import os import torch from loguru import logger from transformers import AutoConfig from transformers.models.auto import modeling_auto from typing import Optional from text_generation_server.models.model import Model from text_generation_server.models.causal_lm import CausalLM from text_generation_server.models.bloom import BLOOM, BLOOMSharded from text_generation_server.models.seq2seq_lm import Seq2SeqLM from text_generation_server.models.galactica import Galactica, GalacticaSharded from text_generation_server.models.santacoder import SantaCoder from text_generation_server.models.gpt_neox import GPTNeoxSharded from text_generation_server.models.t5 import T5Sharded try: from text_generation_server.models.flash_neox import FlashNeoX, FlashNeoXSharded FLASH_NEOX = torch.cuda.is_available() and int(os.environ.get("FLASH_NEOX", 0)) == 1 except ImportError: if int(os.environ.get("FLASH_NEOX", 0)) == 1: logger.exception("Could not import FlashNeoX") FLASH_NEOX = False __all__ = [ "Model", "BLOOM", "BLOOMSharded", "CausalLM", "Galactica", "GalacticaSharded", "GPTNeoxSharded", "Seq2SeqLM", "SantaCoder", "T5Sharded", "get_model", ] if FLASH_NEOX: __all__.append(FlashNeoX) __all__.append(FlashNeoXSharded) # The flag below controls whether to allow TF32 on matmul. This flag defaults to False # in PyTorch 1.12 and later. torch.backends.cuda.matmul.allow_tf32 = True # The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True. torch.backends.cudnn.allow_tf32 = True # Disable gradients torch.set_grad_enabled(False) def get_model( model_id: str, revision: Optional[str], sharded: bool, quantize: bool ) -> Model: if "facebook/galactica" in model_id: if sharded: return GalacticaSharded(model_id, revision, quantize=quantize) else: return Galactica(model_id, revision, quantize=quantize) if "santacoder" in model_id: return SantaCoder(model_id, revision, quantize) config = AutoConfig.from_pretrained(model_id, revision=revision) model_type = config.model_type if model_type == "bloom": if sharded: return BLOOMSharded(model_id, revision, quantize=quantize) else: return BLOOM(model_id, revision, quantize=quantize) if model_type == "gpt_neox": if sharded: neox_cls = FlashNeoXSharded if FLASH_NEOX else GPTNeoxSharded return neox_cls(model_id, revision, quantize=quantize) else: neox_cls = FlashNeoX if FLASH_NEOX else CausalLM return neox_cls(model_id, revision, quantize=quantize) if model_type == "t5": if sharded: return T5Sharded(model_id, revision, quantize=quantize) else: return Seq2SeqLM(model_id, revision, quantize=quantize) if sharded: raise ValueError("sharded is not supported for AutoModel") if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES: return CausalLM(model_id, revision, quantize=quantize) if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES: return Seq2SeqLM(model_id, revision, quantize=quantize) raise ValueError(f"Unsupported model type {model_type}")