text-generation-inference/server/text_generation_server/models/__init__.py

100 lines
3.2 KiB
Python

import os
import torch
from loguru import logger
from transformers import AutoConfig
from transformers.models.auto import modeling_auto
from typing import Optional
from text_generation_server.models.model import Model
from text_generation_server.models.causal_lm import CausalLM
from text_generation_server.models.bloom import BLOOM, BLOOMSharded
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
from text_generation_server.models.galactica import Galactica, GalacticaSharded
from text_generation_server.models.santacoder import SantaCoder
from text_generation_server.models.gpt_neox import GPTNeoxSharded
from text_generation_server.models.t5 import T5Sharded
try:
from text_generation_server.models.flash_neox import FlashNeoX, FlashNeoXSharded
FLASH_NEOX = torch.cuda.is_available() and int(os.environ.get("FLASH_NEOX", 0)) == 1
except ImportError:
if int(os.environ.get("FLASH_NEOX", 0)) == 1:
logger.exception("Could not import FlashNeoX")
FLASH_NEOX = False
__all__ = [
"Model",
"BLOOM",
"BLOOMSharded",
"CausalLM",
"Galactica",
"GalacticaSharded",
"GPTNeoxSharded",
"Seq2SeqLM",
"SantaCoder",
"T5Sharded",
"get_model",
]
if FLASH_NEOX:
__all__.append(FlashNeoX)
__all__.append(FlashNeoXSharded)
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True
# Disable gradients
torch.set_grad_enabled(False)
def get_model(
model_id: str, revision: Optional[str], sharded: bool, quantize: bool
) -> Model:
if "facebook/galactica" in model_id:
if sharded:
return GalacticaSharded(model_id, revision, quantize=quantize)
else:
return Galactica(model_id, revision, quantize=quantize)
if "santacoder" in model_id:
return SantaCoder(model_id, revision, quantize)
config = AutoConfig.from_pretrained(model_id, revision=revision)
model_type = config.model_type
if model_type == "bloom":
if sharded:
return BLOOMSharded(model_id, revision, quantize=quantize)
else:
return BLOOM(model_id, revision, quantize=quantize)
if model_type == "gpt_neox":
if sharded:
neox_cls = FlashNeoXSharded if FLASH_NEOX else GPTNeoxSharded
return neox_cls(model_id, revision, quantize=quantize)
else:
neox_cls = FlashNeoX if FLASH_NEOX else CausalLM
return neox_cls(model_id, revision, quantize=quantize)
if model_type == "t5":
if sharded:
return T5Sharded(model_id, revision, quantize=quantize)
else:
return Seq2SeqLM(model_id, revision, quantize=quantize)
if sharded:
raise ValueError("sharded is not supported for AutoModel")
if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
return CausalLM(model_id, revision, quantize=quantize)
if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
return Seq2SeqLM(model_id, revision, quantize=quantize)
raise ValueError(f"Unsupported model type {model_type}")