text-generation-inference/docs/source/multi_backend_support.md
Adrien Gallouët cfd4fbb479
[Backend] Add Llamacpp backend (#2975)
* Add llamacpp backend

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Get rid of llama_batch_get_one()

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Use max_batch_total_tokens

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Handle max_batch_size

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add some input validation checks

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Handle ctx args & fix sampling

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add GPU args

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add --defrag-threshold

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add a stupid batch mechanism

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Cleanup

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add --numa

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix args

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Enable flash attention by default

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add --offload-kqv

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix batch_pos

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* backend(llama): add CUDA Dockerfile_llamacpp for now

* Only export the latest logits

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Output real logprobs

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix batching

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix seq iterations

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Auto-detect n_threads when not provided

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Clear request cache after completion

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Remove warmup

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Cleanup

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* backend(llama): add CUDA architectures build argument for Dockerfile

* Add specific args for batch

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add --type-v & --type-k

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Bump llamacpp to b4623

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Disable graceful shutdown in debug mode

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update Dockerfile_llamacpp

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Cleanup Dockerfile

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update Cargo.lock

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update args

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Simplify batching logic

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Set TGI_LLAMA_PKG_CUDA from CUDA_VERSION

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Rename bindings

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Remove n_ctx

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Make max_batch_total_tokens optional

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Ensure all samplers are freed on error

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Initialize penalty_last_n with llamacpp default value

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Cleanup

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Improve default settings

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add doc

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update docs

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Thanks clippy

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Thanks cargo fmt

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update docs

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Do not use HOSTNAME env

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Bump llama.cpp & cuda

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix requirements.txt

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix fmt

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Enable KQV offload by default

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Remove Ngrok tunneling

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Remove .cargo/config.toml

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix Dockerfile

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add missing cuda prefix

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Handle custom llama.cpp dir

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Cleanup

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add README.md

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add HF transfer

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix bool args

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update doc

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update doc

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
2025-02-14 13:40:57 +01:00

1.2 KiB

Multi-backend support

TGI (Text Generation Inference) offers flexibility by supporting multiple backends for serving large language models (LLMs). With multi-backend support, you can choose the backend that best suits your needs, whether you prioritize performance, ease of use, or compatibility with specific hardware. API interaction with TGI remains consistent across backends, allowing you to switch between them seamlessly.

Supported backends:

  • TGI CUDA backend: This high-performance backend is optimized for NVIDIA GPUs and serves as the default option within TGI. Developed in-house, it boasts numerous optimizations and is used in production by various projects, including those by Hugging Face.
  • TGI TRTLLM backend: This backend leverages NVIDIA's TensorRT library to accelerate LLM inference. It utilizes specialized optimizations and custom kernels for enhanced performance. However, it requires a model-specific compilation step for each GPU architecture.
  • TGI Llamacpp backend: This backend facilitates the deployment of large language models (LLMs) by integrating [llama.cpp][llama.cpp], an advanced inference engine optimized for both CPU and GPU computation.