Spdk/lib/accel/accel_sw.c

742 lines
19 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2022 Intel Corporation.
* Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES
* All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk_internal/accel_module.h"
#include "accel_internal.h"
#include "spdk/env.h"
#include "spdk/likely.h"
#include "spdk/log.h"
#include "spdk/thread.h"
#include "spdk/json.h"
#include "spdk/crc32.h"
#include "spdk/util.h"
#ifdef SPDK_CONFIG_PMDK
#include "libpmem.h"
#endif
#ifdef SPDK_CONFIG_ISAL
#include "../isa-l/include/igzip_lib.h"
#ifdef SPDK_CONFIG_ISAL_CRYPTO
#include "../isa-l-crypto/include/aes_xts.h"
#endif
#endif
#define ACCEL_AES_XTS_128_KEY_SIZE 16
#define ACCEL_AES_XTS_256_KEY_SIZE 32
#define ACCEL_AES_XTS "AES_XTS"
/* Per the AES-XTS spec, the size of data unit cannot be bigger than 2^20 blocks, 128b each block */
#define ACCEL_AES_XTS_MAX_BLOCK_SIZE (1 << 24)
struct sw_accel_io_channel {
/* for ISAL */
#ifdef SPDK_CONFIG_ISAL
struct isal_zstream stream;
struct inflate_state state;
#endif
struct spdk_poller *completion_poller;
TAILQ_HEAD(, spdk_accel_task) tasks_to_complete;
};
typedef void (*sw_accel_crypto_op)(uint8_t *k2, uint8_t *k1, uint8_t *tweak, uint64_t lba_size,
const uint8_t *src, uint8_t *dst);
struct sw_accel_crypto_key_data {
sw_accel_crypto_op encrypt;
sw_accel_crypto_op decrypt;
};
static struct spdk_accel_module_if g_sw_module;
static void sw_accel_crypto_key_deinit(struct spdk_accel_crypto_key *_key);
static int sw_accel_crypto_key_init(struct spdk_accel_crypto_key *key);
/* Post SW completions to a list and complete in a poller as we don't want to
* complete them on the caller's stack as they'll likely submit another. */
inline static void
_add_to_comp_list(struct sw_accel_io_channel *sw_ch, struct spdk_accel_task *accel_task, int status)
{
accel_task->status = status;
TAILQ_INSERT_TAIL(&sw_ch->tasks_to_complete, accel_task, link);
}
/* Used when the SW engine is selected and the durable flag is set. */
inline static int
_check_flags(int flags)
{
if (flags & ACCEL_FLAG_PERSISTENT) {
#ifndef SPDK_CONFIG_PMDK
/* PMDK is required to use this flag. */
SPDK_ERRLOG("ACCEL_FLAG_PERSISTENT set but PMDK not configured. Configure PMDK or do not use this flag.\n");
return -EINVAL;
#endif
}
return 0;
}
static bool
sw_accel_supports_opcode(enum accel_opcode opc)
{
switch (opc) {
case ACCEL_OPC_COPY:
case ACCEL_OPC_FILL:
case ACCEL_OPC_DUALCAST:
case ACCEL_OPC_COMPARE:
case ACCEL_OPC_CRC32C:
case ACCEL_OPC_COPY_CRC32C:
case ACCEL_OPC_COMPRESS:
case ACCEL_OPC_DECOMPRESS:
case ACCEL_OPC_ENCRYPT:
case ACCEL_OPC_DECRYPT:
return true;
default:
return false;
}
}
static inline void
_pmem_memcpy(void *dst, const void *src, size_t len)
{
#ifdef SPDK_CONFIG_PMDK
int is_pmem = pmem_is_pmem(dst, len);
if (is_pmem) {
pmem_memcpy_persist(dst, src, len);
} else {
memcpy(dst, src, len);
pmem_msync(dst, len);
}
#else
SPDK_ERRLOG("Function not defined without SPDK_CONFIG_PMDK enabled.\n");
assert(0);
#endif
}
static void
_sw_accel_dualcast(void *dst1, void *dst2, void *src, size_t nbytes, int flags)
{
if (flags & ACCEL_FLAG_PERSISTENT) {
_pmem_memcpy(dst1, src, nbytes);
_pmem_memcpy(dst2, src, nbytes);
} else {
memcpy(dst1, src, nbytes);
memcpy(dst2, src, nbytes);
}
}
static int
_sw_accel_dualcast_iovs(struct iovec *dst_iovs, uint32_t dst_iovcnt,
struct iovec *dst2_iovs, uint32_t dst2_iovcnt,
struct iovec *src_iovs, uint32_t src_iovcnt, int flags)
{
if (spdk_unlikely(dst_iovcnt != 1 || dst2_iovcnt != 1 || src_iovcnt != 1)) {
return -EINVAL;
}
if (spdk_unlikely(dst_iovs[0].iov_len != src_iovs[0].iov_len ||
dst_iovs[0].iov_len != dst2_iovs[0].iov_len)) {
return -EINVAL;
}
_sw_accel_dualcast(dst_iovs[0].iov_base, dst2_iovs[0].iov_base, src_iovs[0].iov_base,
dst_iovs[0].iov_len, flags);
return 0;
}
static void
_sw_accel_copy(void *dst, void *src, size_t nbytes, int flags)
{
if (flags & ACCEL_FLAG_PERSISTENT) {
_pmem_memcpy(dst, src, nbytes);
} else {
memcpy(dst, src, nbytes);
}
}
static void
_sw_accel_copy_iovs(struct iovec *dst_iovs, uint32_t dst_iovcnt,
struct iovec *src_iovs, uint32_t src_iovcnt, int flags)
{
struct spdk_ioviter iter;
void *src, *dst;
size_t len;
for (len = spdk_ioviter_first(&iter, src_iovs, src_iovcnt,
dst_iovs, dst_iovcnt, &src, &dst);
len != 0;
len = spdk_ioviter_next(&iter, &src, &dst)) {
_sw_accel_copy(dst, src, len, flags);
}
}
static int
_sw_accel_compare(struct iovec *src_iovs, uint32_t src_iovcnt,
struct iovec *src2_iovs, uint32_t src2_iovcnt)
{
if (spdk_unlikely(src_iovcnt != 1 || src2_iovcnt != 1)) {
return -EINVAL;
}
if (spdk_unlikely(src_iovs[0].iov_len != src2_iovs[0].iov_len)) {
return -EINVAL;
}
return memcmp(src_iovs[0].iov_base, src2_iovs[0].iov_base, src_iovs[0].iov_len);
}
static int
_sw_accel_fill(struct iovec *iovs, uint32_t iovcnt, uint8_t fill, int flags)
{
void *dst;
size_t nbytes;
if (spdk_unlikely(iovcnt != 1)) {
return -EINVAL;
}
dst = iovs[0].iov_base;
nbytes = iovs[0].iov_len;
if (flags & ACCEL_FLAG_PERSISTENT) {
#ifdef SPDK_CONFIG_PMDK
int is_pmem = pmem_is_pmem(dst, nbytes);
if (is_pmem) {
pmem_memset_persist(dst, fill, nbytes);
} else {
memset(dst, fill, nbytes);
pmem_msync(dst, nbytes);
}
#else
SPDK_ERRLOG("Function not defined without SPDK_CONFIG_PMDK enabled.\n");
assert(0);
#endif
} else {
memset(dst, fill, nbytes);
}
return 0;
}
static void
_sw_accel_crc32cv(uint32_t *crc_dst, struct iovec *iov, uint32_t iovcnt, uint32_t seed)
{
*crc_dst = spdk_crc32c_iov_update(iov, iovcnt, ~seed);
}
static int
_sw_accel_compress(struct sw_accel_io_channel *sw_ch, struct spdk_accel_task *accel_task)
{
#ifdef SPDK_CONFIG_ISAL
size_t last_seglen = accel_task->s.iovs[accel_task->s.iovcnt - 1].iov_len;
struct iovec *siov = accel_task->s.iovs;
struct iovec *diov = accel_task->d.iovs;
size_t remaining;
uint32_t i, s = 0, d = 0;
int rc = 0;
remaining = 0;
for (i = 0; i < accel_task->s.iovcnt; ++i) {
remaining += accel_task->s.iovs[i].iov_len;
}
isal_deflate_reset(&sw_ch->stream);
sw_ch->stream.end_of_stream = 0;
sw_ch->stream.next_out = diov[d].iov_base;
sw_ch->stream.avail_out = diov[d].iov_len;
sw_ch->stream.next_in = siov[s].iov_base;
sw_ch->stream.avail_in = siov[s].iov_len;
do {
/* if isal has exhausted the current dst iovec, move to the next
* one if there is one */
if (sw_ch->stream.avail_out == 0) {
if (++d < accel_task->d.iovcnt) {
sw_ch->stream.next_out = diov[d].iov_base;
sw_ch->stream.avail_out = diov[d].iov_len;
assert(sw_ch->stream.avail_out > 0);
} else {
/* we have no avail_out but also no more iovecs left so this is
* the case where either the output buffer was a perfect fit
* or not enough was provided. Check the ISAL state to determine
* which. */
if (sw_ch->stream.internal_state.state != ZSTATE_END) {
SPDK_ERRLOG("Not enough destination buffer provided.\n");
rc = -ENOMEM;
}
break;
}
}
/* if isal has exhausted the current src iovec, move to the next
* one if there is one */
if (sw_ch->stream.avail_in == 0 && ((s + 1) < accel_task->s.iovcnt)) {
s++;
sw_ch->stream.next_in = siov[s].iov_base;
sw_ch->stream.avail_in = siov[s].iov_len;
assert(sw_ch->stream.avail_in > 0);
}
if (remaining <= last_seglen) {
/* Need to set end of stream on last block */
sw_ch->stream.end_of_stream = 1;
}
rc = isal_deflate(&sw_ch->stream);
if (rc) {
SPDK_ERRLOG("isal_deflate returned error %d.\n", rc);
}
if (remaining > 0) {
assert(siov[s].iov_len > sw_ch->stream.avail_in);
remaining -= (siov[s].iov_len - sw_ch->stream.avail_in);
}
} while (remaining > 0 || sw_ch->stream.avail_out == 0);
assert(sw_ch->stream.avail_in == 0);
/* Get our total output size */
if (accel_task->output_size != NULL) {
assert(sw_ch->stream.total_out > 0);
*accel_task->output_size = sw_ch->stream.total_out;
}
return rc;
#else
SPDK_ERRLOG("ISAL option is required to use software compression.\n");
return -EINVAL;
#endif
}
static int
_sw_accel_decompress(struct sw_accel_io_channel *sw_ch, struct spdk_accel_task *accel_task)
{
#ifdef SPDK_CONFIG_ISAL
struct iovec *siov = accel_task->s.iovs;
struct iovec *diov = accel_task->d.iovs;
uint32_t s = 0, d = 0;
int rc = 0;
isal_inflate_reset(&sw_ch->state);
sw_ch->state.next_out = diov[d].iov_base;
sw_ch->state.avail_out = diov[d].iov_len;
sw_ch->state.next_in = siov[s].iov_base;
sw_ch->state.avail_in = siov[s].iov_len;
do {
/* if isal has exhausted the current dst iovec, move to the next
* one if there is one */
if (sw_ch->state.avail_out == 0 && ((d + 1) < accel_task->d.iovcnt)) {
d++;
sw_ch->state.next_out = diov[d].iov_base;
sw_ch->state.avail_out = diov[d].iov_len;
assert(sw_ch->state.avail_out > 0);
}
/* if isal has exhausted the current src iovec, move to the next
* one if there is one */
if (sw_ch->state.avail_in == 0 && ((s + 1) < accel_task->s.iovcnt)) {
s++;
sw_ch->state.next_in = siov[s].iov_base;
sw_ch->state.avail_in = siov[s].iov_len;
assert(sw_ch->state.avail_in > 0);
}
rc = isal_inflate(&sw_ch->state);
if (rc) {
SPDK_ERRLOG("isal_inflate returned error %d.\n", rc);
}
} while (sw_ch->state.block_state < ISAL_BLOCK_FINISH);
assert(sw_ch->state.avail_in == 0);
return rc;
#else
SPDK_ERRLOG("ISAL option is required to use software decompression.\n");
return -EINVAL;
#endif
}
static int
_sw_accel_crypto_operation(struct spdk_accel_task *accel_task, struct spdk_accel_crypto_key *key,
sw_accel_crypto_op op)
{
#ifdef SPDK_CONFIG_ISAL_CRYPTO
uint64_t iv[2];
size_t remaining_len;
uint64_t src_offset = 0, dst_offset = 0;
uint32_t src_iovpos = 0, dst_iovpos = 0, src_iovcnt, dst_iovcnt;
uint32_t block_size, crypto_len, crypto_accum_len = 0;
struct iovec *src_iov, *dst_iov;
uint8_t *src, *dst;
/* iv is 128 bits, since we are using logical block address (64 bits) as iv, fill first 8 bytes with zeroes */
iv[0] = 0;
iv[1] = accel_task->iv;
src_iov = accel_task->s.iovs;
src_iovcnt = accel_task->s.iovcnt;
if (accel_task->d.iovcnt) {
dst_iov = accel_task->d.iovs;
dst_iovcnt = accel_task->d.iovcnt;
} else {
/* inplace operation */
dst_iov = accel_task->s.iovs;
dst_iovcnt = accel_task->s.iovcnt;
}
block_size = accel_task->block_size;
if (!src_iovcnt || !dst_iovcnt || !block_size || !op) {
SPDK_ERRLOG("src_iovcnt %d, dst_iovcnt %d, block_size %d, op %p\n", src_iovcnt, dst_iovcnt,
block_size, op);
return -EINVAL;
}
remaining_len = accel_task->nbytes;
while (remaining_len) {
crypto_len = spdk_min(block_size - crypto_accum_len, src_iov->iov_len - src_offset);
crypto_len = spdk_min(crypto_len, dst_iov->iov_len - dst_offset);
src = (uint8_t *)src_iov->iov_base + src_offset;
dst = (uint8_t *)dst_iov->iov_base + dst_offset;
op((uint8_t *)key->key2, (uint8_t *)key->key, (uint8_t *)iv, crypto_len, src, dst);
src_offset += crypto_len;
dst_offset += crypto_len;
crypto_accum_len += crypto_len;
remaining_len -= crypto_len;
if (crypto_accum_len == block_size) {
/* we can process part of logical block. Once the whole block is processed, increment iv */
crypto_accum_len = 0;
iv[1]++;
}
if (src_offset == src_iov->iov_len) {
src_iov++;
src_iovpos++;
src_offset = 0;
}
if (src_iovpos == src_iovcnt) {
break;
}
if (dst_offset == dst_iov->iov_len) {
dst_iov++;
dst_iovpos++;
dst_offset = 0;
}
if (dst_iovpos == dst_iovcnt) {
break;
}
}
if (remaining_len) {
SPDK_ERRLOG("remaining len %zu\n", remaining_len);
return -EINVAL;
}
return 0;
#else
return -ENOTSUP;
#endif
}
static int
_sw_accel_encrypt(struct sw_accel_io_channel *sw_ch, struct spdk_accel_task *accel_task)
{
struct spdk_accel_crypto_key *key;
struct sw_accel_crypto_key_data *key_data;
key = accel_task->crypto_key;
if (spdk_unlikely(key->module_if != &g_sw_module || !key->priv)) {
return -EINVAL;
}
if (spdk_unlikely(accel_task->block_size > ACCEL_AES_XTS_MAX_BLOCK_SIZE)) {
SPDK_WARNLOG("Max block size for AES_XTS is limited to %u, current size %u\n",
ACCEL_AES_XTS_MAX_BLOCK_SIZE, accel_task->block_size);
return -ERANGE;
}
key_data = key->priv;
return _sw_accel_crypto_operation(accel_task, key, key_data->encrypt);
}
static int
_sw_accel_decrypt(struct sw_accel_io_channel *sw_ch, struct spdk_accel_task *accel_task)
{
struct spdk_accel_crypto_key *key;
struct sw_accel_crypto_key_data *key_data;
key = accel_task->crypto_key;
if (spdk_unlikely(key->module_if != &g_sw_module || !key->priv)) {
return -EINVAL;
}
if (spdk_unlikely(accel_task->block_size > ACCEL_AES_XTS_MAX_BLOCK_SIZE)) {
SPDK_WARNLOG("Max block size for AES_XTS is limited to %u, current size %u\n",
ACCEL_AES_XTS_MAX_BLOCK_SIZE, accel_task->block_size);
return -ERANGE;
}
key_data = key->priv;
return _sw_accel_crypto_operation(accel_task, key, key_data->decrypt);
}
static int
sw_accel_submit_tasks(struct spdk_io_channel *ch, struct spdk_accel_task *accel_task)
{
struct sw_accel_io_channel *sw_ch = spdk_io_channel_get_ctx(ch);
struct spdk_accel_task *tmp;
int rc = 0;
do {
switch (accel_task->op_code) {
case ACCEL_OPC_COPY:
rc = _check_flags(accel_task->flags);
if (rc == 0) {
_sw_accel_copy_iovs(accel_task->d.iovs, accel_task->d.iovcnt,
accel_task->s.iovs, accel_task->s.iovcnt,
accel_task->flags);
}
break;
case ACCEL_OPC_FILL:
rc = _check_flags(accel_task->flags);
if (rc == 0) {
rc = _sw_accel_fill(accel_task->d.iovs, accel_task->d.iovcnt,
accel_task->fill_pattern, accel_task->flags);
}
break;
case ACCEL_OPC_DUALCAST:
rc = _check_flags(accel_task->flags);
if (rc == 0) {
rc = _sw_accel_dualcast_iovs(accel_task->d.iovs, accel_task->d.iovcnt,
accel_task->d2.iovs, accel_task->d2.iovcnt,
accel_task->s.iovs, accel_task->s.iovcnt,
accel_task->flags);
}
break;
case ACCEL_OPC_COMPARE:
rc = _sw_accel_compare(accel_task->s.iovs, accel_task->s.iovcnt,
accel_task->s2.iovs, accel_task->s2.iovcnt);
break;
case ACCEL_OPC_CRC32C:
_sw_accel_crc32cv(accel_task->crc_dst, accel_task->s.iovs, accel_task->s.iovcnt, accel_task->seed);
break;
case ACCEL_OPC_COPY_CRC32C:
rc = _check_flags(accel_task->flags);
if (rc == 0) {
_sw_accel_copy_iovs(accel_task->d.iovs, accel_task->d.iovcnt,
accel_task->s.iovs, accel_task->s.iovcnt,
accel_task->flags);
_sw_accel_crc32cv(accel_task->crc_dst, accel_task->s.iovs,
accel_task->s.iovcnt, accel_task->seed);
}
break;
case ACCEL_OPC_COMPRESS:
rc = _sw_accel_compress(sw_ch, accel_task);
break;
case ACCEL_OPC_DECOMPRESS:
rc = _sw_accel_decompress(sw_ch, accel_task);
break;
case ACCEL_OPC_ENCRYPT:
rc = _sw_accel_encrypt(sw_ch, accel_task);
break;
case ACCEL_OPC_DECRYPT:
rc = _sw_accel_decrypt(sw_ch, accel_task);
break;
default:
assert(false);
break;
}
tmp = TAILQ_NEXT(accel_task, link);
_add_to_comp_list(sw_ch, accel_task, rc);
accel_task = tmp;
} while (accel_task);
return 0;
}
static struct spdk_io_channel *sw_accel_get_io_channel(void);
static int sw_accel_module_init(void);
static void sw_accel_module_fini(void *ctxt);
static size_t sw_accel_module_get_ctx_size(void);
static struct spdk_accel_module_if g_sw_module = {
.module_init = sw_accel_module_init,
.module_fini = sw_accel_module_fini,
.write_config_json = NULL,
.get_ctx_size = sw_accel_module_get_ctx_size,
.name = "software",
.supports_opcode = sw_accel_supports_opcode,
.get_io_channel = sw_accel_get_io_channel,
.submit_tasks = sw_accel_submit_tasks,
.crypto_key_init = sw_accel_crypto_key_init,
.crypto_key_deinit = sw_accel_crypto_key_deinit,
};
static int
accel_comp_poll(void *arg)
{
struct sw_accel_io_channel *sw_ch = arg;
TAILQ_HEAD(, spdk_accel_task) tasks_to_complete;
struct spdk_accel_task *accel_task;
if (TAILQ_EMPTY(&sw_ch->tasks_to_complete)) {
return SPDK_POLLER_IDLE;
}
TAILQ_INIT(&tasks_to_complete);
TAILQ_SWAP(&tasks_to_complete, &sw_ch->tasks_to_complete, spdk_accel_task, link);
while ((accel_task = TAILQ_FIRST(&tasks_to_complete))) {
TAILQ_REMOVE(&tasks_to_complete, accel_task, link);
spdk_accel_task_complete(accel_task, accel_task->status);
}
return SPDK_POLLER_BUSY;
}
static int
sw_accel_create_cb(void *io_device, void *ctx_buf)
{
struct sw_accel_io_channel *sw_ch = ctx_buf;
TAILQ_INIT(&sw_ch->tasks_to_complete);
sw_ch->completion_poller = SPDK_POLLER_REGISTER(accel_comp_poll, sw_ch, 0);
#ifdef SPDK_CONFIG_ISAL
isal_deflate_init(&sw_ch->stream);
sw_ch->stream.flush = NO_FLUSH;
sw_ch->stream.level = 1;
sw_ch->stream.level_buf = calloc(1, ISAL_DEF_LVL1_DEFAULT);
if (sw_ch->stream.level_buf == NULL) {
SPDK_ERRLOG("Could not allocate isal internal buffer\n");
return -ENOMEM;
}
sw_ch->stream.level_buf_size = ISAL_DEF_LVL1_DEFAULT;
isal_inflate_init(&sw_ch->state);
#endif
return 0;
}
static void
sw_accel_destroy_cb(void *io_device, void *ctx_buf)
{
struct sw_accel_io_channel *sw_ch = ctx_buf;
#ifdef SPDK_CONFIG_ISAL
free(sw_ch->stream.level_buf);
#endif
spdk_poller_unregister(&sw_ch->completion_poller);
}
static struct spdk_io_channel *
sw_accel_get_io_channel(void)
{
return spdk_get_io_channel(&g_sw_module);
}
static size_t
sw_accel_module_get_ctx_size(void)
{
return sizeof(struct spdk_accel_task);
}
static int
sw_accel_module_init(void)
{
SPDK_NOTICELOG("Accel framework software module initialized.\n");
spdk_io_device_register(&g_sw_module, sw_accel_create_cb, sw_accel_destroy_cb,
sizeof(struct sw_accel_io_channel), "sw_accel_module");
return 0;
}
static void
sw_accel_module_fini(void *ctxt)
{
spdk_io_device_unregister(&g_sw_module, NULL);
spdk_accel_module_finish();
}
static int
sw_accel_create_aes_xts(struct spdk_accel_crypto_key *key)
{
#ifdef SPDK_CONFIG_ISAL_CRYPTO
struct sw_accel_crypto_key_data *key_data;
if (!key->key || !key->key2) {
SPDK_ERRLOG("key or key2 are missing\n");
return -EINVAL;
}
if (!key->key_size || key->key_size != key->key2_size) {
SPDK_ERRLOG("key size %zu is not equal to key2 size %zu or is 0\n", key->key_size,
key->key2_size);
return -EINVAL;
}
key_data = calloc(1, sizeof(*key_data));
if (!key_data) {
return -ENOMEM;
}
switch (key->key_size) {
case ACCEL_AES_XTS_128_KEY_SIZE:
key_data->encrypt = XTS_AES_128_enc;
key_data->decrypt = XTS_AES_128_dec;
break;
case ACCEL_AES_XTS_256_KEY_SIZE:
key_data->encrypt = XTS_AES_256_enc;
key_data->decrypt = XTS_AES_256_dec;
break;
default:
SPDK_ERRLOG("Incorrect key size %zu, should be %d for AEX_XTS_128 or %d for AES_XTS_256\n",
key->key_size, ACCEL_AES_XTS_128_KEY_SIZE, ACCEL_AES_XTS_256_KEY_SIZE);
free(key_data);
return -EINVAL;
}
key->priv = key_data;
return 0;
#else
return -ENOTSUP;
#endif
}
static int
sw_accel_crypto_key_init(struct spdk_accel_crypto_key *key)
{
if (!key || !key->param.cipher) {
return -EINVAL;
}
if (strcmp(key->param.cipher, ACCEL_AES_XTS) == 0) {
return sw_accel_create_aes_xts(key);
} else {
SPDK_ERRLOG("Only %s cipher is supported\n", ACCEL_AES_XTS);
return -EINVAL;
}
}
static void
sw_accel_crypto_key_deinit(struct spdk_accel_crypto_key *key)
{
if (!key || key->module_if != &g_sw_module || !key->priv) {
return;
}
free(key->priv);
}
SPDK_ACCEL_MODULE_REGISTER(sw, &g_sw_module)