_probe_internal) { return ut_nvme_pcie_ctrlr_scan(probe_ctx, direct_connect); } if (direct_connect == true && probe_ctx->probe_cb) { nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); ctrlr = nvme_get_ctrlr_by_trid(&probe_ctx->trid); nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); probe_ctx->probe_cb(probe_ctx->cb_ctx, &probe_ctx->trid, &ctrlr->opts); } return 0; } static bool ut_attach_cb_called = false; static void dummy_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { ut_attach_cb_called = true; } static void test_spdk_nvme_probe(void) { int rc = 0; const struct spdk_nvme_transport_id *trid = NULL; void *cb_ctx = NULL; spdk_nvme_probe_cb probe_cb = NULL; spdk_nvme_attach_cb attach_cb = dummy_attach_cb; spdk_nvme_remove_cb remove_cb = NULL; struct spdk_nvme_ctrlr ctrlr; pthread_mutexattr_t attr; struct nvme_driver dummy; g_spdk_nvme_driver = &dummy; /* driver init fails */ MOCK_SET(spdk_process_is_primary, false); MOCK_SET(spdk_memzone_lookup, NULL); rc = spdk_nvme_probe(trid, cb_ctx, probe_cb, attach_cb, remove_cb); CU_ASSERT(rc == -1); /* * For secondary processes, the attach_cb should automatically get * called for any controllers already initialized by the primary * process. */ MOCK_SET(spdk_nvme_transport_available_by_name, false); MOCK_SET(spdk_process_is_primary, true); dummy.initialized = true; g_spdk_nvme_driver = &dummy; rc = spdk_nvme_probe(trid, cb_ctx, probe_cb, attach_cb, remove_cb); CU_ASSERT(rc == -1); /* driver init passes, transport available, secondary call attach_cb */ MOCK_SET(spdk_nvme_transport_available_by_name, true); MOCK_SET(spdk_process_is_primary, false); MOCK_SET(spdk_memzone_lookup, g_spdk_nvme_driver); dummy.initialized = true; memset(&ctrlr, 0, sizeof(struct spdk_nvme_ctrlr)); CU_ASSERT(pthread_mutexattr_init(&attr) == 0); CU_ASSERT(pthread_mutex_init(&dummy.lock, &attr) == 0); TAILQ_INIT(&dummy.shared_attached_ctrlrs); TAILQ_INSERT_TAIL(&dummy.shared_attached_ctrlrs, &ctrlr, tailq); ut_attach_cb_called = false; /* setup nvme_transport_ctrlr_scan() stub to also check the trype */ ut_check_trtype = true; rc = spdk_nvme_probe(trid, cb_ctx, probe_cb, attach_cb, remove_cb); CU_ASSERT(rc == 0); CU_ASSERT(ut_attach_cb_called == true); /* driver init passes, transport available, we are primary */ MOCK_SET(spdk_process_is_primary, true); rc = spdk_nvme_probe(trid, cb_ctx, probe_cb, attach_cb, remove_cb); CU_ASSERT(rc == 0); g_spdk_nvme_driver = NULL; /* reset to pre-test values */ MOCK_CLEAR(spdk_memzone_lookup); ut_check_trtype = false; pthread_mutex_destroy(&dummy.lock); pthread_mutexattr_destroy(&attr); } static void test_spdk_nvme_connect(void) { struct spdk_nvme_ctrlr *ret_ctrlr = NULL; struct spdk_nvme_transport_id trid = {}; struct spdk_nvme_ctrlr_opts opts = {}; struct spdk_nvme_ctrlr ctrlr; pthread_mutexattr_t attr; struct nvme_driver dummy; /* initialize the variable to prepare the test */ dummy.initialized = true; TAILQ_INIT(&dummy.shared_attached_ctrlrs); g_spdk_nvme_driver = &dummy; CU_ASSERT(pthread_mutexattr_init(&attr) == 0); CU_ASSERT(pthread_mutex_init(&g_spdk_nvme_driver->lock, &attr) == 0); /* set NULL trid pointer to test immediate return */ ret_ctrlr = spdk_nvme_connect(NULL, NULL, 0); CU_ASSERT(ret_ctrlr == NULL); /* driver init passes, transport available, secondary process connects ctrlr */ MOCK_SET(spdk_process_is_primary, false); MOCK_SET(spdk_memzone_lookup, g_spdk_nvme_driver); MOCK_SET(spdk_nvme_transport_available_by_name, true); memset(&trid, 0, sizeof(trid)); trid.trtype = SPDK_NVME_TRANSPORT_PCIE; ret_ctrlr = spdk_nvme_connect(&trid, NULL, 0); CU_ASSERT(ret_ctrlr == NULL); /* driver init passes, setup one ctrlr on the attached_list */ memset(&ctrlr, 0, sizeof(struct spdk_nvme_ctrlr)); snprintf(ctrlr.trid.traddr, sizeof(ctrlr.trid.traddr), "0000:01:00.0"); ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, &ctrlr, tailq); /* get the ctrlr from the attached list */ snprintf(trid.traddr, sizeof(trid.traddr), "0000:01:00.0"); ret_ctrlr = spdk_nvme_connect(&trid, NULL, 0); CU_ASSERT(ret_ctrlr == &ctrlr); /* get the ctrlr from the attached list with default ctrlr opts */ ctrlr.opts.num_io_queues = DEFAULT_MAX_IO_QUEUES; ret_ctrlr = spdk_nvme_connect(&trid, NULL, 0); CU_ASSERT(ret_ctrlr == &ctrlr); CU_ASSERT_EQUAL(ret_ctrlr->opts.num_io_queues, DEFAULT_MAX_IO_QUEUES); /* get the ctrlr from the attached list with default ctrlr opts and consistent opts_size */ opts.num_io_queues = 1; ret_ctrlr = spdk_nvme_connect(&trid, &opts, sizeof(opts)); CU_ASSERT(ret_ctrlr == &ctrlr); CU_ASSERT_EQUAL(ret_ctrlr->opts.num_io_queues, 1); CU_ASSERT_EQUAL(ret_ctrlr->opts.opts_size, sizeof(opts)); /* opts_size is 0 */ ret_ctrlr = spdk_nvme_connect(&trid, &opts, 0); CU_ASSERT(ret_ctrlr == &ctrlr); CU_ASSERT_EQUAL(ret_ctrlr->opts.opts_size, 0); /* opts_size is less than sizeof(*opts) if opts != NULL */ ret_ctrlr = spdk_nvme_connect(&trid, &opts, 4); CU_ASSERT(ret_ctrlr == &ctrlr); CU_ASSERT_EQUAL(ret_ctrlr->opts.num_io_queues, 1); CU_ASSERT_EQUAL(ret_ctrlr->opts.opts_size, 4); /* remove the attached ctrlr on the attached_list */ MOCK_SET(nvme_ctrlr_get_ref_count, 1); CU_ASSERT(spdk_nvme_detach(&ctrlr) == 0); CU_ASSERT(TAILQ_EMPTY(&g_spdk_nvme_driver->shared_attached_ctrlrs)); /* driver init passes, transport available, primary process connects ctrlr */ MOCK_SET(spdk_process_is_primary, true); /* setup one ctrlr on the attached_list */ memset(&ctrlr, 0, sizeof(struct spdk_nvme_ctrlr)); snprintf(ctrlr.trid.traddr, sizeof(ctrlr.trid.traddr), "0000:02:00.0"); ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, &ctrlr, tailq); /* get the ctrlr from the attached list */ snprintf(trid.traddr, sizeof(trid.traddr), "0000:02:00.0"); ret_ctrlr = spdk_nvme_connect(&trid, NULL, 0); CU_ASSERT(ret_ctrlr == &ctrlr); /* get the ctrlr from the attached list with default ctrlr opts */ ctrlr.opts.num_io_queues = DEFAULT_MAX_IO_QUEUES; ret_ctrlr = spdk_nvme_connect(&trid, NULL, 0); CU_ASSERT(ret_ctrlr == &ctrlr); CU_ASSERT_EQUAL(ret_ctrlr->opts.num_io_queues, DEFAULT_MAX_IO_QUEUES); /* get the ctrlr from the attached list with default ctrlr opts and consistent opts_size */ opts.num_io_queues = 2; ret_ctrlr = spdk_nvme_connect(&trid, &opts, sizeof(opts)); CU_ASSERT(ret_ctrlr == &ctrlr); CU_ASSERT_EQUAL(ret_ctrlr->opts.num_io_queues, 2); /* remove the attached ctrlr on the attached_list */ CU_ASSERT(spdk_nvme_detach(ret_ctrlr) == 0); CU_ASSERT(TAILQ_EMPTY(&g_spdk_nvme_driver->shared_attached_ctrlrs)); /* test driver init failure return */ MOCK_SET(spdk_process_is_primary, false); MOCK_SET(spdk_memzone_lookup, NULL); ret_ctrlr = spdk_nvme_connect(&trid, NULL, 0); CU_ASSERT(ret_ctrlr == NULL); } static struct spdk_nvme_probe_ctx * test_nvme_init_get_probe_ctx(void) { struct spdk_nvme_probe_ctx *probe_ctx; probe_ctx = calloc(1, sizeof(*probe_ctx)); SPDK_CU_ASSERT_FATAL(probe_ctx != NULL); TAILQ_INIT(&probe_ctx->init_ctrlrs); return probe_ctx; } static void test_nvme_init_controllers(void) { int rc = 0; struct nvme_driver test_driver; void *cb_ctx = NULL; spdk_nvme_attach_cb attach_cb = dummy_attach_cb; struct spdk_nvme_probe_ctx *probe_ctx; struct spdk_nvme_ctrlr *ctrlr; pthread_mutexattr_t attr; g_spdk_nvme_driver = &test_driver; ctrlr = calloc(1, sizeof(*ctrlr)); SPDK_CU_ASSERT_FATAL(ctrlr != NULL); ctrlr->trid.trtype = SPDK_NVME_TRANSPORT_PCIE; CU_ASSERT(pthread_mutexattr_init(&attr) == 0); CU_ASSERT(pthread_mutex_init(&ctrlr->ctrlr_lock, &attr) == 0); CU_ASSERT(pthread_mutex_init(&test_driver.lock, &attr) == 0); TAILQ_INIT(&test_driver.shared_attached_ctrlrs); /* * Try to initialize, but nvme_ctrlr_process_init will fail. * Verify correct behavior when it does. */ MOCK_SET(nvme_ctrlr_process_init, 1); MOCK_SET(spdk_process_is_primary, 1); g_spdk_nvme_driver->initialized = false; ut_destruct_called = false; probe_ctx = test_nvme_init_get_probe_ctx(); TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq); probe_ctx->cb_ctx = cb_ctx; probe_ctx->attach_cb = attach_cb; probe_ctx->trid.trtype = SPDK_NVME_TRANSPORT_PCIE; rc = nvme_init_controllers(probe_ctx); CU_ASSERT(rc == 0); CU_ASSERT(g_spdk_nvme_driver->initialized == true); CU_ASSERT(ut_destruct_called == true); /* * Controller init OK, need to move the controller state machine * forward by setting the ctrl state so that it can be moved * the shared_attached_ctrlrs list. */ probe_ctx = test_nvme_init_get_probe_ctx(); TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq); ctrlr->state = NVME_CTRLR_STATE_READY; MOCK_SET(nvme_ctrlr_process_init, 0); rc = nvme_init_controllers(probe_ctx); CU_ASSERT(rc == 0); CU_ASSERT(ut_attach_cb_called == true); CU_ASSERT(TAILQ_EMPTY(&g_nvme_attached_ctrlrs)); CU_ASSERT(TAILQ_FIRST(&g_spdk_nvme_driver->shared_attached_ctrlrs) == ctrlr); TAILQ_REMOVE(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq); /* * Reset to initial state */ CU_ASSERT(pthread_mutex_destroy(&ctrlr->ctrlr_lock) == 0); memset(ctrlr, 0, sizeof(struct spdk_nvme_ctrlr)); CU_ASSERT(pthread_mutex_init(&ctrlr->ctrlr_lock, &attr) == 0); /* * Non-PCIe controllers should be added to the per-process list, not the shared list. */ ctrlr->trid.trtype = SPDK_NVME_TRANSPORT_RDMA; probe_ctx = test_nvme_init_get_probe_ctx(); TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq); ctrlr->state = NVME_CTRLR_STATE_READY; MOCK_SET(nvme_ctrlr_process_init, 0); rc = nvme_init_controllers(probe_ctx); CU_ASSERT(rc == 0); CU_ASSERT(ut_attach_cb_called == true); CU_ASSERT(TAILQ_EMPTY(&g_spdk_nvme_driver->shared_attached_ctrlrs)); CU_ASSERT(TAILQ_FIRST(&g_nvme_attached_ctrlrs) == ctrlr); TAILQ_REMOVE(&g_nvme_attached_ctrlrs, ctrlr, tailq); CU_ASSERT(pthread_mutex_destroy(&ctrlr->ctrlr_lock) == 0); free(ctrlr); CU_ASSERT(TAILQ_EMPTY(&g_nvme_attached_ctrlrs)); g_spdk_nvme_driver = NULL; pthread_mutexattr_destroy(&attr); pthread_mutex_destroy(&test_driver.lock); } static void test_nvme_driver_init(void) { int rc; struct nvme_driver dummy; g_spdk_nvme_driver = &dummy; /* adjust this so testing doesn't take so long */ g_nvme_driver_timeout_ms = 100; /* process is primary and mem already reserved */ MOCK_SET(spdk_process_is_primary, true); dummy.initialized = true; rc = nvme_driver_init(); CU_ASSERT(rc == 0); /* * Process is primary and mem not yet reserved but the call * to spdk_memzone_reserve() returns NULL. */ g_spdk_nvme_driver = NULL; MOCK_SET(spdk_process_is_primary, true); MOCK_SET(spdk_memzone_reserve, NULL); rc = nvme_driver_init(); CU_ASSERT(rc == -1); /* process is not primary, no mem already reserved */ MOCK_SET(spdk_process_is_primary, false); MOCK_SET(spdk_memzone_lookup, NULL); g_spdk_nvme_driver = NULL; rc = nvme_driver_init(); CU_ASSERT(rc == -1); /* process is not primary, mem is already reserved & init'd */ MOCK_SET(spdk_process_is_primary, false); MOCK_SET(spdk_memzone_lookup, (void *)&dummy); dummy.initialized = true; rc = nvme_driver_init(); CU_ASSERT(rc == 0); /* process is not primary, mem is reserved but not initialized */ /* and times out */ MOCK_SET(spdk_process_is_primary, false); MOCK_SET(spdk_memzone_reserve, (void *)&dummy); dummy.initialized = false; rc = nvme_driver_init(); CU_ASSERT(rc == -1); /* process is primary, got mem but mutex won't init */ MOCK_SET(spdk_process_is_primary, true); MOCK_SET(spdk_memzone_reserve, (void *)&dummy); MOCK_SET(pthread_mutexattr_init, -1); g_spdk_nvme_driver = NULL; dummy.initialized = true; rc = nvme_driver_init(); /* for FreeBSD we can't can't effectively mock this path */ #ifndef __FreeBSD__ CU_ASSERT(rc != 0); #else CU_ASSERT(rc == 0); #endif /* process is primary, got mem, mutex OK */ MOCK_SET(spdk_process_is_primary, true); MOCK_CLEAR(pthread_mutexattr_init); g_spdk_nvme_driver = NULL; rc = nvme_driver_init(); CU_ASSERT(g_spdk_nvme_driver->initialized == false); CU_ASSERT(TAILQ_EMPTY(&g_spdk_nvme_driver->shared_attached_ctrlrs)); CU_ASSERT(rc == 0); g_spdk_nvme_driver = NULL; MOCK_CLEAR(spdk_memzone_reserve); MOCK_CLEAR(spdk_memzone_lookup); } static void test_spdk_nvme_detach(void) { int rc = 1; struct spdk_nvme_ctrlr ctrlr; struct spdk_nvme_ctrlr *ret_ctrlr; struct nvme_driver test_driver; memset(&ctrlr, 0, sizeof(ctrlr)); ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; g_spdk_nvme_driver = &test_driver; TAILQ_INIT(&test_driver.shared_attached_ctrlrs); TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr, tailq); CU_ASSERT(pthread_mutex_init(&test_driver.lock, NULL) == 0); /* * Controllers are ref counted so mock the function that returns * the ref count so that detach will actually call the destruct * function which we've mocked simply to verify that it gets * called (we aren't testing what the real destruct function does * here.) */ MOCK_SET(nvme_ctrlr_get_ref_count, 1); rc = spdk_nvme_detach(&ctrlr); ret_ctrlr = TAILQ_FIRST(&test_driver.shared_attached_ctrlrs); CU_ASSERT(ret_ctrlr == NULL); CU_ASSERT(ut_destruct_called == true); CU_ASSERT(rc == 0); /* * Mock the ref count to 1 so we confirm that the destruct * function is not called and that attached ctrl list is * not empty. */ MOCK_SET(nvme_ctrlr_get_ref_count, 2); TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr, tailq); ut_destruct_called = false; rc = spdk_nvme_detach(&ctrlr); ret_ctrlr = TAILQ_FIRST(&test_driver.shared_attached_ctrlrs); CU_ASSERT(ret_ctrlr != NULL); CU_ASSERT(ut_destruct_called == false); CU_ASSERT(rc == 0); /* * Non-PCIe controllers should be on the per-process attached_ctrlrs list, not the * shared_attached_ctrlrs list. Test an RDMA controller and ensure it is removed * from the correct list. */ memset(&ctrlr, 0, sizeof(ctrlr)); ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA; TAILQ_INIT(&g_nvme_attached_ctrlrs); TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, &ctrlr, tailq); MOCK_SET(nvme_ctrlr_get_ref_count, 1); rc = spdk_nvme_detach(&ctrlr); CU_ASSERT(TAILQ_EMPTY(&g_nvme_attached_ctrlrs)); CU_ASSERT(ut_destruct_called == true); CU_ASSERT(rc == 0); g_spdk_nvme_driver = NULL; pthread_mutex_destroy(&test_driver.lock); } static void test_nvme_completion_poll_cb(void) { struct nvme_completion_poll_status *status; struct spdk_nvme_cpl cpl; status = calloc(1, sizeof(*status)); SPDK_CU_ASSERT_FATAL(status != NULL); memset(&cpl, 0xff, sizeof(cpl)); nvme_completion_poll_cb(status, &cpl); CU_ASSERT(status->done == true); CU_ASSERT(memcmp(&cpl, &status->cpl, sizeof(struct spdk_nvme_cpl)) == 0); free(status); } /* stub callback used by test_nvme_user_copy_cmd_complete() */ static struct spdk_nvme_cpl ut_spdk_nvme_cpl = {0}; static void dummy_cb(void *user_cb_arg, struct spdk_nvme_cpl *cpl) { ut_spdk_nvme_cpl = *cpl; } static void test_nvme_user_copy_cmd_complete(void) { struct nvme_request req; int test_data = 0xdeadbeef; int buff_size = sizeof(int); void *buff; static struct spdk_nvme_cpl cpl; memset(&req, 0, sizeof(req)); memset(&cpl, 0x5a, sizeof(cpl)); /* test without a user buffer provided */ req.user_cb_fn = (void *)dummy_cb; nvme_user_copy_cmd_complete(&req, &cpl); CU_ASSERT(memcmp(&ut_spdk_nvme_cpl, &cpl, sizeof(cpl)) == 0); /* test with a user buffer provided */ req.user_buffer = malloc(buff_size); SPDK_CU_ASSERT_FATAL(req.user_buffer != NULL); memset(req.user_buffer, 0, buff_size); req.payload_size = buff_size; buff = spdk_zmalloc(buff_size, 0x100, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); SPDK_CU_ASSERT_FATAL(buff != NULL); req.payload = NVME_PAYLOAD_CONTIG(buff, NULL); memcpy(buff, &test_data, buff_size); req.cmd.opc = SPDK_NVME_OPC_GET_LOG_PAGE; req.pid = getpid(); /* zero out the test value set in the callback */ memset(&ut_spdk_nvme_cpl, 0, sizeof(ut_spdk_nvme_cpl)); nvme_user_copy_cmd_complete(&req, &cpl); CU_ASSERT(memcmp(req.user_buffer, &test_data, buff_size) == 0); CU_ASSERT(memcmp(&ut_spdk_nvme_cpl, &cpl, sizeof(cpl)) == 0); /* * Now test the same path as above but this time choose an opc * that results in a different data transfer type. */ memset(&ut_spdk_nvme_cpl, 0, sizeof(ut_spdk_nvme_cpl)); memset(req.user_buffer, 0, buff_size); buff = spdk_zmalloc(buff_size, 0x100, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); SPDK_CU_ASSERT_FATAL(buff != NULL); req.payload = NVME_PAYLOAD_CONTIG(buff, NULL); memcpy(buff, &test_data, buff_size); req.cmd.opc = SPDK_NVME_OPC_SET_FEATURES; nvme_user_copy_cmd_complete(&req, &cpl); CU_ASSERT(memcmp(req.user_buffer, &test_data, buff_size) != 0); CU_ASSERT(memcmp(&ut_spdk_nvme_cpl, &cpl, sizeof(cpl)) == 0); /* clean up */ free(req.user_buffer); } static void test_nvme_allocate_request_null(void) { struct spdk_nvme_qpair qpair; spdk_nvme_cmd_cb cb_fn = (spdk_nvme_cmd_cb)0x1234; void *cb_arg = (void *)0x5678; struct nvme_request *req = NULL; struct nvme_request dummy_req; STAILQ_INIT(&qpair.free_req); STAILQ_INIT(&qpair.queued_req); /* * Put a dummy on the queue so we can make a request * and confirm that what comes back is what we expect. */ STAILQ_INSERT_HEAD(&qpair.free_req, &dummy_req, stailq); req = nvme_allocate_request_null(&qpair, cb_fn, cb_arg); /* * Compare the req with the parameters that we passed in * as well as what the function is supposed to update. */ SPDK_CU_ASSERT_FATAL(req != NULL); CU_ASSERT(req->cb_fn == cb_fn); CU_ASSERT(req->cb_arg == cb_arg); CU_ASSERT(req->pid == getpid()); CU_ASSERT(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); CU_ASSERT(req->payload.md == NULL); CU_ASSERT(req->payload.contig_or_cb_arg == NULL); } static void test_nvme_allocate_request(void) { struct spdk_nvme_qpair qpair; struct nvme_payload payload; uint32_t payload_struct_size = sizeof(payload); spdk_nvme_cmd_cb cb_fn = (spdk_nvme_cmd_cb)0x1234; void *cb_arg = (void *)0x6789; struct nvme_request *req = NULL; struct nvme_request dummy_req; /* Fill the whole payload struct with a known pattern */ memset(&payload, 0x5a, payload_struct_size); STAILQ_INIT(&qpair.free_req); STAILQ_INIT(&qpair.queued_req); qpair.num_outstanding_reqs = 0; /* Test trying to allocate a request when no requests are available */ req = nvme_allocate_request(&qpair, &payload, payload_struct_size, 0, cb_fn, cb_arg); CU_ASSERT(req == NULL); CU_ASSERT(qpair.num_outstanding_reqs == 0); /* put a dummy on the queue, and then allocate one */ STAILQ_INSERT_HEAD(&qpair.free_req, &dummy_req, stailq); req = nvme_allocate_request(&qpair, &payload, payload_struct_size, 0, cb_fn, cb_arg); /* all the req elements should now match the passed in parameters */ SPDK_CU_ASSERT_FATAL(req != NULL); CU_ASSERT(qpair.num_outstanding_reqs == 1); CU_ASSERT(req->cb_fn == cb_fn); CU_ASSERT(req->cb_arg == cb_arg); CU_ASSERT(memcmp(&req->payload, &payload, payload_struct_size) == 0); CU_ASSERT(req->payload_size == payload_struct_size); CU_ASSERT(req->pid == getpid()); } static void test_nvme_free_request(void) { struct nvme_request match_req; struct spdk_nvme_qpair qpair = {0}; struct nvme_request *req; /* put a req on the Q, take it off and compare */ memset(&match_req.cmd, 0x5a, sizeof(struct spdk_nvme_cmd)); match_req.qpair = &qpair; qpair.num_outstanding_reqs = 1; /* the code under tests asserts this condition */ match_req.num_children = 0; STAILQ_INIT(&qpair.free_req); match_req.qpair->reserved_req = NULL; nvme_free_request(&match_req); req = STAILQ_FIRST(&match_req.qpair->free_req); CU_ASSERT(req == &match_req); CU_ASSERT(qpair.num_outstanding_reqs == 0); } static void test_nvme_allocate_request_user_copy(void) { struct spdk_nvme_qpair qpair; spdk_nvme_cmd_cb cb_fn = (spdk_nvme_cmd_cb)0x12345; void *cb_arg = (void *)0x12345; bool host_to_controller = true; struct nvme_request *req; struct nvme_request dummy_req; int test_data = 0xdeadbeef; void *buffer = NULL; uint32_t payload_size = sizeof(int); STAILQ_INIT(&qpair.free_req); STAILQ_INIT(&qpair.queued_req); /* no buffer or valid payload size, early NULL return */ req = nvme_allocate_request_user_copy(&qpair, buffer, payload_size, cb_fn, cb_arg, host_to_controller); CU_ASSERT(req == NULL); /* good buffer and valid payload size */ buffer = malloc(payload_size); SPDK_CU_ASSERT_FATAL(buffer != NULL); memcpy(buffer, &test_data, payload_size); /* put a dummy on the queue */ STAILQ_INSERT_HEAD(&qpair.free_req, &dummy_req, stailq); MOCK_CLEAR(spdk_malloc); MOCK_CLEAR(spdk_zmalloc); req = nvme_allocate_request_user_copy(&qpair, buffer, payload_size, cb_fn, cb_arg, host_to_controller); SPDK_CU_ASSERT_FATAL(req != NULL); CU_ASSERT(req->user_cb_fn == cb_fn); CU_ASSERT(req->user_cb_arg == cb_arg); CU_ASSERT(req->user_buffer == buffer); CU_ASSERT(req->cb_arg == req); CU_ASSERT(memcmp(req->payload.contig_or_cb_arg, buffer, payload_size) == 0); spdk_free(req->payload.contig_or_cb_arg); /* same thing but additional path coverage, no copy */ host_to_controller = false; STAILQ_INSERT_HEAD(&qpair.free_req, &dummy_req, stailq); req = nvme_allocate_request_user_copy(&qpair, buffer, payload_size, cb_fn, cb_arg, host_to_controller); SPDK_CU_ASSERT_FATAL(req != NULL); CU_ASSERT(req->user_cb_fn == cb_fn); CU_ASSERT(req->user_cb_arg == cb_arg); CU_ASSERT(req->user_buffer == buffer); CU_ASSERT(req->cb_arg == req); CU_ASSERT(memcmp(req->payload.contig_or_cb_arg, buffer, payload_size) != 0); spdk_free(req->payload.contig_or_cb_arg); /* good buffer and valid payload size but make spdk_zmalloc fail */ /* set the mock pointer to NULL for spdk_zmalloc */ MOCK_SET(spdk_zmalloc, NULL); req = nvme_allocate_request_user_copy(&qpair, buffer, payload_size, cb_fn, cb_arg, host_to_controller); CU_ASSERT(req == NULL); free(buffer); MOCK_CLEAR(spdk_zmalloc); } static void test_nvme_ctrlr_probe(void) { int rc = 0; struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_qpair qpair = {}; const struct spdk_nvme_transport_id trid = {}; struct spdk_nvme_probe_ctx probe_ctx = {}; void *devhandle = NULL; void *cb_ctx = NULL; struct spdk_nvme_ctrlr *dummy = NULL; ctrlr.adminq = &qpair; TAILQ_INIT(&probe_ctx.init_ctrlrs); nvme_driver_init(); /* test when probe_cb returns false */ MOCK_SET(dummy_probe_cb, false); nvme_probe_ctx_init(&probe_ctx, &trid, cb_ctx, dummy_probe_cb, NULL, NULL); rc = nvme_ctrlr_probe(&trid, &probe_ctx, devhandle); CU_ASSERT(rc == 1); /* probe_cb returns true but we can't construct a ctrl */ MOCK_SET(dummy_probe_cb, true); MOCK_SET(nvme_transport_ctrlr_construct, NULL); nvme_probe_ctx_init(&probe_ctx, &trid, cb_ctx, dummy_probe_cb, NULL, NULL); rc = nvme_ctrlr_probe(&trid, &probe_ctx, devhandle); CU_ASSERT(rc == -1); /* happy path */ MOCK_SET(dummy_probe_cb, true); MOCK_SET(nvme_transport_ctrlr_construct, &ctrlr); nvme_probe_ctx_init(&probe_ctx, &trid, cb_ctx, dummy_probe_cb, NULL, NULL); rc = nvme_ctrlr_probe(&trid, &probe_ctx, devhandle); CU_ASSERT(rc == 0); dummy = TAILQ_FIRST(&probe_ctx.init_ctrlrs); SPDK_CU_ASSERT_FATAL(dummy != NULL); CU_ASSERT(dummy == ut_nvme_transport_ctrlr_construct); TAILQ_REMOVE(&probe_ctx.init_ctrlrs, dummy, tailq); MOCK_CLEAR_P(nvme_transport_ctrlr_construct); free(g_spdk_nvme_driver); } static void test_nvme_robust_mutex_init_shared(void) { pthread_mutex_t mtx; int rc = 0; /* test where both pthread calls succeed */ MOCK_SET(pthread_mutexattr_init, 0); MOCK_SET(pthread_mutex_init, 0); rc = nvme_robust_mutex_init_shared(&mtx); CU_ASSERT(rc == 0); /* test where we can't init attr's but init mutex works */ MOCK_SET(pthread_mutexattr_init, -1); MOCK_SET(pthread_mutex_init, 0); rc = nvme_robust_mutex_init_shared(&mtx); /* for FreeBSD the only possible return value is 0 */ #ifndef __FreeBSD__ CU_ASSERT(rc != 0); #else CU_ASSERT(rc == 0); #endif /* test where we can init attr's but the mutex init fails */ MOCK_SET(pthread_mutexattr_init, 0); MOCK_SET(pthread_mutex_init, -1); rc = nvme_robust_mutex_init_shared(&mtx); /* for FreeBSD the only possible return value is 0 */ #ifndef __FreeBSD__ CU_ASSERT(rc != 0); #else CU_ASSERT(rc == 0); #endif MOCK_CLEAR(pthread_mutex_init); } static void test_opc_data_transfer(void) { enum spdk_nvme_data_transfer xfer; xfer = spdk_nvme_opc_get_data_transfer(SPDK_NVME_OPC_FLUSH); CU_ASSERT(xfer == SPDK_NVME_DATA_NONE); xfer = spdk_nvme_opc_get_data_transfer(SPDK_NVME_OPC_WRITE); CU_ASSERT(xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); xfer = spdk_nvme_opc_get_data_transfer(SPDK_NVME_OPC_READ); CU_ASSERT(xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST); xfer = spdk_nvme_opc_get_data_transfer(SPDK_NVME_OPC_GET_LOG_PAGE); CU_ASSERT(xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST); } static void test_trid_parse_and_compare(void) { struct spdk_nvme_transport_id trid1, trid2; int ret; /* set trid1 trid2 value to id parse */ ret = spdk_nvme_transport_id_parse(NULL, "trtype:PCIe traddr:0000:04:00.0"); CU_ASSERT(ret == -EINVAL); memset(&trid1, 0, sizeof(trid1)); ret = spdk_nvme_transport_id_parse(&trid1, NULL); CU_ASSERT(ret == -EINVAL); ret = spdk_nvme_transport_id_parse(NULL, NULL); CU_ASSERT(ret == -EINVAL); memset(&trid1, 0, sizeof(trid1)); ret = spdk_nvme_transport_id_parse(&trid1, "trtype-PCIe traddr-0000-04-00.0"); CU_ASSERT(ret == -EINVAL); memset(&trid1, 0, sizeof(trid1)); ret = spdk_nvme_transport_id_parse(&trid1, "trtype-PCIe traddr-0000-04-00.0-:"); CU_ASSERT(ret == -EINVAL); memset(&trid1, 0, sizeof(trid1)); ret = spdk_nvme_transport_id_parse(&trid1, " \t\n:"); CU_ASSERT(ret == -EINVAL); memset(&trid1, 0, sizeof(trid1)); CU_ASSERT(spdk_nvme_transport_id_parse(&trid1, "trtype:rdma\n" "adrfam:ipv4\n" "traddr:192.168.100.8\n" "trsvcid:4420\n" "subnqn:nqn.2014-08.org.nvmexpress.discovery") == 0); CU_ASSERT(trid1.trtype == SPDK_NVME_TRANSPORT_RDMA); CU_ASSERT(trid1.adrfam == SPDK_NVMF_ADRFAM_IPV4); CU_ASSERT(strcmp(trid1.traddr, "192.168.100.8") == 0); CU_ASSERT(strcmp(trid1.trsvcid, "4420") == 0); CU_ASSERT(strcmp(trid1.subnqn, "nqn.2014-08.org.nvmexpress.discovery") == 0); memset(&trid2, 0, sizeof(trid2)); CU_ASSERT(spdk_nvme_transport_id_parse(&trid2, "trtype:PCIe traddr:0000:04:00.0") == 0); CU_ASSERT(trid2.trtype == SPDK_NVME_TRANSPORT_PCIE); CU_ASSERT(strcmp(trid2.traddr, "0000:04:00.0") == 0); CU_ASSERT(spdk_nvme_transport_id_compare(&trid1, &trid2) != 0); /* set trid1 trid2 and test id_compare */ memset_trid(&trid1, &trid2); trid1.adrfam = SPDK_NVMF_ADRFAM_IPV6; trid2.adrfam = SPDK_NVMF_ADRFAM_IPV4; ret = spdk_nvme_transport_id_compare(&trid1, &trid2); CU_ASSERT(ret > 0); memset_trid(&trid1, &trid2); snprintf(trid1.traddr, sizeof(trid1.traddr), "192.168.100.8"); snprintf(trid2.traddr, sizeof(trid2.traddr), "192.168.100.9"); ret = spdk_nvme_transport_id_compare(&trid1, &trid2); CU_ASSERT(ret < 0); memset_trid(&trid1, &trid2); snprintf(trid1.trsvcid, sizeof(trid1.trsvcid), "4420"); snprintf(trid2.trsvcid, sizeof(trid2.trsvcid), "4421"); ret = spdk_nvme_transport_id_compare(&trid1, &trid2); CU_ASSERT(ret < 0); memset_trid(&trid1, &trid2); snprintf(trid1.subnqn, sizeof(trid1.subnqn), "subnqn:nqn.2016-08.org.nvmexpress.discovery"); snprintf(trid2.subnqn, sizeof(trid2.subnqn), "subnqn:nqn.2017-08.org.nvmexpress.discovery"); ret = spdk_nvme_transport_id_compare(&trid1, &trid2); CU_ASSERT(ret < 0); memset_trid(&trid1, &trid2); snprintf(trid1.subnqn, sizeof(trid1.subnqn), "subnqn:nqn.2016-08.org.nvmexpress.discovery"); snprintf(trid2.subnqn, sizeof(trid2.subnqn), "subnqn:nqn.2016-08.org.nvmexpress.discovery"); ret = spdk_nvme_transport_id_compare(&trid1, &trid2); CU_ASSERT(ret == 0); memset_trid(&trid1, &trid2); snprintf(trid1.subnqn, sizeof(trid1.subnqn), "subnqn:nqn.2016-08.org.nvmexpress.discovery"); snprintf(trid2.subnqn, sizeof(trid2.subnqn), "subnqn:nqn.2016-08.org.Nvmexpress.discovery"); ret = spdk_nvme_transport_id_compare(&trid1, &trid2); CU_ASSERT(ret > 0); memset_trid(&trid1, &trid2); ret = spdk_nvme_transport_id_compare(&trid1, &trid2); CU_ASSERT(ret == 0); /* Compare PCI addresses via spdk_pci_addr_compare (rather than as strings) */ memset_trid(&trid1, &trid2); CU_ASSERT(spdk_nvme_transport_id_parse(&trid1, "trtype:PCIe traddr:0000:04:00.0") == 0); CU_ASSERT(spdk_nvme_transport_id_parse(&trid2, "trtype:PCIe traddr:04:00.0") == 0); CU_ASSERT(spdk_nvme_transport_id_compare(&trid1, &trid2) == 0); memset_trid(&trid1, &trid2); CU_ASSERT(spdk_nvme_transport_id_parse(&trid1, "trtype:PCIe traddr:0000:05:00.0") == 0); CU_ASSERT(spdk_nvme_transport_id_parse(&trid2, "trtype:PCIe traddr:04:00.0") == 0); CU_ASSERT(spdk_nvme_transport_id_compare(&trid1, &trid2) > 0); memset_trid(&trid1, &trid2); CU_ASSERT(spdk_nvme_transport_id_parse(&trid1, "trtype:PCIe traddr:0000:04:00.0") == 0); CU_ASSERT(spdk_nvme_transport_id_parse(&trid2, "trtype:PCIe traddr:05:00.0") == 0); CU_ASSERT(spdk_nvme_transport_id_compare(&trid1, &trid2) < 0); memset_trid(&trid1, &trid2); CU_ASSERT(spdk_nvme_transport_id_parse(&trid1, "trtype=PCIe traddr=0000:04:00.0") == 0); CU_ASSERT(spdk_nvme_transport_id_parse(&trid2, "trtype=PCIe traddr=05:00.0") == 0); CU_ASSERT(spdk_nvme_transport_id_compare(&trid1, &trid2) < 0); CU_ASSERT(spdk_nvme_transport_id_parse(&trid1, "trtype:tcp\n" "adrfam:ipv4\n" "traddr:192.168.100.8\n" "trsvcid:4420\n" "priority:2\n" "subnqn:nqn.2014-08.org.nvmexpress.discovery") == 0); CU_ASSERT(trid1.priority == 2); } static void test_spdk_nvme_transport_id_parse_trtype(void) { enum spdk_nvme_transport_type *trtype; enum spdk_nvme_transport_type sct; char *str; trtype = NULL; str = "unit_test"; /* test function returned value when trtype is NULL but str not NULL */ CU_ASSERT(spdk_nvme_transport_id_parse_trtype(trtype, str) == (-EINVAL)); /* test function returned value when str is NULL but trtype not NULL */ trtype = &sct; str = NULL; CU_ASSERT(spdk_nvme_transport_id_parse_trtype(trtype, str) == (-EINVAL)); /* test function returned value when str and strtype not NULL, but str value * not "PCIe" or "RDMA" */ str = "unit_test"; CU_ASSERT(spdk_nvme_transport_id_parse_trtype(trtype, str) == 0); CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_CUSTOM); /* test trtype value when use function "strcasecmp" to compare str and "PCIe",not case-sensitive */ str = "PCIe"; spdk_nvme_transport_id_parse_trtype(trtype, str); CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_PCIE); str = "pciE"; spdk_nvme_transport_id_parse_trtype(trtype, str); CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_PCIE); /* test trtype value when use function "strcasecmp" to compare str and "RDMA",not case-sensitive */ str = "RDMA"; spdk_nvme_transport_id_parse_trtype(trtype, str); CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_RDMA); str = "rdma"; spdk_nvme_transport_id_parse_trtype(trtype, str); CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_RDMA); /* test trtype value when use function "strcasecmp" to compare str and "FC",not case-sensitive */ str = "FC"; spdk_nvme_transport_id_parse_trtype(trtype, str); CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_FC); str = "fc"; spdk_nvme_transport_id_parse_trtype(trtype, str); CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_FC); /* test trtype value when use function "strcasecmp" to compare str and "TCP",not case-sensitive */ str = "TCP"; spdk_nvme_transport_id_parse_trtype(trtype, str); CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_TCP); str = "tcp"; spdk_nvme_transport_id_parse_trtype(trtype, str); CU_ASSERT((*trtype) == SPDK_NVME_TRANSPORT_TCP); } static void test_spdk_nvme_transport_id_parse_adrfam(void) { enum spdk_nvmf_adrfam *adrfam; enum spdk_nvmf_adrfam sct; char *str; adrfam = NULL; str = "unit_test"; /* test function returned value when adrfam is NULL but str not NULL */ CU_ASSERT(spdk_nvme_transport_id_parse_adrfam(adrfam, str) == (-EINVAL)); /* test function returned value when str is NULL but adrfam not NULL */ adrfam = &sct; str = NULL; CU_ASSERT(spdk_nvme_transport_id_parse_adrfam(adrfam, str) == (-EINVAL)); /* test function returned value when str and adrfam not NULL, but str value * not "IPv4" or "IPv6" or "IB" or "FC" */ str = "unit_test"; CU_ASSERT(spdk_nvme_transport_id_parse_adrfam(adrfam, str) == (-ENOENT)); /* test adrfam value when use function "strcasecmp" to compare str and "IPv4",not case-sensitive */ str = "IPv4"; spdk_nvme_transport_id_parse_adrfam(adrfam, str); CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_IPV4); str = "ipV4"; spdk_nvme_transport_id_parse_adrfam(adrfam, str); CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_IPV4); /* test adrfam value when use function "strcasecmp" to compare str and "IPv6",not case-sensitive */ str = "IPv6"; spdk_nvme_transport_id_parse_adrfam(adrfam, str); CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_IPV6); str = "ipV6"; spdk_nvme_transport_id_parse_adrfam(adrfam, str); CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_IPV6); /* test adrfam value when use function "strcasecmp" to compare str and "IB",not case-sensitive */ str = "IB"; spdk_nvme_transport_id_parse_adrfam(adrfam, str); CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_IB); str = "ib"; spdk_nvme_transport_id_parse_adrfam(adrfam, str); CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_IB); /* test adrfam value when use function "strcasecmp" to compare str and "FC",not case-sensitive */ str = "FC"; spdk_nvme_transport_id_parse_adrfam(adrfam, str); CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_FC); str = "fc"; spdk_nvme_transport_id_parse_adrfam(adrfam, str); CU_ASSERT((*adrfam) == SPDK_NVMF_ADRFAM_FC); } static void test_trid_trtype_str(void) { const char *s; s = spdk_nvme_transport_id_trtype_str(-5); CU_ASSERT(s == NULL); s = spdk_nvme_transport_id_trtype_str(SPDK_NVME_TRANSPORT_PCIE); SPDK_CU_ASSERT_FATAL(s != NULL); CU_ASSERT(strcmp(s, "PCIe") == 0); s = spdk_nvme_transport_id_trtype_str(SPDK_NVME_TRANSPORT_RDMA); SPDK_CU_ASSERT_FATAL(s != NULL); CU_ASSERT(strcmp(s, "RDMA") == 0); s = spdk_nvme_transport_id_trtype_str(SPDK_NVME_TRANSPORT_FC); SPDK_CU_ASSERT_FATAL(s != NULL); CU_ASSERT(strcmp(s, "FC") == 0); s = spdk_nvme_transport_id_trtype_str(SPDK_NVME_TRANSPORT_TCP); SPDK_CU_ASSERT_FATAL(s != NULL); CU_ASSERT(strcmp(s, "TCP") == 0); } static void test_trid_adrfam_str(void) { const char *s; s = spdk_nvme_transport_id_adrfam_str(-5); CU_ASSERT(s == NULL); s = spdk_nvme_transport_id_adrfam_str(SPDK_NVMF_ADRFAM_IPV4); SPDK_CU_ASSERT_FATAL(s != NULL); CU_ASSERT(strcmp(s, "IPv4") == 0); s = spdk_nvme_transport_id_adrfam_str(SPDK_NVMF_ADRFAM_IPV6); SPDK_CU_ASSERT_FATAL(s != NULL); CU_ASSERT(strcmp(s, "IPv6") == 0); s = spdk_nvme_transport_id_adrfam_str(SPDK_NVMF_ADRFAM_IB); SPDK_CU_ASSERT_FATAL(s != NULL); CU_ASSERT(strcmp(s, "IB") == 0); s = spdk_nvme_transport_id_adrfam_str(SPDK_NVMF_ADRFAM_FC); SPDK_CU_ASSERT_FATAL(s != NULL); CU_ASSERT(strcmp(s, "FC") == 0); } /* stub callback used by the test_nvme_request_check_timeout */ static bool ut_timeout_cb_call = false; static void dummy_timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, uint16_t cid) { ut_timeout_cb_call = true; } static void test_nvme_request_check_timeout(void) { int rc; struct spdk_nvme_qpair qpair; struct nvme_request req; struct spdk_nvme_ctrlr_process active_proc; uint16_t cid = 0; uint64_t now_tick = 0; memset(&qpair, 0x0, sizeof(qpair)); memset(&req, 0x0, sizeof(req)); memset(&active_proc, 0x0, sizeof(active_proc)); req.qpair = &qpair; active_proc.timeout_cb_fn = dummy_timeout_cb; /* if have called timeout_cb_fn then return directly */ req.timed_out = true; rc = nvme_request_check_timeout(&req, cid, &active_proc, now_tick); CU_ASSERT(rc == 0); CU_ASSERT(ut_timeout_cb_call == false); /* if timeout isn't enabled then return directly */ req.timed_out = false; req.submit_tick = 0; rc = nvme_request_check_timeout(&req, cid, &active_proc, now_tick); CU_ASSERT(rc == 0); CU_ASSERT(ut_timeout_cb_call == false); /* req->pid isn't right then return directly */ req.submit_tick = 1; req.pid = g_spdk_nvme_pid + 1; rc = nvme_request_check_timeout(&req, cid, &active_proc, now_tick); CU_ASSERT(rc == 0); CU_ASSERT(ut_timeout_cb_call == false); /* AER command has no timeout */ req.pid = g_spdk_nvme_pid; req.cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST; rc = nvme_request_check_timeout(&req, cid, &active_proc, now_tick); CU_ASSERT(rc == 0); CU_ASSERT(ut_timeout_cb_call == false); /* time isn't out */ qpair.id = 1; rc = nvme_request_check_timeout(&req, cid, &active_proc, now_tick); CU_ASSERT(rc == 1); CU_ASSERT(ut_timeout_cb_call == false); now_tick = 2; rc = nvme_request_check_timeout(&req, cid, &active_proc, now_tick); CU_ASSERT(req.timed_out == true); CU_ASSERT(ut_timeout_cb_call == true); CU_ASSERT(rc == 0); } struct nvme_completion_poll_status g_status; uint64_t completion_delay_us, timeout_in_usecs; int g_process_comp_result; pthread_mutex_t g_robust_lock = PTHREAD_MUTEX_INITIALIZER; int spdk_nvme_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) { spdk_delay_us(completion_delay_us); g_status.done = completion_delay_us < timeout_in_usecs && g_process_comp_result == 0 ? true : false; return g_process_comp_result; } static void test_nvme_wait_for_completion(void) { struct spdk_nvme_qpair qpair; struct spdk_nvme_ctrlr ctrlr; int rc = 0; memset(&ctrlr, 0, sizeof(ctrlr)); ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; memset(&qpair, 0, sizeof(qpair)); qpair.ctrlr = &ctrlr; /* completion timeout */ memset(&g_status, 0, sizeof(g_status)); completion_delay_us = 2000000; timeout_in_usecs = 1000000; rc = nvme_wait_for_completion_timeout(&qpair, &g_status, timeout_in_usecs); CU_ASSERT(g_status.timed_out == true); CU_ASSERT(g_status.done == false); CU_ASSERT(rc == -ECANCELED); /* spdk_nvme_qpair_process_completions returns error */ memset(&g_status, 0, sizeof(g_status)); g_process_comp_result = -1; completion_delay_us = 1000000; timeout_in_usecs = 2000000; rc = nvme_wait_for_completion_timeout(&qpair, &g_status, timeout_in_usecs); CU_ASSERT(rc == -ECANCELED); CU_ASSERT(g_status.timed_out == true); CU_ASSERT(g_status.done == false); CU_ASSERT(g_status.cpl.status.sct == SPDK_NVME_SCT_GENERIC); CU_ASSERT(g_status.cpl.status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION); g_process_comp_result = 0; /* complete in time */ memset(&g_status, 0, sizeof(g_status)); completion_delay_us = 1000000; timeout_in_usecs = 2000000; rc = nvme_wait_for_completion_timeout(&qpair, &g_status, timeout_in_usecs); CU_ASSERT(g_status.timed_out == false); CU_ASSERT(g_status.done == true); CU_ASSERT(rc == 0); /* nvme_wait_for_completion */ /* spdk_nvme_qpair_process_completions returns error */ memset(&g_status, 0, sizeof(g_status)); g_process_comp_result = -1; rc = nvme_wait_for_completion(&qpair, &g_status); CU_ASSERT(rc == -ECANCELED); CU_ASSERT(g_status.timed_out == true); CU_ASSERT(g_status.done == false); CU_ASSERT(g_status.cpl.status.sct == SPDK_NVME_SCT_GENERIC); CU_ASSERT(g_status.cpl.status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION); /* successful completion */ memset(&g_status, 0, sizeof(g_status)); g_process_comp_result = 0; rc = nvme_wait_for_completion(&qpair, &g_status); CU_ASSERT(rc == 0); CU_ASSERT(g_status.timed_out == false); CU_ASSERT(g_status.done == true); /* completion timeout */ memset(&g_status, 0, sizeof(g_status)); completion_delay_us = 2000000; timeout_in_usecs = 1000000; rc = nvme_wait_for_completion_robust_lock_timeout(&qpair, &g_status, &g_robust_lock, timeout_in_usecs); CU_ASSERT(g_status.timed_out == true); CU_ASSERT(g_status.done == false); CU_ASSERT(rc == -ECANCELED); /* spdk_nvme_qpair_process_completions returns error */ memset(&g_status, 0, sizeof(g_status)); g_process_comp_result = -1; completion_delay_us = 1000000; timeout_in_usecs = 2000000; rc = nvme_wait_for_completion_robust_lock_timeout(&qpair, &g_status, &g_robust_lock, timeout_in_usecs); CU_ASSERT(rc == -ECANCELED); CU_ASSERT(g_status.timed_out == true); CU_ASSERT(g_status.done == false); CU_ASSERT(g_status.cpl.status.sct == SPDK_NVME_SCT_GENERIC); CU_ASSERT(g_status.cpl.status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION); g_process_comp_result = 0; /* complete in time */ memset(&g_status, 0, sizeof(g_status)); completion_delay_us = 1000000; timeout_in_usecs = 2000000; rc = nvme_wait_for_completion_robust_lock_timeout(&qpair, &g_status, &g_robust_lock, timeout_in_usecs); CU_ASSERT(g_status.timed_out == false); CU_ASSERT(g_status.done == true); CU_ASSERT(rc == 0); /* nvme_wait_for_completion */ /* spdk_nvme_qpair_process_completions returns error */ memset(&g_status, 0, sizeof(g_status)); g_process_comp_result = -1; rc = nvme_wait_for_completion_robust_lock(&qpair, &g_status, &g_robust_lock); CU_ASSERT(rc == -ECANCELED); CU_ASSERT(g_status.timed_out == true); CU_ASSERT(g_status.done == false); CU_ASSERT(g_status.cpl.status.sct == SPDK_NVME_SCT_GENERIC); CU_ASSERT(g_status.cpl.status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION); /* successful completion */ memset(&g_status, 0, sizeof(g_status)); g_process_comp_result = 0; rc = nvme_wait_for_completion_robust_lock(&qpair, &g_status, &g_robust_lock); CU_ASSERT(rc == 0); CU_ASSERT(g_status.timed_out == false); CU_ASSERT(g_status.done == true); } static void test_nvme_ctrlr_probe_internal(void) { struct spdk_nvme_probe_ctx *probe_ctx; struct spdk_nvme_transport_id trid = {}; struct nvme_driver dummy; int rc; probe_ctx = calloc(1, sizeof(*probe_ctx)); CU_ASSERT(probe_ctx != NULL); MOCK_SET(spdk_process_is_primary, true); MOCK_SET(spdk_memzone_reserve, (void *)&dummy); g_spdk_nvme_driver = NULL; rc = nvme_driver_init(); CU_ASSERT(rc == 0); ut_test_probe_internal = true; MOCK_SET(dummy_probe_cb, true); trid.trtype = SPDK_NVME_TRANSPORT_PCIE; nvme_probe_ctx_init(probe_ctx, &trid, NULL, dummy_probe_cb, NULL, NULL); rc = nvme_probe_internal(probe_ctx, false); CU_ASSERT(rc < 0); CU_ASSERT(TAILQ_EMPTY(&probe_ctx->init_ctrlrs)); free(probe_ctx); ut_test_probe_internal = false; } static void test_spdk_nvme_parse_func(void) { struct spdk_nvme_host_id hostid = {}; char str[64] = {}; const char *rt_str = NULL; uint32_t prchk_flags; int rc; /* Parse prchk flags. */ prchk_flags = 0; rt_str = spdk_nvme_prchk_flags_str(SPDK_NVME_IO_FLAGS_PRCHK_REFTAG); memcpy(str, rt_str, strlen(rt_str)); rc = spdk_nvme_prchk_flags_parse(&prchk_flags, str); CU_ASSERT(rc == 0); CU_ASSERT(prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG); prchk_flags = 0; rt_str = spdk_nvme_prchk_flags_str(SPDK_NVME_IO_FLAGS_PRCHK_GUARD); memcpy(str, rt_str, strlen(rt_str)); rc = spdk_nvme_prchk_flags_parse(&prchk_flags, str); CU_ASSERT(prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD); CU_ASSERT(rc == 0); prchk_flags = 0; rt_str = spdk_nvme_prchk_flags_str(SPDK_NVME_IO_FLAGS_PRCHK_REFTAG | SPDK_NVME_IO_FLAGS_PRCHK_GUARD); memcpy(str, rt_str, strlen(rt_str)); rc = spdk_nvme_prchk_flags_parse(&prchk_flags, str); CU_ASSERT(rc == 0); CU_ASSERT(prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG); CU_ASSERT(prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD); rc = spdk_nvme_prchk_flags_parse(NULL, NULL); CU_ASSERT(rc == -EINVAL); /* Parse host id. */ memcpy(str, "hostaddr:192.168.1.1", sizeof("hostaddr:192.168.1.1")); rc = spdk_nvme_host_id_parse(&hostid, str); CU_ASSERT(rc == 0); CU_ASSERT(!strncmp(hostid.hostaddr, "192.168.1.1", sizeof("192.168.1.1"))); memset(&hostid, 0, sizeof(hostid)); memcpy(str, "hostsvcid:192.168.1.2", sizeof("hostsvcid:192.168.1.2")); rc = spdk_nvme_host_id_parse(&hostid, str); CU_ASSERT(rc == 0); CU_ASSERT(!strncmp(hostid.hostsvcid, "192.168.1.2", sizeof("192.168.1.2"))); /* Unknown transport ID key */ memset(&hostid, 0, sizeof(hostid)); memcpy(str, "trtype:xxx", sizeof("trtype:xxx")); rc = spdk_nvme_host_id_parse(&hostid, str); CU_ASSERT(rc == 0); CU_ASSERT(hostid.hostaddr[0] == '\0' && hostid.hostsvcid[0] == '\0'); } static void test_spdk_nvme_detach_async(void) { int rc = 1; struct spdk_nvme_ctrlr ctrlr1, ctrlr2; struct nvme_driver test_driver; struct spdk_nvme_detach_ctx *detach_ctx; struct nvme_ctrlr_detach_ctx *ctx; detach_ctx = NULL; memset(&ctrlr1, 0, sizeof(ctrlr1)); ctrlr1.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; memset(&ctrlr2, 0, sizeof(ctrlr2)); ctrlr2.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; g_spdk_nvme_driver = &test_driver; TAILQ_INIT(&test_driver.shared_attached_ctrlrs); TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr1, tailq); TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr2, tailq); CU_ASSERT(pthread_mutex_init(&test_driver.lock, NULL) == 0); MOCK_SET(nvme_ctrlr_get_ref_count, 1); rc = spdk_nvme_detach_async(&ctrlr1, &detach_ctx); CU_ASSERT(rc == 0); CU_ASSERT(ctrlr1.is_destructed == true); CU_ASSERT(detach_ctx != NULL); rc = spdk_nvme_detach_async(&ctrlr2, &detach_ctx); CU_ASSERT(rc == 0); CU_ASSERT(ctrlr2.is_destructed == true); CU_ASSERT(detach_ctx != NULL); CU_ASSERT(TAILQ_EMPTY(&test_driver.shared_attached_ctrlrs) == false); rc = spdk_nvme_detach_poll_async(detach_ctx); CU_ASSERT(rc == 0); CU_ASSERT(TAILQ_EMPTY(&test_driver.shared_attached_ctrlrs) == true); /* ctrlr1 is a PCIe controller but ctrlr2 is an non-PCIe controller. * Even for this case, detachment should complete successfully. */ detach_ctx = NULL; memset(&ctrlr1, 0, sizeof(ctrlr1)); ctrlr1.trid.trtype = SPDK_NVME_TRANSPORT_RDMA; memset(&ctrlr2, 0, sizeof(ctrlr2)); ctrlr2.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; TAILQ_INIT(&g_nvme_attached_ctrlrs); TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, &ctrlr1, tailq); TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr2, tailq); rc = spdk_nvme_detach_async(&ctrlr1, &detach_ctx); CU_ASSERT(rc == 0); CU_ASSERT(ctrlr1.is_destructed == true); CU_ASSERT(detach_ctx != NULL); rc = spdk_nvme_detach_async(&ctrlr2, &detach_ctx); CU_ASSERT(rc == 0); CU_ASSERT(ctrlr2.is_destructed == true); CU_ASSERT(detach_ctx != NULL); CU_ASSERT(TAILQ_EMPTY(&g_nvme_attached_ctrlrs) == false); CU_ASSERT(TAILQ_EMPTY(&test_driver.shared_attached_ctrlrs) == false); rc = spdk_nvme_detach_poll_async(detach_ctx); CU_ASSERT(rc == 0); CU_ASSERT(TAILQ_EMPTY(&g_nvme_attached_ctrlrs) == true); CU_ASSERT(TAILQ_EMPTY(&test_driver.shared_attached_ctrlrs) == true); /* Test if ctrlr2 can be detached by using the same context that * ctrlr1 uses while ctrlr1 is being detached. */ detach_ctx = NULL; memset(&ctrlr1, 0, sizeof(ctrlr1)); ctrlr1.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; memset(&ctrlr2, 0, sizeof(ctrlr2)); ctrlr2.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr1, tailq); TAILQ_INSERT_TAIL(&test_driver.shared_attached_ctrlrs, &ctrlr2, tailq); rc = spdk_nvme_detach_async(&ctrlr1, &detach_ctx); CU_ASSERT(rc == 0); CU_ASSERT(ctrlr1.is_destructed == true); SPDK_CU_ASSERT_FATAL(detach_ctx != NULL); ctx = TAILQ_FIRST(&detach_ctx->head); SPDK_CU_ASSERT_FATAL(ctx != NULL); CU_ASSERT(ctx->ctrlr == &ctrlr1); CU_ASSERT(ctx->shutdown_complete == true); /* Set ctx->shutdown_complete for ctrlr1 to false to allow ctrlr2 to * add to detach_ctx while spdk_nvme_detach_poll_async() is being * executed. */ ctx->shutdown_complete = false; rc = spdk_nvme_detach_poll_async(detach_ctx); CU_ASSERT(rc == -EAGAIN); rc = spdk_nvme_detach_async(&ctrlr2, &detach_ctx); CU_ASSERT(rc == 0); CU_ASSERT(ctrlr2.is_destructed == true); /* After ctrlr2 is added to detach_ctx, set ctx->shutdown_complete for * ctrlr1 to true to complete spdk_nvme_detach_poll_async(). */ ctx->shutdown_complete = true; rc = spdk_nvme_detach_poll_async(detach_ctx); CU_ASSERT(rc == 0); CU_ASSERT(TAILQ_EMPTY(&test_driver.shared_attached_ctrlrs) == true); g_spdk_nvme_driver = NULL; pthread_mutex_destroy(&test_driver.lock); MOCK_CLEAR(nvme_ctrlr_get_ref_count); } int main(int argc, char **argv) { CU_pSuite suite = NULL; unsigned int num_failures; CU_set_error_action(CUEA_ABORT); CU_initialize_registry(); suite = CU_add_suite("nvme", NULL, NULL); CU_ADD_TEST(suite, test_opc_data_transfer); CU_ADD_TEST(suite, test_spdk_nvme_transport_id_parse_trtype); CU_ADD_TEST(suite, test_spdk_nvme_transport_id_parse_adrfam); CU_ADD_TEST(suite, test_trid_parse_and_compare); CU_ADD_TEST(suite, test_trid_trtype_str); CU_ADD_TEST(suite, test_trid_adrfam_str); CU_ADD_TEST(suite, test_nvme_ctrlr_probe); CU_ADD_TEST(suite, test_spdk_nvme_probe); CU_ADD_TEST(suite, test_spdk_nvme_connect); CU_ADD_TEST(suite, test_nvme_ctrlr_probe_internal); CU_ADD_TEST(suite, test_nvme_init_controllers); CU_ADD_TEST(suite, test_nvme_driver_init); CU_ADD_TEST(suite, test_spdk_nvme_detach); CU_ADD_TEST(suite, test_nvme_completion_poll_cb); CU_ADD_TEST(suite, test_nvme_user_copy_cmd_complete); CU_ADD_TEST(suite, test_nvme_allocate_request_null); CU_ADD_TEST(suite, test_nvme_allocate_request); CU_ADD_TEST(suite, test_nvme_free_request); CU_ADD_TEST(suite, test_nvme_allocate_request_user_copy); CU_ADD_TEST(suite, test_nvme_robust_mutex_init_shared); CU_ADD_TEST(suite, test_nvme_request_check_timeout); CU_ADD_TEST(suite, test_nvme_wait_for_completion); CU_ADD_TEST(suite, test_spdk_nvme_parse_func); CU_ADD_TEST(suite, test_spdk_nvme_detach_async); CU_basic_set_mode(CU_BRM_VERBOSE); CU_basic_run_tests(); num_failures = CU_get_number_of_failures(); CU_cleanup_registry(); return num_failures; }