text-generation-inference/docs/source/backends/llamacpp.md
Adrien Gallouët 7388468e26
Update doc
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-03-05 11:08:17 +00:00

128 lines
5.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Llamacpp Backend
The llamacpp backend facilitates the deployment of large language models
(LLMs) by integrating [llama.cpp][llama.cpp], an advanced inference engine
optimized for both CPU and GPU computation. This backend is a component
of Hugging Faces **Text Generation Inference (TGI)** suite,
specifically designed to streamline the deployment of LLMs in production
environments.
## Key Capabilities
- Full compatibility with GGUF format and all quantization formats
(GGUF-related constraints may be mitigated dynamically by on-the-fly
generation in future updates)
- Optimized inference on CPU and GPU architectures
- Containerized deployment, eliminating dependency complexity
- Seamless interoperability with the Hugging Face ecosystem
## Model Compatibility
This backend leverages models formatted in **GGUF**, providing an
optimized balance between computational efficiency and model accuracy.
You will find the best models on [Hugging Face][GGUF].
## Build Docker image
For optimal performance, the Docker image is compiled with native CPU
instructions, thus it's highly recommended to execute the container on
the host used during the build process. Efforts are ongoing to enhance
portability while maintaining high computational efficiency.
```bash
docker build \
-t tgi-llamacpp \
https://github.com/huggingface/text-generation-inference.git \
-f Dockerfile_llamacpp
```
### Build parameters
| Parameter | Description |
| ------------------------------------ | --------------------------------- |
| `--build-arg llamacpp_version=bXXXX` | Specific version of llama.cpp |
| `--build-arg llamacpp_cuda=ON` | Enables CUDA acceleration |
| `--build-arg cuda_arch=ARCH` | Defines target CUDA architecture |
## Run Docker image
### CPU-based inference
```bash
docker run \
-p 3000:3000 \
-e "HF_TOKEN=$HF_TOKEN" \
-v "$HOME/models:/app/models" \
tgi-llamacpp \
--model-id "Qwen/Qwen2.5-3B-Instruct"
```
### GPU-Accelerated inference
```bash
docker run \
--gpus all \
-p 3000:3000 \
-e "HF_TOKEN=$HF_TOKEN" \
-v "$HOME/models:/app/models" \
tgi-llamacpp \
--n-gpu-layers 99
--model-id "Qwen/Qwen2.5-3B-Instruct"
```
## Using a custom GGUF
GGUF files are optional as they will be automatically generated at
startup if not already present in the `models` directory. However, if
the default GGUF generation is not suitable for your use case, you can
provide your own GGUF file with `--model-gguf`, for example:
```bash
docker run \
-p 3000:3000 \
-e "HF_TOKEN=$HF_TOKEN" \
-v "$HOME/models:/app/models" \
tgi-llamacpp \
--model-id "Qwen/Qwen2.5-3B-Instruct" \
--model-gguf "models/qwen2.5-3b-instruct-q4_0.gguf"
```
Note that `--model-id` is still required.
## Advanced parameters
A full listing of configurable parameters is available in the `--help`:
```bash
docker run tgi-llamacpp --help
```
The table below summarizes key options:
| Parameter | Description |
|-------------------------------------|------------------------------------------------------------------------|
| `--n-threads` | Number of threads to use for generation |
| `--n-threads-batch` | Number of threads to use for batch processing |
| `--n-gpu-layers` | Number of layers to store in VRAM |
| `--split-mode` | Split the model across multiple GPUs |
| `--defrag-threshold` | Defragment the KV cache if holes/size > threshold |
| `--numa` | Enable NUMA optimizations |
| `--disable-mmap` | Disable memory mapping for the model |
| `--use-mlock` | Use memory locking to prevent swapping |
| `--disable-offload-kqv` | Disable offloading of KQV operations to the GPU |
| `--disable-flash-attention` | Disable flash attention |
| `--type-k` | Data type used for K cache |
| `--type-v` | Data type used for V cache |
| `--validation-workers` | Number of tokenizer workers used for payload validation and truncation |
| `--max-concurrent-requests` | Maximum number of concurrent requests |
| `--max-input-tokens` | Maximum number of input tokens per request |
| `--max-total-tokens` | Maximum number of total tokens (input + output) per request |
| `--max-batch-total-tokens` | Maximum number of tokens in a batch |
| `--max-physical-batch-total-tokens` | Maximum number of tokens in a physical batch |
| `--max-batch-size` | Maximum number of requests per batch |
---
[llama.cpp]: https://github.com/ggerganov/llama.cpp
[GGUF]: https://huggingface.co/models?library=gguf&sort=trending