mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-20 14:22:08 +00:00
* Build faster Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Make --model-gguf optional Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Bump llama.cpp Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Enable mmap, offload_kqv & flash_attention by default Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Update doc Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Better error message Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Update doc Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Update installed packages Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Save gguf in models/MODEL_ID/model.gguf Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Fix build with Mach-O Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Quantize without llama-quantize Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Bump llama.cpp and switch to ggml-org Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Remove make-gguf.sh Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Update Cargo.lock Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Support HF_HUB_USER_AGENT_ORIGIN Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Bump llama.cpp Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Add --build-arg llamacpp_native & llamacpp_cpu_arm_arch Signed-off-by: Adrien Gallouët <angt@huggingface.co> --------- Signed-off-by: Adrien Gallouët <angt@huggingface.co>
145 lines
6.0 KiB
Markdown
145 lines
6.0 KiB
Markdown
# Llamacpp Backend
|
||
|
||
The llamacpp backend facilitates the deployment of large language models
|
||
(LLMs) by integrating [llama.cpp][llama.cpp], an advanced inference engine
|
||
optimized for both CPU and GPU computation. This backend is a component
|
||
of Hugging Face’s **Text Generation Inference (TGI)** suite,
|
||
specifically designed to streamline the deployment of LLMs in production
|
||
environments.
|
||
|
||
## Key Capabilities
|
||
|
||
- Full compatibility with GGUF format and all quantization formats
|
||
(GGUF-related constraints may be mitigated dynamically by on-the-fly
|
||
generation in future updates)
|
||
- Optimized inference on CPU and GPU architectures
|
||
- Containerized deployment, eliminating dependency complexity
|
||
- Seamless interoperability with the Hugging Face ecosystem
|
||
|
||
## Model Compatibility
|
||
|
||
This backend leverages models formatted in **GGUF**, providing an
|
||
optimized balance between computational efficiency and model accuracy.
|
||
You will find the best models on [Hugging Face][GGUF].
|
||
|
||
## Build Docker image
|
||
|
||
For optimal performance, the Docker image is compiled with native CPU
|
||
instructions by default. As a result, it is strongly recommended to run
|
||
the container on the same host architecture used during the build
|
||
process. Efforts are ongoing to improve portability across different
|
||
systems while preserving high computational efficiency.
|
||
|
||
To build the Docker image, use the following command:
|
||
|
||
```bash
|
||
docker build \
|
||
-t tgi-llamacpp \
|
||
https://github.com/huggingface/text-generation-inference.git \
|
||
-f Dockerfile_llamacpp
|
||
```
|
||
|
||
### Build parameters
|
||
|
||
| Parameter (with --build-arg) | Description |
|
||
| ----------------------------------------- | -------------------------------- |
|
||
| `llamacpp_version=bXXXX` | Specific version of llama.cpp |
|
||
| `llamacpp_cuda=ON` | Enables CUDA acceleration |
|
||
| `llamacpp_native=OFF` | Disable automatic CPU detection |
|
||
| `llamacpp_cpu_arm_arch=ARCH[+FEATURE]...` | Specific ARM CPU and features |
|
||
| `cuda_arch=ARCH` | Defines target CUDA architecture |
|
||
|
||
For example, to target Graviton4 when building on another ARM
|
||
architecture:
|
||
|
||
```bash
|
||
docker build \
|
||
-t tgi-llamacpp \
|
||
--build-arg llamacpp_native=OFF \
|
||
--build-arg llamacpp_cpu_arm_arch=armv9-a+i8mm \
|
||
https://github.com/huggingface/text-generation-inference.git \
|
||
-f Dockerfile_llamacpp
|
||
```
|
||
|
||
## Run Docker image
|
||
|
||
### CPU-based inference
|
||
|
||
```bash
|
||
docker run \
|
||
-p 3000:3000 \
|
||
-e "HF_TOKEN=$HF_TOKEN" \
|
||
-v "$HOME/models:/app/models" \
|
||
tgi-llamacpp \
|
||
--model-id "Qwen/Qwen2.5-3B-Instruct"
|
||
```
|
||
|
||
### GPU-Accelerated inference
|
||
|
||
```bash
|
||
docker run \
|
||
--gpus all \
|
||
-p 3000:3000 \
|
||
-e "HF_TOKEN=$HF_TOKEN" \
|
||
-v "$HOME/models:/app/models" \
|
||
tgi-llamacpp \
|
||
--n-gpu-layers 99
|
||
--model-id "Qwen/Qwen2.5-3B-Instruct"
|
||
```
|
||
|
||
## Using a custom GGUF
|
||
|
||
GGUF files are optional as they will be automatically generated at
|
||
startup if not already present in the `models` directory. However, if
|
||
the default GGUF generation is not suitable for your use case, you can
|
||
provide your own GGUF file with `--model-gguf`, for example:
|
||
|
||
```bash
|
||
docker run \
|
||
-p 3000:3000 \
|
||
-e "HF_TOKEN=$HF_TOKEN" \
|
||
-v "$HOME/models:/app/models" \
|
||
tgi-llamacpp \
|
||
--model-id "Qwen/Qwen2.5-3B-Instruct" \
|
||
--model-gguf "models/qwen2.5-3b-instruct-q4_0.gguf"
|
||
```
|
||
|
||
Note that `--model-id` is still required.
|
||
|
||
## Advanced parameters
|
||
|
||
A full listing of configurable parameters is available in the `--help`:
|
||
|
||
```bash
|
||
docker run tgi-llamacpp --help
|
||
|
||
```
|
||
|
||
The table below summarizes key options:
|
||
|
||
| Parameter | Description |
|
||
|-------------------------------------|------------------------------------------------------------------------|
|
||
| `--n-threads` | Number of threads to use for generation |
|
||
| `--n-threads-batch` | Number of threads to use for batch processing |
|
||
| `--n-gpu-layers` | Number of layers to store in VRAM |
|
||
| `--split-mode` | Split the model across multiple GPUs |
|
||
| `--defrag-threshold` | Defragment the KV cache if holes/size > threshold |
|
||
| `--numa` | Enable NUMA optimizations |
|
||
| `--disable-mmap` | Disable memory mapping for the model |
|
||
| `--use-mlock` | Use memory locking to prevent swapping |
|
||
| `--disable-offload-kqv` | Disable offloading of KQV operations to the GPU |
|
||
| `--disable-flash-attention` | Disable flash attention |
|
||
| `--type-k` | Data type used for K cache |
|
||
| `--type-v` | Data type used for V cache |
|
||
| `--validation-workers` | Number of tokenizer workers used for payload validation and truncation |
|
||
| `--max-concurrent-requests` | Maximum number of concurrent requests |
|
||
| `--max-input-tokens` | Maximum number of input tokens per request |
|
||
| `--max-total-tokens` | Maximum number of total tokens (input + output) per request |
|
||
| `--max-batch-total-tokens` | Maximum number of tokens in a batch |
|
||
| `--max-physical-batch-total-tokens` | Maximum number of tokens in a physical batch |
|
||
| `--max-batch-size` | Maximum number of requests per batch |
|
||
|
||
---
|
||
[llama.cpp]: https://github.com/ggerganov/llama.cpp
|
||
[GGUF]: https://huggingface.co/models?library=gguf&sort=trending
|