Compare commits

...

651 Commits
v2.0.4 ... main

Author SHA1 Message Date
Nicolas Patry
8f8819795f
Fixing CI (#3184) 2025-04-18 13:07:18 +02:00
Alvaro Bartolome
95ccba3705
Bump sccache to 0.10.0 (#3179)
* Ensure that `sccache` version is 0.10.0 or higher

* Rename `ACTIONS_CACHE_URL` to `ACTIONS_RESULTS_URL`
2025-04-18 12:45:32 +02:00
Hyeongchan Kim
b400c275e4
Get opentelemetry trace id from request headers instead of creating a new trace (#2648)
feature: get trace id from req headers

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2025-04-18 09:06:41 +02:00
Daniël de Kok
84ab88d843
Support flashinfer for Gemma3 prefill (#3167)
* launcher: ensure correct detection of Gemma 3 head size

* Support flashinfer for Gemma3 prefill

Gemma3 uses bidirectional attention for images. Flashinfer
supports custom masks. Hook up the mask with flashinfer, so that we do
not have to use the slower SDPA implementation for prefills with images.

* Update Gemma3 test outputs

* Fixed unused import
2025-04-17 18:07:41 +02:00
Nicolas Patry
4645678ff0
Hotfix gaudi2 with newer transformers. (#3176) 2025-04-15 12:39:28 +02:00
Nicolas Patry
ad765cd06b
Hotfixing gaudi deps. (#3174) 2025-04-15 11:55:28 +02:00
Nicolas Patry
16b4b7974a
Upgrading the dependencies in Gaudi backend. (#3170)
* Upgrading the dependencies in Gaudi backend.

* Upgrading transformers version.
2025-04-15 11:49:06 +02:00
Wang, Yi
459fbdebe3
transformers flash llm/vlm enabling in ipex (#3152)
* transformers flash llm/vlm enabling in xpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* ipex cpu could also support in function

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-04-15 11:08:01 +02:00
Nicolas Patry
449cee49ca
setuptools <= 70.0 is vulnerable: CVE-2024-6345 (#3171) 2025-04-15 10:09:37 +02:00
Mohit Sharma
73e797528d
L4 fixes (#3161)
add fix
2025-04-14 22:13:53 +05:30
Nicolas Patry
fe56f760df
Upgrading the python client deps (still deprecated, but used for
integration-tests)
2025-04-14 17:18:43 +02:00
Wang, Yi
d62c941c56
Gaudi: clean cuda/rocm code in hpu backend, enable flat_hpu (#3113)
* clean cuda/rocm code in hpu backend, enable flat_hpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix TP in pageattn

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* adjust block table in hpu to improve performance

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable all the model. not testet yet

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* use tensor cache in hpu graph to avoid replay issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add moe support, fix qwen/mistral/mixtral crash

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix phimoe issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* gpt_bigcode could also go pageattn

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable dbrx remove some unused code

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* multi-modality initial PR

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* adjust warmup and enable vlm

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix incorrect output in qwen2 idefics if hpu graph is used

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* remove unused quantization code and enable awq/gptq int4

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix gptq issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable fp8

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* warmup prefill

remove model where pageattn is not used, set block table to None since it's not used

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add warmup_decode

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* warmup decode

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* remove block_tables and prefill_cache_indices which will lead to dynamic shape

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* missing gptj change...

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix some issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* remove torch.where to fix incorrect output in hpu graph model

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* match the latest vllm_extension ops

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-04-14 15:58:13 +02:00
Nicolas Patry
9a8d0462e1
Fixing tokenization like https://github.com/huggingface/text-embeddin… (#3156)
Fixing tokenization like https://github.com/huggingface/text-embeddings-inference/issues/525
2025-04-09 18:42:25 +02:00
Nicolas Patry
5861da1ad7
Fixing Qwen 2.5 VL (32B). (#3157)
Reduce the config constraints, and use common ground between the 8B and
32B.
2025-04-09 17:07:30 +02:00
Nicolas Patry
0b28aabb94
3.2.3 (#3151) 2025-04-08 10:16:37 +02:00
oOraph
24bec29ffc
fix: compute type typo (#3150)
Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com>
Co-authored-by: Raphael Glon <oOraph@users.noreply.github.com>
2025-04-07 17:24:11 +02:00
Baptiste Colle
37104acd75
Gaudi: Add Integration Test for Gaudi Backend (#3142)
* feat(gaudi): add integration test

* feat(test): add more models to integration tests

* remove debug comments

* fix typos
2025-04-07 16:55:03 +02:00
Mohit Sharma
87a0af4ec2
Update transformers to 4.51 (#3148)
* update transformres

* Upgrading the nix deps too.

* Forcing torchvision to be in there.

* Fixing bug in mllama.

* Those tests cannot be run in CI.

* Lint.

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2025-04-07 12:55:43 +02:00
Mohit Sharma
9c26b52940
Use ROCM 6.3.1 (#3141)
* update dockerfile

* add updated makefile

* fix docker

* Lint.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2025-04-07 12:55:11 +02:00
Nicolas Patry
d23b385eee
Preparing for release. (#3147)
* Preparing for release.

* Adding hf-xet dependency.

* Merged tgi-nix update.
2025-04-06 11:36:00 +02:00
Mohit Sharma
d9bb9bebc9
Add llama4 (#3145)
* initial changes

* Add support for other vlm

* cleanup comment

* Improve attn_implementation

* Add comments for support of models

* add model

* add model

* fixes and improvements

* update docker

* Add cache position

* Add tests

* remove redundant changes

* remove tr version

* Upgrade doc + fix linting.

* Fixing the CI.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2025-04-06 10:20:22 +02:00
Yuan Wu
3d059f91ab
Gaudi: Use exponential growth to replace BATCH_BUCKET_SIZE (#3131)
* Gaudi: Use exponential growth to replace BATCH_BUCKET_SIZE

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Remove debug modifications

Signed-off-by: yuanwu <yuan.wu@intel.com>

---------

Signed-off-by: yuanwu <yuan.wu@intel.com>
2025-04-03 10:34:53 +02:00
Corentin REGAL
0142550096
nix-v3.2.1 -> v3.2.1-nix (#3129)
make it easier to check for version using semver semantic (same major
and minor)
2025-03-26 15:36:43 +01:00
Yuan Wu
f5f14dc660
Gaudi: Fix llava-next and mllama crash issue (#3127)
Signed-off-by: yuanwu <yuan.wu@intel.com>
2025-03-25 15:08:15 +01:00
Nicolas Patry
54d15462dc
Torch 2.6 (#3134)
* Torch 2.6

* Upgrade the toolchain.

* Don't upgrade just yet.

* Upgrade toolchain.

* Time upgrade.

* TGI-nix main.

* Upgrade to transformers 4.50
2025-03-24 11:55:49 +01:00
Baptiste Colle
2e60a8dd65
CI: enable server tests for backends (#3128)
add test for backends
2025-03-20 16:07:31 +01:00
Erik Kaunismäki
e5503eba78
configurable termination timeout (#3126)
* make shard and webserver termination timeouts configurable

* Updating documentation.

* Fmt.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2025-03-20 14:25:56 +01:00
Nicolas Patry
e497bc09f6
Minor fixes. (#3125) 2025-03-18 15:42:35 +01:00
Nicolas Patry
67ce543e04
Intel docker. (#3121)
* Intel docker.

* torchaudio ?

* Fixing dockerfile ?
2025-03-18 15:12:11 +01:00
Nicolas Patry
83fe45c15e
Prepare for patch release. (#3124) 2025-03-18 15:11:55 +01:00
Nicolas Patry
11f2eec10e
Publish nix docker image. (#3122)
* Publish nix docker image.

* Run during PR.

* Something else.

* Forgot to push.

* Build zstd.

* Pushing with skopeo

* Testing the PR.

* Runnign from nix.

* Cleaner tags.
2025-03-18 12:58:21 +01:00
Mohit Sharma
a35fbdb925
Bug Fix: Sliding Window Attention (#3112)
* (fix) sliding window attention

* (fix) flashinfer

* (typo) collection link

* Add window_size_left param ipex rocm

* Update window size rocm flash decoding

* fix: bump snapshots and improve exceed window test case

* feat: add tests for image types and remove alpha from png

* Upgrading `from_env` to get token from file when necessary + fix
pali_gemma.

* fix: add pillow dependency and bump lock+requirements

* fix: bump org name in gemma3 test

* Fix qwen2.

---------

Co-authored-by: drbh <david.richard.holtz@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2025-03-18 10:37:33 +01:00
Baptiste Colle
8c2c348f3c
Gaudi: Sync TGI with the latest changes from the TGI-Gaudi fork (#3117)
feat(gaudi): add all the changes from tgi-gaudi fork up to PR #289
2025-03-18 09:45:52 +01:00
Daniël de Kok
095775e05c
launcher: correctly get the head dimension for VLMs (#3116)
* launcher: correctly get the head dimension for VLMs

For most (?) VLMs, the head dimension is in the `text_config`
configuration section. However, since we only queried the top-level
`head_dim` (which typically doesn't exist in VLMs), we would never use
flashinfer. This change adds a method that gets the head dimension from
the top-level `Config` struct or `text_config` when that fails.

* fix: bump org name in gemma3 test

---------

Co-authored-by: drbh <david.richard.holtz@gmail.com>
2025-03-17 18:19:37 +01:00
Wang, Yi
0b3e3db043
xpu 2.6 update (#3051)
* xpu 2.6 update

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* install whl

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update get xpu memory api

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* int

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix awq crash if modules_to_not_convert is None

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-03-17 13:48:48 +01:00
Daniël de Kok
f91434e99b
Make the Nix-based Docker container work on non-NixOS (#3109)
On NixOS, the CUDA driver shim gets mounted on /run/opengl-driver,
where Nix packages expect the shim to be. However, on other
distributions, some FHS paths are mounted. This is a small change
to make the dynamic loader find the shim.
2025-03-13 14:02:45 +01:00
Nicolas Patry
8b91f92978
Fixing the docker build. (#3108)
* Fixing the docker build.

* Apply suggestions from code review
2025-03-13 11:26:44 +01:00
Baptiste Colle
27ed848676
Release of Gaudi Backend for TGI (#3091)
* feat(gaudi): release ready (docs, docker image and vlm ready)

* fix(gaudi): add default argument for the dockerfile

* fix(gaudi): remove use of latest for gaudi docker image + redid gaudi benchmarking section to include best practices
2025-03-13 10:56:01 +01:00
Nicolas Patry
83ef364177
We need gcc during runtime to enable triton to compile kernels. (#3103)
* We need gcc during runtime to enable triton to compile kernels.

* Fixing the docker build.
2025-03-13 10:45:47 +01:00
Daniël de Kok
83b7b7bb92
Router: add gemma3-text model type (#3107) 2025-03-13 10:41:33 +01:00
Daniël de Kok
c73ae0bd88
Update to kernels 0.2.1 (#3084)
* Update to `kernels` 0.2.1

The package was renamed from `hf-kernels` to `kernels`. The new version
also updates the lockfile format.

* Download kernels in `install-cuda` target
2025-03-13 10:36:29 +01:00
Nicolas Patry
d4c6faa67b
Try to fix on main CI color. (#3101) 2025-03-12 10:12:24 +01:00
Nicolas Patry
4ac06ddf56
Preparing relase 3.2.0 (#3100)
* Preparing relase 3.2.0

* Forgot the README.

* Update doc.
2025-03-12 10:11:33 +01:00
David Corvoysier
f01dc9e743
Update neuron backend (#3098)
* feat(neuron): use AWS Neuron SDK 2.21.1

* feat(neuron): bump optimum-neuron version

* feat(neuron): tag latest image for local tests

* test(neuron): simplify sampling test
2025-03-12 09:53:15 +01:00
Nicolas Patry
5c5528e362
Fix tool call4 (#3094)
* Removing the no_tool content information.

* Removing a lot of NO_TOOL shenanigans.

* Update the tests.
2025-03-12 09:28:47 +01:00
Mohit Sharma
ed46c2c414
Add gemma3 model (#3099) 2025-03-12 09:25:51 +01:00
Nicolas Patry
f74c36fe0d
Fix tool call3 (#3086)
* Fixing the tool calling convention.

* Update tehe doc.

* Fixing some corner cases.

* Fixing the tool call id.

* Fmt.

* Snapshot update with the new updated tool_call_id.

* More qwen2.
2025-03-12 09:22:53 +01:00
celsowm
ae4451c3da
Update README.md (#3095)
space between param and value
2025-03-11 11:05:21 +01:00
Nicolas Patry
b447f7e821
Fix qwen vl (#3096)
* Fixing qwen2.5 VL.

* Fixing the CI.
2025-03-11 11:00:41 +01:00
Adrien Gallouët
094975c3a8
Update the llamacpp backend (#3022)
* Build faster

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Make --model-gguf optional

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Bump llama.cpp

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Enable mmap, offload_kqv & flash_attention by default

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update doc

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Better error message

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update doc

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update installed packages

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Save gguf in models/MODEL_ID/model.gguf

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix build with Mach-O

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Quantize without llama-quantize

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Bump llama.cpp and switch to ggml-org

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Remove make-gguf.sh

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update Cargo.lock

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Support HF_HUB_USER_AGENT_ORIGIN

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Bump llama.cpp

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add --build-arg llamacpp_native & llamacpp_cpu_arm_arch

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-03-11 09:19:01 +01:00
drbh
dc5f05f8e6
Pr 3003 ci branch (#3007)
* change ChatCompletionChunk to align with "OpenAI Chat Completions streaming API"

Moving after tool_calls2

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

add in Buffering..

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

fix: handle usage outside of stream state and add tests

Simplifying everything quite a bit.

Remove the unused model_dump.

Clippy.

Clippy ?

Ruff.

Uppgrade the flake for latest transformers.

Upgrade after rebase.

Remove potential footgun.

Fix completion test.

* Clippy.

* Tweak for multi prompt.

* Ruff.

* Update the snapshot a bit.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2025-03-10 17:56:19 +01:00
Daniël de Kok
124398fa57
hotfix: qwen2 formatting (#3093)
* hotfix: qwen2 formatting

* cargo fmt
2025-03-10 16:19:50 +01:00
Daniël de Kok
c5ecc7a4de
Small test and typing fixes (#3078)
* test_weights: add modules_to_not_convert

* More typing fixes
2025-03-10 15:08:23 +01:00
jiqing-feng
cae0cbe87d
Add modules_to_not_convert in quantized model (#3053)
* fix modules_to_not_convert

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix tp quant skip

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* revert unquantized changes

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* use DefaultWeightsLoader in skip modules

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-03-10 15:03:51 +01:00
EachSheep
bbe218a4f7
Add qwen2 multi lora layers support (#3089)
add qwen2 multi lora layers support to solve problem like https://github.com/huggingface/text-generation-inference/issues/2881, the similar PR are at https://github.com/huggingface/text-generation-inference/pull/2883

Co-authored-by: hjs <hjs@pku.edu.cn>
2025-03-10 12:42:59 +01:00
Alex Weston
58a65f7914
Add request parameters to OTel span for /v1/chat/completions endpoint (#3000)
Record request parameters in OTel span for /v1/chat/completions endpoint
2025-03-10 12:26:57 +01:00
Daniël de Kok
976eae216f
Nix: the launcher needs a Python env with Torch for GPU detection (#3085)
This makes `nix run .` in the repository work again. Should fix #3025.
2025-03-10 12:11:10 +01:00
Nicolas Patry
622908deab
Fix tool call2 (#3076)
* Making `tool_calls` a vector.

* Arguments output is a string.

* Update all the integration tests.

* Add the requirements.

* Upgrade other tests.

* Clippy.

* Update the old test.
2025-03-07 19:45:57 +01:00
Alvaro Bartolome
55a6618434
Update --max-batch-total-tokens description (#3083)
* Update `--max-batch-total-tokens` description

* Update docstring in `launcher/src/main.rs` instead
2025-03-07 14:24:26 +01:00
Daniël de Kok
036d802b62
Nix: add openai to impure shell for integration tests (#3081) 2025-03-07 13:04:21 +01:00
Nicolas Patry
8e92942a18
Making tool_calls a vector. (#3075)
* Making `tool_calls` a vector.

* Update doc.

* Fixing the nix overlay with updated version.

* Add openai dependency.

* Updating the old tests.

* Trying to reduce the logs in the case of errors.

* Less spammy logs too.
2025-03-05 22:32:31 +01:00
Nicolas Patry
3208d1cd1d
Revert "Trying to reduce the logs in the case of errors."
This reverts commit cdf70d6a28.
2025-03-05 20:52:38 +01:00
Nicolas Patry
cdf70d6a28
Trying to reduce the logs in the case of errors. 2025-03-05 20:50:43 +01:00
Nicolas Patry
ab9dafc68f
Making sure Olmo (transformers backend) works. (#3074) 2025-03-05 17:46:47 +01:00
Nicolas Patry
31766dad77
Force upgrade transformers version for olmo. 2025-03-05 12:17:09 +01:00
Nicolas Patry
ec35976f82
Only add token when it is defined. (#3073)
* Only add token when it is defined.

* Update router/src/server.rs
2025-03-05 11:59:52 +01:00
David Corvoysier
cb42b3ad83
fix(neuron): explicitly install toolchain (#3072)
* fix(neuron): explicitly install toolchain

* ci(neuron): trigger CI when Dockerfile is modified
2025-03-05 11:46:58 +01:00
Nicolas Patry
491ed9e11d
Patch rust release. (#3069)
* Patch rust release.

* Trying to remove the rust-toolchain hardcoded in action.

* Upgrade rust toolchain.

* Put back the toolchain ?

* Fix neuron dockerfile.

* Move to the proper version of Rust.

* 1.85 since the GH action doesn't respect the override.

* Typo.

* Fixing the github action.

* Fixing docker llamacpp.

* Fixing the github action.

* Update clippy.
2025-03-04 18:07:33 +01:00
Sadra Barikbin
144d99c147
Fix a tiny typo in monitoring.md tutorial (#3056)
Update monitoring.md
2025-03-04 17:06:26 +01:00
Nicolas Patry
08bbfa16a1
Preparing for release. (#3060)
* Preparing for release.

* Upgrade doc.

* Fix docs auto-generated.

* Fix update doc along.
2025-03-04 16:47:10 +01:00
Hugo Larcher
d8ff7f2623
feat: add support for HF_HUB_USER_AGENT_ORIGIN to add user-agent Origin field in Hub requests. (#3061)
* feat: add support for HF_HUB_USER_AGENT_ORIGIN to add user-agent Origin field in Hub requests.

* fix: Rust version for Neuron

* fix: PR comments, use rust-toolchain.toml
2025-03-04 16:43:50 +01:00
Daniël de Kok
e88f6f6ee9
Add property-based testing for RadixAllocator (#3068) 2025-03-04 15:09:46 +01:00
Daniël de Kok
fa4e9511f8
Fix two edge cases in RadixTrie::find (#3067)
- Always return a node, not its parent.
- Do not recurse when a node does not represent a full prefix of the
  input.
2025-03-04 13:23:27 +01:00
Nicolas Patry
a914a21899
Revert "Patch rust release."
This reverts commit aad9c2b0bd.
2025-03-04 12:16:18 +00:00
Nicolas Patry
aad9c2b0bd
Patch rust release. 2025-03-04 12:14:58 +00:00
Nicolas Patry
1f35cc7a31
Updating patch rust release. 2025-03-04 12:13:58 +00:00
Baptiste Colle
683ff53fa3
Add Gaudi Backend (#3055)
* wip(gaudi): import server and dockerfile from tgi-gaudi fork

* feat(gaudi): new gaudi backend working

* fix: fix style

* fix prehooks issues

* fix(gaudi): refactor server and implement requested changes
2025-02-28 12:14:58 +01:00
David Corvoysier
5eec3a8bb6
Avoid running neuron integration tests twice (#3054)
* test(neuron): refactor to prepare batch export

* test(neuron): add helper to batch export models

Also rename fixture file fro clarity.

* ci(neuron): do not run tests twice

* ci(neuron): rename precompilation job

* test(neuron): remove redundant subdirectory

* test(neuron): remove erroneous line

* doc(neuron): update links to installation page

* feat(neuron): cleanup Dockerfile

CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse is not required anymore.

* test(neuron): try to reduce download errors
2025-02-26 12:15:01 +01:00
drbh
b0069e0485
fix: run linters and fix formatting (#3057) 2025-02-25 16:11:34 -05:00
Wang, Yi
d7a24c03cf
some minor fix (#3048)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-02-25 12:07:55 +01:00
Nicolas Patry
cea9dbc971
You need to seek apparently. (#3049) 2025-02-24 14:58:23 +01:00
David Corvoysier
c00add9c03
Add Neuron backend (#3033)
* feat: add neuron backend

* feat(neuron): add server standalone installation

* feat(neuron): add server and integration tests

* fix(neuron): increase ulimit when building image

The base image used to compile the rust components seems to have a low
ulimit for opened files, which leads to errors during compilation.

* test(neuron): merge integration tests and fixtures

* test: add --neuron option

* review: do not use latest tag

* review: remove ureq pinned version

* review: --privileged should be the exception

* feat: add neuron case to build ci

* fix(neuron): export models from container in test fixtures

The neuron tests require models to have been previously exported and
cached on the hub. This is done automatically by the neuron.model
fixture the first time the tests are ran for a specific version.
This fixture used to export the models using optimum-neuron directly,
but this package is not necessarily present on the system.
Instead, it is now done through the neuron TGI itself, since it
contains all the tools required to export the models.
Note that since the CI runs docker in docker (dind) it does not seem
possible to share a volume between the CI container and the container
used to export the model.
For that reason, a specific image with a modified entrypoint is built
on-the-fly when a model export is required.

* refactor: remove sagemaker entry-point

The SageMaker image is built differently anyway.

* fix(neuron): avoid using Levenshtein

* test(neuron): use smaller llama model

* feat(neuron): avoid installing CUDA in image

* test(neuron): no error anymore when requesting too many tokens

* ci: doing a precompilation step (with a different token).

* test(neuron): avoid using image sha when exporting models

We now manually evaluate the apparent hash of the neuron backend by
combining the hash of the neuron backend directory and Dockerfile.
This new hash is used to identify exported neuron models instead of the
image sha.
This has two benefits:
- it changes less frequently (only hwen the neuron backend changes),
  which means less neuron models being pushed to the hub,
- it can be evaluated locally, meaning that running the tests once
  locally will export the models before the CI uses them.

* test(neuron): added a small script to prune test models

---------

Co-authored-by: drbh <david.richard.holtz@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2025-02-24 09:10:05 +01:00
Daniël de Kok
97c5f7e685
Use rotary kernel from the Hub (#3041) 2025-02-21 13:55:31 +01:00
drbh
1cae3197c4
Improve tool call message processing (#3036)
* make content field optional in chat request

* add tool_calls field to Message struct

* feat: add test and serialize tool messages

* fix: bump utopia, openapi doc version and improve test

* fix: rerun update docs

* fix: suppoer tool call id in template and remove unnecessary changes

* fix: ruff lint remove unused import

* fix: adjust message types in tests

---------

Co-authored-by: sailesh duddupudi <saileshradar@gmail.com>
2025-02-21 10:30:29 +01:00
Adrien Gallouët
3498f6085e
Update Gradio ChatInterface configuration in consuming_tgi.md (#3042)
The current code does not work and gives the following message:

    UserWarning: You have not specified a value for the `type` parameter. Defaulting to the 'tuples' format for chatbot messages, but this is deprecated and will be removed in a future version of Gradio. Please set type='messages' instead, which uses openai-style dictionaries with 'role' and 'content' keys.
      warnings.warn(
    Traceback (most recent call last):
      File "/Users/angt/hf/tgi/test-gradio.py", line 22, in <module>
        gr.ChatInterface(
    TypeError: ChatInterface.__init__() got an unexpected keyword argument 'retry_btn'

Signed-off-by: Adrien Gallouët <adrien@gallouet.fr>
2025-02-21 10:11:28 +01:00
Nicolas Patry
142a49a80d
Simplify logs2. (#3045)
* Simplify logs2.

* Changing the scope from module to session to fix the event_loop issue.
2025-02-21 10:03:40 +01:00
Wang, Yi
06dfe9abfe
fix qwen2 vl crash in continous batching (#3004)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-02-20 18:36:45 -05:00
Daniël de Kok
ed96ba6503
flashinfer 0.2.0.post1 -> post2 (#3040)
* flashinfer 0.2.0.post1 -> post2

* Fix ruff stuff.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2025-02-20 12:34:20 +01:00
Wang, Yi
feaa2477b7
update ipex and torch to 2.6 for cpu (#3039)
ipex cpu 2.6 support topk_group in moe fusion ops

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-02-20 09:12:28 +01:00
Hugo Larcher
230aa25641
feat: Add the parsing of HF_HUB_USER_AGENT_ORIGIN environment variable for telemetry (#3027)
* feat: Add the parsing of HF_HUB_USER_AGENT_ORIGIN environment variable to add info about the environment running TGI. That is useful to track usage in case of collaborations for example.

* fix: trufflehog
2025-02-19 21:09:12 +01:00
Nicolas Patry
9c89d0070e
Having less logs in case of failure for checking CI more easily. (#3037)
* Having less logs in case of failure for checking CI more easily.

* Cleaning up the versions to uv for the client.

* Ignore entirely the API.
2025-02-19 17:01:33 +01:00
Nicolas Patry
fde3234cbc
Using public external registry (to use external runners for CI). (#3031)
* Using public external registry (to use external runners for CI).

* Fix build.

* Fixing the external registry.

* Fixing trtllm tests.
2025-02-19 14:53:14 +01:00
drbh
d6a0c67e2f
feat: add initial qwen2.5-vl model and test (#2971)
* feat: support qwen2.5 vl model

* fix: bump support models doc

* feat: check before rope type adjustment and small refactors

* fix: add transformer overlay for processor support

* fix: vendor processor and config from transformers

* fix: refactor/simplify conditionals
2025-02-19 12:38:20 +01:00
Cyril Vallez
a7448661f7
Improve Transformers support (#2970)
* Much better support

* add gpt neox

* bump transformers version

* bump version
2025-02-18 19:04:34 +01:00
Nicolas Patry
5543fdc765
It's find in some machine. using hf_hub::api::sync::Api to download c… (#3030)
It's find in some machine. using hf_hub::api::sync::Api to download config is not successful which will make warmup fail since attribute like max_position_embeddings could not be got. update hf-hub to the latest version could fix it

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
2025-02-18 12:19:51 +01:00
Nicolas Patry
b8a4928d0e
Pinning trufflehog. (#3032) 2025-02-18 12:03:41 +01:00
Alvaro Bartolome
8a1cfd6122
Add loop_controls feature to minijinja to handle {% break %} (#2998)
* Add `loop_controls` feature to `minijinja`

* Add `test_chat_template_loop_controls` to test `break`
2025-02-18 10:33:22 +01:00
celsowm
794ec58b75
Update README.md (#3024)
only way to avoid:
error: experimental Nix feature 'nix-command' is disabled; add '--extra-experimental-features nix-command' to enable it
2025-02-18 10:08:28 +01:00
Daniël de Kok
f0ed76583c
Use eetq kernel from the hub (#3029)
* Use eetq kernel from the hub

* Fixing the CI.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2025-02-18 10:03:53 +01:00
Adrien Gallouët
cfd4fbb479
[Backend] Add Llamacpp backend (#2975)
* Add llamacpp backend

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Get rid of llama_batch_get_one()

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Use max_batch_total_tokens

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Handle max_batch_size

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add some input validation checks

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Handle ctx args & fix sampling

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add GPU args

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add --defrag-threshold

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add a stupid batch mechanism

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Cleanup

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add --numa

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix args

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Enable flash attention by default

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add --offload-kqv

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix batch_pos

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* backend(llama): add CUDA Dockerfile_llamacpp for now

* Only export the latest logits

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Output real logprobs

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix batching

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix seq iterations

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Auto-detect n_threads when not provided

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Clear request cache after completion

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Remove warmup

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Cleanup

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* backend(llama): add CUDA architectures build argument for Dockerfile

* Add specific args for batch

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add --type-v & --type-k

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Bump llamacpp to b4623

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Disable graceful shutdown in debug mode

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update Dockerfile_llamacpp

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Cleanup Dockerfile

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update Cargo.lock

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update args

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Simplify batching logic

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Set TGI_LLAMA_PKG_CUDA from CUDA_VERSION

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Rename bindings

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Remove n_ctx

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Make max_batch_total_tokens optional

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Ensure all samplers are freed on error

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Initialize penalty_last_n with llamacpp default value

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Cleanup

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Improve default settings

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add doc

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update docs

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Thanks clippy

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Thanks cargo fmt

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update docs

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Do not use HOSTNAME env

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Bump llama.cpp & cuda

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix requirements.txt

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix fmt

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Enable KQV offload by default

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Remove Ngrok tunneling

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Remove .cargo/config.toml

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix Dockerfile

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add missing cuda prefix

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Handle custom llama.cpp dir

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Cleanup

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add README.md

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add HF transfer

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Fix bool args

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update doc

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Update doc

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
2025-02-14 13:40:57 +01:00
Daniël de Kok
6df0fc0b55
Support sigmoid scoring function in GPTQ-MoE (#3017) 2025-02-14 11:33:49 +01:00
Nicolas Patry
d6881c37ab
Putting back the NCCL forced upgrade. (#2999)
* Putting back the NCCL forced upgrade.

* .

* ...

* Ignoring conda.

* Dropping conda from the buidl system + torch 2.6

* Cache min.

* Rolling back torch version.

* Reverting the EETQ modification.

* Fix flash attention ?

* Actually stay on flash v1.

* Patching flash v1.

* Torch 2.6, fork of rotary, eetq updated.

* Put back nccl latest (override torch).

* Slightly more reproducible build and not as scary.
2025-02-14 11:31:59 +01:00
Nicolas Patry
8a211dc7fc
Preventing single user hugging the server to death by asking (#3016)
for way too many tokens.
2025-02-13 11:23:17 +01:00
Nicolas Patry
4cccce4b44
Update the flaky mllama test. (#3015) 2025-02-12 12:26:52 +01:00
Wang, Yi
76bcb4948d
fix Qwen VL break in intel platform (#3002)
* fix Qwen VL break in intel platform

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* could use PositionRotaryEmbedding impl so rocm and ipex could all work

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-02-12 11:31:34 +01:00
Nicolas Patry
b86c3947ab
Revert "Update the flaky mllama test."
This reverts commit 8a870b31b9.
2025-02-11 17:13:06 +01:00
Nicolas Patry
8a870b31b9
Update the flaky mllama test. 2025-02-11 17:10:36 +01:00
Daniël de Kok
571ac9b507
Use kernels from the kernel hub (#2988)
* Use Hub kernels for Marlin and cutlass quantization kernels

* Use hub kernels for MoE/GPTQ-Marlin MoE

* Use attention kernels from the Hub

* Cache the kernels in the Docker image

* Update moe kernels

* Support loading local kernels for development

* Support latest moe kernels

* Update to moe 0.1.1

* CI: download locked kernels for server tests

* Fixup some imports

* CI: activate venv

* Fix unused imports

* Nix: add attention/moe/quantization kernels

* Update hf-kernels to 0.1.5

* Update kernels

* Update tgi-nix flake for hf-kernels

* Fix EOF

* Take `load_kernel` out of a frequently-called function

* Hoist another case of kernel loading out of a somewhat hot function

* marlin-kernels -> quantization

* attention -> paged-attention

* EOF fix

* Update hf-kernels, fixup Docker

* ipex fix

* Remove outdated TODO
2025-02-10 19:19:25 +01:00
Nicolas Patry
4b8cda684b
Updating mllama after strftime. (#2993)
* Updating mllama after strftime.

* Town instead village.

* Forgot the integration snapshot.

* Attempt to fix intel CPU.

* Intel extension fix.

* Workaround intel.

* Moving those deps directly into pyproject.

* Revert "Moving those deps directly into pyproject."

This reverts commit 98c1496ea6.

* Non system uv.

* Fixing the docker environment hopefully.

* Missed a step.

* Move workdir up a bit.

* Bailing out of reproducible python env.

* Triton version.
2025-02-07 10:38:13 +01:00
Funtowicz Morgan
856709d5c3
[Backend] Bump TRTLLM to v.0.17.0 (#2991)
* backend(trtllm): bump TRTLLM to v.0.17.0

* backend(trtllm): forget to bump dockerfile

* backend(trtllm): use arg instead of env

* backend(trtllm): use correct library reference decoder_attention_src

* backend(trtllm): link against decoder_attention_{0|1}

* backend(trtllm): build against gcc-14 with cuda12.8

* backend(trtllm): use return value optimization flag as as error if available

* backend(trtllm): make sure we escalade all warnings as errors on the backend impl in debug mode

* backend(trtllm): link against CUDA 12.8
2025-02-06 16:45:03 +01:00
Wang, Yi
36223f834e
Triton fix (#2995)
fix triton to 3.1.0 to fix ipex import issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-02-06 12:28:41 +01:00
Nicolas Patry
0ef8c8a97a
Using the "lockfile". (#2992)
* Using the "lockfile".

* Revert dummy modifications.

* Lock on python 3.11

* Another attempt.

* ..

* Bad cache hits.

* The good old monkey.

* How in the world...

* We need the launcher still.

* .

* ..

* Attempt #42

* Don't break all other builds.

* Mode max.

* Applying to other builds.
2025-02-06 12:28:24 +01:00
drbh
c1cf36c0dc
Improve qwen vl impl (#2943)
* feat: refactor model, improve startup and re enable tests

* fix: improve multimodal rotary embed caching

* fix: limit vision flop calc to qwen2 vl models and update config typing

* fix: include clippy lint

* feat: refactor position ids in warmup and bump tests

* fix: prefer default dtype

* fix: enable all cuda graphs and bump snapshots

* fix: adjust rotaty init path

* fix: simplify get position ids and remove usused vision config

* fix: update position ids so first dim is batch, simplify rotary and bump vlm default token limit

* fix: improve position id init during cuda warmup for mrope and simplfy rotary forward

* fix: check existance before accessing rope type in cuda warmup

* fix: check key before access

* fix: improve mrope check in cuda graph warmup

* fix: remove check for default rope type

* fix: add more test and improve model generation

* fix: improve and simplify get_cos_sin, refactors and cleanup  get_position_ids

* fix: adjust signatures with types
2025-02-04 12:44:18 -05:00
Daniël de Kok
dd2bd5fdb3
impureWithCuda: fix gcc version (#2990)
* impureWithCuda: fix gcc version

* trufflehog: do not fail on unverified results
2025-02-04 17:01:59 +01:00
Alvaro Bartolome
88fd56f549
Add strftime_now callable function for minijinja chat templates (#2983)
* Add `chrono` and `strftime_now` function callable

* Fix `test_chat_template_valid_with_strftime_now`

* Fix `test_chat_template_valid_with_strftime_now`
2025-02-03 15:30:48 +01:00
Hugo Larcher
e3f2018cb5
hotfix: fix trtllm CI build on release (#2981)
* hotfix: fix trtllm CI build on release

* fix: test release.

* fix: test release.

* fix: test release. env not recognized https://github.com/actions/runner/issues/1661

* fix: test release. Works.
2025-02-03 11:11:15 +01:00
Nicolas Patry
bb69c5b199
Back on nix main. (#2979) 2025-01-31 14:39:52 +01:00
Nicolas Patry
c9d68945cc
Prepare for release 3.1.0 (#2972)
* Prepare for release 3.1.0

* Back on main flake.

* Fixing stuff.

* Upgrade to moe-kernels 0.8.2 for Hip support.

* Deactivating the flaky test.
2025-01-31 14:19:01 +01:00
Mohit Sharma
c07a2cc82b
Update moe-kernel to 0.8.2 for rocm (#2977)
update moe-kernel for amd
2025-01-31 11:40:00 +01:00
Hugo Larcher
065aabb13d
doc: Update TRTLLM deployment doc. (#2960)
* doc: Update TRTLLM deployment doc. Update TRTLLM CI to allow release builds when tagging TGI.

* doc: Update TRTLLM deployment doc. Update TRTLLM CI to allow release builds when tagging TGI.

* fix: PR comments
2025-01-30 18:04:42 +01:00
Nicolas Patry
cb747b33da
Add deepseekv3 (#2968)
* Add fp8 support moe models

add deepseekv3

format codfe'

update dockerfile

update doc

* Small modifications.

* Moe kernels 0.8.1

* Upgrade to 0.8.1

* Fixing moe import.

* Black.

* Apply suggestions from code review

Co-authored-by: Mohit Sharma <mohit21sharma.ms@gmail.com>

* Fixing Mixtral + Nits.

* Put link to ref.

* Fix other call locations.

* Scoring func `softmax` is the only one that works.

---------

Co-authored-by: Mohit Sharma <mohit21sharma.ms@gmail.com>
2025-01-30 16:40:25 +01:00
Nicolas Patry
80e7d98f88
Hotfixing intel-cpu (not sure how it was working before). (#2967)
* Hotfixing intel-cpu (not sure how it was working before).

* Do not fail on missing moe-kernels (Intel-cpu).
2025-01-29 22:34:41 +01:00
Daniël de Kok
ee0dffcd14
Update to moe-kernels 0.8.0 (#2966) 2025-01-29 18:19:55 +01:00
Mohit Sharma
4ef2e045c9
Add fp8 support moe models (#2928)
* Add fp8 support moe models

* flatten condition
2025-01-29 13:56:32 +01:00
Hugo Larcher
73b7cf83f6
Add backend name to telemetry (#2962)
* feat: Add backend name to telemetry
2025-01-28 16:53:16 +01:00
Nicolas Patry
eb3df0f46f
Fixing the oom maybe with 2.5.1 change. (#2958) 2025-01-28 10:30:28 +01:00
Hugo Larcher
c690da5973
fix: Telemetry (#2957)
* fix: add telemetry regular pings and fix unhandled errors avoid not sending telemetry stop events.

* fix: simplify error handling

* fix: update ping delay and update doc.

* fix: clippy

* doc: Rephrase properly.
2025-01-28 10:29:18 +01:00
Daniël de Kok
db922eb77e
Update to attention-kernels 0.2.0 (#2950)
This version removes our patches/custom API. Makes it simpler to
get changes from upstream. One of which is that we can enable FP8
KV cache for paged attention as well.
2025-01-27 11:42:36 +01:00
Funtowicz Morgan
40b00275b2
Attempt to remove AWS S3 flaky cache for sccache (#2953)
* backend(trtllm): attempt to remove AWS S3 flaky cache for sccache

* backend(trtllm): what if we expose ENV instead of inline?

* backend(trtllm): and with the right env var for gha sccache

* backend(trtllm): relax the way to detect sccache

* backend(trtllm): make sccache definition manually

* backend(trtllm): ok let's try to define the launchers in build.rs when rustc_wrapper is present

* backend(trtllm): export env variable in run mb?

* backend(trtllm): Cache mode max to cache intermediate layers

* backend(trtllm): inject ompi_version build arg in dependent step
2025-01-27 11:21:48 +01:00
Nicolas Patry
6cb41a80a1
Revert "Remove AWS credentials?"
This reverts commit d2ff68e98d.
2025-01-24 14:34:17 +01:00
Nicolas Patry
d2ff68e98d
Remove AWS credentials? 2025-01-24 12:18:28 +01:00
Nicolas Patry
d9dda11726
Trying to put back the archlist (to fix the oom). (#2947) 2025-01-24 09:32:17 +01:00
Nicolas Patry
d937eb64da
Fixing cargo lock. 2025-01-23 18:54:34 +01:00
Cyril Vallez
18c4607d46
Transformers backend TP fix (#2945)
* init dispatch

* cohere fix
2025-01-23 18:09:57 +01:00
Nicolas Patry
29a0893b67
Tmp tp transformers (#2942)
* Upgrade the version number.

* Remove modifications in Lock.

* Tmp branch to test transformers backend with 2.5.1 and TP>1

* Fixing the transformers backend.

inference_mode forces the use of `aten.matmul` instead of `aten.mm` the
former doesn't have sharding support crashing the transformers TP
support.

`lm_head.forward` also crashes because it skips the hook that
cast/decast the DTensor.

Torch 2.5.1 is required for sharding support.

* Put back the attention impl.

* Revert the flashinfer (this will fails).

* Building AOT.

* Using 2.5 kernels.

* Remove the archlist, it's defined in the docker anyway.
2025-01-23 18:07:30 +01:00
Funtowicz Morgan
0a89902663
[TRTLLM] Expose finish reason (#2841)
* feat(trtllm): expose finish reason to Rust

* misc(llamacpp): fix typo

* misc(backend): update deps
2025-01-23 16:48:26 +01:00
Nikolai Kolodziej
4e172028aa
Add NVIDIA A40 to known cards (#2941)
feat: add NVIDIA A40 to known cards
2025-01-23 14:19:21 +01:00
Alvaro Bartolome
6ab02931cf
Set alias for max_completion_tokens in ChatRequest (#2932) 2025-01-23 14:18:47 +01:00
Funtowicz Morgan
cc212154e0
Bump TensorRT-LLM backend dependency to v0.16.0 (#2931)
* backend(trtllm): update to 0.16.0

* backend(trtllm): do not use shallow clone

* backend(trtllm): use tag instead

* backend(trtllm): move to nvidia remote instead of hf

* backend(trtllm): reenable shallow clone

* backend(trtllm): attempt to use ADD instead of RUN for openmpi

* backend(trtllm): make sure we are using correct path for openmpi ADD in dockerfile

* backend(trtllm): add correctly untar it
2025-01-23 13:54:40 +01:00
Daniël de Kok
1dd346666a
Clarify FP8-Marlin use on capability 8.9 (#2940)
The log message stated that the GPU does not support FP8 on capability
8.9. However we use FP8-Marlin on that capability because it is faster.
2025-01-22 18:18:11 +01:00
Wang, Yi
1d3c9beba8
fix moe in quantization path (#2935)
update ipex xpu to support moe for mixtral

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-01-22 14:36:15 +01:00
Nicolas Patry
2dfe3b3ee6
Upgrading the deps to have transformers==4.48.0 necessary (#2937) 2025-01-22 12:20:15 +01:00
Alvaro Bartolome
64a33c1f05
Run pre-commit run --all-files to fix CI (#2933) 2025-01-21 17:33:33 +01:00
Nicolas Patry
bdb3e488e4
Trying to avoid the random timeout. (#2929)
* Trying to avoid the random timeout.

* More read timeout ?

* Longer timeout ?

* Remove legacy ENV directive.

* Remove the dummy test, only increase the read timeout.

* Wat?
2025-01-21 11:06:10 +01:00
Funtowicz Morgan
17367438f3
Give TensorRT-LLMa proper CI/CD 😍 (#2886)
* test(ctest) enable address sanitizer

* feat(trtllm): expose finish reason to Rust

* feat(trtllm): fix logits retrieval

* misc(ci): enabe building tensorrt-llm

* misc(ci): update Rust action toolchain

* misc(ci): let's try to build the Dockerfile for trtllm

# Conflicts:
#	Dockerfile_trtllm

* misc(ci): provide mecanism to cache inside container

* misc(ci): export aws creds as output of step

* misc(ci): let's try this way

* misc(ci): again

* misc(ci): again

* misc(ci): add debug profile

* misc(ci): add debug profile

* misc(ci): lets actually use sccache ...

* misc(ci): do not build with ssl enabled

* misc(ci): WAT

* misc(ci): WAT

* misc(ci): WAT

* misc(ci): WAT

* misc(ci): WAT

* misc(backend): test with TGI S3 conf

* misc(backend): test with TGI S3 conf

* misc(backend): once more?

* misc(backend): let's try with GHA

* misc(backend): missing env directive

* misc(backend): make sure to correctly set IS_GHA_BUILD=true in wf

* misc(backend): ok let's debug smtg

* misc(backend): WWWWWWWWWWWWWAAAAAAAA

* misc(backend): kthxbye retry s3

* misc(backend): use session token

* misc(backend): add more info

* misc(backend): lets try 1h30

* misc(backend): lets try 1h30

* misc(backend): increase to 2h

* misc(backend): lets try...

* misc(backend): lets try...

* misc(backend): let's build for ci-runtime

* misc(backend): let's add some more tooling

* misc(backend): add some tags

* misc(backend): disable Werror for now

* misc(backend): added automatic gha detection

* misc(backend): remove leak sanitizer which is included in asan

* misc(backend): forward env

* misc(backend): forward env

* misc(backend): let's try

* misc(backend): let's try

* misc(backend): again

* misc(backend): again

* misc(backend): again

* misc(backend): again

* misc(backend): again

* misc(backend): fix sscache -> sccache

* misc(backend): fix sscache -> sccache

* misc(backend): fix sscache -> sccache

* misc(backend): let's actually cache things now

* misc(backend): let's actually cache things now

* misc(backend): attempt to run the testS?

* misc(backend): attempt to run the tests?

* misc(backend): attempt to run the tests?

* change runner size

* fix: Correctly tag docker images (#2878)

* fix: Correctly tag docker images

* fix: Correctly tag docker images

* misc(llamacpp): maybe?

* misc(llamacpp): maybe?

* misc(llamacpp): maybe?

* misc(ci): gogogo

* misc(ci): gogogo

* misc(ci): gogogo

* misc(ci): gogogo

* misc(ci): gogogo

* misc(ci): gogogo

* misc(ci): go

* misc(ci): go

* misc(ci): go

* misc(ci): use bin folder

* misc(ci): make the wf callable for reuse

* misc(ci): make the wf callable for reuse (bis)

* misc(ci): make the wf callable for reuse (bis)

* misc(ci): give the wf a name

* Create test-trtllm.yml

* Update test-trtllm.yml

* Create build-trtllm2

* Rename build-trtllm2 to 1-build-trtllm2

* Rename test-trtllm.yml to 1-test-trtllm2.yml

* misc(ci): fw secrets

* Update 1-test-trtllm2.yml

* Rename 1-build-trtllm2 to 1-build-trtllm2.yml

* Update 1-test-trtllm2.yml

* misc(ci): use ci-build.yaml as main dispatcher

* Delete .github/workflows/1-test-trtllm2.yml

* Delete .github/workflows/1-build-trtllm2.yml

* misc(ci): rights?

* misc(ci): rights?

* misc(ci): once more?

* misc(ci): once more?

* misc(ci): baby more time?

* misc(ci): baby more time?

* misc(ci): try the permission above again?

* misc(ci): try the permission above again?

* misc(ci): try the permission scoped again?

* misc(ci): install tensorrt_llm_executor_static

* misc(ci): attempt to rebuild with sccache?

* misc(ci):run the tests on GPU instance

* misc(ci): let's actually setup sccache in the build.rs

* misc(ci): reintroduce variables

* misc(ci): enforce sccache

* misc(ci): correct right job name dependency

* misc(ci): detect dev profile for debug

* misc(ci): detect gha build

* misc(ci): detect gha build

* misc(ci): ok debug

* misc(ci): wtf

* misc(ci): wtf2

* misc(ci): wtf3

* misc(ci): use commit HEAD instead of merge commit for image id

* misc(ci): wtfinfini

* misc(ci): wtfinfini

* misc(ci): KAMEHAMEHA

* Merge TRTLLM in standard CI

* misc(ci): remove input machine

* misc(ci): missing id-token for AWS auth

* misc(ci): missing id-token for AWS auth

* misc(ci): missing id-token for AWS auth

* misc(ci): again...

* misc(ci): again...

* misc(ci): again...

* misc(ci): again...

* misc(ci): missing benchmark

* misc(ci): missing backends

* misc(ci): missing launcher

* misc(ci): give everything aws needs

* misc(ci): give everything aws needs

* misc(ci): fix warnings

* misc(ci): attempt to fix sccache not building trtllm

* misc(ci): attempt to fix sccache not building trtllm again

---------

Co-authored-by: Guillaume LEGENDRE <glegendre01@gmail.com>
Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
Co-authored-by: Pauline Bailly-Masson <155966238+paulinebm@users.noreply.github.com>
2025-01-21 10:19:16 +01:00
Cyril Vallez
b980848abf
Flash Transformers modeling backend support (#2913)
* add transformers_flash

* inits

* switch version to make it work

* Update Makefile-flash-att-v2

* Update Makefile-flash-att-v2

* Update Makefile-flash-att-v2

* Update Makefile-flash-att-v2

* Update Makefile-flash-att-v2

* Update Makefile-flash-att-v2

* runnable version

* working

* push change

* fix high dim

* init

* default

* latest transformers changes

* revert

* simplify check

* remove flag

* improve type hints + required args

* Update based on transformers PR

* small fix

* Remove Warpers for Processor

* fix compatibility version issue

* raise error if needed

* Simplify with monkey patch

* revert + style + minor improvements

* update comment

* device check

* move the import to avoid device issue

* Update __init__.py

* check for non-native models

* oupsi

---------

Co-authored-by: System administrator <root@ip-10-90-0-159.ec2.internal>
2025-01-21 10:01:51 +01:00
Nicolas Patry
447a5b2f87
Fixing TRTLLM dockerfile. (#2922)
* Fixing TRTLLM dockerfile.

* Fixed.

* Creating a dummy modification to chekc CI runs.

* Removing the cache directive.

* Modifying this should cache hit.

* Revert "Modifying this should cache hit."

This reverts commit 46a2bde108.

* Modifying this should cache hit.

* Unwanted files.
2025-01-20 11:13:46 +01:00
Daniël de Kok
630f198624
flashinfer: switch to plan API (#2904)
This change doesn't switch `forward` to `run` yet, since it requires
that we have access to the softmax scale and the logit softcap outside
the model.
2025-01-17 18:18:02 +01:00
drbh
8f6146f11a
Revert "feat: improve qwen2-vl startup " (#2924)
Revert "feat: improve qwen2-vl startup  (#2802)"

This reverts commit eecca27113.
2025-01-17 12:09:05 -05:00
drbh
eecca27113
feat: improve qwen2-vl startup (#2802)
* feat: tokenize each request individually and increase warmup image size

* feat: adjust rotary embed and avoid cuda graphs of size 2 and smaller

* fix: address image resize and rebase changes

* feat: update to run qwen2-vl tests

* fix: tweak param types
2025-01-17 11:50:41 -05:00
Wang, Yi
6e982f43a1
fix the crash of meta-llama/Llama-3.2-1B (#2918)
* fix the crash of meta-llama/Llama-3.2-1B

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Apply suggestions from code review

Simpler fix (which doesn't break vlms).

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2025-01-17 15:50:58 +01:00
Mohit Sharma
c20025dbf7
Add fp8 kv cache for ROCm (#2856)
* add fp8 kv cache for rocm

* improvements

* update log statement

* remove bookkeeping field
2025-01-17 18:43:29 +05:30
Nicolas Patry
de19e7e844
Moving to uv instead of poetry. (#2919)
* Moving to `uv` instead of `poetry`.

More in the standard, faster, seemingly better lockfile.

* Creating venv if not created.

* Create the venv.

* Fix ?

* Fixing the test by activating the environment ?

* Install system  ?

* Add the cli entry point.

* docker install on system

* Monkeying this...

* `--system` is redundant.

* Trying to force-include this pb folder.

* TRying to check that pb is imported correctly.

* Editable install necessary ?

* Non editable?

* Editable it is.
2025-01-17 12:32:00 +01:00
Daniël de Kok
d61f14f271
nix: update to PyTorch 2.5.1 (#2921) 2025-01-17 12:12:11 +01:00
Wang, Yi
885144166f
Flash decoding kernel adding and prefill-chunking and prefix caching enabling in intel cpu/xpu (#2815)
* flash decoding

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable xpu flashdecoding

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* set flashdecoding blocksize as 64

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable flashdecoding, prefill chunking and prefix caching

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add flashdecoding-ipex

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-01-17 12:04:57 +01:00
drbh
82f6ea1b71
feat: improve star coder to support multi lora layers (#2883)
* feat: improve star coder to support multi lora layers

* feat: improve weight that support adapters and add tests for starcoder with lora

* fix: bump snapshot for added tests

* fix: rerun pre commit lints

* fix: bump adapter test for added later names
2025-01-16 16:23:55 -05:00
Daniël de Kok
5f78ec32a5
Do not convert weight scale to e4m3fnuz on CUDA (#2917) 2025-01-16 13:44:32 +01:00
Nicolas Patry
922cc38fbc
Upgrading bitsandbytes. (#2910)
* Upgrading bitsandbytes.

Co-Authored-By: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>

* Tighter lock.

---------

Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
2025-01-15 20:07:21 +01:00
Nicolas Patry
120bd3e3bb
Removing the github runner. (#2912) 2025-01-15 19:20:44 +01:00
Baptiste Colle
1470aec9d9
Fix typo in TPU docs (#2911)
docs(tpu): fix typo
2025-01-15 18:32:07 +01:00
Nicolas Patry
203cade244
Upgrading our rustc version. (#2908)
* Upgrading our rustc version.

* Fixing the rust tests to proper version.

* Clippy everything.
2025-01-15 17:04:03 +01:00
Baptiste Colle
46994b34fb
📝 add guide on using TPU with TGI in the docs (#2907) 2025-01-15 16:26:11 +01:00
Alvaro Bartolome
dc9b8e9814
Fix docker run in README.md (#2861)
* Fix `docker run` in `README.md`

* Add line-break in `docker run` for readability

Co-authored-by: Daniël de Kok <danieldk@users.noreply.github.com>

* Add line-break in `docker run` for readability

Co-authored-by: Daniël de Kok <danieldk@users.noreply.github.com>

---------

Co-authored-by: Daniël de Kok <danieldk@users.noreply.github.com>
2025-01-15 16:07:10 +01:00
Guspan Tanadi
3c7ae48f7f
docs(conceptual/speculation): available links Train Medusa (#2863) 2025-01-15 16:05:54 +01:00
Wang, Yi
cc8b9650bd
Baichuan2-13B does not have max_position_embeddings in config (#2903)
* Baichuan2-13B does not have max_position_embeddings in config
see https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/main/config.json

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Update server/text_generation_server/models/flash_causal_lm.py

Co-authored-by: Daniël de Kok <me@github.danieldk.eu>

* fmt

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
2025-01-15 15:56:52 +01:00
Mohit Sharma
e07acc7f68
Enable FP8 Per-Tensor Scales and Integrate Marlin/MoE Kernels Repo for ROCm (#2825)
* (feat) convert tscales to tensorwise

* (fix) fp8 scaling for cuda

* (kernel) add marlin-kernels

* add moe-kernels

* fix moe kernel comit

* fix scaling

* nm changes
2025-01-15 11:38:58 +05:30
Mohit Sharma
880ab9c2f3
Add Flash decoding kernel ROCm (#2855)
* (vllm) updated vllm rocm kernels

* revert silu

* update partition size

* remove grouped_topk

* (nit) remove log

* add flash decoding
2025-01-13 11:12:35 +01:00
Wang, Yi
1660154ae6
fix crash in torch2.6 if TP=1 (#2885)
error like "ValueError: Expecting a ProcessGroup, but got a <class
'text_generation_server.utils.dist.FakeGroup'>. rank=0"

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-01-13 11:11:31 +01:00
Nicholas Broad
2e22164d4a
Update using_guidance.md (#2901)
deletes one copy of a sentence that repeated twice
2025-01-13 11:09:35 +01:00
lazariv
83624a07be
Add possible variants for A100 and H100 GPUs for auto-detecting flops (#2837)
* Update main.rs with A100 and H100 variants

* Add another variant "nvidia-h100-nvl"

* Update main.rs

Add nvidia-a100-sxm4-40gb
2025-01-10 16:12:02 +01:00
Dmitry Dygalo
01067f8ba8
chore: Update jsonschema to 0.28.0 (#2870)
* chore: Update jsonschema to 0.28.0

Signed-off-by: Dmitry Dygalo <dmitry@dygalo.dev>

* chore: Enable blocking feature for reqwest

Signed-off-by: Dmitry Dygalo <dmitry@dygalo.dev>

---------

Signed-off-by: Dmitry Dygalo <dmitry@dygalo.dev>
2025-01-10 15:01:54 +01:00
Daniël de Kok
4f7e00f4ce
Update to marlin-kernels 0.3.7 (#2882)
This fixes a race condition. See:

https://github.com/vllm-project/vllm/pull/11493
2025-01-10 12:43:44 +01:00
drbh
da5ab46705
Improve vlm support (add idefics3 support) (#2437)
* feat: expand vlm support and add image token logic and tests

* fix: avoid unused perceiver config

* feat: integrate image tokens into inputs embeds

* feat: add simple idefics3 test

* feat: update docs, image token logic and weight names

* fix: improve image processing

* feat: improve prefix for idefics3

* fix: bump idefics3 tests and snapshots

* fix: improve text model loading

* feat: consolidate changes with existing vlms and add support and test for smolvlm

* fix: create new idefic3 file, simplify logic and adjust llama weight loading

* fix: lint with ruff

* fix: clean up idefics 3 and improve prefix handling

* fix: improve typing

* fix: improve prompt_split_image with ref to original impl

* fix: adjust ruff lints and small refactors

* fix: adjust FlashLlamaModel prefix logic
2025-01-09 10:35:32 -05:00
Daniël de Kok
a9c7d2e3b6
Basic flashinfer 0.2 support (#2862)
* Basic flashinfer 0.2 support

This change does not use any of the new features yet, but makes
some small compatibility changes.

* Update to flashinfer 0.2.0.post1

* flashinfer: remove `contiguous` calls

* Fix flashinfer install

* flashinfer: fixup kv cache dtype

* Fix some annoying perturbations

* More output changes
2025-01-09 16:25:00 +01:00
Wang, Yi
afb6c728d8
update ipex xpu to fix issue in ARC770 (#2884)
* update ipex xpu to fix issue in ARC770

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add ats support

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-01-09 10:11:03 +01:00
Ruida Zeng
d37a43e581
chore: fixed some typos and attribute issues in README (#2891)
* chore: fixed html repeated attribute in README

* chore: fix minor grammar/capitalization

* chore: fixed spelling mistakes in README
2025-01-09 10:09:23 +01:00
drbh
23bc38b10d
fix: include add_special_tokens in kserve request (#2859)
merging as this patch is already used, and fully limit to the kserve feature
2024-12-19 16:55:17 -05:00
Wang, Yi
ab5f616920
change xpu lib download link (#2852)
Signed-off-by: Wang,Yi A <yi.a.wang@intel.com>
2024-12-19 12:18:58 +01:00
Mohit Sharma
8f66d323d0
Update vllm kernels for ROCM (#2826)
* (vllm) updated vllm rocm kernels

* revert silu

* update partition size

* remove grouped_topk

* (nit) remove log

* update moe-kernels commit
2024-12-18 12:44:42 +01:00
janne-alatalo
7eeefa3b57
Qwen2-VL runtime error fix when prompted with multiple images (#2840)
* Fix runtime error when Qwen2-VL was prompted with multiple images

Fix runtime error when Qwen2-VL model is prompted with prompt with more
than one image. The runtime error was:

 File "text-generation-inference/server/text_generation_server/models/custom_modeling/qwen2_vl.py", line 459, in get_position_ids
    text_pos_ids = torch.arange(text_length, device=d)
RuntimeError: upper bound and larger bound inconsistent with step sign

The error was caused by text_length variable going to negative value
when multiple images caused multiple loops in the get_position_ids
function's main loop.

The error is a simple logic mistake where next_image_pos is initialized
as relative offset from current_pos, but was used like it was absolute
position from zero.

* Fix runtime error when Qwen2-VL was prompted with multiple images

Fix runtime error when Qwen2-VL model is prompted with prompt with more
than one image. The runtime error was:

File "text-generation-inference/server/text_generation_server/models/custom_modeling/qwen2_vl.py", line 534, in forward
    inputs_embeds[input_ids == self.image_token_id] = image_embeds
RuntimeError: shape mismatch: value tensor of shape [512, 3584] cannot be broadcast to indexing result of shape [1024, 3584]

(The error message shape numbers can be different depending on the input
image resolutions)

The error was caused by adding the wrong number of <|image_pad|> tokens
to the tokenized input in the image_text_replacement function.

The error is a simple logical mistake where the number of image pad
tokens is checked from pixel_value_shape tensor's first dimension
length. However, the pixel_value_shape contains patches from all of the
images. Therefore the code added the total number of required image pad
tokens for the whole input to each of the images locations. This
resulted to extra image pad tokens to be present in the tokenized input.

The fix was to check the number of required tokens from the
image_grid_thw tensor. The tensor includes grid_t, grid_h, and grid_w
values for each image. grid_t * grid_h * grid_w results to the total
number of patches for the image [1]. The number of required image pad
tokens is number_of_patches // 4.

[1] 31f9a289a6/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py (L311)

---------

Co-authored-by: Janne Alatalo <janne.alatalo@jamk.fi>
2024-12-16 22:55:11 -05:00
drbh
a72f339c79
fix: lint backend and doc files (#2850) 2024-12-16 16:12:34 -05:00
Nicolas Patry
11ab329883
Fixing CI. (#2846) 2024-12-16 10:58:15 +01:00
Nicolas Patry
6f0b8c947d
New arg. (#2845) 2024-12-16 10:34:50 +01:00
Hugo Larcher
1708865fdc
Feat/trtllm cancellation dev container (#2795)
Add devcontainers for TRTLLM backend.

---------

Co-authored-by: Morgan Funtowicz <morgan@huggingface.co>
2024-12-13 16:19:06 +01:00
Funtowicz Morgan
ea7f4082c4
TensorRT-LLM backend bump to latest version + misc fixes (#2791)
* misc(cmake) update dependencies

* feat(hardware) enable new hardware.hpp and unittests

* test(ctest) enable address sanitizer

* feat(backend): initial rewrite of the backend for simplicity

* feat(backend): remove all the logs from hardware.hpp

* feat(backend): added some logging

* feat(backend): enable compiler warning if support for RVO not applying

* feat(backend): missing return statement

* feat(backend): introduce backend_workspace_t to store precomputed information from the engine folder

* feat(backend): delete previous backend impl

* feat(backend): more impl

* feat(backend): use latest trtllm main version to have g++ >= 13 compatibility

* feat(backend): allow overriding which Python to use

* feat(backend): fix backend_exception_t -> backend_error_t naming

* feat(backend): impl missing generation_step_t as return value of pull_tokens

* feat(backend): make backend_workspace_t::engines_folder constexpr

* feat(backend): fix main.rs retrieving the tokenizer

* feat(backend): add guard to multiple header definitions

* test(backend): add more unittest

* feat(backend): remove constexpr from par

* feat(backend): remove constexpig

* test(backend): more test coverage

* chore(trtllm): update dependency towards 0.15.0

* effectively cancel the request on the executor

* feat(backend) fix moving backend when pulling

* feat(backend): make sure we can easily cancel request on the executor

* feat(backend): fix missing "0" field access

* misc(backend): fix reborrowing Pin<&mut T> as described in the doc https://doc.rust-lang.org/stable/std/pin/struct.Pin.html#method.as_mut

* chore: Add doc and CI for TRTLLM (#2799)

* chore: Add doc and CI for TRTLLM

* chore: Add doc and CI for TRTLLM

* chore: Add doc and CI for TRTLLM

* chore: Add doc and CI for TRTLLM

* doc: Formatting

* misc(backend): indent

---------

Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
2024-12-13 15:50:59 +01:00
Nicolas Patry
3bb3fd19ae
Fixup opt to reduce the amount of odd if statements. (#2833)
* Fixup opt to reduce the amount of odd if statements.

* Fixing cargo lock
2024-12-12 18:20:13 +01:00
Wang, Yi
bf59118a93
fix facebook/opt-125m not working issue (#2824)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-12-12 14:41:30 +01:00
Nicolas Patry
c3bd7212c2
Fixing latest flavor by disabling it. (#2831) 2024-12-12 14:09:35 +01:00
Guspan Tanadi
f01f2fb6e7
docs(README): supported hardware links TGI AMD GPUs (#2814) 2024-12-12 13:49:33 +01:00
Nicolas Patry
07b01293c5
Prepare patch release. (#2829) 2024-12-11 21:03:50 +01:00
RodriMora
cc66dccbe8
Update README.md (#2827)
Added instructions to clone the repo and change directory into it. 

In following steps there is a "make install" step that would fail if people have not cloned the repo and cd into it, so it may be confusing for some

Added python venv alternative to conda too.
2024-12-11 19:45:49 +01:00
Nicolas Patry
82c24f7420
Using both value from config as they might not be correct. (#2817)
* Using both value from config as they might not be correct.

* Fixing max_position_embeddings for falcon.

* Simple attempt to fix the healthcheck block allocation.

* Much simpler solution.

* Default value for Backend start_health
2024-12-10 19:37:09 +01:00
Nicolas Patry
a2d878fa0f
Small update to docs (#2816) 2024-12-10 10:46:26 +01:00
Nicolas Patry
b2fac5d947
Hotfix link2 (#2812)
2nd hotfix ?
2024-12-09 20:57:18 +01:00
Nicolas Patry
a70dd2998b
Hotfixing the link. (#2811) 2024-12-09 20:50:07 +01:00
Nicolas Patry
042791fbd5
Prep new version (#2810)
* New version.

* Link fixup.

* Update docs.

* FIxup.
2024-12-09 20:42:42 +01:00
Nicolas Patry
27fa83ca5b
V3 doc (#2809)
* V3 document.

* Updating asset.
2024-12-09 19:58:07 +01:00
Nicolas Patry
a04356fb8c
Attempt for cleverer auto batch_prefill values (some simplifications). (#2808)
* Attempt for cleverer auto batch_prefill values (some simplifications).

* Less flaky tests.

* Fixing typo insertion.

* Update launcher/src/main.rs

Co-authored-by: Daniël de Kok <me@danieldk.eu>

* Adding small comment for source of calculation.

* Adding L40.

* Adding L40s.

---------

Co-authored-by: Daniël de Kok <me@danieldk.eu>
2024-12-09 19:44:32 +01:00
drbh
9f5c9a5e22
Enable paligemma2 (#2807)
* feat: support loading gemma2 as vlm text model

* feat: add test for paligemma2
2024-12-06 14:41:49 -05:00
Nicolas Patry
08f6fa0b59
Removing experimental to prefill chunking. 2024-12-06 19:09:40 +01:00
Nicolas Patry
d96dcb1797
Adding A100 compute. (#2806) 2024-12-06 18:19:15 +01:00
Nicolas Patry
5df8059037
Auto max prefill (#2797)
* Attempt at automatic max batch prefill.

* Taking into account number of shards.

* Adding more cards.

* Adding A100 + H100

* Adding a few more cards.

* Logprobs cost too much.

* h100 better name, and keep factor of 2

* Damn inflated sparse tflops.

* Typo in h100.

* Updated the flops calculation (checked with fvcore).

* chunking by default.

* Fix prefix caching for chat completion since we removed logprobs.

* More tests.

* Dropping all the prefill logprobs.

* Add a flag that enables users to get logprobs back.

* Repairing prompt token counting.

* Fixing a few tests.

* Remove some scaffolding.

* Attempting to reduces the issues (workarounds for now).
2024-12-06 05:52:00 +01:00
OlivierDehaene
8c3669b287
feat: auto max_new_tokens (#2803)
* feat: auto max_new_tokens

* update default

* Fixing the tests.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-12-06 05:50:35 +01:00
Wang, Yi
6685e8fcda
use oneapi 2024 docker image directly for xpu (#2793)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-12-06 09:36:23 +05:30
drbh
e0db633396
fix: avoid setting use_sgmv if no kernels present (#2796) 2024-12-04 15:26:09 -05:00
Nicolas Patry
b57f370386
Saving some VRAM. (#2790)
* Saving some VRAM.

- 8B on 4xL4 attention=flashdecoding . Before 4.28GB left, After 4.32GB
  left, so 400MB saved.

- Effect not as visible on attention=flashinfer and n_shard=1. I suspect
  it's linked to the torch allocator.

* Adding assertion.
2024-12-03 04:04:21 +01:00
Daniël de Kok
2003d8be0c
Sync (most) server dependencies with Nix (#2782)
* Sync (most) server dependencies with Nix

Skipped most grpcio packages, because of protobuf version
incompatibility with the opentelemetry packages.

* Add a primitive script to generate Poetry commands to sync with Nix

This is not fully automated, since getting the Nix versions may be
unresolvable. However, it does take most of the work out of doing
this manually.

* Upgrade eetq ?

* Fmt.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-12-03 04:04:06 +01:00
Dmitry Rogozhkin
535149d872
fix: only use eos_token_id as pad_token_id if int (#2774)
LLama 3 has a list of values as eos_token_id:
  "['<|end_of_text|>', '<|eom_id|>', '<|eot_id|>']"
This breaks tokenizer since it expects single value. This
commit uses tokenizer.eos_token_id instead in such a case.

Fixes: #2440

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2024-12-02 06:26:37 +01:00
drbh
2c74c55637
fix: add merge-lora arg for model id (#2788) 2024-12-02 05:52:02 +01:00
Torsten Raudssus
a35d1e6fe5
Removing ../ that broke the link (#2789) 2024-12-02 05:48:55 +01:00
Nicolas Patry
1d2cb356b9
Fix doc. (#2792) 2024-12-02 05:28:26 +01:00
drbh
d471805134
Support continue final message (#2733)
* feat: support continue_final_message param in chat request

* feat: add test for continue final message

* fix: bump openapi docs

* fix: remove continue_final_message chat request param

* fix: remove unneeded launcher args in continue test

* fix: bump test output

* fix: remove accidentally included guideline from rebase

* fix: remove guideline tests

* fix: adjust continuation tests expected text

* fix: replace expected output for continue test
2024-11-27 19:13:30 -05:00
jp
caff779dd4
Fix: docs typo (#2777)
Fix: typo in model loading code

Fix typo in model loading code
2024-11-26 14:28:58 +01:00
Wang, Yi
892a26e549
upgrade ipex cpu to fix coredump in tiiuae/falcon-7b-instruct (pageat… (#2778)
upgrade ipex cpu to fix coredump in tiiuae/falcon-7b-instruct (pageattention)

Signed-off-by: Wang,Yi A <yi.a.wang@intel.com>
2024-11-26 14:28:11 +01:00
Daniël de Kok
72ab60fdd5
Use FP8 KV cache when specified by compressed-tensors (#2761)
The compressed-tensors configuration can specify the configuration of
the KV cache as well. Use an FP8 KV cache when the configuration tells
us to do so (all other options and types are ignored for now).
2024-11-26 08:27:41 +01:00
Daniël de Kok
289aa48554
Move JSON grammar -> regex grammar conversion to the router (#2772)
* Move JSON grammar -> regex grammar conversion to the router

This change moves the JSON grammar -> regex grammar conversion to the
router by adding a dependency on the `outlines-core` Rust crate. In
contrast to the Python implementation, the conversions are not LRU-cached
since they seem to be fast enough:

simple schema           time:   [5.8293 µs 5.8307 µs 5.8320 µs]
                        change: [-13.166% -12.884% -12.641%] (p = 0.00 < 0.05)
                        Performance has improved.

complex schema          time:   [14.875 µs 14.881 µs 14.887 µs]
                        change: [-2.1637% -1.9914% -1.7852%] (p = 0.00 < 0.05)
                        Performance has improved.

Using the schemas from:
https://github.com/dottxt-ai/outlines-core/blob/main/benchmarks/bench_json_schema.py
2024-11-25 18:47:34 +01:00
drbh
c637d68d74
feat: concat the adapter id to the model id in chat response (#2779)
* feat: concat the adapter id to the model id in chat response

* fix: updated to include only the adapter id in chat response
2024-11-25 12:36:31 -05:00
OlivierDehaene
780531ec77
chore: prepare 2.4.1 release (#2773)
* chore: prepare 2.4.1 release

* fix tests

* fmt
2024-11-22 17:26:15 +00:00
Daniël de Kok
e87893d38e
chore: Update to marlin-kernels 0.3.6 (#2771)
This fixes a bug in 2:4 Marlin:
https://github.com/vllm-project/vllm/pull/10464
2024-11-22 14:44:47 +00:00
OlivierDehaene
ab7ccf5bc3
feat: add payload limit (#2726)
* feat: add payload limit

* update launcher
2024-11-21 18:20:15 +00:00
Hugo Larcher
d5bc6a20bd
feat: Add automatic nightly benchmarks (#2591)
* feat: Add automatic nightly benchmarks

* fix: Update runners group

* fix: add created_at field to results

* fix: Add variable results file location
2024-11-21 17:11:42 +00:00
Lucain
d012f229c6
Remove guideline from API (#2762) 2024-11-21 16:56:38 +00:00
Daniël de Kok
c5b5b3a11c
docs: Add a README section about using Nix (#2767) 2024-11-21 16:53:27 +00:00
drbh
faa10ad0bc
fix: tweak grammar test response (#2769) 2024-11-21 16:46:00 +00:00
OlivierDehaene
8e0c161d0a
fix: incomplete generations w/ single tokens generations and models that did not support chunking (#2770)
* Incomplete generation stream fix (#2754)

entries.len() could > batch.size in prefill, so need to filter as well.

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* entries was wrongly extended for model that did not support chunking

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
2024-11-21 16:37:55 +00:00
Daniël de Kok
3c54488638
nix: downgrade to outlines 0.1.3 (#2768) 2024-11-21 13:00:26 +01:00
drbh
6ee8d6dd3b
fix: set outlines version to 0.1.3 to avoid caching serialization issue (#2766)
fix: set outlines version to 0.1.3 to avoid bug
2024-11-20 18:09:39 -05:00
Daniël de Kok
07bed530f7
nix: build and cache impure devshells (#2765)
* nix: build and cache all devshells

* nix: add poetry to the impure shell

This shouldn't be used to manage dependencies in a Nix devshell, but can
be handy to update `poetry.lock`.

* Fix Nix build, disable pure shell (covered by Nix tests)
2024-11-20 20:56:11 +01:00
Daniël de Kok
46a5a7e73e
Add support for wNa16 int 2:4 compressed-tensors checkpoints (#2758)
This change adds support for wNa16 int checkpoints with 2:4 sparsity
using Marlin 2:4 kernels.
2024-11-20 18:25:23 +01:00
Daniël de Kok
2fda8845a7
nix: update for outlines 0.1.4 (#2764) 2024-11-20 18:24:29 +01:00
Daniël de Kok
45013b60a4 Install compressed-tensors in Docker CPU builds 2024-11-20 14:17:47 +00:00
drbh
bd6e8b3c13
fix: adjust llama MLP name from dense to mlp to correctly apply lora (#2760) 2024-11-19 15:10:22 -05:00
drbh
5489406c4a
PR 2634 CI - Fix the tool_choice format for named choice by adapting OpenAIs scheme (#2645)
* add OpenAI like tool_choice for named choice

* add tests

* fix: run linter and bump api docs

* fix: consolidate changes and remove old tool type

* feat: improve, simplify and rename tool choice struct add required support and refactor

* fix: simplify tool choice logic, improve tests, openapi and rust docs

* fix: refactor away prepare_chat_input and improve tool grammar apply control flow

* feat: update docs and add tool choice configuration section

* fix: simplify naming, tool choice default and improve test

* fix: adjust tool choice none logic, add test and small refactors

* fix: add missing snapshot file

* fix: adjust tool choice type in test

* fix: adjust default when json tool choice is

* fix: remove trailing space lint after rebase

* fix: remove mostly mocked unit test

---------

Co-authored-by: Linus Bierhoff <linus.bierhoff@icloud.com>
2024-11-19 13:31:59 -05:00
Daniël de Kok
2007a9473a
Update to moe-kernels 0.7.0 (#2720)
This version syncs with the vLLM kernels and brings some performance
improvements.
2024-11-19 14:55:29 +01:00
Daniël de Kok
b4ec427ad0
Simplify two ipex conditions (#2755) 2024-11-19 08:04:23 +01:00
drbh
38cff84a3e
feat: support flash attention 2 in qwen2 vl vision blocks (#2721)
* feat: support flash attention 2 in qwen2 vl vision blocks

* fix: calc max_seqlen once and small refactors
2024-11-18 12:46:40 -05:00
Daniël de Kok
3c9df21ff8
Add support for compressed-tensors w8a8 int checkpoints (#2745)
* Add support for compressed-tensors w8a8 int checkpoints

This change adds a loader for w8a8 int checkpoints. One large benefit of
int8 support is that the corresponding cutlass matmul kernels also work on
compute capability 7.5.

Evaluation on neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8:

|     Tasks     |Version|     Filter     |n-shot|        Metric         |   |Value |   |Stderr|
|---------------|------:|----------------|-----:|-----------------------|---|-----:|---|------|
|gsm8k_cot_llama|      3|flexible-extract|     8|exact_match            |↑  |0.8431|±  |0.0100|
|               |       |strict-match    |     8|exact_match            |↑  |0.8393|±  |0.0101|
|ifeval         |      4|none            |     0|inst_level_loose_acc   |↑  |0.8597|±  |   N/A|
|               |       |none            |     0|inst_level_strict_acc  |↑  |0.8201|±  |   N/A|
|               |       |none            |     0|prompt_level_loose_acc |↑  |0.7967|±  |0.0173|
|               |       |none            |     0|prompt_level_strict_acc|↑  |0.7468|±  |0.0187|

Which is the same ballpark as vLLM.

As usual, lots of thanks to Neural Magic/vLLM for the kernels.

* Always use dynamic input quantization for w8a8 int

It's far less flaky and gives better output.

* Use marlin-kernels 0.3.5

* Fix a typo

Co-authored-by: drbh <david.richard.holtz@gmail.com>

* Small fixes

---------

Co-authored-by: drbh <david.richard.holtz@gmail.com>
2024-11-18 17:20:31 +01:00
Wang, Yi
a5ecd6e586
add ipex moe implementation to support Mixtral and PhiMoe (#2707)
* add ipex moe implementation to support Mixtral and PhiMoe

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update to ipex xpu 2.5

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* torch has xpu support in 2.5

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix oneapi basekit version

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Apply suggestions from code review

Co-authored-by: Daniël de Kok <me@github.danieldk.eu>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
2024-11-18 17:16:55 +01:00
drbh
fea62e928f
fix: improve find_segments via numpy diff (#2686) 2024-11-18 09:51:06 -05:00
Daniël de Kok
52e48739a5
Remove vLLM dependency for CUDA (#2751)
* Remove vLLM dependency for CUDA

This change adds `attention-kernels` as a dependency for paged
attention and cache reshaping. With that, we don't use vLLM
anywhere for CUDA.

Tested run (since we don't have paged attention in CI):

```
❯ ATTENTION=paged python -m pytest integration-tests -k "llama and awq" --release
[...]
5 snapshots passed.
```

* Fix clippy warning
2024-11-17 17:34:50 +01:00
drbh
6489f85269
feat: return streaming errors as an event formatted for openai's client (#2668)
* feat: return streaming errors as an event formatted for openai's client

* fix: propagate completions error events to stream

* fix: improve stream api error format and add status code

* fix: improve streamin error to include error_type

* Revert "fix: improve streamin error to include error_type"

This reverts commit 2b1a360b15.

* Reworked the implementation.

* Revert "Reworked the implementation."

This reverts commit 7c3f29777f17411ae4ade57e2f88e73cde704ee5.

* Small lifting.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-11-15 14:49:19 +01:00
Nicolas Patry
34a3bdedc3
Upgrading our deps. (#2750)
* Upgrading our deps.

* fixup.

* Fixup.
2024-11-15 14:03:27 +01:00
Alex Weston
4580ced091
Upgrade outlines to 0.1.1 (#2742)
* Upgrade outlines to 0.1.1

* Update for new API

* Check if allowed tokens is None

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-11-15 13:22:52 +01:00
jito
003eaec0fb
fix response type of document for Text Generation Inference (#2743)
Signed-off-by: jitokim <pigberger70@gmail.com>
2024-11-15 13:21:50 +01:00
Billel Mokeddem
4f4857a4ac
Fix: Change embeddings to embedding (#2738)
fix: change embeddings to embedding

Co-authored-by: Ubuntu <ubuntu@ip-172-31-28-135.us-west-2.compute.internal>
2024-11-15 13:16:15 +01:00
Billel Mokeddem
f9ee46f740
Fix: Change model_type from ssm to mamba (#2740)
Co-authored-by: Ubuntu <ubuntu@ip-172-31-28-135.us-west-2.compute.internal>
2024-11-15 13:15:36 +01:00
Daniël de Kok
8442f1ac85
benchmark: fix prefill throughput (#2741) 2024-11-15 13:14:55 +01:00
Daniël de Kok
ca4f46ddfc
nix: update nixpkgs (#2746)
Updates from Triton 2.1.0 to 3.1.0 (among other things).
2024-11-14 18:48:20 +01:00
Daniël de Kok
a785000842
Add initial support for compressed-tensors checkpoints (#2732)
compressed-tensors is a safetensors extension for sparse, quantized
tensors. The format is more powerful than earlier AWQ/GPTQ/FP8
quantization, because

- Different quantizer configurations can be used for different targets.
- The format can specify input/output quantizers in addition to weight
  quantizers.
- Configurable exclusions for quantization.

This change adds a dependency on the `compressed-tensors` package for
its configuration parsing and layer matching functionality.

The following types of quantization are supported in this PR:

- W8A16 and W4A16 INT using GPTQ-Marlin kernels.
- W8A8 and W8A16 FP using FP8-Marlin and cutlass kernels.

Support for other quantization types will be added in subsequent PRs.
2024-11-10 13:54:07 +01:00
Wang, Yi
97f7a22f0b
add trust_remote_code in tokenizer to fix baichuan issue (#2725)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-11-07 14:43:38 +01:00
Wang, Yi
b1f9044d6c
fix incorrect output of Qwen2-7B-Instruct-GPTQ-Int4 and Qwen2-7B-Inst… (#2717)
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
Close stale issues and PRs / stale (push) Has been cancelled
Nightly load test / load-tests (push) Has been cancelled
fix incorrect output of Qwen2-7B-Instruct-GPTQ-Int4 and Qwen2-7B-Instruct-AWQ
ipex kernel provide func like add_bias, so no need add it outside

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-11-04 16:07:51 +01:00
Daniël de Kok
5eedb2ec7a
nix: move to tgi-nix main (#2718) 2024-11-04 15:40:13 +01:00
Nicolas Patry
9fde566602
Fixing linting on main. (#2719) 2024-11-04 15:21:41 +01:00
Travis Addair
aadc9cb485
Fix prefix caching + speculative decoding (#2711) 2024-11-04 15:08:43 +01:00
Nicolas Patry
a5593ba83e
Hotfixing auto length (warmup max_s was wrong). (#2716)
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
2024-11-04 09:55:54 +01:00
drbh
08c4184eb2
fix: add chat_tokenize endpoint to api docs (#2710) 2024-11-04 06:44:59 +01:00
drbh
6e3220529d
fix: create position ids for text only input (#2714)
* fix: create position ids for text only input

* fix: prefer repeat over expand to avoid clone
2024-11-02 08:40:05 +08:00
drbh
01dacf8e8f
fix cuda graphs for qwen2-vl (#2708)
* feat: support multidimensional position ids on batch to enable cuda graphs on qwen2-vl

* fix: only check model type if config exists

* fix: adjust sharding and lm head logic

* fix qwen2 failure in intel cpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix: return correct shape logits and add streaming test

* fix: remove unused import and refactor test

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-11-01 03:05:34 +01:00
drbh
befd9f6735
Support qwen2 vl (#2689)
* feat: add support for qwen2 vl model

* feat: fix token padding, enable warmup and process basic request

* fix: improve get_position_ids, add lift embed_tokens

* fix: remove get_cos_sin_hack dev function

* feat: add simple test chat with meesage and text

* fix: lint test

* fix: adjust positional embeddings for multi dimensional position ids

* fix: update docs and lint unused vars

* fix: include linted file

* fix: add norm after text output

* fix: format model file

* fix: adjust for ruff lints

* fix: remove unused rotate_half

* feat: refactors and calc num features

* fix: prefer position_ids passed from vlm causal lm and reset ids on batch

* fix: adjust get_position_ids if not available and add required args to signatures

* fix: adjust resize case for qwen2_vl warmup

* fix: avoid qwen2 vl specific paths with qwen2
2024-10-30 12:40:51 -04:00
Wang, Yi
46aeb0860d
add xpu triton in dockerfile, or will show "Could not import Flash At… (#2702)
add xpu triton in dockerfile, or will show "Could not import Flash Attention enabled models: No module named 'triton'"

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-10-30 14:18:50 +01:00
Nicolas Patry
98330df65e
Monkey patching as a desperate measure. (#2704)
* Monkey patching as a desperate measure.

* New snapshot ?
2024-10-28 11:25:13 +01:00
Nicolas Patry
513d19b955
More timeout on docker start ? (#2701)
* More timeout on docker start ?

* Latest upgrade.
2024-10-28 08:57:22 +01:00
Nicolas Patry
3a9cdc3241
Fixing auto bloom test. (#2699) 2024-10-28 06:14:11 +01:00
Nicolas Patry
78ce618c70
Update poetry lock. (#2698) 2024-10-28 06:11:33 +01:00
Nicolas Patry
90b226db29
We can have a tokenizer anywhere. (#2527)
* We can have a tokenizer anywhere.

* Handling potential lack of offsets (python tokenizer)

* Remove redundancy.

* Fixing the tests.

* Flake.lock update ?

* Fixing the  GIL locking.

* Fixing mamba by using the transformers version.

* Adding the legacy handle.

* Ellide lifetime.

* Lint.

* Deprecation message.

* Fixing bad rebase.
2024-10-28 05:00:24 +01:00
Nicolas Patry
0c9b6cdd76
Choosing input/total tokens automatically based on available VRAM? (#2673)
* Choosing input/total tokens automatically based on available VRAM?

* Update doc.

* Remove generated files.

* Trying to fix non chunking targets.

* Attempt #2

* fix.

* QuantLinear is rocm compatible.

* Much simpler logic after the overhead.

* Updating logic + non flash.

* Revert doc text.

* Simple updates.

* Fix integration mt0 (transformers update).
2024-10-28 04:59:49 +01:00
Nicolas Patry
2e4f4ba1bb
Green main (#2697) 2024-10-28 04:59:32 +01:00
Nicolas Patry
8a8794a672
Avoiding timeout for bloom tests. (#2693)
* Avoiding timeout for bloom tests.

* Skip the test let's see if it's always the first tests that fails.

* Fail early.

* Pulling ?

* No early exit.
2024-10-26 05:35:28 +02:00
OlivierDehaene
a6b02da971
chore: prepare 2.4.0 release (#2695) 2024-10-25 21:10:49 +00:00
OlivierDehaene
6f88bd9390
feat: add triton kernels to decrease latency of large batches (#2687)
* feat: add triton kernels to decrease latency of large batches

* cast to int32

* fix kernel

* fix kernel

* disable triton on rocm

* fix speculation

* add slots filtering kernel
2024-10-25 21:10:00 +00:00
Daniël de Kok
0f346a3296
Switch from fbgemm-gpu w8a8 scaled matmul to vLLM/marlin-kernels (#2688)
* Switch from fbgemm-gpu w8a8 scaled matmul to vLLM/marlin-kernels

Performance and accuracy of these kernels are on par (tested with Llama
70B and 405B). Removes a dependency and resolves some stability issues
we have been seeing.

* Update test snapshots
2024-10-25 16:40:47 +02:00
Funtowicz Morgan
ba5fc7d922
Add support for stop words in TRTLLM (#2678)
* feat(trtllm): rewrite health to not account for current state

* chore(looper): cleanup a bit more

* feat(post_processing): max_new_tokens is const evaluated now

* chore(ffi):formatting

* feat(trtllm): add stop words handling

# Conflicts:
#	backends/trtllm/lib/backend.cpp

* chore(trtllm): create specific parallelconfig factory and logging init methods

* chore(trtllm): define a macro for SizeType cast

* chore(trtllm): use GetParallelConfig

* chore(trtllm): minor refactoring

* chore(trtllm): validate there are enough GPus on the system for the desired model

* chore(trtllm): ensure max throughput scheduling policy is selected

* chore(trtllm): minor fix

* chore(router): minor refactorings

* feat(docker): build with-slurm ompi

* feat(docker): add python3.10 dev to runtime deps

* chore(docker): add mpi to ld_library_path

* chore(docker): install transformers

* feat(trtllm): detect stop_words from generation_config.json
2024-10-25 10:58:34 +02:00
Nicolas Patry
db68bd0524
Fixing mt0 test. (#2692) 2024-10-25 09:46:39 +02:00
Nicolas Patry
cece8635f8
Fixing rocm gptq by using triton code too (renamed cuda into triton). (#2691) 2024-10-25 09:17:57 +02:00
Funtowicz Morgan
43df056eee
[TENSORRT-LLM] - Implement new looper thread based backend (#2357)
* (backend) use parking_lot crate for RwLock fairness

# Conflicts:
#	backends/trtllm/src/backend.rs

* (launcher) default new server::run parameters to false for now

* (chore) fmt ... why?

* (ffi) use const for GetSamplingConfig

* (server) expose new SchedulingError

* (trt)

* (build) setup ccache if available

* (ffi) add max_new_tokens parameters

* (backend) cleanup a bit

* (backend) expose PullNewTokens

* (ffi) cleanup again

* (ffi) add missing headers imports

* (ffi) add template specialization to catch and convert to Rust Result<T, tensorrt_llm::common::TllmException>

* (looper) new looper initial implementation

* (ffi) remove narrowing type warning

* (ffi) encode the provided user prompt within each request thread

* (misc) change scope identifiers

* (backend) implement the post_processor background thread

* (misc) missing Result types for Rust

* use blocking_recv in looper to consume awaiting_requests at max before pulling in a single step

* (server) forward auth_token to server::run

* (build) fetchcontent use archives instead of git

* (ffi) fix usage of wrong vector constructor making a capacity fill call

* (ffi) missing namespace for tle::Response

* (ffi) do not use reference capture in lambda as we are not capturing anything

* (backend) refactor & cleanup

* (Dockerfile.trtllm) delete for now

* (misc) simplify [make_]move_iterator by using c++20 type inference

* (misc) no need to move for uint32_t items

* (scheduler) rework submit/pull logic

* (post) impl postprocessing

* (misc) delete backend.rs

* (misc) rerun-if-changed all the cmake modules

* (misc) move to latest trtllm

* (fix): HOPPER_SM_MAJOR is 9 not 8

* (misc: build for sm_{75,80,86,89,90} by default

* (misc): build with trtllm 0.13.0

* (misc): increase verbosity of spdlog

* (fix): do not recreate the stateful hashmap at every it

* (misc): update dependency in trtllm dockerfile

* (misc): update dependency in trtllm dockerfile

* (misc): disable logging in release mode

* (misc): improve trtllm download script robustness

* (fix): ore fixes for Dockerfile

* misc(cuda): require 12.6

* chore(cmake): use correct policy for download_timestamp

* feat(looper): check engine and executorWorker paths exist before creating the backend

* chore(cmake): download timestamp should be before URL

* feat(looper): minor optimizations to avoid growing too much the containers

* chore(trtllm): move dockerfile to right place

* chore(trtllm): disable tokenizer parallelism by default

* chore(trtllm): fmt

* chore(trtllm): post-rebase commit

* chore(trtllm): remove unused method

* feat(trtllm): cache maxNumTokens to avoid calling JSON everytime

* misc(router): remove SchedulingError

* feat(trtllm): do not tokenize twice

* Revert "chore(trtllm): remove unused method"

This reverts commit 31747163

* chore(rebase): fix invalid references

* chore(router): add python dependency

* Lint.

* Fix bad rebase

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-10-25 07:17:14 +02:00
Nicolas Patry
ed87b464b4
Fixing "deadlock" when python prompts for trust_remote_code by always (#2664)
specifiying a value.
2024-10-25 06:39:21 +02:00
Daniël de Kok
eab07f746c
Add support for FP8 KV cache scales (#2628)
* Add support for FP8 KV cache scales

Since FP8 only has limited dynamic range, we can scale keys/values
before storing them into the cache (and unscale them in attention). To
avoid rescaling the cache as the absmax values change, good scales are
usually determined per layer using calibration calibration data and stored
in the checkpoint.

This change adds support for for using key-value scales and loading them
from checkpoints in the two most common formats:

- Separate per-layer `k_scale` and `v_scale` scalars.
- Per-layer `kv_scale` scalar (older format).

Currently, scales are only used with an `float8_e4m3fn` cache.

Besides adding support for key/value scales, the `fp8_quantize` function
is also extended to support quantization with a kernel vendored from
vLLM. This is slightly faster than the PyTorch implementation, but also
scales in FP32, potentially improving accuracy.

* Update FP8 KV cache test to use checkpoint with scales

* `can_scale`: check that the attention is flashinfer
2024-10-24 16:36:18 +02:00
Daniël de Kok
14a0df3a38
Fix Phi 3.5 MoE tests (#2684)
PR #2682 also fixed in issue in Phi MoE, but it changes the test
outputs a bit. Fix this.
2024-10-24 15:21:50 +02:00
Daniël de Kok
1b914f37e7
flashinfer: reminder to remove contiguous call in the future (#2685) 2024-10-24 14:59:56 +02:00
OlivierDehaene
41c2623735
feat: allow any supported payload on /invocations (#2683)
* feat: allow any supported payload on /invocations

* update openAPI

* update doc
2024-10-23 11:26:01 +00:00
OlivierDehaene
27ff1871b5
hotfix: fix flashllama 2024-10-23 13:22:31 +02:00
OlivierDehaene
03c9388bf7
feat: natively support Granite models (#2682)
* feat: natively support Granite models

* Update doc
2024-10-23 10:04:05 +00:00
Daniël de Kok
f58eb70ebf
Make moe-kernels and marlin-kernels mandatory in CUDA installs (#2632) 2024-10-23 11:07:31 +02:00
Daniël de Kok
9c9ef37c56
Add impureWithCuda dev shell (#2677)
* Add `impureWithCuda` dev shell

This shell is handy when developing some kernels jointly with TGI - it
adds nvcc and a bunch of commonly-used CUDA libraries to the environment.

We don't add this to the normal impure shell to keep the development
environment as clean as possible (avoid accidental dependencies, etc.).

* Add cuDNN
2024-10-22 11:02:55 +02:00
Wang, Yi
058d3061f7
break when there's nothing to read (#2582)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-10-21 15:22:48 +02:00
Daniël de Kok
7f54b7336a
Test Marlin MoE with desc_act=true (#2622)
Update the Mixtral GPTQ test to use a model with `desc_act=true` and
`group_size!=-1` to ensure that we are checking activation
sorting/non-full K (with tensor parallelism). The `desc_act=false` case
is already checked by the Mixtral AWQ test.
2024-10-21 12:50:35 +02:00
Daniël de Kok
5e0fb46821
Make handling of FP8 scales more consisent (#2666)
Change `fp8_quantize` so that we can pass around reciprocals everywhere,
so scales are always passed around in the checkpoint format.

I also noticed that we ignore any input scales that we might have when
fbgemm is available. Skip this path if we already have a scale.
2024-10-19 09:05:01 +02:00
Nicolas Patry
153ff3740b
CI job. Gpt awq 4 (#2665)
* add gptq and awq int4 support in intel platform

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix ci failure

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* set kv cache dtype

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* refine the code according to the review command

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Simplifying conditionals + reverting integration tests values.

* Unused import

* Fix redundant import.

* Revert change after rebase.

* Upgrading the tests (TP>1 fix changes to use different kernels.)

* Update server/text_generation_server/layers/gptq/__init__.py

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
2024-10-18 17:55:53 +02:00
Daniël de Kok
8ec57558cd
Break cycle between the attention implementations and KV cache (#2627) 2024-10-17 14:54:22 +02:00
drbh
5f32dea1e2
fix: prefer inplace softmax to avoid copy (#2661)
* fix: prefer inplace softmax to avoid copy

* Update server/text_generation_server/models/flash_causal_lm.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-10-17 08:49:02 -04:00
oOraph
1b97e084bf
fix tgi-entrypoint wrapper in docker file: exec instead of spawning a child process (#2663)
tgi-entrypoint: exec instead of spawning a child process

reason: otherwise parent will receive the signals when we'd like tgi to receive them
keeping the parent/child is not necessary and would require the parent to handle signals to forward them properly to the child

Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com>
Co-authored-by: Raphael Glon <oOraph@users.noreply.github.com>
2024-10-17 11:15:26 +02:00
Daniël de Kok
59ea38cbca
Simplify the attention function (#2609)
* Simplify the `attention` function

- Use one definition rather than multiple.
- Add `key`/`value` arguments, so that we don't need the
  `PREFILL_IN_KVCACHE` constant.
- Make it kwargs-only (to avoid mixing up the various `Tensor` args).

* Fixup flashinfer support
2024-10-17 10:42:52 +02:00
Daniël de Kok
5bbe1ce028
Support e4m3fn KV cache (#2655)
* Support `e4m3fn` KV cache

* Make check more obvious
2024-10-17 10:42:16 +02:00
OlivierDehaene
a6a0c97ed9
feat: prefill chunking (#2600)
* wip

* rollback

* refactor to use prefix/postfix namming + fix all_input_ids_tensor

* maybe patching vlms?

* fix filter and concat

* wip, no filter, no concat

* current

* add prepare_for_prefill

* working

* load tested

* re-create slots

* re-create slots

* fix slot_filtering_indices

* feedback loop

* remove log

* fix benchmarker

* fix vlm and seq2seq

* rename to cache and input lengths

* fix prefill logprobs

* fix launcher

* fix logprobs?

* idk at this point

* max input length

* omfg

* remove debugging lines

* fix tests

* fix mllama

* fix cargo tests

* remove support chunking for paged

* Fixing non blocked attentions

* Fixing dtype + AMD, Ipex targets.

* lint fix.

* rename

* Fix prefix_caching variable, remove defaults in server (confusing a lot
of the times).

* Add simple resolution when user specifies ATTENTION=paged.

* Put back non default simple tests.

* Fix env name

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-10-16 12:49:33 +02:00
Mohit Sharma
704a58c807
Fp8 e4m3_fnuz support for rocm (#2588)
* (feat) fp8 fnuz support for rocm

* (review comments) Fix compression_config load, type hints

* (bug) update all has_tensor

* (review_comments) fix typo and added comments

* (nit) improved comment
2024-10-16 09:54:50 +02:00
Alvaro Bartolome
ffe05ccd05
Rollback to ChatRequest for Vertex AI Chat instead of VertexChat (#2651)
As spotted by @philschmid, the payload was compliant with Vertex AI, but
just partially, since ideally the most compliant version would be with
the generation kwargs flattened to be on the same level as the
`messages`; meaning that Vertex AI would still expect a list of
instances, but each instance would be an OpenAI-compatible instance,
which is more clear; and more aligned with the SageMaker integration
too, so kudos to him for spotting that; and sorry from my end for any
inconvenience @Narsil.
2024-10-15 18:11:59 +02:00
Daniël de Kok
ce7e356561 Use flashinfer for Gemma 2. 2024-10-15 13:49:32 +00:00
Nicolas Patry
cf04a43fb1
Fixing linters. (#2650) 2024-10-15 12:43:49 +02:00
Dmitry Rogozhkin
58848cb471
feat: enable pytorch xpu support for non-attention models (#2561)
XPU backend is available natively (without IPEX) in pytorch starting
from pytorch 2.4. This commit extends TGI to cover the case when user
has XPU support thru pytorch 2.4, but does not have IPEX installed.
Models which don't require attention can work. For attention required
models more work is needed to provide attention implementation.

Tested with the following models:
* teknium/OpenHermes-2.5-Mistral-7B
* bigscience/bloom-560m
* google/gemma-7b
* google/flan-t5-xxl

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2024-10-14 18:28:49 +02:00
Wang, Yi
7a82ddcbd0
update ipex to fix incorrect output of mllama in cpu (#2640)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-10-14 16:32:33 +02:00
Omar Sanseviero
51f5401893
Clarify gated description and quicktour (#2631)
Update quicktour.md
2024-10-14 16:31:37 +02:00
Nicolas Patry
3ea82d008c
Cpu perf (#2596)
* break when there's nothing to read

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Different approach, only listen on stdin when `LOG_LEVEL=debug` (which
is where dropping to a debugger is important).

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
2024-10-14 15:34:08 +02:00
Omar Sanseviero
ce28ee88d5
Small fixes for supported models (#2471)
* Small improvements for docs

* Update _toctree.yml

* Updating the doc (we keep the list actually).

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-10-14 15:26:39 +02:00
Nicolas Patry
0c478846c5
Fixing intel Supports windowing. (#2637) 2024-10-11 21:47:03 +02:00
Nicolas Patry
3dbdf63ec5
Intel ci (#2630)
* Intel CI ?

* Let's try non sharded gemma.

* Snapshot rename

* Apparently container can be gone already.
2024-10-10 16:51:57 +02:00
vb
d912f0bf55
Update documentation to most recent stable version of TGI. (#2625)
Update to most recent stable version of TGI.
2024-10-10 16:00:25 +02:00
drbh
e36dfaa8de
feat: allow tool calling to respond without a tool (#2614)
* feat: process token stream before returning to client

* fix: expect content in test

* fix: improve comparison via ruff lint

* fix: return event in all cases

* fix: always send event on error, avoid unwraps, refactor and improve tests

* fix: prefer no_tool over notify_error to improve reponse

* fix: adjust chat input test for no_tool

* fix: adjust test expected content

---------

Co-authored-by: System administrator <root@ip-10-90-0-186.ec2.internal>
2024-10-10 09:28:25 -04:00
Nicolas Patry
43f39f6894
AMD CI (#2589)
* Only run 1 valid test.

* TRying the tailscale action quickly.

* ?

* bash spaces.

* Remove tailscale.

* More quotes.

* mnt2 ?

* Othername to avoid recursive directories.

* Good old tmate.

* Remove tmate.

* Trying a few things.

* Remove some stuff.

* Sleep ?

* Tmp

* busybox

* Launcher tgi

* Starting hello

* Busybox in python

* No device.

* Removing all variables ?

* A un moment donné.

* Tmp

* Tmp2

* DEvice request, no container name

* No device requests

* Without pytest.

* No pytest.

* from env

* Start with devices

* Attemp #1

* Remove stdin messing

* Only 1 test, no container name

* Raw tgi

* Sending args.

* Show pip freeze.

* Start downloading with token

* Giving HIP devices.

* Mount volume + port forward

* Without pytest.

* No token

* Repeated arguments

* Wrong kwarg.

* On 2 GPUs

* Fallback to single shard CI test.

* Testing

* yaml

* Common cache ?

* Trailing slash ?

* Docker volume split.

* Fix docker volume

* Fixing ?

* ?

* Try no devices ?

* Flash llama on intel CPU ?

* Fix nvidia ?

* Temp deactivate intel, activate nvidia ?
2024-10-09 17:50:49 +02:00
Daniël de Kok
9ed0c85fe1
nix: add black and isort to the closure (#2619)
To make sure that everything is formatted with the same black version
as CI.

I sometimes use isort for new files to get nicely ordered imports,
so add it as well. Also set the isort configuration to format in a
way that is compatible with black.
2024-10-09 11:08:02 +02:00
drbh
8ad20daf33
CI (2599): Update ToolType input schema (#2601)
* Update ToolType input schema

* lint

* fix: run formatter

* fix: allow tool choide to be null

---------

Co-authored-by: Wauplin <lucainp@gmail.com>
2024-10-08 12:35:48 -04:00
Daniël de Kok
6db3bcb700
nix: move back to the tgi-nix main branch (#2620) 2024-10-08 12:55:05 +02:00
Daniël de Kok
64142489b6
Add support for fused MoE Marlin for AWQ (#2616)
* Add support for fused MoE Marlin for AWQ

This uses the updated MoE Marlin kernels from vLLM.

* Add integration test for AWQ MoE
2024-10-08 11:56:41 +02:00
Nicolas Patry
8b295aa498
Upgrade minor rust version (Fixes rust build compilation cache) (#2617)
* Upgrade minor rust version (Fixes rust build compilation cache)

* Black
2024-10-08 09:42:50 +02:00
Wang, Yi
57f9685dc3
enable mllama in intel platform (#2610)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-10-07 21:15:09 +02:00
Florian Zimmermeister
0da4df4b96
Fix FP8 KV-cache condition (#2611)
Update kv_cache.py
2024-10-07 09:34:19 +02:00
Daniël de Kok
2358c2bb54
Add basic FP8 KV cache support (#2603)
* Add basic FP8 KV cache support

This change adds rudimentary FP8 KV cache support. The support is
enabled by passing `--kv-cache-dtype fp8_e5m2` to the launcher. Doing so
uses this type for the KV cache. However support is still limited:

* Only the `fp8_e5m2` type is supported.
* The KV cache layout is the same as `float16`/`bfloat16` (HND).
* The FP8 KV cache is only supported for FlashInfer.
* Loading of scales is not yet supported.

* Fix Cargo.toml
2024-10-04 17:51:48 +02:00
Daniël de Kok
68103079f4
nix: example of local package overrides during development (#2607) 2024-10-04 16:52:42 +02:00
drbh
3011639ff7
Revert "Unroll notify error into generate response" (#2605)
Revert "Unroll notify error into generate response (#2597)"

This reverts commit d22b0c1fbe.
2024-10-03 17:56:40 -04:00
Nicolas Patry
f6e2f05b16
New release 2.3.1 (#2604)
* New release 2.3.1

* Update doc number
2024-10-03 14:43:49 +02:00
drbh
d22b0c1fbe
Unroll notify error into generate response (#2597)
* feat: unroll notify_error if no tool is choosen

* fix: expect simple message when no tool is selected

* fix: improve test to avoid notify_error

* fix: improve docs and indicate change in expected response

* fix: adjust linting in test file
2024-10-02 11:34:57 -04:00
drbh
2335459556
CI (2592): Allow LoRA adapter revision in server launcher (#2602)
allow revision for lora adapters from launcher

Co-authored-by: Sida <sida@kulamind.com>
Co-authored-by: teamclouday <teamclouday@gmail.com>
2024-10-02 10:51:04 -04:00
Nicolas Patry
0204946d26
Max token capacity metric (#2595)
* adding max_token_capacity_metric

* added tgi to name of metric

* Adding max capacity metric.

* Add description for the metrics

---------

Co-authored-by: Edwinhr716 <Edandres249@gmail.com>
2024-10-02 16:32:36 +02:00
Nicolas Patry
d18ed5cfc5
Mllama flash version (#2585)
* Working loading state.

* Preprocessing.

* Working state ? (Broke idefics1 temporarily).

* Cleaner condition.

* Fix idefics.

* Updating config, removing TODO

* Mllama

* Ugrade transformers 4.45

* Flashing mllama.

* Starting to get there.

* Working state.

* Integrations tests for mllama (cutting to 10 tokens because there seems'
to be instability after (meaning size of the batch matters.

* Updating model link.

* Earlier assert.

* Fix vlm ?

* remove log.

* Force ignore all images but last.

* Default dtype bfloat16.

* Update integration test after switch to bf16.

* Remove dead code.

* Removed dead code.

* Upgrade the flake to latest transformers/tokenizers

* Move to hf tgi-nix

* Upgrade to 0.5.0
2024-10-02 11:22:13 +02:00
Daniël de Kok
584b4d7a68
nix: experimental support for building a Docker container (#2470)
* nix: experimental support for building a Docker image

Run using something like:

```
docker run \
  --device nvidia.com/gpu=all \
  -it --rm -p 8080:80 \
  -v $PWD/data:/data \
  -v $PWD/tmp:/tmp \
  tgi-docker:latest \
  --model-id <model_id>
```

* Example of building the Docker image using Nix inside Docker

* Stream to make the builder image smaller

This avoids storing a Docker image tarball in the image. Instead,
stream the layers while doing `docker run`.

* Don't spam journalctl on Linux

* Other dockerfile.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-10-01 18:02:06 +02:00
Daniël de Kok
1c84a30fe6
MoE Marlin: support desc_act for groupsize != -1 (#2590)
This change uses the updated Marlin MoE kernel from vLLM to support
MoE with activation sorting and groups.
2024-09-30 19:40:25 +02:00
Daniël de Kok
d1f257ac56
Move flake back to tgi-nix main (#2586) 2024-09-30 11:39:41 +02:00
drbh
93a7042d7e
feat: support phi3.5 moe (#2479)
* feat: support phi3.5 moe model loading

* fix: prefer llama base model and improve rotary logic

* feat: return reasonable generation and add integration test

* fix: run lint and update docs

* fix: rerun lint for openapi docs

* fix: prefer do_sample false unless temp is set by user, and update chat tests

* fix: small typo adjustments

* fix: consolidate long rope paths

* fix: revert greedy by default and test changes

* Vendor configuration so that we don't have to `trust_remote_code`

* Use SparseMoELayer

* Add support for dense MoE

* Some type annotations

* Add the usual model tests

* Ruff.

---------

Co-authored-by: Daniël de Kok <me@danieldk.eu>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-09-30 11:15:09 +02:00
Daniël de Kok
90a1d04a2f
Add support for GPTQ-quantized MoE models using MoE Marlin (#2557)
This change add support for MoE models that use GPTQ quantization.
Currently only models with the following properties are supported:

- No `desc_act` with tensor parallelism, unless `group_size=-1`.
- No asymmetric quantization.
- No AWQ.
2024-09-30 11:14:32 +02:00
Mohit Sharma
f9e561eced
Update ROCM libs and improvements (#2579)
* style

* update torch

* ix issues

* fix clone

* revert mkl

* added custom PA

* style

* fix style

* style

* hide env vart

* fix mixtral model

* add skinny kernel and merge fixes

* fixed style

* fix issue for sliding window models

* addressed review comments

* fix import

* improved error messag

* updated default value

* remove import

* fix imports after rebase

* float16 dep

* improve dockerfile

* cleaned dockerfile
2024-09-30 10:54:32 +02:00
Ikram Ul Haq
e790cfc0e4
Update architecture.md (#2577) 2024-09-30 08:56:20 +02:00
Daniël de Kok
afc7ded84f
Remove compute capability lazy cell (#2580)
Remove compute capability lock

We are only calling the `get_cuda_capability` function once, so avoiding
the cost of multiple calls is not really necessary yet.
2024-09-30 08:48:47 +02:00
Daniël de Kok
1028996fb3
flashinfer: pass window size and dtype (#2574) 2024-09-28 18:41:41 +02:00
Daniël de Kok
5b6b74e21d
Improve support for GPUs with capability < 8 (#2575)
* Improve support for GPUs with capability < 8

- For models that cannot use flashinfer, use flash-attn v1 + paged
  attention for models with a compute capability older than 8.
- Disable prefix caching when using paged attention.
- When using flash-attn v1, pass the key/value, rather than the
  cache, since v1 cannot use block tables.

* nix: add flash-attn-v1 to the server environment

* Move disabling prefix caching into the block of exceptions

* Capability as `usize`s
2024-09-27 16:19:42 +02:00
Alvaro Bartolome
0aa66d693a
Fix build with --features google (#2566)
* Fix `cargo build --features google`

* Add `cargo test --features google`
2024-09-26 11:41:38 +02:00
Alvaro Bartolome
0b7df77178
Add LoRA adapters support for Gemma2 (#2567)
* Add LoRA adapters support for Gemma2

* Make `black` formatting happy
2024-09-26 10:54:08 +02:00
Nicholas Broad
7efcb5e0ed
remove LORA_ADAPTERS_PATH (#2563)
specify how to call local adapters
2024-09-25 01:20:15 +02:00
Nicolas Patry
dd8691b7c5
More tensor cores. (#2558)
* More tensor cores.

* Fixing the logic.

* Gemma is modified by this.
2024-09-24 23:57:26 +02:00
Nicolas Patry
c032280b17
Cleanup Vertex + Chat (#2553)
* Cleanup Vertex + Chat

* logprobs defaults to false.

* Parameters are optional

* Fix  docs.

* Changing back this logprobs default.

* Fixup doc.

* Let's debug that.

* Not unstable.

* Updating Cargo ?

* Wat?

* Dummy change.

* Trying some other install.

* Trying smething.

* Revert everything.

* Update Cargo lock.

* Fixing the pre-commit after rebase.
2024-09-24 23:37:17 +02:00
Nicolas Patry
75c8c54ac9
Hotfixing main. (#2562) 2024-09-24 23:00:43 +02:00
Aritra Roy Gosthipaty
e6d29656b5
Adding note for private models in quick-tour document (#2548)
* chore: adding note for private models in quicktour doc

* Update docs/source/quicktour.md

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/quicktour.md

Co-authored-by: vb <vaibhavs10@gmail.com>

* Update docs/source/quicktour.md

Co-authored-by: vb <vaibhavs10@gmail.com>

---------

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
Co-authored-by: vb <vaibhavs10@gmail.com>
2024-09-24 15:06:53 +02:00
Orhun Parmaksız
8024ded58f
Simplify crossterm imports (#2545) 2024-09-24 14:57:20 +02:00
Orhun Parmaksız
03263f5e88
Update the link to the Ratatui organization (#2546) 2024-09-24 14:51:48 +02:00
Daniël de Kok
3f14cd1420
Add DenseMoELayer and wire it up in Mixtral/Deepseek V2 (#2537)
This replaces the custom layers in both models.
2024-09-24 14:27:06 +02:00
Daniël de Kok
c29dc89c18
Add support for scalar FP8 weight scales (#2550)
* Add support for scalar FP8 weight scales

* Support LLM compressor FP8 checkpoints on H100

On H100, we use fbgemm-gpu, which requires bfloat16 as the input dtype.
However, we wouldn't pick up fp8 quantization for models quantized with
LLM compressor. This change adds enough parsing to detect if models have
FP8-quantized weights.

* Remove stray debug print
2024-09-24 13:57:40 +02:00
Nicolas Patry
0ff6ff60ad
Hotfixing main (#2556) 2024-09-24 11:51:14 +02:00
Nicolas Patry
74d3ce106e
Micro cleanup. (#2555) 2024-09-24 11:19:24 +02:00
Alvaro Bartolome
d31a6f75cc
Remove duplicated RUN in Dockerfile (#2547) 2024-09-24 10:19:13 +02:00
OlivierDehaene
10e6f29295
chore: Add old V2 backend (#2551)
* wip

* added v2
2024-09-24 08:38:17 +02:00
Daniël de Kok
9263817c71
nix: remove unused _server.nix file (#2538) 2024-09-23 09:43:23 +02:00
Nicolas Patry
169178b937
Preparing for release. (#2540)
* Preparing for release.

* Upgrade version in docs.
2024-09-20 17:42:04 +02:00
OlivierDehaene
7e2d18877e
fix: wrap python basic logs in debug assertion in launcher (#2539)
* fix: wrap python basic logs in debug assertion in launcher

* use level filters instead
2024-09-20 14:59:31 +00:00
Wang, Yi
f478aa77ad
hotfix: ipex fails since cuda moe kernel is not supported (#2532)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-09-20 10:02:55 +02:00
Daniël de Kok
abd24dd385
doc: clarify that --quantize is not needed for pre-quantized models (#2536) 2024-09-19 22:17:15 +02:00
Daniël de Kok
c103760172
Update to moe-kenels 0.3.1 (#2535)
* Update to moe-kenels 0.3.1

* Attempt to fix apt failure
2024-09-19 22:16:32 +02:00
Nicolas Patry
f512021e77
Stream options. (#2533)
* Stream options.

* Fetch stuff from nix integration test for easier testing.

* Adding the assert.

* Only send the usage when asked for.

* Update the docs.

* Impure test because we need network.

* develop.

* Optional usage.

* Fixes.

* Workflow
2024-09-19 20:50:37 +02:00
Daniël de Kok
ce85efa968
Move to moe-kernels package and switch to common MoE layer (#2511)
* Move to moe-kernels package and switch to common MoE layer

This change introduces the new `moe-kernels` package:

- Add `moe-kernels` as a dependency.
- Introduce a `SparseMoELayer` module that can be used by MoE
  models.
- Port over Mixtral and Deepseek.

* Make `cargo check` pass

* Update runner
2024-09-17 18:08:58 +02:00
OlivierDehaene
86984e3236
fix: metrics unbounded memory (#2528) 2024-09-17 16:01:28 +00:00
Daniël de Kok
71e4268600
nix: pure Rust check/fmt/clippy/test (#2525)
Runs the tests in a Nix build sandbox.
2024-09-17 12:14:30 +02:00
Nicolas Patry
38fcafcf96
Adding a test for FD. (#2516)
* Adding a test for FD.

* Fixing flashdecoding (empty batch doesn't work).

* Fixing the invalid popping.

* Fixing radix with block_size > 1

* Last reference.

* Use an actual hash.

* Update hash for slice.len() == 1

* Update the locks.

* Increasing docker timeout.
2024-09-16 17:00:54 +02:00
Daniël de Kok
7774655297
Add tests for Mixtral (#2520)
Disable by default because CI runners do not have enough GPUs.
2024-09-16 12:39:18 +02:00
Alex Strick van Linschoten
9cca3e0b03
Use ratatui not (deprecated) tui (#2521)
* use ratatui not archived tui

* bump ratatui all the way with options
2024-09-13 18:45:28 +02:00
Wang, Yi
3ac7df2b6d
hotfix : enable intel ipex cpu and xpu in python3.11 (#2517)
enable intel ipex cpu and xpu in python3.11

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-09-12 17:23:49 +02:00
drbh
628334d336
fix: pass missing revision arg for lora adapter when loading multiple… (#2510)
fix: pass missing revision arg for lora adapter when loading multiple adapters
2024-09-12 17:04:52 +02:00
Nicolas Patry
d95c670ada
Add nix test. (#2513)
* Add nix test.

* Modifying yourself means you need to rerun.

* Fixing the test + adding click (needed for pre-commit hooks).

* Try thuis.

* Our runner + pure test (not written)

* Reemove server.

* Root user.

* Different user ?

* Add the actual test target.

* Forgot this modification.

* Add a formatter.

* Add the secrets.

* Fixed the auth token ?

* Adding the other tests.

* Missing pre-commit.

* Test requires cargo for cargo fmt.

* Update it a bit.

* Up.

* Attempting to use a cache location for the models.

* Ignore the cache for now.
2024-09-12 14:54:56 +02:00
Daniël de Kok
94304649f1
nix: support Python tokenizer conversion in the router (#2515)
Ideally we wouldn't have the router wrapper that this change adds,
but when I give PyO3 a Python interpreter with packages, it ends
up linking libpython from the Python interpreter rather than the
constructed environment and cannot pick up the Python modules as
a result.
2024-09-12 10:44:01 +02:00
Nicolas Patry
69e3be20fb
Fix truffle (#2514)
* Attempting to discard the trufflehog warning.

* Attempt to fix trufflehog.
2024-09-11 22:45:19 +02:00
Nicolas Patry
dae3bf1d87
Fix tokenization yi (#2507)
* Fixing odd tokenization self modifications on the Rust side (load and
resave in Python).

* Fixing the builds ?

* Fix the gh action?

* Fixing the location ?

* Validation is odd.

* Try a faster runner

* Upgrade python version.

* Remove sccache

* No sccache.

* Getting libpython maybe ?

* List stuff.

* Monkey it up.

* have no idea at this point

* Tmp.

* Shot in the dark.

* Tmate the hell out of this.

* Desperation.

* WTF.

* -y.

* Apparently 3.10 is not available anymore.

* Updating the dockerfile to make libpython discoverable at runtime too.

* Put back rust tests.

* Why do we want mkl on AMD ?

* Forcing 3.11 ?
2024-09-11 22:41:56 +02:00
Nicolas Patry
a4e3e8c608
Prefix test - Different kind of load test to trigger prefix test bugs. (#2490)
* Adding prefix test.

* [WIP] tmp dump of integration load tests.

* Remove other tensor creation.

* Fixed the radix tree.

Used a slice everywhere in radix.rs to keep the cheap Arc cloning
instead of recomputing the input_ids.

* Fix parsing

* Is it really flashinfer version ?

* Remove some comments.

* Revert the max prefix hit.

* Adding numpy to diff.

* Upgraded flashinfer.

* Upgrading some stuff.

* Are we done yet ?

* Minor fixup

* Remove 1 log and put back the other.

* Add comment for why slot 0 is OK.

* Mounting on the job.

* Get me a debug branch

* Debugging CIs is fun.

* Attempt #28

* wip

* Tmate.

* Praying.

* Updating VLM causal model with updated context.

* Important line got squashed.

* Tmate again.

* Fingers crossed.

* We want only 1 run of integration tests.....

---------

Co-authored-by: Guillaume LEGENDRE <glegendre01@gmail.com>
2024-09-11 18:10:40 +02:00
Vallepu Vamsi Krishna
eabbbbda23
Add Directory Check to Prevent Redundant Cloning in Build Process (#2486)
Update Makefile-fbgemm

Added Directory check for FBGEMM repository cloning.
2024-09-07 13:19:43 +02:00
Nicolas Patry
c1fe28d694
Fixing more correctly the invalid drop of the batch. (#2498) 2024-09-06 17:35:49 +02:00
Martin Iglesias Goyanes
aaea212d0f
Add links to Adyen blogpost (#2500)
* Add links to Adyen blogpost

* Adding to toctree.

* Update external.md

* Update _toctree.yml

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-09-06 17:00:54 +02:00
Daniël de Kok
a3c9c62dc0
hotfix: add syrupy to the right subproject (#2499) 2024-09-06 12:47:06 +02:00
Daniël de Kok
379472c4c2
radix trie: add assertions (#2491)
These should all be cheap assertions.

Also:

* Fixup some comments.
* Delete a `remove` that was done unnecessarily twice.
2024-09-06 11:55:23 +02:00
Daniël de Kok
2eb57a15ec
Fix incompatibility with latest syrupy and update in Poetry (#2497) 2024-09-06 11:00:52 +02:00
Daniël de Kok
0424e27f65
nix: add pyright/ruff for proper LSP in the impure devshell (#2496)
We need this to ensure that pyright/ruff are part of the same
interpreter/venv.
2024-09-06 10:19:04 +02:00
Wang, Yi
5cd8025f18
hotfix: fix regression of attention api change in intel platform (#2439)
fix regression caused by attention api change. ipex.varlen_attention does not support paged-cache
format kv input now.

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-09-05 17:41:39 +02:00
Daniël de Kok
e279b38aca
Add two handy gitignores for Nix environments (#2484) 2024-09-05 17:06:54 +02:00
Nicolas Patry
8b96a18265
Adding links to Adyen blogpost. (#2492) 2024-09-05 16:11:52 +02:00
Daniël de Kok
deec30f893
hotfix: avoid non-prefilled block use when using prefix caching (#2489)
The minimum batch size logic could cause prefix blocks to be
deallocated without prefill. The next allocation of the same
prefix would then use garbage blocks.
2024-09-05 15:09:29 +02:00
drbh
6cb42f49ae
feat: support lora revisions and qkv_proj weights (#2482)
* feat: support lora revisions and qkv_proj weights

* fix: add qkv_proj weights to weight test
2024-09-02 13:09:06 -04:00
drbh
47d7e34458
fix: enable chat requests in vertex endpoint (#2481)
* fix: enable chat requests in vertex endpoint

* feat: avoid unwrap and pre allocate future vec
2024-09-02 10:00:52 -04:00
Daniël de Kok
de2cdeca53
nix: add punica-kernels (#2477)
Enables LoRA support.
2024-09-02 11:31:36 +02:00
Daniël de Kok
e4ab855480
nix: improve impure devshell (#2478)
- Add some test dependencies.
- Install server in venv.
- Install Python client in venv.
2024-09-02 09:27:10 +02:00
Nicolas Patry
d9fbbaafb0
Tied embeddings in MLP speculator. (#2473)
* Tied embeddings in MLP speculator.

* Fixing the scale_weight when users decide to not use the speculation as
much as defined in the config.

* Adding scaling support + optimize some ops.
2024-08-29 17:44:54 +02:00
Wang, Yi
9883f3b40e
update doc with intel cpu part (#2420)
* update doc with intel cpu part

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Apply suggestions from code review

we do not use latest ever in documentation, it causes too many issues for users. Release number get update on every release.

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-08-29 17:42:02 +02:00
drbh
d5202c46f7
feat: add /v1/models endpoint (#2433)
* feat: add /v1/models endpoint

* feat: add /v1/models endpoint

* fix: remove unused type import

* fix: revert route typo

* fix: update docs with new endpoint

* fix: add to redocly ignore and lint
2024-08-29 16:32:38 +02:00
Nicolas Patry
e415b690a6
Lots of improvements (Still 2 allocators) (#2449)
* Making prefix/flashinfer the default and testing the full release tests.

* Include flashinfer in the docker.

* Using prebuilt.

* Allowing window_left_size (dummy version).

* Disabling flashinfer/prefix caching on odd head_dim

* Disable prefix caching for lora.

* More specific codes.

* Update lock

* Updating integration tests with new values with FI/FD.

Remove paged as a default too, and using FD everywhere.

* Update cargo lock ?

* Upgrade to 1.80 because of bitstream...

* Everywhere 1.80

* Forgot last default place.

* Apply suggestions from code review

Co-authored-by: drbh <david.richard.holtz@gmail.com>

* Updated flake lock

* Tmp

* Upgrade resolution system for less errors in resolution.

* Remove lambda for cleaner function.

* Handling debugger.

* OVerride the env in server tests.

* Is this enough to make it work ?

* This seems to be working.

* Downgrade some logs.

* Fixing the default for vlm.

* Don't enable prefix caching on VLM just yet.

* Change `add_special_tokens` in order to have the correct tokens for chat
input and not (since it's super important with the prefixing now)

* Fixing prefix caching for flashdecoding.

* Update all models.

* Fixed flashinfer version.

* add_special_tokens is internal only

* Fixing seqlen with the new vlms.

* Fixing the issue with `add_special_tokens` not being passed around.

* Fixing the test.

* Removing encoder_decoder (seq2seq).

* Update the chat test.

* Fixing the batching tokenization in flash causal lm.

* Truncating left for radix purposes.

* Oops this doesn't belong here.

* Put back default pure shell.

* Update server tests

- Default to throughput test in k6
- Use TGI_WIGGLE_ROOM to adjust wiggle room

* Only n_heads / process_group.size() are necessary.

* Revert the integrationt tests change (seem linked to head_size
modification).

* Adding error message when assert is violated.

* Fixing the free algorithm to handle times where the common prefix is
smaller.

* Apply suggestions from code review

Co-authored-by: OlivierDehaene <olivier@huggingface.co>

* Update server/text_generation_server/layers/attention/common.py

Co-authored-by: OlivierDehaene <olivier@huggingface.co>

* Fix disabling prefix caching - Fix windowing checks.

* Revert the Cohere tokenizer change (for now using a revision instead).

* Fmt.

---------

Co-authored-by: drbh <david.richard.holtz@gmail.com>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2024-08-29 16:29:01 +02:00
Daniël de Kok
4e821c003a
nix: build Torch against MKL and various other improvements (#2469)
Updates tgi-nix input:

- Move Torch closer to upstream by building against MKL.
- Remove compute capability 8.7 from Torch (Jetson).
- Sync nixpkgs cumpute capabilities with Torch (avoids
  compiling too mana capabilities for MAGMA).
- Use nixpkgs configuration passed through by `tgi-nix`.
2024-08-29 16:25:25 +02:00
drbh
8f99f165ce
fix: improve regex expression (#2468) 2024-08-28 13:44:44 -04:00
drbh
21187c27c9
fix: bump minijinja version and add test for llama 3.1 tools (#2463)
* fix: support tojson and avoid message indexing issue in template

* fix: prefer minijinja native methods and prefer workspace level dependency

* fix: adjust comment typo
2024-08-27 13:31:08 -04:00
Nicolas Patry
2788d41a76
Fixing CI. (#2462) 2024-08-27 15:33:02 +02:00
drbh
cfa73b5c99
Pr 2451 ci branch (#2454)
* fix[router]: Fix tools not passed in chat template

Signed-off-by: GitHub <noreply@github.com>

* feat: improve default tool serialization and lints

* feat: refactor tool logic to include notify_error in prompt and adjust typing

* fix: adjust non tool template apply

* fix: simplify tool grammar logic and improve schema

* feat: avoid skip tool test and avoid empty tool prompts

* fix: increase test client timeout for grammar compilation tests

---------

Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: Simone Rossi <simone.rossi.93@gmail.com>
2024-08-26 20:19:38 -04:00
drbh
30be188400
Fix: don't apply post layernorm in SiglipVisionTransformer (#2459)
* Fix: don't apply post layernorm in SiglipVisionTransformer

This fixes a bug with LLaVA Next when using Siglip as the vision model. LLaVA Next expects the output of the vision model to be the encoder outputs before layernorm (see original transformers implementation here: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava_next/modeling_llava_next.py#L813).

This also makes Siglip consistent with the existing Clip implementation:

https://github.com/huggingface/text-generation-inference/blob/main/server/text_generation_server/models/custom_modeling/clip.py#L613

* fix: adjust pali gemma for post layer norm and small refactors

---------

Co-authored-by: Travis Addair <tgaddair@gmail.com>
2024-08-26 17:04:46 -04:00
Daniël de Kok
f3c5d7d92f
nix: add default package (#2453)
The default package wraps the launcher and puts the server/router in the
path.

As a result, TGI can be started using something like:

```
nix run .# -- \
  --model-id hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4 \
  --port 8080
```
2024-08-23 22:06:22 +02:00
Daniël de Kok
358ceb67dd
nix: add awq-inference-engine as server dependency (#2442) 2024-08-21 22:20:03 +02:00
Nicolas Patry
310778e02a
Adding eetq to flake. (#2438) 2024-08-21 09:06:33 +02:00
Daniël de Kok
9474415095
nix: add text-generation-benchmark to pure devshell (#2431)
nix: add text-generation-benchmark to pure devshell
2024-08-21 07:48:13 +02:00
Daniël de Kok
f5f11b797e
nix: add pure server to flake, add both pure and impure devshells (#2430)
* nix: pure server and support both pure and impure devShells

* nix: remove unused poetry2nix input

It is not wired up and we now have a pure server.

* nix: add ipdb to impure devshell
2024-08-20 22:07:33 +02:00
Nicolas Patry
b70ae0969f
Prefix caching (#2402)
* Prefix caching WIP

* Fixing prefix attention.

* Fixing flashinfer import.

* Fixing black.

* Fixing medusa (still wrong outputs, but functional).

* Just medusa values now.

* Fixing medusa without prefix caching.

* Fixing prefix caching.

* Medusa requires reshaping.

* Removing the logs.

* Remove router.nix

* Fixup:

- Remove logs
- Disable VLMs (they do not work)
- Disable prefix caching when user wants prefill logprobs.

* Update flake.lock

---------

Co-authored-by: Daniël de Kok <me@danieldk.eu>
2024-08-20 11:15:30 +02:00
Daniël de Kok
38773453ae
nix: update to CUDA 12.4 (#2429)
* Update to CUDA 12.4

* poetry2nix: follow tgi-nix nixpkgs
2024-08-19 09:28:38 +02:00
Nicolas Patry
e4201f44cf
All integration tests back everywhere (too many failed CI). (#2428)
* All integration tests back everywhere (too many failed CI).

* Upgrade integration tests after 12.4

* Attempt to remove the specifed compute cap.

* Common arch list.

* Punica uses raw ASM which is not valid on 9.0 apparently.
2024-08-16 21:19:46 +02:00
Hugo Larcher
53729b74ac
doc: Add metrics documentation and add a 'Reference' section (#2230)
* doc: Add metrics documentation and add a 'Reference' section

* doc: Add API reference

* doc: Refactor API reference

* fix: Message API link

* Bad rebase

* Moving the docs.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-08-16 19:43:30 +02:00
Nicolas Patry
cb0a29484d
FIxing the CI. 2024-08-16 14:21:29 +02:00
Nicolas Patry
c7ab1810d4
Further fixes. (#2426)
* Further fixes.

* Update the conftest to allow NaN (first logprob).

* Fix the condition.
2024-08-16 13:21:44 +02:00
Vaibhav Srivastav
99b662f8c2
Improve the Consuming TGI + Streaming docs. (#2412)
* Improve the Consuming TGI docs.

* Fix erronous update to .

* add info about Open AI client.

* More updates.

* Apply suggestions from code review

Co-authored-by: Erik Kaunismäki <erik.kaum@gmail.com>

* Suggestions from Lucain.

* Update Gradio snippet.

* Up.

* Apply suggestions from code review

Co-authored-by: Lucain <lucainp@gmail.com>

* Update docs/source/basic_tutorials/consuming_tgi.md

Co-authored-by: Lucain <lucainp@gmail.com>

* Up.

* Apply suggestions from code review

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Up.

* Up.

* Doc review from Nico.

* Doc review from Nico. x2

* Last nit

---------

Co-authored-by: Erik Kaunismäki <erik.kaum@gmail.com>
Co-authored-by: Lucain <lucainp@gmail.com>
Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
2024-08-16 12:43:08 +02:00
Daniël de Kok
1411bfb989
nix: try to reduce the number of Rust rebuilds (#2424)
Try to reduce the number of router/launcher rebuilds by filtering
sources. In this way, recompiles should only be triggered by changes
in Cargo or Rust files.
2024-08-16 10:01:01 +02:00
Nicolas Patry
1b0aa06204
Upgrading the tests to match the current workings. (#2423) 2024-08-15 13:28:42 +02:00
Nicolas Patry
57b3495823
Fixing exl2 and other quanize tests again. (#2419)
* Fixing exl2 and other quanize tests again.

* Mark exl2 as non release (so CI tests them, needs to be removed latet).

* Fixing exl2 (by disabling cuda graphs)

* Fix quantization defaults without cuda graphs on exl2 (linked to new
issues with it).

* Removing serde override.

* Go back to released exl2 and remove log.

* Adding warnings for deprecated bitsandbytes + upgrade info to warn.
2024-08-15 11:12:51 +02:00
Daniël de Kok
9aaa12e7ac
nix: build router incrementally (#2422) 2024-08-15 10:21:51 +02:00
Funtowicz Morgan
3f385991b0
More fixes trtllm (#2342)
* (backend) use parking_lot crate for RwLock fairness

* (docker) let's put rust in the TRTLLM folder when building

* (docker) build ompi with SLURM support

* (launcher) default new server::run parameters to false for now

* (chore) fmt ... why?
2024-08-14 12:02:05 +02:00
Nicolas Patry
f3b5c69441
Upgrading exl2. (#2415)
* Upgrading exl2.

* Fixing the other pathways.

* Fix idefics.
2024-08-14 11:58:08 +02:00
Daniël de Kok
c5fff92b48
nix: partial incremental build of the router (#2416)
This is less incremental than crate2nix, but does build all dependencies
separately, so avoids full rebuilds.
2024-08-14 11:06:28 +02:00
drbh
1cebccc72b
fix: adds causal to attention params (#2408)
fix: adds causal to attention params to check when using flash attn v1
2024-08-13 16:19:46 +02:00
Wang, Yi
59922f9bc1
add numa to improve cpu inference perf (#2330)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-13 15:33:55 +02:00
Nicolas Patry
cd9b15d17f
Adding more kernels to flake. (#2411) 2024-08-13 10:49:18 +02:00
Daniël de Kok
6f4bb4f26f
nix: incremental build of the launcher (#2410) 2024-08-13 10:44:15 +02:00
drbh
8a7749b8fb
fix: include create_exllama_buffers and set_device for exllama (#2407) 2024-08-12 17:59:37 -04:00
drbh
9a7830bd28
Pr 2395 ci run (#2406)
* fix(router): Fix appending to message content

* feat: add message and chat template test

---------

Co-authored-by: Simone Rossi <simone.rossi.93@gmail.com>
2024-08-12 14:38:59 -04:00
Nicolas Patry
19ea85f8dc
Updating the flake. (#2404) 2024-08-12 18:09:16 +02:00
drbh
30395b09f4
fix: improve completions to send a final chunk with usage details (#2336)
* fix: improve completions to send a final chunk with usage details

* fix: include finish reason string

* fix: remove dev debug trait and unneeded mut

* fix: update openapi schema
2024-08-12 17:26:11 +02:00
drbh
4c3f8a70a1
fix: allocate tmp based on sgmv kernel if available (#2345)
* fix: allocate tmp based on sgmv kernel if available

* fix: re add copy build artifacts step for punica kernels
2024-08-12 17:24:32 +02:00
drbh
155f9c98e2
feat: validate template variables before apply and improve sliding wi… (#2403)
* feat: validate template variables before apply and improve sliding window check

* fix: improve missing template var test
2024-08-12 10:58:40 -04:00
Nicolas Patry
136bcc8128
Keeping the benchmark somewhere (#2401)
Co-authored-by: Daniël de Kok <me@danieldk.eu>
2024-08-12 15:22:02 +02:00
Daniël de Kok
8deeaca4ff
Add support for prefix caching to the v3 router (#2392)
This change adds support for prefix caching to the v3 router. This
is broken up from the backend support to ease reviewing.

For now prefix caching is only enabled with `USE_PREFIX_CACHING=1`
in this case, the router will switch to `RadixAllocator`. This
allocator uses a radix trie to keep track of prefills that were
seen prior. If a new prefill is a prefix of a previously-seen
prefil, the router will send a request with `prefix_len>0`, which
can be used by the backend to decide to reuse KV blocks from the
cache, rather than recomputing them.

Even though backend support is not added in this PR, the backend
will still work with prefix caching enabled. The prefix lengths
are just ignored and not used.
2024-08-12 14:59:17 +02:00
Wang, Yi
b6bb1d5160
Cpu dockerimage (#2367)
add intel-cpu docker image

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-12 14:10:30 +02:00
Nicolas Patry
84bc3d7b7d
Fixing import exl2 (#2399) 2024-08-12 14:08:59 +02:00
Nicolas Patry
730fa00e20
Adding launcher to build. (#2397) 2024-08-12 14:08:46 +02:00
Nicolas Patry
9c739651cd
Upgrade fbgemm (#2398)
* Upgrade fbgemm

* Fix fbgemm version
2024-08-12 14:08:38 +02:00
Daniël de Kok
01a515dea2
nix: add router to the devshell (#2396) 2024-08-12 09:28:38 +02:00
Daniël de Kok
8dcc7d3f6b
Update flake for 9.0a capability in Torch (#2394) 2024-08-09 22:36:51 +02:00
drbh
0d06aed02d
feat: add guideline to chat request and template (#2391)
* feat: add guideline to chat request and template

* fix: add template test and update docs
2024-08-09 10:56:45 -04:00
Nicolas Patry
7a48a84784
Using an enum for flash backens (paged/flashdecoding/flashinfer) (#2385)
* Using an enum for flash backens (paged/flashdecoding/flashinfer)

* Early exit on server too.

* Clippy.

* Fix clippy and fmt.
2024-08-09 16:41:17 +02:00
Daniël de Kok
6e127dcc96
flake: use rust-overlay (#2390) 2024-08-09 15:24:21 +02:00
Vaibhav Srivastav
b2b9c42724
Update documentation for Supported models (#2386)
* Minor doc fixes

* up.

* Other minor updates.
2024-08-09 15:01:34 +02:00
Daniël de Kok
977534bcb8
flake: add fmt and clippy (#2389) 2024-08-09 14:56:20 +02:00
Nicolas Patry
952b450a3b
Using HF_HOME instead of CACHE to get token read in addition to models. (#2288) 2024-08-09 14:25:44 +02:00
Daniël de Kok
c6d5039cd7
Add experimental flake (#2384)
Add flake.nix
2024-08-09 12:32:37 +02:00
Daniël de Kok
7830de1566
Add FlashInfer support (#2354)
This change adds support for FlashInfer. FlashInfer can be enabled using
`FLASH_INFER=1` and is currently only implemented in `FlashCausalLM`.
Since this functionality is currently only for testing, FlashInfer is
not installed anywhere yet.

The FlashInfer API is quite different from FlashAttention/vLLM in that
it requires more global bookkeeping:

* A wrapper class needs to be contstructed (which we just call *state*).
  Since this is fairly expensive (due to pinned host memory allocation),
  we only do this once in a FlashCausalLM instance or for each CUDA
  Graph size.
* Each model forward call needs to be wrapped in `begin_forward` and
  `end_forward`. This sets up data structures that can be reused for all
  calls to attention for that forward call.

When calling attention, we need access to the state object. To avoid
passing an argument down the call chain (which would require changes to
all models), we use a context variable.

Each model forward call is wrapped using a context manager that does all
the bookkeeping for such a call:

* Set the context variable to the forward call's state.
* Call `begin_forward` on the state.
* Yield.
* Call `end_forward` on the state.
* Reset the context variable.

We cannot use a single shared global variable for this, since e.g. CUDA
Graphs of different sizes each have their own state.
2024-08-09 11:42:00 +02:00
drbh
6d06473cf4
Pr 2352 ci branch (#2382)
* Fix unsigned integer underflow

Passing --max-batch-size to the launcher actually had no effect
because after a few requests the max_size passed to State::next_batch
would underflow becoming a largo positive number.

In the scheduler, as soon as the cached batch size reached the
max_batch_size the max_size passed to next_batch becomes 0.
Since the only check in that funcion is
```
if Some(batch_requests.len()) == max_size {
    break;
}
```
and it's called after the `batch_requests.len()` has
become 1, it doesn't do anything to prevent more than 0
requests from being batched.

Now we have cached batch in the server that is large than
max_batch_size and `max_size - batch_size as usize`
underflows.

Signed-off-by: Max de Bayser <mbayser@br.ibm.com>

* fix: update v3 scheduler and ensure max_batch_size > 0

---------

Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Max de Bayser <mbayser@br.ibm.com>
2024-08-09 10:54:32 +02:00
Vaibhav Srivastav
cb3ae30284
Update Quantization docs and minor doc fix. (#2368)
* Update Quantization docs and minor doc fix.

* update readme with latest quants info

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* up

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2024-08-08 16:06:57 -04:00
drbh
f852190060
fix: prefer hidden_activation over hidden_act in gemma2 (#2381) 2024-08-08 14:08:56 -04:00
drbh
2ca5980634
Pr 2337 ci branch (#2379)
* hotfix: fix xpu crash brought by code refine. torch.xpu rely on import ipex

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* reable gemma2 in xpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix in regression in ipex flashattention

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-08 12:30:29 -04:00
Wang, Yi
689b1abbf6
fix EleutherAI/gpt-neox-20b does not work in tgi (#2346)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-08 12:08:52 -04:00
drbh
82d19d7723
Pr 2374 ci branch (#2378)
* Update __init__.py

Fix issue with NoneType comparison for max_input_tokens and sliding_window

- Add default values for max_input_tokens and sliding_window to handle None cases.
- Ensure the comparison between max_input_tokens and sliding_window is handled correctly to prevent TypeError.
- This change addresses the error: TypeError: '<=' not supported between instances of 'int' and 'NoneType'.

* Update __init__.py

Handle NoneType in sliding_window comparison to fix TypeError in __init__.py by ensuring the comparison logic accounts for NoneType values, preventing errors and improving code robustness.

* fix: syntax/style tweak

---------

Co-authored-by: Praz <prazanth2006@gmail.com>
2024-08-08 11:14:06 -04:00
drbh
a379d5536b
Fix the prefix for OPT model in opt_modelling.py #2370 (CI RUN) (#2371)
* Fix the bug

* fix: run lints

* fix: small syntax tweak

---------

Co-authored-by: Sadra Barikbin <sadraqazvin1@yahoo.com>
2024-08-07 23:14:02 -04:00
drbh
21267f3ca3
add gptj modeling in TGI #2366 (CI RUN) (#2372)
* add gptj modeling

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix: update docs for model addition

* fix: adjust syntax typo

* fix: adjust syntax typo again

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-07 21:32:37 -04:00
almersawi
8094ecfc9e
fix: fix num_ln_in_parallel_attn attribute name typo in RWConfig (#2350)
Co-authored-by: Islam Almersawi <islam.almersawi@openinnovation.ai>
2024-08-07 19:45:23 -04:00
drbh
133015f408
fix: prefer original layernorm names for 180B (#2365) 2024-08-06 15:25:30 -04:00
drbh
a64d407d64
fix: default num_ln_in_parallel_attn to one if not supplied (#2364) 2024-08-06 13:33:22 -04:00
drbh
1768c00b9f
feat: return the generated text when parsing fails (#2353) 2024-08-06 13:10:19 -04:00
drbh
f8a5b381fe
feat: prefer stop over eos_token to align with openai finish_reason (#2344) 2024-08-06 13:09:50 -04:00
drbh
e11f5f1c38
feat: implement a templated endpoint for visibility into chat requests (#2333)
* feat: implement a templated endpoint for visibility into chat requests

* feat: improve to tokenize too

* fix: adjust return type

* feat: simplify prepare_chat_input logic and adjust start stop chars
2024-08-06 13:51:32 +02:00
drbh
29b8d19cdf
fix: return the out tensor rather then the functions return value (#2361) 2024-08-06 13:49:53 +02:00
drbh
dd47a3dac4
feat: include local lora adapter loading docs (#2359) 2024-08-05 12:36:44 -04:00
drbh
215ed3ad52
fix: attempt forward on flash attn2 to check hardware support (#2335)
* fix: attempt forward on flash attn2 to check hardware support

* fix: warn window_size_left when using flash attn 1

* fix: prefer version check over test op and avoid window_size_left if not flash attn2

* fix: improve condtional and error message

* fix: update sliding window conditional

* fix: simplify changes and revert model changes

* fix: avoid changing conditional

* fix: typo tweak
2024-08-05 09:11:40 -04:00
Daniël de Kok
47447ef017
Unify attention output handling (#2343)
- Always return the hidden states.
- Create the output tensor inside the `attention` and `paged_attention`
  functions.

This removes the difference between how the output is handled between
attention (output parameter) and paged attention (return value). This
also removes the assumption that the attention implementation can
write to an output tensor (in preparation of FlashInfer).
2024-08-01 17:03:28 +02:00
Daniël de Kok
22fb1be588
Fix cache block size for flash decoding (#2351)
* Fix cache block size for flash decoding

This seems to have been accidentally dropped during the TRT-LLM
PR rebase.

* Also run CI on changes to `backends`
2024-08-01 15:38:57 +02:00
Wang, Yi
9ab9937414
enable HuggingFaceM4/idefics-9b in intel gpu (#2338)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-01 11:08:36 +02:00
Erik Kaunismäki
7451041ecd
refactor usage stats (#2339)
* refactor usage stats

* Update docs/source/usage_statistics.md

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* Update router/src/server.rs

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* changes based on feedback

* run python3 udpate_doc.py

* fix pre-commit

* Update router/src/server.rs

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* delete option around usage stats arg

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-07-31 16:29:07 +02:00
drbh
f7f61876cf
Pr 2290 ci run (#2329)
* MODEL_ID propagation fix

* fix: remove global model id

---------

Co-authored-by: root <root@tw031.pit.tensorwave.lan>
2024-07-31 10:27:15 -04:00
Daniël de Kok
34f7dcfd80
Handle GPTQ-Marlin loading in GPTQMarlinWeightLoader (#2300)
The `GPTWeightLoader` was structured like this in pseudocode:

if marlin:
  Set up tensors in a way that GPTQ-Marlin expects
else:
  Set up tensors in a way that ExLlama/GPTQ/AWQ expect

However, the GPT-Marlin implementation details should really be in the
`marlin` module. So move the former part out to a separate
`GPTQMarlinWeightsLoader`.
2024-07-31 13:08:41 +02:00
Nicolas Patry
2b19d671b4
Rebase TRT-llm (#2331)
* wip

wip

refacto

refacto

Initial setup for CXX binding to TRTLLM

Working FFI call for TGI and TRTLLM backend

Remove unused parameters annd force tokenizer name to be set

Overall build TRTLLM and deps through CMake build system

Enable end to end CMake build

First version loading engines and making it ready for inference

Remembering to check how we can detect support for chunked context

Move to latest TensorRT-LLM version

Specify which default log level to use depending on CMake build type

make leader executor mode working

unconditionally call InitializeBackend on the FFI layer

bind to CUDA::nvml to retrieve compute capabilities at runtime

updated logic and comment to detect cuda compute capabilities

implement the Stream method to send new tokens through a callback

use spdlog release 1.14.1 moving forward

update trtllm to latest version a96cccafcf6365c128f004f779160951f8c0801c

correctly tell cmake to build dependent tensorrt-llm required libraries

create cmake install target to put everything relevant in installation folder

add auth_token CLI argument to provide hf hub authentification token

allow converting huggingface::tokenizers error to TensorRtLlmBackendError

use correct include for spdlog

include guard to build example in cmakelists

working setup of the ffi layer

remove fmt import

use external fmt lib

end to end ffi flow working

make sure to track include/ffi.h to trigger rebuild from cargo

impl the rust backend which currently cannot move the actual computation in background thread

expose shutdown function at ffi layer

impl RwLock scenario for TensorRtLllmBackend

oops missing c++ backend definitions

compute the number of maximum new tokens for each request independently

make sure the context is not dropped in the middle of the async decoding.

remove unnecessary log

add all the necessary plumbery to return the generated content

update invalid doc in cpp file

correctly forward back the log probabilities

remove unneeded scope variable for now

refactor Stream impl for Generation to factorise code

expose the internal missing start/queue timestamp

forward tgi parameters rep/freq penalty

add some more validation about grammar not supported

define a shared struct to hold the result of a decoding step

expose information about potential error happening while decoding

remove logging

add logging in case of decoding error

make sure executor_worker is provided

add initial Dockerfile for TRTLLM backend

add some more information in CMakeLists.txt to correctly install executorWorker

add some more information in CMakeLists.txt to correctly find and install nvrtc wrapper

simplify prebuilt trtllm libraries name definition

do the same name definition stuff for tensorrt_llm_executor_static

leverage pkg-config to probe libraries paths and reuse new install structure from cmake

fix bad copy/past missing nvinfer linkage direction

align all the linker search dependency

add missing pkgconfig folder for MPI in Dockerfile

correctly setup linking search path for runtime layer

fix missing / before tgi lib path

adding missing ld_library_path for cuda stubs in Dockerfile

update tgi entrypoint

commenting out Python part for TensorRT installation

refactored docker image

move to TensorRT-LLM v0.11.0

make docker linter happy with same capitalization rule

fix typo

refactor the compute capabilities detection along with num gpus

update TensorRT-LLM to latest version

update TensorRT install script to latest

update build.rs to link to cuda 12.5

add missing dependant libraries for linking

clean up a bit

install to decoder_attention target

add some custom stuff for nccl linkage

fix envvar CARGO_CFG_TARGET_ARCH set at runtime vs compile time

use std::env::const::ARCH

make sure variable live long enough...

look for cuda 12.5

add some more basic info in README.md

* Rebase.

* Fix autodocs.

* Let's try to enable trtllm backend.

* Ignore backends/v3 by default.

* Fixing client.

* Fix makefile + autodocs.

* Updating the schema thing + redocly.

* Fix trtllm lint.

* Adding pb files ?

* Remove cargo fmt temporarily.

* ?

* Tmp.

* Remove both check + clippy  ?

* Backporting telemetry.

* Backporting 457fb0a1

* Remove PB from git.

* Fixing PB with default member backends/client

* update TensorRT-LLM to latest version

* provided None for api_key

* link against libtensorrt_llm and not libtensorrt-llm

---------

Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
Co-authored-by: Morgan Funtowicz <morgan@huggingface.co>
2024-07-31 10:33:10 +02:00
Daniël de Kok
53aec27328
server quantize: store quantizer config in standard format (#2299)
- Create `quantization_config` option in the model config.
- Don't store the quantizer config in tensors anymore.
2024-07-30 15:16:20 +02:00
drbh
0b95693fb8
fix: adjust test snapshots and small refactors (#2323)
* fix: adjust test snapshots and small refactors

* fix: revert non snapshot changes
2024-07-29 11:38:38 -04:00
Erik Kaunismäki
3d7f4f41bb
patch-error-on-invalid-grammar (#2282)
* quick fix

* allow silent failure

* explicit todo that this is only short term
2024-07-29 10:09:25 -04:00
drbh
f15e808d4c
fix: reject grammars without properties (#2309) 2024-07-29 10:07:25 -04:00
Daniël de Kok
922732b255
Install Marlin from standalone package (#2320) 2024-07-29 15:37:10 +02:00
Erik Kaunismäki
583d37a2f8
Run ci api key (#2315)
* Add API_Key for Auth and conditionally add authorisation for non info/health endpoints.

* change name to info routes

* Fix comment

* convert strings to lowercase for case insensitive comparison

* convert header to string

* fixes and update docs

* update docs again

* revert wrong update

---------

Co-authored-by: Kevin Duffy <kevin.duffy94@gmail.com>
2024-07-29 11:14:17 +02:00
Adrien
fd2e06316d
fix: fix buildkit config in ci
Signed-off-by: Adrien <adrien@huggingface.co>
2024-07-29 09:25:56 +02:00
drbh
bab02ff2bc
feat: add ruff and resolve issue (#2262)
* feat: add ruff and resolve issue

* fix: update client exports and adjust after rebase

* fix: adjust syntax to avoid circular import

* fix: adjust client ruff settings

* fix: lint and refactor import check and avoid model enum as global names

* fix: improve fbgemm_gpu check and lints

* fix: update lints

* fix: prefer comparing model enum over str

* fix: adjust lints and ignore specific rules

* fix: avoid unneeded quantize check
2024-07-26 10:29:09 -04:00
Daniël de Kok
4b49c50f4c
Support tied embeddings in 0.5B and 1.5B Qwen2 models (#2313) 2024-07-26 14:57:24 +02:00
Adrien
3905f854ed
Fix registry name (#2307) 2024-07-25 16:06:00 +02:00
Nicolas Patry
17ed42be3a
Fixing idefics on g6 tests. (#2306) 2024-07-25 14:44:21 +02:00
Daniël de Kok
9256d7c38c
Some small fixes for the Torch 2.4.0 update (#2304)
* Fix GPTQ autotune data type to be compatible with Torch 2.4.0

* Update poetry lock file

* Fix small PaliGemma logprob differences after the torch update
2024-07-25 13:34:44 +02:00
Nicolas Patry
26614057a7
Using g6 instead of g5. (#2281)
* Using g6 instead of g5.

* Update the idefics2 snapshot.
2024-07-25 11:21:17 +02:00
drbh
5d85a958c9
fix: refactor adapter weight loading and mapping (#2193)
* fix: refactor adapter weight loading and mapping

* feat: enable lora load from directory

* fix: adjust launcher for local lora adapters

* feat: improve weight loading and add tests

* fix: improve logging and rebase syntax issue

* fix: impove adapter merge comments and remove unused conditional

* fix: improve get_model_with_lora_adapters naming

* fix: comment typo
2024-07-24 15:32:14 -04:00
Daniël de Kok
93d2b9fe9c
Split up layers.marlin into several files (#2292)
The marlin.py file was getting large, split it up.
2024-07-24 16:33:26 +02:00
Wang, Yi
8642250602
fix of use of unquantized weights in cohere GQA loading, also enable … (#2291)
fix of use of unquantized weights in cohere GQA loading, also enable the model in intel platform

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-24 10:44:02 +02:00
Wang, Yi
5ad39dd3c3
fix crash in multi-modal (#2245)
* fix crash in multi-modal

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update according to review comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix llava_next regression in latest main

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-24 10:39:08 +02:00
OlivierDehaene
a895029424
hotfix: update nccl 2024-07-23 23:31:28 +02:00
OlivierDehaene
e7e3aa6cac
chore: update to torch 2.4 (#2259)
* chore: update to torch 2.4

* remove un-necessary patch

* fix
2024-07-23 20:39:43 +00:00
Daniël de Kok
bc9593a5b1
hotfix: pin numpy (#2289) 2024-07-23 17:53:19 +02:00
Daniël de Kok
4ab4173767
Add support for Llama 3 rotary embeddings (#2286)
* Add support for Llama 3 rotary embeddings

* Update transformers to 4.43
2024-07-23 17:18:54 +02:00
Nicolas Patry
5d121a9705
Preparing for release. (#2285)
* Preparing for release.

* Updating docs.

* Fixing token within the docker image for the launcher.
2024-07-23 16:20:17 +02:00
shaltielshmid
3961e32390
[WIP] Add support for Mistral-Nemo by supporting head_dim through config (#2254)
* Support passing head_dim through config

* Using `head_dim` as a fallback is necessary since it's a non standard
key in mistralConfig (as defined in transformers).

* Shorter diff.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-07-23 15:00:07 +02:00
Daniël de Kok
9935720c87
Add support for repacking AWQ weights for GPTQ-Marlin (#2278)
* Add support for repacking AWQ weights for GPTQ-Marlin

So far we couldn't support AWQ because virtually all AWQ models use
symmetric quantization, which GPTQ-Marlin did not suppors. GPTQ-Marlin
has recently added support AWQ repacking and AWQ asymmetric quantization
(zero_point=True).

This change updates all GPTQ-Marlin kernels from upstream and wires up
AWQ support. For now enabling AWQ using Marlin requires running TGI with
`--quantize gptq`.

* Enable Marlin for supported AWQ configurations by default

This makes the AWQ -> GPTQ repack test redundant, since we are now
testing this with the regular AWQ test.
2024-07-23 13:08:20 +02:00
OlivierDehaene
5fca30ee15
fix(l4): fix fp8 logic on l4 (#2277)
* fix(l4): fix fp8 logic on l4

* also quant weights with single scale

* use marlin even on 89
2024-07-23 11:24:29 +02:00
Nicolas Patry
abc32537ea
Fixing mistral nemo. (#2276) 2024-07-23 11:16:03 +02:00
Adrien
4700465192
use proper name for ci (#2274) 2024-07-22 21:50:53 +02:00
Nicolas Patry
6aeb669072
Softcapping for gemma2. (#2273)
* Softcapping for gemma2.

* Less clutter.

* No access to transformers config, only config_dict here.

* 0.0 is the null value in the C++ API.
2024-07-22 18:27:10 +02:00
OlivierDehaene
4844ff790a
fix(server): fix fp8 weight loading (#2268)
* fix(server): fix fp8 weight loading

* fixed scales loading

* update snap

* revert default dtype
2024-07-22 15:51:32 +00:00
Adrien
6aebf44f47
fix(ci): test new instances (#2272)
* test new instances

Signed-off-by: Adrien <adrien@huggingface.co>

* improve build ci

Signed-off-by: Adrien <adrien@huggingface.co>

---------

Signed-off-by: Adrien <adrien@huggingface.co>
2024-07-22 14:41:30 +02:00
Erik Kaunismäki
07441f5a7a
legacy warning on text_generation client (#2271)
Update README.md

point to huggingface_hub inference clients instead
2024-07-22 12:00:17 +02:00
icyboy™
4e4207224e
Hotfix: fix of use of unquantized weights in Mixtral GQA loading (#2269)
* Update idefics_causal_lm.py

Fix syntax issues

* fix dbrx & opt model prefix bug

* Hotfix: fix of use of unquantized weights in Mixtral GQA loading
2024-07-22 11:31:00 +02:00
OlivierDehaene
f3435bab8c
fix(server): fix deepseekv2 loading (#2266) 2024-07-21 18:48:04 +02:00
OlivierDehaene
53ec0b790b
feat(fp8): use fbgemm kernels and load fp8 weights directly (#2248)
* feat(fp8): add support for fbgemm

* allow loading fp8 weights directly

* update outlines

* fix makefile

* build fbgemm

* avoid circular import and fix dockerfile

* add default dtype

* refactored weights loader

* fix auto conversion

* fix quantization config parsing

* force new nccl on install

* missing get_weights implementation

* increase timeout
2024-07-20 19:02:04 +02:00
Daniël de Kok
e5c1d6d611
Add FP8 release test (#2261) 2024-07-20 10:26:06 +00:00
Adrien
11123a8e99
re-push to internal registry (#2242)
* re-push to internal registry

Signed-off-by: Adrien <adrien@huggingface.co>

* fix name

Signed-off-by: Adrien <adrien@huggingface.co>

* debug

Signed-off-by: Adrien <adrien@huggingface.co>

* debug

Signed-off-by: Adrien <adrien@huggingface.co>

* wip

Signed-off-by: Adrien <adrien@huggingface.co>

* wip

Signed-off-by: Adrien <adrien@huggingface.co>

* wip debug

Signed-off-by: Adrien <adrien@huggingface.co>

* add debug

Signed-off-by: Adrien <adrien@huggingface.co>

* should

Signed-off-by: Adrien <adrien@huggingface.co>

* wip

Signed-off-by: Adrien <adrien@huggingface.co>

* ww

Signed-off-by: Adrien <adrien@huggingface.co>

* wip

Signed-off-by: Adrien <adrien@huggingface.co>

* wip

Signed-off-by: Adrien <adrien@huggingface.co>

* ww

Signed-off-by: Adrien <adrien@huggingface.co>

* wip

Signed-off-by: Adrien <adrien@huggingface.co>

* wip

Signed-off-by: Adrien <adrien@huggingface.co>

* debug

Signed-off-by: Adrien <adrien@huggingface.co>

* w

Signed-off-by: Adrien <adrien@huggingface.co>

* revert tests

Signed-off-by: Adrien <adrien@huggingface.co>

* last reverts

Signed-off-by: Adrien <adrien@huggingface.co>

* another one

Signed-off-by: Adrien <adrien@huggingface.co>

---------

Signed-off-by: Adrien <adrien@huggingface.co>
2024-07-20 05:06:40 +00:00
Daniël de Kok
e52be9bba2
Add support for Deepseek V2 (#2224)
Deepseek V2 is a MoE model from Deepseek. Relevant variations
compared to other models:

- Grouped top-K in expert selection.
- mscale in yarn is calculated using the `mscale` and `mscale_all_dim`
  configuration options.
- `mscale_all_dim` is also used in scaling attention softmax.
- Permuting of the query/key representations before applying rotary
  embeddings.
- Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`).
  So, we need weight loads that supports quantized weights. To this
  end `{Weights,WeightLoader}.get_weight` was added.
- The query/key head dimensionality differs from that of the value,
  so we need to pad during attention.
- Heads with size 192, needs an extension to our paged attention
  fork and we need to ensure that the KV cache is allocated with the
  correct size.
- Shared experts.
2024-07-19 17:23:20 +02:00
drbh
68a9685f1b
fix: adjust default tool choice (#2244)
* fix: adjust default tool choice

* feat: improve tool choice syntax and response parsing/errors

* fix: remove dev tests

* feat: add ToolChoice to docs
2024-07-19 11:12:02 -04:00
Erik Kaunismäki
40f5dc3ed6
add usage stats to toctree (#2260)
quick fix
2024-07-19 16:34:04 +02:00
Erik Kaunismäki
4c19593a90
usage stats and crash reports (#2220)
* draft of usage stats

* fix wrong link

* launcher doesn't need sysinfo dep

* only tokenizer class instead of hole struct

* unused import

* fix clippy errors

* update openAPI doc

* cargo fmt

* fix error in passing flags to router

* try again to update docs

* run pre-commit locally

* Update router/src/main.rs

Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>

* Update router/src/main.rs

Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>

* on crash use anonymous error event

* delete json_output and ngrok

* more robust way of checking if is in container

* more robust nvidia smi

* parse xpu more robustly

* fix errors

* add nvidia-smi details in docs

* cargo fmt

* fix clippy

* should make docs check pass

* Update router/src/usage_stats.rs

Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>

* error reason can't be in nested json

* cargo fmt

---------

Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
Co-authored-by: Erik Kaunismäki <erikkaum@Eriks-MacBook-Pro.local>
2024-07-19 16:17:56 +02:00
Daniël de Kok
3f37a66774
Hotfix: pass through model revision in VlmCausalLM (#2258) 2024-07-19 15:59:00 +02:00
Daniël de Kok
3b41e93a09
Hotfix: fix MPT after recent refactor (#2257) 2024-07-19 14:42:35 +02:00
Daniël de Kok
18db78f295
Hotfix: various GPT-based model fixes (#2256) 2024-07-19 14:42:19 +02:00
Daniël de Kok
80adb5be16
Hotfix: fix of use of unquantized weights in Gemma GQA loading (#2255) 2024-07-19 12:55:59 +02:00
Daniël de Kok
ba291dad9f
Improve the handling of quantized weights (#2250)
* Improve the handling of quantized weights

Handling of quantized weights was split between two mechanisms:

- For quantized checkpoints, we used the new weight loader
  infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
  instead relied on conditional in `get_linear`.

Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.

This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:

- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
  `get_linear` does not need to know how to handle quantizer linear
  layers.
- All quantizer weights are strongly typed, we don't pass around
  raw tensors.
- We don't have to pass around the `quantizer` string everywhere.

* Exclude non-MLP layers when using FP8 quantization with Llama
2024-07-19 09:37:39 +02:00
OlivierDehaene
1d1b1efa01
fix(server): fix cohere (#2249) 2024-07-18 16:00:13 +02:00
Daniël de Kok
da82c63a4f
Remove stray quantize argument in get_weights_col_packed_qkv (#2237)
Fixes #2236.
2024-07-16 09:30:57 +02:00
Daniël de Kok
2cb1842852
server quantize: expose groupsize option (#2225) 2024-07-16 08:36:05 +02:00
Daniël de Kok
06d0e880e0
Add support for AWQ-quantized Idefics2 (#2233)
Fixes #2036.
2024-07-16 07:58:25 +02:00
Hugo Larcher
0ad7f6f87d
fix: Remove bitsandbytes installation when running cpu-only install (#2216)
Remove bitsandbytes installation when running cpu-only install
2024-07-15 15:34:20 +02:00
Erik Kaunismäki
457fb0a188
fix custom cache dir (#2226)
* fix to not ignore HUGGINGFACE_HUB_CACHE in cache

* delete printlns

* delete newlines

* maybe fix trailing whitespace
2024-07-15 15:17:13 +02:00
drbh
5a65066922
feat: simple mistral lora integration tests (#2180)
* feat: simple mistral lora integration tests

* fix: include args in docker launcher

* fix: disable cuda graphs with lora and warn

* fix: adjust docs and precommit issues

* fix: re update docs
2024-07-15 09:16:15 -04:00
Daniël de Kok
dbb23fbfa8
Use symmetric quantization in the quantize subcommand (#2120)
Packing of asymmetric quantization is broken, all (q)zeros values
of `0` get reset to `1`, resulting in a loss of accuracy. So instead
use symmetric quantization. To be able to distinguish models with
symmetric and asymmetric quantization, a new config tensor `gptq_sym` is
added. If this tensor is not present, we assume `sym=False`.
2024-07-12 12:20:12 +02:00
SeongBeomLEE
c46eaf707b
[fix] Modifying base in yarn embedding (#2212) 2024-07-12 10:04:51 +02:00
drbh
d789de329a
fix: append DONE message to chat stream (#2221)
* fix: append DONE message to chat stream

* fix: update completions endpoint
2024-07-11 10:42:58 -04:00
Daniël de Kok
cb150eb295
Add support for FP8 on compute capability >=8.0, <8.9 (#2213)
Use FP8 GPTQ-Marlin kernels to enable FP8 support on CUDA GPUs
with compute capability >=8.0 and <8.9.

Co-authored-by: Florian Zimmermeister <flozi00.fz@gmail.com>
2024-07-11 16:03:26 +02:00
Daniël de Kok
8511669cb2
Move quantized weight handling out of the Weights class (#2194)
Quantized weights were loaded in the `Weights` class, but this was
getting quite unwieldy, where every higher level method to load weights
was a long conditional to cover all the different quantizers.

This change moves loading of quantized weights out of the `Weights`
class. This is done by defining a simple `WeightsLoader` interface
that is implemented by `Exl2WeightsLoader`, `GPTQWeightsLoader`,
and `MarlinWeightsLoader`. These implementations are in the quantizers'
respective modules. The `Weights` class provides the low-level load
operations (such as loading tensors or sharded tensors), but delegates
loads that need quantizer-specific weight processing to a loader. The
loaders still use the low-level functionality provided by `Weights`.

I initially tried making a hierarchy where a class like `GPTQWeights`
would inherit from `Weights`. But it is not very flexible (e.g. does
not work well with the new weight storage mock used in tests) and
the implicit indirections made the code harder to follow.
2024-07-09 20:04:03 +02:00
Nicolas Patry
4c976fb406
Updating the self check (#2209)
* Updating the self check

* Fix.

* Revert the CLI .

* cli.

* Space.

* Revert cargo update.
2024-07-09 17:23:48 +02:00
vinkamath
f5ba9bfd52
Fixed README ToC (#2196)
Co-authored-by: Vinayak Kamath <Vinayak.Kamath@target.com>
2024-07-09 11:22:08 +02:00
Nicolas Patry
fe710af25f
Adding sanity check to openapi docs. 2024-07-09 11:13:48 +02:00
Guillaume LEGENDRE
5e2a305880
Fix buildx cache + change runner type (#2176)
* Update build.yaml

* Update build.yaml

* change to S3 cache

* change to CPU Runners

* remove comments
2024-07-08 18:13:32 +02:00
fxmarty
4c50b6d04b
Fix nccl regression on PyTorch 2.3 upgrade (#2099)
* fix nccl issue

* add note in dockerfile

* use v2.22.3 that also fixes @samsamoa's repro

* poetry actually can't handle the conflict between torch and nccl

* set LD_PRELOAD
2024-07-08 17:52:10 +02:00
drbh
87ebb6477b
feat: use model name as adapter id in chat endpoints (#2128) 2024-07-08 16:06:49 +02:00
Wang, Yi
58effe78b5
update to metrics 0.23.0 or could work with metrics-exporter-promethe… (#2190)
update to metrics 0.23.0 or could work with metrics-exporter-prometheus 0.15.1

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-08 16:03:59 +02:00
Javier Martinez
16d9e505fd
fix: python deserialization (#2178) 2024-07-08 15:59:16 +02:00
Wang, Yi
07e240ca37
add doc for intel gpus (#2181)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-08 15:57:06 +02:00
Daniël de Kok
5c7c9f1390
Falcon/DBRX: get correct number of key-value heads (#2205) 2024-07-08 13:22:38 +02:00
Daniël de Kok
153fcf7739
Fix incorrect cache allocation with multi-query (#2203)
We wouldn't allocate any memory in multi-query (1 KV head). Fixes
Starcoder et al.
2024-07-08 11:19:48 +02:00
Daniël de Kok
cce475a949
hotfix: Fix number of KV heads (#2202)
Fix number of KV heads
2024-07-08 09:52:12 +02:00
icyboy™
521d0d990f
fix dbrx & opt model prefix bug (#2201)
* Update idefics_causal_lm.py

Fix syntax issues

* fix dbrx & opt model prefix bug
2024-07-08 09:01:14 +02:00
Daniël de Kok
05c094fcfa
Consistently take prefix in model constructors (#2191)
* Consistently take `prefix` in model constructors

* Release test check fix

* Misc refactor-related fixes
2024-07-05 16:07:48 +02:00
Daniël de Kok
67ef0649cf
GPTQ CI improvements (#2151)
* Add more representative Llama GPTQ test

The Llama GPTQ test is updated to use a model with the commonly-used
quantizer config format and activation sorting. The old test is
kept around (but renamed) since it tests the format produced by
`text-generation-server quantize`.

* Add support for manually triggering a release build
2024-07-05 14:12:16 +02:00
Daniël de Kok
b67d46336e
Fix Starcoder2 after refactor (#2189) 2024-07-05 12:22:45 +02:00
Nicolas Patry
853d4eb9cf
Hotfixing after refactor. 2024-07-05 09:25:29 +00:00
Nicolas Patry
fb2f74e2b9
Refactor dead code - Removing all flash_xxx.py files. (#2166)
* Refactor dead code.

* First working step.

* Remove a lot of duplicated code.

* More dead code.

* More cleanup.

* Fix Santacoder test.

* Fixing the simple tests.

* Fixing sharding.

* Fixes for VLM.

* Fixing santacoder (num_kv_heads hardcoded).

* Removing more dead code.

* Fixing `config.n_head`.

* Stopping earlier because of `<end_of_utterance>` in idefics2.

* Addresses comments.

* Removing the dead code.

* Fuse back mistral into FlashCausalLM.

* Finish removal.

* Fixing docs + causal_lm `batch_class`.

* Fixing docs + causal.lm.

* Add default to Gemma Causality.

* Default value for gemma/gemma2.

* Wrong default.
2024-07-05 10:29:56 +02:00
Aaron Mihalik
c6bcadf883
Adding "longrope" for Phi-3 (#2172) (#2179)
Adding "longrope" for phi-3
2024-07-05 09:46:41 +02:00
Nicolas Patry
245d3de948
Preparing patch release. (#2186) 2024-07-04 10:55:33 +02:00
Nicolas Patry
5ad41aa2a6
Fixing missing object field for regular completions. (#2175)
* Fixing missing `object` field for regular completions.

* Fixing docs by re-adding missing `Prompt`.
2024-07-03 12:56:27 +02:00
Nicolas Patry
2b3bd1e008
Fixing the dockerfile warnings. (#2173) 2024-07-03 12:48:45 +02:00
Nicolas Patry
be4a4c47f9
Revert "Fixing missing object field for regular completions."
This reverts commit 2bbb7fa4b2.
2024-07-03 10:41:39 +00:00
Nicolas Patry
2bbb7fa4b2
Fixing missing object field for regular completions. 2024-07-03 10:40:22 +00:00
drbh
571530dd9a
feat: improve update_docs for openapi schema (#2169)
* feat: add pre commit step to force schema update when router changes

* fix: prefer improved update_doc and start server and compare

* fix: adjust typo

* fix: adjust revert typo

* fix: update workflow to use update_doc md command

* feat: improve workflow to check openapi schema too

* fix: adjust timeout for CI

* fix: adjust raise condition and install server in ci

* fix: install protoc before server

* feat: improve update doc and add command to print router schema

* fix: adjust autodoc workflow

* fix: explicitly install protoc and python

* fix: alllow trailing space in openapi schema diff
2024-07-03 09:53:35 +02:00
Nicolas Patry
0759ec495e
Hotfixing qwen2 and starcoder2 (which also get clamping). (#2167) 2024-07-02 14:26:47 +02:00
Guillaume LEGENDRE
963b6c6f0f
Ci test (#2124)
* first test with registry mirror

* change push registry

* remove comments

* Move cache to push registry

* fix registry url

* Update .github/workflows/ci_build.yaml

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-07-02 12:45:38 +02:00
Nicolas Patry
dea9c0dc74
Fixing rocm. (#2164) 2024-07-02 12:01:08 +02:00
drbh
b966bc0d35
fix: use the base layers weight in mistral rocm (#2155) 2024-07-02 11:56:25 +02:00
Wang, Yi
5d97e0c4a3
fix FlashDecoding change's regression in intel platform (#2161)
install triton because GPTQParams needs it.

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-02 11:56:07 +02:00
Nicolas Patry
022f6515a4
Fixing graph capture for flash decoding. (#2163) 2024-07-02 11:43:07 +02:00
Nicolas Patry
4327210e6b
[Major Change][Undecided yet] Move to FlashDecoding instead of PagedAttention kernel. (#1940)
* Using flash decoding

Conditional flashdecoding.

Fix max_q.

Working kvcache

Working version with flash decoding.

Make it work for mistral.

Fix after rebase..

Less intrusive.

REvert changes in modeling.

Speedup flashdecoding.

HHachweew
Hack to make other models work.

Fixing non flash decoding llama path.

Router logic knows about page size.

Missing 2 models.

Missing cohere.

Fixing cohere flash decoding.

Revamped all this architecture.

Fix cohere.

Fixing falcon.

Enabling custom block size schedule.

Update router/src/infer.rs

Not sending preallocated output.

* Making it work on non flash decoding.

* Fix Cohere.

* Fix non decoding paths.

* Rebased.

* No need for cache_manager anymore.

* Update?

* "ipex" -> "cpu"

* These do not belong.

* Factoring cu_seqlen_qk for better abstracting over every model.

* Fixing non flash tests/imports.

* Changing return everywhere.

* Update mistral past.

* Fixing Mi{s,x}tral (non functional in Flash Decoding mode though).

* Fixup mistral clamping (had issues with cuda graphs).

* No need to recreate anything actually.
2024-07-01 23:28:00 +02:00
Nicolas Patry
4f55f15840
Fixing baichuan override. (#2158) 2024-07-01 23:25:54 +02:00
Nicolas Patry
d0225b1015
GH router. (#2153) 2024-07-01 15:42:26 +02:00
Nicolas Patry
17cebc4506
Fixing test. (#2152) 2024-07-01 15:24:17 +02:00
drbh
9eefb2f672
fix: prefer serde structs over custom functions (#2127)
* fix: prefer enum for chat object

* fix: adjust typo

* fix: enum CompletionType not ObjectType

* fix: adjust typo

* feat: leverage serde for conditional deser

* fix: adjust HubTokenizerConfig after rebase

* fix: update create_post_processor logic for token type

* fix: adjust unwrap syntax in template

* Fixing the post processor.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-07-01 15:08:05 +02:00
Wang, Yi
5da4cfab1c
refine get xpu free memory/enable Qwen2/gemma2/gemma/phi in intel platform (#2132)
* refine get xpu free memory

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable qwen2 in xpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable gemma/gemma2/phi in intel platform

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-01 14:32:54 +02:00
icyboy™
9d0ca503a8
fix AttributeError: 'MixtralLayer' object has no attribute 'mlp' (#2123)
https://github.com/huggingface/text-generation-inference/issues/2122
2024-07-01 14:17:22 +02:00
Daniël de Kok
2ce8019480
Use GPTQ-Marlin for supported GPTQ configurations (#2111)
GPTQ-Marlin is currently the best-performing kernel for GPTQ models. So
let's use it by default if the kernels are installed, the GPU supports
it, and the kernels support the configuration.

For models generated by `text-generation-server quantize`, use
`sym=False`. This subcommand symmetric quantization since the beginning
and incorrectly reporting the model to be symmetric will use
GPTQ-Marlin (which does not support asymmetric quantization).
2024-07-01 12:59:12 +02:00
drbh
0d97a93c1e
feat: download lora adapter weights from launcher (#2140) 2024-07-01 12:58:49 +02:00
drbh
25f57e2e98
fix: use weights from base_layer (#2141) 2024-07-01 12:58:40 +02:00
Nicolas Patry
b4552f9de9
Fixing clippy. (#2149) 2024-07-01 12:02:19 +02:00
Wang, Yi
6ea570ddfe
fix microsoft/Phi-3-mini-4k-instruct crash in batch.slots[batch.slot_… (#2148)
* fix microsoft/Phi-3-mini-4k-instruct crash in batch.slots[batch.slot_indices]

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Apply suggestions from code review

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-07-01 11:27:53 +02:00
Nicolas Patry
fb98ab273f
Fixing the CI to also run in release when it's a tag ? (#2138) 2024-06-28 09:31:09 +02:00
drbh
74b0231b19
fix: refactor post_processor logic and add test (#2137)
* fix: refactor post_processor logic and add test

* fix: remove dev comment

* fix: adjust when post_processor is overridden and  improve create_post_processor
2024-06-27 23:16:19 +02:00
Nicolas Patry
3ea8259af1
Fixing gemma2. (#2135)
* Fixing gemma2.

* Adding new model.
2024-06-27 16:04:20 +02:00
Nicolas Patry
0e4ab6d31c
Fixing malformed rust tokenizers (#2134)
* Fixing malformed rust tokenizers

* Fix for deepseek too.
2024-06-27 16:04:03 +02:00
Daniël de Kok
dd2d91b043
Idefics2: sync added image tokens with transformers (#2080)
Before this change, the number of reserved image tokens was not the
same as the number of images. Fixes #2029.

While at it, also remove all the image token handling duplication
in `prepare_input`.
2024-06-27 15:54:35 +02:00
Nicolas Patry
b53b21c63a
Bumping to 2.1 (#2131) 2024-06-27 12:34:43 +02:00
Nicolas Patry
bcfcd4740a
Fixing prom leak by upgrading. (#2129) 2024-06-27 08:08:43 +02:00
drbh
be2d38032a
fix: simplify kserve endpoint and fix imports (#2119) 2024-06-25 19:30:10 -04:00
Daniël de Kok
f1f98e369f
Add support for Marlin 2:4 sparsity (#2102)
This change adds support for 2:4 sparsity when using Marlin
quantization. The 2:4 kernel is used when:

* The quantizer is `marlin`;
* the quantizer checkpoint format is `marlin_24`.

Fixes #2098.
2024-06-25 21:09:42 +02:00
Daniël de Kok
14980df2df
Support AWQ quantization with bias (#2117)
When the AWQ quantizer was used with a layer that uses a bias,
the bias tensor was not correctly passed/used. Instead, the
value `true`/`1.0` was added to the linear transformation.

Correctly pass through the bias when it is not `None`.

Fixes #2106.
2024-06-25 21:09:00 +02:00
drbh
04e1af94d7
Enable multiple LoRa adapters (#2010)
* feat: first draft load multiple lora

* feat: load weights within layer and refactor lora pass

* fix: refactor and reduce lora math

* feat: baseline impl single request multi lora support

* feat: prefer lorax implementation and port loading logic

* fix: prefer adapter_data and refactors

* feat: perfer loraxs custom punica kernels and add mlp loras

* fix: adjust batch for bgmv

* fix: adjust adapter_segments logic when in batch

* fix: refactor and move changes to v3 proto

* fix: pass model_id for all flash causal lms

* fix: pass model_id for all causal and seq2seq lms

* fix: add model_id to model test

* feat: add lora support to mistral and refactors

* feat: prefer model id in request

* fix: include rust code for adapter id

* feat: bump launcher and add new lora docs

* feat: support base model generation and refactors

* fix: rename doc to retry ci build

* feat: support if vlm models

* fix: add adapter_data param and avoid missing layers

* fix: add adapter_data param to phi and neox

* fix: update all models forwards to include adapter_data

* fix: add model_id to IdeficsCausalLM

* Update lora.md

Fixed a typo

* Update lora.md

Fixing spam image

* fix: add lora kernel to dockerfile, support running without kernels and refactors

* fix: avoid dockerfile conflict

* fix: refactors and adjust flash llama lora logic

* fix: skip llama test due to CI issue (temp)

* fix: skip llama test CI (temp) 2

* fix: revert skips and prefer updated ci token for tests

* fix: refactors and helpful comments

* fix: add noop in TensorParallelAdapterRowLinear too

* fix: refactor and move shard_lora_weights logic

* fix: exit early if no adapter_data

---------

Co-authored-by: Derek <datavistics@gmail.com>
2024-06-25 14:46:27 -04:00
Nicolas Patry
a2a97b05d6
Fix CI . (#2118)
Fix clippy.
2024-06-25 17:53:36 +02:00
Daniël de Kok
fc9c3153e5
Add pytest release marker (#2114)
* Add pytest release marker

Annotate a test with `@pytest.mark.release` and it only gets run
with `pytest integration-tests --release`.

* Mark many models as `release` to speed up CI
2024-06-25 16:53:20 +02:00
Wang, Yi
e563983d90
fix cpu and xpu issue (#2116)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-06-25 16:47:06 +02:00
Nicolas Patry
9e2fdf57c0
Removing IPEX_AVAIL. (#2115)
* Removing IPEX_AVAIL.

Chose to unify CPU and XPU under `ipex`. Most code is exactly similar
except for a very few spots.

The biggest number of spots is the kv-cache layout and the flash_xxx.py
files.
Since those files should be removed soon and factored away, we should
not need them.

* Forgot a few places.

* Unrelated change.

* Fixing HF_TOKEN.

* HF_TOKEN
2024-06-25 13:20:57 +02:00
drbh
3f3b7ffd67
feat: add simple tests for weights (#2092)
* feat: add simple tests for weights

* fix: adjust types and add tests

* fix: adjust so all tests pass

* feat: improve weight tests

* fix: add missing tests and renames

* fix: tweak shapes
2024-06-25 12:22:59 +02:00
Wang, Yi
b64c70c9e7
Cpu tgi (#1936)
* add CPU tgi support

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* ipex distributed ops support

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Funtowicz Morgan <mfuntowicz@users.noreply.github.com>
2024-06-25 12:21:29 +02:00
sunxichen
b69f078041
fix ChatCompletion and ChatCompletionChunk object string not compatible with standard openai api (#2089)
Co-authored-by: sunxichen <sun.xc@digitalcnzz.com>
2024-06-25 10:59:50 +02:00
Wang, Yi
83634dc122
use xpu-smi to dump used memory (#2047)
* use xpu-smi to dump used memory
xpu use "ZE_AFFINITY_MASK" to control card, usage is like CUDA_VISIBLE_DEVICES

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Update server/text_generation_server/utils/import_utils.py

Co-authored-by: Daniël de Kok <me@github.danieldk.eu>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
2024-06-25 10:15:46 +02:00
Jeff
5b2155b0f8
corrected Pydantic warning. (#2095)
* corrected Pydantic warning.

* Update clients/python/text_generation/types.py

Co-authored-by: Daniël de Kok <me@github.danieldk.eu>

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
2024-06-25 10:10:32 +02:00
KevinDuffy94
1869ee2f57
Add OTLP Service Name Environment Variable (#2076)
* Adding Service Name Environment variable for https://github.com/huggingface/text-generation-inference/issues/2069

* Update Docs

* Update README.md

* Update Launcher Docs

* Update Launcher Docs
Removing Option
2024-06-25 09:33:01 +02:00
Lucain
3447c722fd
Support HF_TOKEN environment variable (#2066)
* Support HF_TOKEN environement variable

* Load test.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-06-25 09:23:12 +02:00
ur4t
405765b18c
Fix cargo-chef prepare (#2101)
* Fix cargo-chef prepare

In prepare stage, cargo-chef reads Cargo.lock and transforms it accordingly.
If Cargo.lock is not present, cargo-chef will generate a new one first, which
might vary a lot and invalidate docker build caches.

* Fix Dockerfile_amd and Dockerfile_intel
2024-06-24 18:16:36 +02:00
Nicolas Patry
480d3b3304
New runner. Manual squash. (#2110)
* New runner. Manual squash.

* Network host.

* Put back trufflehog with proper extension.

* No network host ?

* Moving buildx install after tailscale ?

* 1.79
2024-06-24 18:08:34 +02:00
drbh
811a9381b1
feat: sort cuda graphs in descending order (#2104) 2024-06-21 14:28:26 -04:00
Daniël de Kok
197c47a302
Fix text-generation-server quantize (#2103)
The subcommand did not work due to some broken imports.
2024-06-21 15:28:51 +02:00
Daniël de Kok
bcb3faa1c2
Factor out sharding of packed tensors (#2059)
For Phi-3-Small I need to shard a packed QKV bias tensor, for which
I implemented the `Weights.get_packed_sharded` method. However, this
method can also replace the `Weights._get_qweight` method and the
custom sharding code from `Weights.get_weights_col_packed`.
2024-06-20 09:56:04 +02:00
Daniël de Kok
f5a9837592
Support exl2-quantized Qwen2 models (#2085)
Fixes #2081.
2024-06-20 07:56:16 +02:00
drbh
cdbf802860
feat: rotate tests ci token (#2091) 2024-06-19 17:02:58 -04:00
Daniël de Kok
11ea9ce002
CI: pass pre-commit hooks again (#2084) 2024-06-18 09:38:21 +02:00
Guillaume LEGENDRE
4f25c67d63
CI: Tailscale improvements (#2079)
* test local tailscale

* Update build.yaml

* Update build.yaml

* Update build.yaml

* Update build.yaml

* wait for ssh

* network host

* change step order
2024-06-18 09:13:04 +02:00
Daniël de Kok
c8c7ccd31e
Set maximum grpc message receive size to 2GiB (#2075)
* Set maximum grpc message receive size to 2GiB

The previous default was 4MiB, which doesn't really work well for
multi-modal models.

* Update to Rust 1.79.0

* Fixup formatting to make PR pass
2024-06-17 16:40:44 +02:00
Ziru Niu
0f7d38e774
fix build.rs watch files (#2072) 2024-06-17 12:10:01 +02:00
Lysandre Debut
131838919e
Contributing guide & Code of Conduct (#2074)
* Contributing guide & Code of Conduct

* Redirect to GitHub's tutorial on PRs
2024-06-17 12:09:31 +02:00
Daniël de Kok
e903770897
Support different image sizes in prefill in VLMs (#2065)
When a batch contained images if different sizes during prefill, the
server would fail (see e.g. #2056). Images were processed separately and
then concatenated. However, this can fail for images with different sizes.

Fix this by preprocessing all images in the batch together, so that the
image processor can ensure that all image tensors have compatible sizes.
2024-06-17 10:49:41 +02:00
Alvaro Moran
445f313504
Adding architecture document (#2044)
* doc: adding architecture document

* doc: add architecture to toctree

* fix: avoid cargo lock changes

* fix: avoid cargo lock tweak

---------

Co-authored-by: drbh <david.richard.holtz@gmail.com>
2024-06-14 09:28:34 -04:00
Tiezhen WANG
96b7b40ca3
Update the link for qwen2 (#2068)
* Update the link for qwen2

* Fix Qwen2 model URL in model table

* Fix too eager staging

---------

Co-authored-by: Daniël de Kok <me@danieldk.eu>
2024-06-14 11:59:33 +02:00
Daniël de Kok
093a27c528
Add support for GPTQ Marlin (#2052)
Add support for GPTQ Marlin kernels

GPTQ Marlin extends the Marlin kernels to support common GPTQ
configurations:

- bits: 4 or 8
- groupsize: -1, 32, 64, or 128
- desc_act: true/false

Using the GPTQ Marlin kernels requires repacking the parameters in the
Marlin quantizer format.

The kernels were contributed by Neural Magic to VLLM. We vendor them
here for convenience.
2024-06-14 09:45:42 +02:00
drbh
f433f1f770
implement Open Inference Protocol endpoints (#1942)
* feat: add kserve feature and basic routes

* feat: implement infer endpoint wrapper around generate

* fix: refactor and improve types

* fix: improve infer and simplify

* fix: cleanup and improve api docs

* fix: refactor and encapsulate kserve feat in file

* fix: remove typos after rebase
2024-06-13 12:51:51 -04:00
drbh
42aa8ee1bb
PR #2049 CI run (#2054)
* Use minijinja's pycompat mode for python methods

* fix: cargo fmt lint for pre commit

---------

Co-authored-by: Armin Ronacher <armin.ronacher@active-4.com>
2024-06-13 11:53:49 -04:00
OlivierDehaene
90184df79c
fix(layers): fix SuRotaryEmbedding (#2060)
* fix(layers): fix SuRotaryEmbedding

* change arange

* remove logs
2024-06-12 18:24:47 +02:00
OlivierDehaene
521de6cacd
fix(server): fix OPT implementation (#2061) 2024-06-12 18:22:20 +02:00
drbh
376a0b7ada
Support chat response format (#2046)
* feat: support response_format in chat

* fix: adjust typos

* fix: add trufflehog lint
2024-06-11 10:44:56 -04:00
fxmarty
a6e4d63c86
Update LLMM1 bound (#2050)
update commit
2024-06-11 19:30:29 +08:00
Luc Georges
dfca1dfc5e
fix(ci): remove unnecessary permissions (#2045) 2024-06-10 12:16:53 -04:00
Luc Georges
4e74ec09a8
feat(ci): add trufflehog secrets detection (#2038) 2024-06-10 11:54:13 -04:00
Daniël de Kok
85dfc39222
Add Phi-3 medium support (#2039)
Add support for Phi-3-medium

The main difference between the medium and mini models is that medium
uses grouped query attention with a packed QKV matrix. This change adds
support for GQA with packed matrixes to `Weights.get_weights_col_packed`
and uses it for Phi-3. This also allows us to remove the custom
implementation of GQA from dbrx attention loading.
2024-06-10 09:22:29 +02:00
fxmarty
9b3674d903
ROCm and sliding windows fixes (#2033)
* update vllm commit & fix models using sliding window

* update

* update commit

* fix bug where tunableop is bound to cuda graph even when cuda graph are disabled

* enable tunableop by default

* fix sliding window

* address review

* dead code

* precise comment

* is it flaky?
2024-06-10 15:09:50 +08:00
Daniël de Kok
bf3c813782 server: use chunked inputs
The router will now send the input as chunks besides as a single
string. This change modifies the server to process chunked input
rather than strings. This also allows us to remove the image
extraction code from the server.
2024-06-07 08:09:04 +02:00
Wang, Yi
4dabddb7ea
Xpu gqa (#2013)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-06-06 19:12:57 +02:00
Nicolas Patry
9765658212 Revert "Enabling CI for AMD with new runner.."
This reverts commit 101ac9a760.
2024-06-06 19:08:16 +02:00
Nicolas Patry
101ac9a760 Enabling CI for AMD with new runner.. 2024-06-06 19:07:48 +02:00
Nicolas Patry
ed1cfde0d8
Internal runner ? (#2023)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-06 18:51:42 +02:00
Daniël de Kok
51621439a4 marlin: improve build 2024-06-06 17:19:46 +02:00
Daniël de Kok
0d96468ebb marlin: support tp>1 when group_size==-1 2024-06-06 17:19:28 +02:00
Daniël de Kok
4594e6faba Add support for Marlin-quantized models
This change adds support for Marlin-quantized models. Marlin is an
FP16xINT4 matmul kernel, which provides good speedups decoding batches
of 16-32 tokens. It supports quantized models with symmetric
quantization, groupsize -1 or 128, and 4-bit.

Tested with:

- Llama 2
- Llama 3
- Phi 3
2024-06-06 13:16:52 +02:00
Nicolas Patry
cf0d459aaf Revert "Less cache misses on cargo build."
This reverts commit 5aec4154c2.
2024-06-06 10:33:55 +02:00
Nicolas Patry
5aec4154c2 Less cache misses on cargo build. 2024-06-06 10:33:01 +02:00
Andrés Marafioti
2a48a10043
Update __version__ on __init__.py to 0.7.0 (#2017)
There was a new release of the python client with version upped to 0.7.0
on pip and on the pyproject.toml, but it wasn't changed on the
__init__.py so when one does:

```python
import text_generation
print(text_generation.__version__)
```

It still outputs "0.6.0"

# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-05 14:51:07 +02:00
Daniël de Kok
3f4bcf978c
Fix GPTQWeight import (#2020)
# What does this PR do?

Fix stray import.

## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-05 14:49:15 +02:00
Nicolas Patry
0a94fad79f
Fixing rocm. (#2021)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-05 14:41:34 +02:00
OlivierDehaene
8aece3bd68
feat: move allocation logic to rust (#1835)
Close #2007
2024-06-05 12:18:38 +02:00
Daniël de Kok
9ffe1f1e67
Do not initialize scratch space when there are no ExLlamaV2 layers (#2015)
# What does this PR do?

Do not attempt to allocate ExLlamaV2 scratch buffers when there are no
ExLlama2 layers. Avoids a crash in warmup for models that cannot use
exllama when ExLlamaV2 is installed.

## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-05 10:45:47 +02:00
Nicolas Patry
824edf28d7
Hotfixing make install. (#2008)
# What does this PR do?

Fixes initial and subsequent installs (protection for folder creation
should only be for git commit, checking out correct commit should be on
both.

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-04 23:34:03 +02:00
Nicolas Patry
8390e251d9
Making make install work better by default. (#2004)
# What does this PR do?

Making `make install` a much better sane default to start local dev
environments.

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-04 19:38:46 +02:00
Daniël de Kok
d14eaacaca
Support GPTQ models with column-packed up/gate tensor (#2006)
# What does this PR do?

The GPTQ code path for column-packed packed tensors assumed that this is
always a QKV matrix. However, models (e.g. Phi-3) can also have
column-packed MLP up/gate matrices.

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-04 19:37:49 +02:00
OlivierDehaene
757223b352
feat: add SchedulerV3 (#1996)
- Refactor code to allow supporting multiple versions of the
generate.proto at the same time
- Add v3/generate.proto (ISO to generate.proto for now but allow for
future changes without impacting v2 backends)
- Add Schedule trait to abstract queuing and batching mechanisms that
will be different in the future
- Add SchedulerV2/V3 impl
2024-06-04 15:56:56 +02:00
Emmanuel Ferdman
fec0167a12
fix: update triton implementation reference (#2002)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

PR #1986 moved the location of the `flash_attn_triton.py` file. This PR
adjusts sources to changes.


## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2024-06-04 14:26:35 +02:00
Daniël de Kok
9b52f0e2dc
Fix Phi-2 with tp>1 (#2003)
# What does this PR do?

We were using the wrong parallelism in the up-projection.

<!-- Remove if not applicable -->

## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-04 14:26:07 +02:00
Daniël de Kok
df71aafdcc router: send the input as chunks to the backend
Before this change, the generation input was sent to the backend as a
single string, encoding images as Base64 and packing them in
Markdown-style links.

This change adds a new chunked input representation that separates text
chunks from images chunks. Image chunks contain binary data (for smaller
message sizes) and the image's MIME type.

The stringly-typed inputs are still sent to support backends that do not
support chunked inputs yet.
2024-06-03 17:02:41 +02:00
Wang, Yi
d1d724b027
reable xpu, broken by gptq and setuptool upgrade (#1988)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-06-03 16:07:50 +02:00
Nicolas Patry
9a59ebcec3 Hotfix GPTQ. 2024-06-03 09:32:12 +00:00
Nicolas Patry
9add5d0af5
Fixing GPTQ imports. (#1994)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-03 10:36:29 +02:00
Nicolas Patry
799a193b10 Fixing Phi3. 2024-06-01 08:47:00 +00:00
Nicholas Broad
08b3eac2ce
single char ` addition for docs (#1989)
# What does this PR do?

I think this will fix the docs from being weirdly formatted. All the
sections after MAX_TOP_N_TOKENS don't show up in the bar on the right
(https://huggingface.co/docs/text-generation-inference/basic_tutorials/launcher#maxtopntokens)


## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

@merveenoyan

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-05-31 18:42:14 +02:00
Nicolas Patry
5ab4cef67e
Fixing exl2 scratch buffer. (#1990)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-05-31 18:01:43 +02:00
Nicolas Patry
06edde9491
Purely refactors paged/attention into layers/attention and make hardware differences more obvious with 1 file per hardware. (#1986)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-05-31 17:57:01 +02:00
fxmarty
659bd67fec
Update documentation version to 2.0.4 (#1980)
As per title

cc @Narsil
2024-05-31 16:03:24 +02:00
Daniël de Kok
967ced2ff4 Gemma GPTQ checks: skip logprob checks
This test fails somewhat regularly due to non-determinism and this
test is primarily to verify that we are loading a model which doesn't
have `float16` as the default dtype correctly.
2024-05-30 11:28:05 +02:00
Daniël de Kok
36dd16017c Add support for exl2 quantization
Mostly straightforward, changes to existing code:

* Wrap quantizer parameters in a small wrapper to avoid passing
  around untyped tuples and needing to repack them as a dict.
* Move scratch space computation to warmup, because we need the
  maximum input sequence length to avoid allocating huge
  scratch buffers that OOM.
2024-05-30 11:28:05 +02:00
drbh
cbced7f0f9
feat: adjust attn weight loading logic (#1975)
This PR updates `load_attention` to prefer loading specific attention
based on the model type. Additionally there were two cases where
`TensorParallelColumnLinear.load_multi` was called and this reduces it
to a single path
2024-05-29 12:42:11 -04:00
Nicolas Patry
612bc483b6
Fixing the text part from tokenizer endpoint. (#1967)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-05-28 16:55:36 +02:00
Daniël de Kok
f20463e4e3 Fix (non-container) pytest stdout buffering-related lock-up
Two issues:

1. When one of the stdout/stderr pipe buffers of a process started
   with `subprocess.Popen` is full, the process can get blocked until
   the buffer is drained.
2. Calling `Popen.wait` can deadlock when called before draining
   the pipe buffers (if they are full).

This avoids the issue altogether by giving the child process a
temporary file to write to.
2024-05-28 16:26:11 +02:00
Nicolas Patry
e76b9824ae
Upgrade to Axum 0.7 and Hyper 1.0 (Breaking change: disabled ngrok tunneling). (#1959)
- Axum upgraded to hyper 1.0 and most of the ecosystem switched so it's
our time now
- [ngrok-rust](https://github.com/ngrok/ngrok-rust/pull/137/files)
hasn't yet, and hasn't for several months now, so let's disabled the
feature for the time being.


# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-05-28 14:52:17 +02:00
Moritz Laurer
b7ffa287f2
fix small typo and broken link (#1958)
# What does this PR do?

Fix a typo; fix a broken link; add one sentence in the guidance docs to
make the word "grammar" less abstract


## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

@drbh
2024-05-27 11:31:06 -04:00
drbh
0732b9d2f0
Processor config chat template (#1954)
This PR loads the `processor_config` similar to the `tokenizer_config`
and uses the processor_config's chat_template if the tokenizer_config
does not include one. These changes enable chat with idefics2
2024-05-27 16:03:16 +02:00
Daniël de Kok
a401c83c35
Fix GPTQ for models which do not have float16 at the default dtype (simpler) (#1953)
# What does this PR do?

Fix GPTQ for models which do not have float16 at the default dtype

Before this change GPTQ models would not work if the model's default
data type is not `float16`. For example, Gemma GPTQ models would fail
because the default dtype of Gemma is `bfloat16`. There are two issues:

If the default `dtype` is not `float16`, the quantizer's `float16`
parameters get converted to that dtype. The kernels cannot deal
with non-`float16` types. The same applies to inputs of quantized ops.

This is resolved by setting the dtype of gptq/awq-quantized models to
`float16`.

Simpler version of #1951.

**Draft:** just testing...

## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-05-27 14:41:28 +02:00
Daniël de Kok
9231098f3a Fix (flash) Gemma prefix and enable tests 2024-05-27 09:58:06 +02:00
Nicolas Patry
d32e33bd48
Fix seeded output. (#1949)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-05-24 15:36:13 +02:00
819 changed files with 137146 additions and 90030 deletions

View File

@ -2,3 +2,6 @@ aml
target target
server/transformers server/transformers
server/flash-attention server/flash-attention
cmake-build-debug/
cmake-build-release/
Dockerfile*

45
.github/workflows/autodocs.yaml vendored Normal file
View File

@ -0,0 +1,45 @@
name: Automatic Documentation for Launcher
on:
pull_request:
jobs:
update_docs:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Rust
uses: actions-rs/toolchain@v1
with:
profile: minimal
toolchain: stable
- name: Install Protocol Buffers compiler
run: |
sudo apt-get update
sudo apt-get install -y protobuf-compiler libprotobuf-dev
- name: Install Launcher
id: install-launcher
run: cargo install --path launcher/
- name: Install router
id: install-router
run: cargo install --path backends/v3/
- uses: actions/setup-node@v4
with:
node-version: 22
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.x'
- name: Check that documentation is up-to-date
run: |
npm install -g @redocly/cli
python update_doc.py --check

View File

@ -1,20 +0,0 @@
name: Automatic Documentation for Launcher
on:
pull_request:
jobs:
update_docs:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Install Launcher
id: install-launcher
run: cargo install --path launcher/
- name: Check launcher Docs are up-to-date
run: |
echo text-generation-launcher --help
python update_doc.py --check

View File

@ -1,104 +1,183 @@
name: Build and push docker image to internal registry name: Build and push docker image to internal registry
on: on:
workflow_dispatch: workflow_call:
push: inputs:
branches: hardware:
- 'main' type: string
tags: description: Hardware
- 'v*' # options:
pull_request: # - cuda
paths: # - cuda-trtllm
- ".github/workflows/build.yaml" # - rocm
- "integration-tests/**" # - intel
- "server/**" required: true
- "proto/**" release-tests:
- "router/**" description: "Run release integration tests"
- "launcher/**" required: true
- "Cargo.lock" default: false
- "rust-toolchain.toml" type: boolean
- "Dockerfile"
branches:
- 'main'
jobs: jobs:
start-runner: build-and-push:
name: Start self-hosted EC2 runner
runs-on: ubuntu-latest
env:
AWS_REGION: us-east-1
EC2_AMI_ID: ami-0789b6925c11b1fb2
EC2_INSTANCE_TYPE: g5.12xlarge
EC2_SUBNET_ID: subnet-931b34f5,subnet-ecb993cd,subnet-943dc2d8,subnet-45371f1a,subnet-ee93e0df,subnet-fddc3dfc
EC2_SECURITY_GROUP: sg-030175c435ac141d6
outputs: outputs:
label: ${{ steps.start-ec2-runner.outputs.label }} docker_image: ${{ steps.final.outputs.docker_image }}
ec2-instance-id: ${{ steps.start-ec2-runner.outputs.ec2-instance-id }} docker_volume: ${{ steps.final.outputs.docker_volume }}
steps: docker_devices: ${{ steps.final.outputs.docker_devices }}
- name: Configure AWS credentials runs_on: ${{ steps.final.outputs.runs_on }}
uses: aws-actions/configure-aws-credentials@v1 label_extension: ${{ steps.final.outputs.label_extension }}
with: extra_pytest: ${{ steps.final.outputs.extra_pytest }}
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }}
- name: Start EC2 runner
id: start-ec2-runner
uses: philschmid/philschmid-ec2-github-runner@main
with:
mode: start
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
ec2-image-id: ${{ env.EC2_AMI_ID }}
ec2-instance-type: ${{ env.EC2_INSTANCE_TYPE }}
subnet-id: ${{ env.EC2_SUBNET_ID }}
security-group-id: ${{ env.EC2_SECURITY_GROUP }}
aws-resource-tags: > # optional, requires additional permissions
[
{"Key": "Name", "Value": "ec2-tgi-github-runner"},
{"Key": "GitHubRepository", "Value": "${{ github.repository }}"}
]
build-and-push-image:
concurrency: concurrency:
group: ${{ github.workflow }}-build-and-push-image-${{ github.head_ref || github.run_id }} group: ${{ github.workflow }}-build-and-push-image-${{ inputs.hardware }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true cancel-in-progress: true
needs: start-runner # required to start the main job when the runner is ready runs-on:
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner group: aws-highmemory-64-plus-priv
permissions: permissions:
contents: write contents: write
packages: write packages: write
# This is used to complete the identity challenge
# with sigstore/fulcio when running outside of PRs.
id-token: write id-token: write
security-events: write
steps: steps:
- name: Checkout repository - name: Checkout repository
uses: actions/checkout@v3 uses: actions/checkout@v4
- name: Initialize Docker Buildx
uses: docker/setup-buildx-action@v2.0.0
with:
install: true
- name: Inject slug/short variables - name: Inject slug/short variables
uses: rlespinasse/github-slug-action@v4.4.1 uses: rlespinasse/github-slug-action@v4.4.1
- name: Tailscale - name: Inject required variables for sccache to interact with Github Actions Cache
uses: tailscale/github-action@7bd8039bf25c23c4ab1b8d6e2cc2da2280601966 uses: actions/github-script@v7
with: with:
authkey: ${{ secrets.TAILSCALE_AUTHKEY }} script: |
core.exportVariable('ACTIONS_RESULTS_URL', process.env.ACTIONS_RESULTS_URL || '');
core.exportVariable('ACTIONS_RUNTIME_TOKEN', process.env.ACTIONS_RUNTIME_TOKEN || '');
- name: Extract TensorRT-LLM version
run: |
echo "TENSORRT_LLM_VERSION=$(grep -oP '([a-z,0-9]{40})' $GITHUB_WORKSPACE/backends/trtllm/cmake/trtllm.cmake)" >> $GITHUB_ENV
echo "TensorRT-LLM version: ${{ env.TENSORRT_LLM_VERSION }}"
- name: Construct hardware variables
shell: bash
run: |
case ${{ inputs.hardware }} in
cuda)
export dockerfile="Dockerfile"
export label_extension=""
export docker_volume="/mnt/cache"
export docker_devices=""
export runs_on="aws-g6-12xl-plus-priv-cache"
export platform=""
export extra_pytest=""
export target=""
;;
cuda-trtllm)
export dockerfile="Dockerfile_trtllm"
export label_extension="-trtllm"
export docker_volume="/mnt/cache"
export docker_devices=""
export runs_on="ubuntu-latest"
export platform=""
export extra_pytest=""
if [[ "${GITHUB_REF}" == refs/tags/* ]]; then
export build_type="release";
export target="";
else
export build_type="dev";
export target="ci-runtime";
fi
;;
rocm)
export dockerfile="Dockerfile_amd"
export label_extension="-rocm"
export docker_devices="/dev/kfd,/dev/dri"
export docker_volume="/mnt"
# This runner was deactivated.
export runs_on="ubuntu-latest"
export platform=""
export extra_pytest="-k test_flash_gemma_gptq_load"
export target=""
;;
intel-xpu)
export dockerfile="Dockerfile_intel"
export label_extension="-intel-xpu"
export docker_devices=""
export docker_volume="/mnt/cache"
export runs_on="ubuntu-latest"
export platform="xpu"
export extra_pytest=""
export target=""
;;
intel-cpu)
export dockerfile="Dockerfile_intel"
export label_extension="-intel-cpu"
export docker_devices="none"
export docker_volume="/mnt/cache"
# export runs_on="ubuntu-latest"
export runs_on="aws-highmemory-32-plus-priv"
export platform="cpu"
export extra_pytest="-k test_flash_gemma_simple"
export target=""
;;
neuron)
export dockerfile="Dockerfile.neuron"
export label_extension="-neuron"
export docker_devices="/dev/neuron0"
export docker_volume="/mnt/cache"
export runs_on="aws-inf2-8xlarge"
export platform="cpu"
export extra_pytest="--neuron"
export target=""
;;
gaudi)
export dockerfile="Dockerfile_gaudi"
export label_extension="-gaudi"
export docker_volume="/mnt/cache"
export docker_devices=""
export runs_on="ubuntu-latest"
export platform=""
export extra_pytest=""
export target=""
esac
echo $dockerfile
echo "Dockerfile=${dockerfile}"
echo $label_extension
echo $docker_devices
echo $runs_on
echo $platform
echo "DOCKERFILE=${dockerfile}" >> $GITHUB_ENV
echo "LABEL_EXTENSION=${label_extension}" >> $GITHUB_ENV
echo "PLATFORM=${platform}" >> $GITHUB_ENV
echo "DOCKER_VOLUME=${docker_volume}" >> $GITHUB_ENV
echo "DOCKER_DEVICES=${docker_devices}" >> $GITHUB_ENV
echo "RUNS_ON=${runs_on}" >> $GITHUB_ENV
echo "EXTRA_PYTEST=${extra_pytest}" >> $GITHUB_ENV
echo REGISTRY_MIRROR=$REGISTRY_MIRROR >> $GITHUB_ENV
echo "TARGET=${target}" >> $GITHUB_ENV
echo "BUILD_TYPE=${build_type}" >> $GITHUB_ENV
- name: Initialize Docker Buildx
uses: docker/setup-buildx-action@v3
with:
install: true
buildkitd-config: /tmp/buildkitd.toml
- name: Login to internal Container Registry
if: github.event_name != 'pull_request'
uses: docker/login-action@v3
with:
username: ${{ secrets.REGISTRY_USERNAME }}
password: ${{ secrets.REGISTRY_PASSWORD }}
registry: registry.internal.huggingface.tech
- name: Login to GitHub Container Registry - name: Login to GitHub Container Registry
if: github.event_name != 'pull_request' if: github.event_name != 'pull_request'
uses: docker/login-action@v2 uses: docker/login-action@v3
with: with:
registry: ghcr.io registry: ghcr.io
username: ${{ github.actor }} username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }} password: ${{ secrets.GITHUB_TOKEN }}
- name: Login to internal Container Registry - name: Login to Docker Hub Container Registry
uses: docker/login-action@v2.1.0 uses: docker/login-action@v3
with: with:
username: ${{ secrets.TAILSCALE_DOCKER_USERNAME }} registry: docker.io
password: ${{ secrets.TAILSCALE_DOCKER_PASSWORD }} username: ${{ secrets.DOCKERHUB_USERNAME }}
registry: registry.internal.huggingface.tech password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Login to Azure Container Registry - name: Login to Azure Container Registry
if: github.event_name != 'pull_request' if: github.event_name != 'pull_request'
uses: docker/login-action@v2.1.0 uses: docker/login-action@v3
with: with:
username: ${{ secrets.AZURE_DOCKER_USERNAME }} username: ${{ secrets.AZURE_DOCKER_USERNAME }}
password: ${{ secrets.AZURE_DOCKER_PASSWORD }} password: ${{ secrets.AZURE_DOCKER_PASSWORD }}
@ -107,12 +186,12 @@ jobs:
- name: Extract metadata (tags, labels) for Docker - name: Extract metadata (tags, labels) for Docker
if: ${{ github.event_name == 'pull_request' }} if: ${{ github.event_name == 'pull_request' }}
id: meta-pr id: meta-pr
uses: docker/metadata-action@v4.3.0 uses: docker/metadata-action@v5
with: with:
images: | images: |
registry.internal.huggingface.tech/api-inference/community/text-generation-inference docker.io/huggingface/text-generation-inference-ci
tags: | tags: |
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }} type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}${{ env.LABEL_EXTENSION }}
# If main, release or tag # If main, release or tag
- name: Extract metadata (tags, labels) for Docker - name: Extract metadata (tags, labels) for Docker
if: ${{ github.event_name != 'pull_request' }} if: ${{ github.event_name != 'pull_request' }}
@ -120,314 +199,129 @@ jobs:
uses: docker/metadata-action@v4.3.0 uses: docker/metadata-action@v4.3.0
with: with:
flavor: | flavor: |
latest=auto latest=false
images: | images: |
registry.internal.huggingface.tech/api-inference/community/text-generation-inference registry.internal.huggingface.tech/api-inference/community/text-generation-inference
ghcr.io/huggingface/text-generation-inference ghcr.io/huggingface/text-generation-inference
db4c2190dd824d1f950f5d1555fbadf0.azurecr.io/text-generation-inference db4c2190dd824d1f950f5d1555fbadf0.azurecr.io/text-generation-inference
tags: | tags: |
type=semver,pattern={{version}} type=semver,pattern={{version}}${{ env.LABEL_EXTENSION }}
type=semver,pattern={{major}}.{{minor}} type=semver,pattern={{major}}.{{minor}}${{ env.LABEL_EXTENSION }}
type=raw,value=latest,enable=${{ github.ref == format('refs/heads/{0}', github.event.repository.default_branch) }} type=raw,value=latest${{ env.LABEL_EXTENSION }},enable=${{ github.ref == format('refs/heads/{0}', github.event.repository.default_branch) }}
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }} type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}${{ env.LABEL_EXTENSION }}
- name: Build and push Docker image - name: Build and push Docker image
id: build-and-push id: build-and-push
uses: docker/build-push-action@v4 uses: docker/build-push-action@v4
with: with:
context: . context: .
file: Dockerfile file: ${{ env.DOCKERFILE }}
push: true push: true
platforms: 'linux/amd64' platforms: 'linux/amd64'
build-args: | build-args: |
GIT_SHA=${{ env.GITHUB_SHA }} GIT_SHA=${{ env.GITHUB_SHA }}
DOCKER_LABEL=sha-${{ env.GITHUB_SHA_SHORT }} DOCKER_LABEL=sha-${{ env.GITHUB_SHA_SHORT }}${{ env.LABEL_EXTENSION }}
PLATFORM=${{ env.PLATFORM }}
build_type=${{ env.BUILD_TYPE }}
sccache_gha_enabled=on
actions_results_url=${{ env.ACTIONS_RESULTS_URL }}
actions_runtime_token=${{ env.ACTIONS_RUNTIME_TOKEN }}
target: ${{ env.TARGET }}
tags: ${{ steps.meta.outputs.tags || steps.meta-pr.outputs.tags }} tags: ${{ steps.meta.outputs.tags || steps.meta-pr.outputs.tags }}
labels: ${{ steps.meta.outputs.labels || steps.meta-pr.outputs.labels }} labels: ${{ steps.meta.outputs.labels || steps.meta-pr.outputs.labels }}
cache-from: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache,mode=min cache-from: type=s3,region=us-east-1,bucket=ci-docker-buildx-cache,name=text-generation-inference-cache${{ env.LABEL_EXTENSION }},mode=max,access_key_id=${{ secrets.S3_CI_DOCKER_BUILDX_CACHE_ACCESS_KEY_ID }},secret_access_key=${{ secrets.S3_CI_DOCKER_BUILDX_CACHE_SECRET_ACCESS_KEY }},mode=min
cache-to: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache,mode=min cache-to: type=s3,region=us-east-1,bucket=ci-docker-buildx-cache,name=text-generation-inference-cache${{ env.LABEL_EXTENSION }},mode=min,access_key_id=${{ secrets.S3_CI_DOCKER_BUILDX_CACHE_ACCESS_KEY_ID }},secret_access_key=${{ secrets.S3_CI_DOCKER_BUILDX_CACHE_SECRET_ACCESS_KEY }},mode=min
- name: Final
id: final
run: |
integration-tests: if [ "${{ github.event_name }}" = "pull_request" ]; then
echo "docker_image=docker.io/huggingface/text-generation-inference-ci:sha-${{ env.GITHUB_SHA_SHORT}}${{ env.LABEL_EXTENSION }}" >> "$GITHUB_OUTPUT"
else
echo "docker_image=ghcr.io/huggingface/text-generation-inference:sha-${{ env.GITHUB_SHA_SHORT}}${{ env.LABEL_EXTENSION }}" >> "$GITHUB_OUTPUT"
fi
echo "docker_devices=${{ env.DOCKER_DEVICES }}" >> "$GITHUB_OUTPUT"
echo "docker_volume=${{ env.DOCKER_VOLUME }}" >> "$GITHUB_OUTPUT"
echo "runs_on=${{ env.RUNS_ON }}" >> "$GITHUB_OUTPUT"
echo "label_extension=${{ env.LABEL_EXTENSION }}" >> "$GITHUB_OUTPUT"
echo "extra_pytest=${{ env.EXTRA_PYTEST }}" >> "$GITHUB_OUTPUT"
precompile_neuron_models:
concurrency: concurrency:
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }} group: ${{ github.workflow }}-${{ github.job }}-${{ needs.build-and-push.outputs.label_extension }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true cancel-in-progress: true
needs: needs: build-and-push
- start-runner if: needs.build-and-push.outputs.label_extension == '-neuron'
- build-and-push-image # Wait for the docker image to be built runs-on:
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner group: ${{ needs.build-and-push.outputs.runs_on }}
env: env:
DOCKER_VOLUME: /cache PYTEST_FLAGS: ${{ (startsWith(github.ref, 'refs/tags/') || github.ref == 'refs/heads/main' || inputs.release-tests == true) && '--release' || '--release' }}
steps: steps:
- uses: actions/checkout@v2 - name: Checkout repository
uses: actions/checkout@v4
- name: Inject slug/short variables - name: Inject slug/short variables
uses: rlespinasse/github-slug-action@v4.4.1 uses: rlespinasse/github-slug-action@v4.4.1
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: 3.9 python-version: "3.11"
- name: Tailscale - name: Install
uses: tailscale/github-action@7bd8039bf25c23c4ab1b8d6e2cc2da2280601966
with:
authkey: ${{ secrets.TAILSCALE_AUTHKEY }}
- name: Prepare disks
run: | run: |
sudo mkfs -t ext4 /dev/nvme1n1 make install-integration-tests
sudo mkdir ${{ env.DOCKER_VOLUME }} - name: Export neuron models
sudo mount /dev/nvme1n1 ${{ env.DOCKER_VOLUME }} run: |
export DOCKER_IMAGE=${{ needs.build-and-push.outputs.docker_image }}
echo $DOCKER_IMAGE
docker pull $DOCKER_IMAGE
export HF_TOKEN=${{ secrets.HF_TOKEN_NEURON }}
python integration-tests/fixtures/neuron/export_models.py
integration_tests:
concurrency:
group: ${{ github.workflow }}-${{ github.job }}-${{ needs.build-and-push.outputs.label_extension }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
needs: [precompile_neuron_models, build-and-push]
if: ${{ always() && !contains(needs.*.result, 'failure') && !contains(needs.*.result, 'cancelled') && needs.build-and-push.outputs.runs_on != 'ubuntu-latest' }}
runs-on:
group: ${{ needs.build-and-push.outputs.runs_on }}
env:
PYTEST_FLAGS: ${{ (startsWith(github.ref, 'refs/tags/') || github.ref == 'refs/heads/main' || inputs.release-tests == true) && '--release' || '--release' }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Inject slug/short variables
uses: rlespinasse/github-slug-action@v4.4.1
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install - name: Install
run: | run: |
make install-integration-tests make install-integration-tests
- name: Run tests - name: Run tests
run: | run: |
export DOCKER_IMAGE=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:sha-${{ env.GITHUB_SHA_SHORT }} export DOCKER_VOLUME=${{ needs.build-and-push.outputs.docker_volume }}
export HUGGING_FACE_HUB_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }} export DOCKER_IMAGE=${{ needs.build-and-push.outputs.docker_image }}
pytest -s -vv integration-tests export DOCKER_DEVICES=${{ needs.build-and-push.outputs.docker_devices }}
export EXTRA_PYTEST="${{ needs.build-and-push.outputs.extra_pytest }}"
export HF_TOKEN=${{ secrets.HF_TOKEN }}
echo $DOCKER_IMAGE
docker pull $DOCKER_IMAGE
pytest -s -vv integration-tests ${PYTEST_FLAGS} ${EXTRA_PYTEST}
build-and-push-image-rocm: backend_trtllm_cxx_tests:
needs: build-and-push
if: needs.build-and-push.outputs.label_extension == '-trtllm'
concurrency: concurrency:
group: ${{ github.workflow }}-build-and-push-image-rocm-${{ github.head_ref || github.run_id }} group: ${{ github.workflow }}-${{ github.job }}-trtllm-${{ github.head_ref || github.run_id }}
cancel-in-progress: true cancel-in-progress: true
needs: runs-on:
- start-runner group: aws-g6-12xl-plus-priv-cache
- build-and-push-image # Wait for the main docker image to be built container:
- integration-tests # Wait for the main integration-tests image: ${{ needs.build-and-push.outputs.docker_image }}
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner credentials:
permissions: username: ${{ secrets.DOCKERHUB_USERNAME }}
contents: write password: ${{ secrets.DOCKERHUB_PASSWORD }}
packages: write options: --gpus all --shm-size=8g
# This is used to complete the identity challenge
# with sigstore/fulcio when running outside of PRs.
id-token: write
security-events: write
steps: steps:
- name: Checkout repository - name: Run C++/CUDA tests
uses: actions/checkout@v3 if: ${{ env.LABEL_EXTENSION == 'ci-runtime' }}
- name: Initialize Docker Buildx run: /usr/local/tgi/bin/tgi_trtllm_backend_tests
uses: docker/setup-buildx-action@v2.0.0
with:
install: true
- name: Inject slug/short variables
uses: rlespinasse/github-slug-action@v4.4.1
- name: Tailscale
uses: tailscale/github-action@7bd8039bf25c23c4ab1b8d6e2cc2da2280601966
with:
authkey: ${{ secrets.TAILSCALE_AUTHKEY }}
- name: Login to GitHub Container Registry
if: github.event_name != 'pull_request'
uses: docker/login-action@v2
with:
registry: ghcr.io
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Login to internal Container Registry
uses: docker/login-action@v2.1.0
with:
username: ${{ secrets.TAILSCALE_DOCKER_USERNAME }}
password: ${{ secrets.TAILSCALE_DOCKER_PASSWORD }}
registry: registry.internal.huggingface.tech
- name: Login to Azure Container Registry
if: github.event_name != 'pull_request'
uses: docker/login-action@v2.1.0
with:
username: ${{ secrets.AZURE_DOCKER_USERNAME }}
password: ${{ secrets.AZURE_DOCKER_PASSWORD }}
registry: db4c2190dd824d1f950f5d1555fbadf0.azurecr.io
# If pull request
- name: Extract metadata (tags, labels) for Docker
if: ${{ github.event_name == 'pull_request' }}
id: meta-pr
uses: docker/metadata-action@v4.3.0
with:
images: |
registry.internal.huggingface.tech/api-inference/community/text-generation-inference
tags: |
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}-rocm
# If main, release or tag
- name: Extract metadata (tags, labels) for Docker
if: ${{ github.event_name != 'pull_request' }}
id: meta
uses: docker/metadata-action@v4.3.0
with:
flavor: |
latest=false
images: |
registry.internal.huggingface.tech/api-inference/community/text-generation-inference
ghcr.io/huggingface/text-generation-inference
db4c2190dd824d1f950f5d1555fbadf0.azurecr.io/text-generation-inference
tags: |
type=semver,pattern={{version}}-rocm
type=semver,pattern={{major}}.{{minor}}-rocm
type=raw,value=latest-rocm,enable=${{ github.ref == format('refs/heads/{0}', github.event.repository.default_branch) }}
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}-rocm
- name: Build and push Docker image
id: build-and-push
uses: docker/build-push-action@v4
with:
context: .
file: Dockerfile_amd
push: true
platforms: 'linux/amd64'
build-args: |
GIT_SHA=${{ env.GITHUB_SHA }}
DOCKER_LABEL=sha-${{ env.GITHUB_SHA_SHORT }}-rocm
tags: ${{ steps.meta.outputs.tags || steps.meta-pr.outputs.tags }}
labels: ${{ steps.meta.outputs.labels || steps.meta-pr.outputs.labels }}
cache-from: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache-rocm,mode=min
cache-to: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache-rocm,mode=min
build-and-push-image-intel:
concurrency:
group: ${{ github.workflow }}-build-and-push-image-intel-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
needs:
- start-runner
- build-and-push-image # Wait for the main docker image to be built
- integration-tests # Wait for the main integration-tests
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner
permissions:
contents: write
packages: write
# This is used to complete the identity challenge
# with sigstore/fulcio when running outside of PRs.
id-token: write
security-events: write
outputs:
# env is not available in the later `container:`, but previous job outputs are.
short_sha: ${{ env.GITHUB_SHA_SHORT }}
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Initialize Docker Buildx
uses: docker/setup-buildx-action@v2.0.0
with:
install: true
- name: Inject slug/short variables
uses: rlespinasse/github-slug-action@v4.4.1
- name: Tailscale
uses: tailscale/github-action@7bd8039bf25c23c4ab1b8d6e2cc2da2280601966
with:
authkey: ${{ secrets.TAILSCALE_AUTHKEY }}
- name: Login to GitHub Container Registry
if: github.event_name != 'pull_request'
uses: docker/login-action@v2
with:
registry: ghcr.io
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Login to internal Container Registry
uses: docker/login-action@v2.1.0
with:
username: ${{ secrets.TAILSCALE_DOCKER_USERNAME }}
password: ${{ secrets.TAILSCALE_DOCKER_PASSWORD }}
registry: registry.internal.huggingface.tech
- name: Login to Azure Container Registry
if: github.event_name != 'pull_request'
uses: docker/login-action@v2.1.0
with:
username: ${{ secrets.AZURE_DOCKER_USERNAME }}
password: ${{ secrets.AZURE_DOCKER_PASSWORD }}
registry: db4c2190dd824d1f950f5d1555fbadf0.azurecr.io
# If pull request
- name: Extract metadata (tags, labels) for Docker
if: ${{ github.event_name == 'pull_request' }}
id: meta-pr
uses: docker/metadata-action@v4.3.0
with:
images: |
registry.internal.huggingface.tech/api-inference/community/text-generation-inference
tags: |
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}-intel
# If main, release or tag
- name: Extract metadata (tags, labels) for Docker
if: ${{ github.event_name != 'pull_request' }}
id: meta
uses: docker/metadata-action@v4.3.0
with:
flavor: |
latest=false
images: |
registry.internal.huggingface.tech/api-inference/community/text-generation-inference
ghcr.io/huggingface/text-generation-inference
db4c2190dd824d1f950f5d1555fbadf0.azurecr.io/text-generation-inference
tags: |
type=semver,pattern={{version}}-intel
type=semver,pattern={{major}}.{{minor}}-intel
type=raw,value=latest-intel,enable=${{ github.ref == format('refs/heads/{0}', github.event.repository.default_branch) }}
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}-intel
- name: Build and push Docker image
id: build-and-push
uses: docker/build-push-action@v4
with:
context: .
file: Dockerfile_intel
push: true
platforms: 'linux/amd64'
build-args: |
GIT_SHA=${{ env.GITHUB_SHA }}
DOCKER_LABEL=sha-${{ env.GITHUB_SHA_SHORT }}-intel
tags: ${{ steps.meta.outputs.tags || steps.meta-pr.outputs.tags }}
labels: ${{ steps.meta.outputs.labels || steps.meta-pr.outputs.labels }}
cache-from: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache-intel,mode=min
cache-to: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache-intel,mode=min
stop-runner:
name: Stop self-hosted EC2 runner
needs:
- start-runner
- build-and-push-image
- build-and-push-image-rocm
- build-and-push-image-intel
- integration-tests
runs-on: ubuntu-latest
env:
AWS_REGION: us-east-1
if: ${{ always() }} # required to stop the runner even if the error happened in the previous jobs
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }}
- name: Stop EC2 runner
uses: philschmid/philschmid-ec2-github-runner@main
with:
mode: stop
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
label: ${{ needs.start-runner.outputs.label }}
ec2-instance-id: ${{ needs.start-runner.outputs.ec2-instance-id }}
# TODO: Move this to `build_amd.yml` (and `build_nvidia.yml`)
# integration-tests-rocm:
# concurrency:
# group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
# cancel-in-progress: true
# needs:
# - start-runner
# - build-and-push-image
# - integration-tests
# - build-and-push-image-rocm
# - stop-runner
# runs-on: [self-hosted, amd-gpu, multi-gpu, mi300]
# container:
# image: registry.internal.huggingface.tech/api-inference/community/text-generation-inference:sha-${{ needs.build-and-push-image-rocm.outputs.short_sha }}-rocm
# options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/cache
# env:
# DOCKER_VOLUME: /cache
# steps:
# - name: ROCM-SMI
# run: |
# rocm-smi
# - name: ROCM-INFO
# run: |
# rocminfo | grep "Agent" -A 14
# - name: Show ROCR environment
# run: |
# echo "ROCR: $ROCR_VISIBLE_DEVICES"
# - name: Install
# run: |
# make install-integration-tests
# - name: Run tests
# run: |
# export HUGGING_FACE_HUB_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }}
# pytest -s -vv integration-tests

52
.github/workflows/ci_build.yaml vendored Normal file
View File

@ -0,0 +1,52 @@
name: CI build
on:
push:
branches:
- 'main'
tags:
- 'v*'
pull_request:
paths:
- ".github/workflows/build.yaml"
- "integration-tests/**"
- "backends/**"
- "server/**"
- "proto/**"
- "router/**"
- "launcher/**"
- "Cargo.lock"
- "rust-toolchain.toml"
- "Dockerfile"
- "Dockerfile_amd"
- "Dockerfile_intel"
- "Dockerfile.neuron"
- "Dockerfile_gaudi"
branches:
- "main"
workflow_dispatch:
inputs:
release-tests:
description: "Run release integration tests"
required: true
default: false
type: boolean
jobs:
build:
strategy:
# super important if you want to see all results, even if one fails
# fail-fast is true by default
fail-fast: false
matrix:
hardware: ["cuda", "cuda-trtllm", "rocm", "intel-xpu", "intel-cpu", "neuron", "gaudi"]
uses: ./.github/workflows/build.yaml # calls the one above ^
permissions:
contents: write
packages: write
id-token: write
with:
hardware: ${{ matrix.hardware }}
# https://github.com/actions/runner/issues/2206
release-tests: ${{ inputs.release-tests == true }}
secrets: inherit

View File

@ -22,5 +22,5 @@ jobs:
- name: Run tests - name: Run tests
run: | run: |
pip install pytest pytest-asyncio pip install pytest pytest-asyncio
export HUGGING_FACE_HUB_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }} export HF_TOKEN=${{ secrets.HF_TOKEN }}
make python-client-tests make python-client-tests

View File

@ -0,0 +1,41 @@
name: Integration tests
on:
workflow_call:
inputs:
docker_image:
type: string
description: Hardware
required: true
docker_devices:
type: string
description: Hardware
runs_on:
type: string
required: true
description: Hardware to run integration tests
jobs:
integration_tests:
concurrency:
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
runs-on: ${{ inputs.runs_on }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Inject slug/short variables
uses: rlespinasse/github-slug-action@v4.4.1
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Install
run: |
make install-integration-tests
- name: Run tests
run: |
export DOCKER_VOLUME=/mnt/cache
export DOCKER_IMAGE=${{ inputs.docker_image }}
export DOCKER_DEVICES=${{ inputs.docker_devices }}
export HF_TOKEN=${{ secrets.HF_TOKEN }}
pytest -s -vv integration-tests

View File

@ -3,106 +3,48 @@ name: Nightly load test
on: on:
schedule: schedule:
- cron: '0 0 * * 1-5' - cron: '0 0 * * 1-5'
workflow_call:
workflow_dispatch:
pull_request: pull_request:
paths: paths:
- ".github/workflows/load_test.yaml" - ".github/workflows/load_test.yaml"
branches:
- 'main' env:
AWS_DEFAULT_REGION: us-east-1
AWS_ACCESS_KEY_ID: ${{ secrets.S3_AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.S3_AWS_SECRET_ACCESS_KEY }}
jobs: jobs:
start-runner:
name: Start self-hosted EC2 runner
runs-on: ubuntu-latest
env:
AWS_REGION: eu-central-1
EC2_AMI_ID: ami-0ab09c07cfd194259
EC2_INSTANCE_TYPE: g5.12xlarge
EC2_SUBNET_ID: subnet-988fd9f2,subnet-6f56db13,subnet-6a039326
EC2_SECURITY_GROUP: sg-072f92ae3082936c6
outputs:
label: ${{ steps.start-ec2-runner.outputs.label }}
ec2-instance-id: ${{ steps.start-ec2-runner.outputs.ec2-instance-id }}
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }}
- name: Start EC2 runner
id: start-ec2-runner
uses: philschmid/philschmid-ec2-github-runner@main
with:
mode: start
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
ec2-image-id: ${{ env.EC2_AMI_ID }}
ec2-instance-type: ${{ env.EC2_INSTANCE_TYPE }}
subnet-id: ${{ env.EC2_SUBNET_ID }}
security-group-id: ${{ env.EC2_SECURITY_GROUP }}
aws-resource-tags: > # optional, requires additional permissions
[
{"Key": "Name", "Value": "ec2-tgi-github-runner"},
{"Key": "GitHubRepository", "Value": "${{ github.repository }}"}
]
load-tests: load-tests:
concurrency: concurrency:
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }} group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true cancel-in-progress: true
needs: start-runner # required to start the main job when the runner is ready runs-on:
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner group: aws-g6-12xl-plus-priv-cache
env: env:
DOCKER_VOLUME: /cache DOCKER_VOLUME: /cache
steps: steps:
- name: Checkout repository - name: Checkout repository
uses: actions/checkout@v3 uses: actions/checkout@v3
- name: Prepare disks - name: Install Python 3.11
run: | uses: actions/setup-python@v2
sudo mkfs -t ext4 /dev/nvme1n1
sudo mkdir ${{ env.DOCKER_VOLUME }}
sudo mount /dev/nvme1n1 ${{ env.DOCKER_VOLUME }}
- name: Install k6
run: |
curl https://github.com/grafana/k6/releases/download/v0.44.0/k6-v0.44.0-linux-amd64.tar.gz -L | tar xvz --strip-components 1
- name: Start starcoder
run: |
docker run --name tgi-starcoder --rm --gpus all -p 3000:80 -v ${{ env.DOCKER_VOLUME }}:/data -e HUGGING_FACE_HUB_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }} --pull always -d ghcr.io/huggingface/text-generation-inference:latest --model-id bigcode/starcoder --num-shard 2 --max-batch-total-tokens 32768
sleep 10
wget --timeout 10 --retry-on-http-error --waitretry=1 --tries=240 http://localhost:3000/health
- name: Run k6
run: |
./k6 run load_tests/starcoder_load.js
- name: Stop starcoder
if: ${{ always() }}
run: |
docker stop tgi-starcoder || true
stop-runner:
name: Stop self-hosted EC2 runner
needs:
- start-runner
- load-tests
runs-on: ubuntu-latest
env:
AWS_REGION: eu-central-1
if: ${{ always() }} # required to stop the runner even if the error happened in the previous jobs
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v1
with: with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }} python-version: 3.11
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }} - name: Install poetry
- name: Stop EC2 runner run: |
uses: philschmid/philschmid-ec2-github-runner@main curl -sSL https://install.python-poetry.org | python3 -
with: export PATH="$HOME/.local/bin:$PATH"
mode: stop poetry --version
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
label: ${{ needs.start-runner.outputs.label }} - name: Run bench test
ec2-instance-id: ${{ needs.start-runner.outputs.ec2-instance-id }} run: |
export PATH="$HOME/.local/bin:$PATH"
cd load_tests
poetry install
poetry run python benchmarks.py --sha ${{ github.sha }} --results-file "s3://text-generation-inference-ci/benchmarks/ci/${{ github.sha }}.parquet"
shell: bash
env:
HF_TOKEN: ${{ secrets.HF_TOKEN_BENCHMARK }}

53
.github/workflows/nix_build.yaml vendored Normal file
View File

@ -0,0 +1,53 @@
name: "Nix Build Docker image"
on:
pull_request:
push:
branches:
- 'main'
tags:
- 'v*'
concurrency:
group: nix-image-${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
build_nix_image:
runs-on:
group: aws-highmemory-32-plus-priv
steps:
- uses: actions/checkout@v4
- uses: cachix/install-nix-action@v27
with:
nix_path: nixpkgs=channel:nixos-unstable
- uses: cachix/cachix-action@v14
with:
name: text-generation-inference
# If you chose signing key for write access
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
env:
USER: github_runner
- name: Build
run: nix build .#dockerImage
- name: Initialize Docker Buildx
uses: docker/setup-buildx-action@v3
with:
install: true
buildkitd-config: /tmp/buildkitd.toml
- name: Inject slug/short variables
uses: rlespinasse/github-slug-action@v4.4.1
- name: Login to internal Container Registry
# if: github.event_name != 'pull_request'
uses: docker/login-action@v3
with:
username: ${{ secrets.REGISTRY_USERNAME }}
password: ${{ secrets.REGISTRY_PASSWORD }}
registry: registry.internal.huggingface.tech
- name: Push to docker
run: |
if [ "${{ github.event_name }}" = "pull_request" ]; then
export TAG=nix-sha-${{ env.GITHUB_SHA_SHORT }}
else
export TAG=${{ github.ref_name }}-nix
fi
export IMAGE=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:$TAG
nix-shell -p skopeo --command "skopeo --insecure-policy copy docker-archive:$(readlink -f ./result) docker://$IMAGE --dest-compress-format zstd"

34
.github/workflows/nix_cache.yaml vendored Normal file
View File

@ -0,0 +1,34 @@
name: "Cache devshells"
on:
pull_request:
paths:
- "flake.nix"
- "flake.lock"
- "nix/**"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
tests:
runs-on:
group: aws-highmemory-32-plus-priv
steps:
- uses: actions/checkout@v4
- uses: cachix/install-nix-action@v27
with:
nix_path: nixpkgs=channel:nixos-unstable
- uses: cachix/cachix-action@v14
with:
name: text-generation-inference
# If you chose signing key for write access
authToken: "${{ secrets.CACHIX_AUTH_TOKEN }}"
env:
USER: github_runner
- name: Build impure devshell
run: nix build .\#devShells.x86_64-linux.impure
- name: Build impure devshell (CUDA dev)
run: nix build .\#devShells.x86_64-linux.impureWithCuda
# Pure shell dependencies are covered by Nix tests.
# - name: Build pure devshell
# run: nix build .\#devShells.x86_64-linux.pure

42
.github/workflows/nix_tests.yaml vendored Normal file
View File

@ -0,0 +1,42 @@
name: "Nix Tests"
on:
pull_request:
paths:
- ".github/workflows/nix_tests.yaml"
- "server/**"
- "proto/**"
- "router/**"
- "launcher/**"
- "backends/**"
- "Cargo.lock"
- "rust-toolchain.toml"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
tests:
runs-on:
group: aws-highmemory-32-plus-priv
steps:
- uses: actions/checkout@v4
- uses: cachix/install-nix-action@v27
with:
nix_path: nixpkgs=channel:nixos-unstable
- uses: cachix/cachix-action@v14
with:
name: text-generation-inference
# If you chose signing key for write access
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
env:
USER: github_runner
- name: Build
run: nix develop .#test --command echo "Ok"
- name: Pre-commit tests.
run: nix develop .#test --command pre-commit run --all-files
- name: Python tests.
run: nix develop .#test --command python -m pytest server/tests/
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
- name: Rust tests.
run: nix develop .#test --command cargo test

View File

@ -8,6 +8,7 @@ on:
- "proto/**" - "proto/**"
- "router/**" - "router/**"
- "launcher/**" - "launcher/**"
- "backends/**"
- "Cargo.lock" - "Cargo.lock"
- "rust-toolchain.toml" - "rust-toolchain.toml"
@ -17,26 +18,17 @@ concurrency:
jobs: jobs:
run_tests: run_tests:
runs-on: ubuntu-latest runs-on:
group: aws-highmemory-32-plus-priv
env:
SCCACHE_GHA_ENABLED: "on"
RUSTC_WRAPPER: /usr/local/bin/sccache
SCCACHE: 0.3.3
steps: steps:
- uses: actions/checkout@v2 - uses: actions/checkout@v4
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v1 uses: actions/setup-python@v4
id: python
with: with:
python-version: 3.9 python-version: 3.11
- name: Install Rust - uses: dtolnay/rust-toolchain@1.85.0
uses: actions-rs/toolchain@v1
with: with:
# Released on: 02 May, 2024
# https://releases.rs/docs/1.78.0/
toolchain: 1.78.0
override: true
components: rustfmt, clippy components: rustfmt, clippy
- name: Install Protoc - name: Install Protoc
uses: arduino/setup-protoc@v1 uses: arduino/setup-protoc@v1
@ -44,35 +36,23 @@ jobs:
run: | run: |
sudo rm -rf /usr/local/lib/android # will release about 10 GB if you don't need Android sudo rm -rf /usr/local/lib/android # will release about 10 GB if you don't need Android
sudo rm -rf /usr/share/dotnet # will release about 20GB if you don't need .NET sudo rm -rf /usr/share/dotnet # will release about 20GB if you don't need .NET
- name: Install sccache
run: |
curl -fsSL https://github.com/mozilla/sccache/releases/download/v$SCCACHE/sccache-v$SCCACHE-x86_64-unknown-linux-musl.tar.gz | tar -xzv --strip-components=1 -C /usr/local/bin sccache-v$SCCACHE-x86_64-unknown-linux-musl/sccache
chmod +x /usr/local/bin/sccache
- name: configure sccache
uses: actions/github-script@v6
with:
script: |
core.exportVariable('ACTIONS_CACHE_URL', process.env.ACTIONS_CACHE_URL || '');
core.exportVariable('ACTIONS_RUNTIME_TOKEN', process.env.ACTIONS_RUNTIME_TOKEN || '');
core.exportVariable('SCCACHE_GHA_CACHE_TO', 'sccache-${{runner.os}}-${{github.ref_name}}');
core.exportVariable('SCCACHE_GHA_CACHE_FROM', 'sccache-${{runner.os}}-main,sccache-${{runner.os}}-');
- name: cargo registry cache
uses: actions/cache@v3
with:
key: cargo-${{ runner.os }}-${{ hashFiles('**/Cargo.toml') }}-${{ github.sha }}
restore-keys: |
cargo-${{ runner.os }}-${{ hashFiles('**/Cargo.toml') }}-
cargo-${{ runner.os }}-
path: |
~/.cargo/registry
~/.cargo/git
- name: Install - name: Install
run: | run: |
make install sudo apt update
sudo apt install python3.11-dev -y
pip install -U pip uv
uv venv
source ./.venv/bin/activate
make install-cpu
- name: Download locked kernels
run: |
source ./.venv/bin/activate
kernels download server
- name: Run server tests - name: Run server tests
run: | run: |
pip install pytest source ./.venv/bin/activate
export HUGGING_FACE_HUB_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }} uv pip install pytest
export HF_TOKEN=${{ secrets.HF_TOKEN }}
pytest -s -vv server/tests pytest -s -vv server/tests
- name: Pre-commit checks - name: Pre-commit checks
run: | run: |
@ -82,6 +62,6 @@ jobs:
- name: Run Rust tests - name: Run Rust tests
run: | run: |
cargo test cargo test
- name: sccache stats - name: Run Rust tests with google feature
run: | run: |
/usr/local/bin/sccache --show-stats cargo test --features google

21
.github/workflows/trufflehog.yaml vendored Normal file
View File

@ -0,0 +1,21 @@
on:
push:
name: Secret Leaks
permissions:
contents: read
jobs:
trufflehog:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Secret Scanning
uses: trufflesecurity/trufflehog@853e1e8d249fd1e29d0fcc7280d29b03df3d643d
with:
# exclude buggy postgres detector that is causing false positives and not relevant to our codebase
extra_args: --results=verified,unknown --exclude-detectors=postgres

17
.gitignore vendored
View File

@ -3,9 +3,14 @@ target
router/tokenizer.json router/tokenizer.json
*__pycache__* *__pycache__*
backends/v2/src/client/pb
backends/v3/src/client/pb
backends/client/src/v2/pb
backends/client/src/v3/pb
# ROCm auto-generated files # ROCm auto-generated files
*.hip *.hip
server/exllamav2_kernels/exllamav2_kernels/hip/ server/exllamav2
server/exllama_kernels/exllama_kernels/hip/ server/exllama_kernels/exllama_kernels/hip/
server/exllama_kernels/exllama_kernels/hip_func/ server/exllama_kernels/exllama_kernels/hip_func/
*_hip.cuh *_hip.cuh
@ -14,3 +19,13 @@ server/exllama_kernels/exllama_kernels/exllama_ext_hip.cpp
data/ data/
load_tests/*.json load_tests/*.json
server/fbgemmm
.direnv/
.venv/
# Gaudi auto-generated files
hl-smi_log*.txt
.graph_dumps
out
hqt_output

View File

@ -4,8 +4,9 @@ repos:
hooks: hooks:
- id: check-yaml - id: check-yaml
- id: end-of-file-fixer - id: end-of-file-fixer
exclude: crate-hashes.json
- id: trailing-whitespace - id: trailing-whitespace
exclude: docs/source/basic_tutorials/launcher.md exclude: docs/source/reference/launcher.md
- repo: https://github.com/psf/black - repo: https://github.com/psf/black
rev: 24.2.0 rev: 24.2.0
hooks: hooks:
@ -13,6 +14,11 @@ repos:
- repo: https://github.com/doublify/pre-commit-rust - repo: https://github.com/doublify/pre-commit-rust
rev: v1.0 rev: v1.0
hooks: hooks:
- id: fmt
- id: cargo-check - id: cargo-check
- id: fmt
- id: clippy - id: clippy
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.3.0
hooks:
- id: ruff
args: [--fix, --exit-non-zero-on-fix]

82
.redocly.lint-ignore.yaml Normal file
View File

@ -0,0 +1,82 @@
# This file instructs Redocly's linter to ignore the rules contained for specific parts of your API.
# See https://redoc.ly/docs/cli/ for more information.
docs/openapi.json:
no-empty-servers:
- '#/openapi'
spec:
- >-
#/components/schemas/GenerateParameters/properties/best_of/exclusiveMinimum
- >-
#/components/schemas/GenerateParameters/properties/frequency_penalty/exclusiveMinimum
- '#/components/schemas/GenerateParameters/properties/grammar/nullable'
- >-
#/components/schemas/GenerateParameters/properties/repetition_penalty/exclusiveMinimum
- '#/components/schemas/GenerateParameters/properties/seed/exclusiveMinimum'
- >-
#/components/schemas/GenerateParameters/properties/temperature/exclusiveMinimum
- '#/components/schemas/GenerateParameters/properties/top_k/exclusiveMinimum'
- >-
#/components/schemas/GenerateParameters/properties/top_n_tokens/exclusiveMinimum
- '#/components/schemas/GenerateParameters/properties/top_p/exclusiveMinimum'
- >-
#/components/schemas/GenerateParameters/properties/typical_p/exclusiveMinimum
- '#/components/schemas/GenerateResponse/properties/details/nullable'
- '#/components/schemas/StreamResponse/properties/details/nullable'
- '#/components/schemas/ChatRequest/properties/response_format/nullable'
- '#/components/schemas/ChatRequest/properties/stream_options/nullable'
- '#/components/schemas/ChatRequest/properties/tool_choice/nullable'
- '#/components/schemas/ToolChoice/nullable'
- '#/components/schemas/ChatCompletionComplete/properties/logprobs/nullable'
- '#/components/schemas/ChatCompletionChunk/properties/usage/nullable'
- '#/components/schemas/ChatCompletionChoice/properties/logprobs/nullable'
no-invalid-media-type-examples:
- '#/paths/~1/post/responses/422/content/application~1json/example'
- '#/paths/~1/post/responses/424/content/application~1json/example'
- '#/paths/~1/post/responses/429/content/application~1json/example'
- '#/paths/~1/post/responses/500/content/application~1json/example'
- '#/paths/~1generate/post/responses/422/content/application~1json/example'
- '#/paths/~1generate/post/responses/424/content/application~1json/example'
- '#/paths/~1generate/post/responses/429/content/application~1json/example'
- '#/paths/~1generate/post/responses/500/content/application~1json/example'
- >-
#/paths/~1generate_stream/post/responses/422/content/text~1event-stream/example
- >-
#/paths/~1generate_stream/post/responses/424/content/text~1event-stream/example
- >-
#/paths/~1generate_stream/post/responses/429/content/text~1event-stream/example
- >-
#/paths/~1generate_stream/post/responses/500/content/text~1event-stream/example
- '#/paths/~1tokenize/post/responses/404/content/application~1json/example'
- >-
#/paths/~1v1~1chat~1completions/post/responses/422/content/application~1json/example
- >-
#/paths/~1v1~1chat~1completions/post/responses/424/content/application~1json/example
- >-
#/paths/~1v1~1chat~1completions/post/responses/429/content/application~1json/example
- >-
#/paths/~1v1~1chat~1completions/post/responses/500/content/application~1json/example
- >-
#/paths/~1v1~1completions/post/responses/422/content/application~1json/example
- >-
#/paths/~1v1~1completions/post/responses/424/content/application~1json/example
- >-
#/paths/~1v1~1completions/post/responses/429/content/application~1json/example
- >-
#/paths/~1v1~1completions/post/responses/500/content/application~1json/example
operation-4xx-response:
- '#/paths/~1health/get/responses'
- '#/paths/~1info/get/responses'
- '#/paths/~1metrics/get/responses'
no-unused-components:
- '#/components/schemas/Completion'
security-defined:
- '#/paths/~1/post'
- '#/paths/~1generate/post'
- '#/paths/~1generate_stream/post'
- '#/paths/~1health/get'
- '#/paths/~1info/get'
- '#/paths/~1metrics/get'
- '#/paths/~1tokenize/post'
- '#/paths/~1v1~1chat~1completions/post'
- '#/paths/~1v1~1completions/post'
- '#/paths/~1v1~1models/get'

133
CODE_OF_CONDUCT.md Normal file
View File

@ -0,0 +1,133 @@
# Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the overall
community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or advances of
any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email address,
without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
feedback@huggingface.co.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series of
actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within the
community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.1, available at
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
Community Impact Guidelines were inspired by
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
For answers to common questions about this code of conduct, see the FAQ at
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
[https://www.contributor-covenant.org/translations][translations].
[homepage]: https://www.contributor-covenant.org
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
[Mozilla CoC]: https://github.com/mozilla/diversity
[FAQ]: https://www.contributor-covenant.org/faq
[translations]: https://www.contributor-covenant.org/translations

120
CONTRIBUTING.md Normal file
View File

@ -0,0 +1,120 @@
<!---
Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Contribute to text-generation-inference
Everyone is welcome to contribute, and we value everybody's contribution. Code
contributions are not the only way to help the community. Answering questions, helping
others, and improving the documentation are also immensely valuable.
It also helps us if you spread the word! Reference the library in blog posts
about the awesome projects it made possible, shout out on Twitter every time it has
helped you, or simply ⭐️ the repository to say thank you.
However you choose to contribute, please be mindful and respect our
[code of conduct](https://github.com/huggingface/text-generation-inference/blob/main/CODE_OF_CONDUCT.md).
**This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md).**
## Ways to contribute
There are several ways you can contribute to text-generation-inference.
* Fix outstanding issues with the existing code.
* Submit issues related to bugs or desired new features.
* Contribute to the examples or to the documentation.
> All contributions are equally valuable to the community. 🥰
## Fixing outstanding issues
If you notice an issue with the existing code and have a fix in mind, feel free to [start contributing](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request) and open
a Pull Request!
## Submitting a bug-related issue or feature request
Do your best to follow these guidelines when submitting a bug-related issue or a feature
request. It will make it easier for us to come back to you quickly and with good
feedback.
### Did you find a bug?
The text-generation-inference library is robust and reliable thanks to users who report the problems they encounter.
Before you report an issue, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the
library itself, and not your code.
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so
we can quickly resolve it:
* Your **OS type and version**, as well as your environment versions (versions of rust, python, and dependencies).
* A short, self-contained, code snippet that allows us to reproduce the bug.
* The *full* traceback if an exception is raised.
* Attach any other additional information, like screenshots, you think may help.
To get the OS and software versions automatically, you can re-run the launcher with the `--env` flag:
```bash
text-generation-launcher --env
```
This will precede the launch of the model with the information relative to your environment. We recommend pasting
that in your issue report.
### Do you want a new feature?
If there is a new feature you'd like to see in text-generation-inference, please open an issue and describe:
1. What is the *motivation* behind this feature? Is it related to a problem or frustration with the library? Is it
a feature related to something you need for a project? Is it something you worked on and think it could benefit
the community?
Whatever it is, we'd love to hear about it!
2. Describe your requested feature in as much detail as possible. The more you can tell us about it, the better
we'll be able to help you.
3. Provide a *code snippet* that demonstrates the feature's usage.
4. If the feature is related to a paper, please include a link.
If your issue is well written we're already 80% of the way there by the time you create it.
We have added [templates](https://github.com/huggingface/text-generation-inference/tree/main/.github/ISSUE_TEMPLATE)
to help you get started with your issue.
## Do you want to implement a new model?
New models are constantly released and if you want to implement a new model, please provide the following information:
* A short description of the model and a link to the paper.
* Link to the implementation if it is open-sourced.
* Link to the model weights if they are available.
If you are willing to contribute the model yourself, let us know so we can help you add it to text-generation-inference!
## Do you want to add documentation?
We're always looking for improvements to the documentation that make it more clear and accurate. Please let us know
how the documentation can be improved such as typos and any content that is missing, unclear or inaccurate. We'll be
happy to make the changes or help you make a contribution if you're interested!
## I want to become a maintainer of the project. How do I get there?
TGI is a project led and managed by Hugging Face as it powers our internal services. However, we are happy to have
motivated individuals from other organizations join us as maintainers with the goal of making TGI the best inference
service.
If you are such an individual (or organization), please reach out to us and let's collaborate.

3555
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,27 +1,54 @@
[workspace] [workspace]
members = [ members = [
"benchmark", "benchmark",
"router", "backends/v2",
"router/client", "backends/v3",
"router/grpc-metadata", "backends/grpc-metadata",
"launcher" "backends/trtllm",
"backends/llamacpp",
"launcher",
"router"
]
default-members = [
"benchmark",
"backends/v2",
"backends/v3",
"backends/grpc-metadata",
# "backends/trtllm",
"launcher",
"router"
] ]
resolver = "2" resolver = "2"
[workspace.package] [workspace.package]
version = "2.0.2" version = "3.2.3-dev0"
edition = "2021" edition = "2021"
authors = ["Olivier Dehaene"] authors = ["Olivier Dehaene"]
homepage = "https://github.com/huggingface/text-generation-inference" homepage = "https://github.com/huggingface/text-generation-inference"
[workspace.dependencies] [workspace.dependencies]
tokenizers = { version = "0.19.1", features = ["http"] } base64 = "0.22.0"
hf-hub = { version = "0.3.1", features = ["tokio"] } tokenizers = { version = "0.20.0", features = ["http"] }
hf-hub = { version = "0.4.2", features = ["tokio"] }
metrics = { version = "0.23.0" }
metrics-exporter-prometheus = { version = "0.15.1", features = [] }
minijinja = { version = "2.2.0", features = ["json"] }
minijinja-contrib = { version = "2.0.2", features = ["pycompat"] }
pyo3 = { version = "0.22.2", features = ["auto-initialize"] }
[profile.release] [profile.release]
incremental = true
[profile.release-binary]
inherits = "release"
debug = 1 debug = 1
incremental = true incremental = true
panic = "abort"
[profile.release-opt]
inherits = "release"
debug = 0
incremental = false
lto = "fat" lto = "fat"
opt-level = 3 opt-level = 3
codegen-units = 1 codegen-units = 1
panic = "abort"

View File

@ -1,23 +1,25 @@
# Rust builder # Rust builder
FROM lukemathwalker/cargo-chef:latest-rust-1.78 AS chef FROM lukemathwalker/cargo-chef:latest-rust-1.85.1 AS chef
WORKDIR /usr/src WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
FROM chef as planner FROM chef AS planner
COPY Cargo.lock Cargo.lock
COPY Cargo.toml Cargo.toml COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto COPY proto proto
COPY benchmark benchmark COPY benchmark benchmark
COPY router router COPY router router
COPY backends backends
COPY launcher launcher COPY launcher launcher
RUN cargo chef prepare --recipe-path recipe.json RUN cargo chef prepare --recipe-path recipe.json
FROM chef AS builder FROM chef AS builder
ARG GIT_SHA RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
ARG DOCKER_LABEL python3.11-dev
RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \ RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \ curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \
unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \ unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \
@ -25,32 +27,34 @@ RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
rm -f $PROTOC_ZIP rm -f $PROTOC_ZIP
COPY --from=planner /usr/src/recipe.json recipe.json COPY --from=planner /usr/src/recipe.json recipe.json
RUN cargo chef cook --release --recipe-path recipe.json RUN cargo chef cook --profile release-opt --recipe-path recipe.json
ARG GIT_SHA
ARG DOCKER_LABEL
COPY Cargo.lock Cargo.lock
COPY Cargo.toml Cargo.toml COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto COPY proto proto
COPY benchmark benchmark COPY benchmark benchmark
COPY router router COPY router router
COPY backends backends
COPY launcher launcher COPY launcher launcher
RUN cargo build --release RUN cargo build --profile release-opt --frozen
# Python builder # Python builder
# Adapted from: https://github.com/pytorch/pytorch/blob/master/Dockerfile # Adapted from: https://github.com/pytorch/pytorch/blob/master/Dockerfile
FROM nvidia/cuda:12.1.0-devel-ubuntu22.04 as pytorch-install FROM nvidia/cuda:12.4.1-devel-ubuntu22.04 AS pytorch-install
WORKDIR /usr/src/
# NOTE: When updating PyTorch version, beware to remove `pip install nvidia-nccl-cu12==2.22.3` below in the Dockerfile. Context: https://github.com/huggingface/text-generation-inference/pull/2099
ARG PYTORCH_VERSION=2.6
ARG PYTHON_VERSION=3.11
ARG PYTORCH_VERSION=2.3.0
ARG PYTHON_VERSION=3.10
# Keep in sync with `server/pyproject.toml # Keep in sync with `server/pyproject.toml
ARG CUDA_VERSION=12.1
ARG MAMBA_VERSION=24.3.0-0
ARG CUDA_CHANNEL=nvidia
ARG INSTALL_CHANNEL=pytorch
# Automatically set by buildx # Automatically set by buildx
ARG TARGETPLATFORM ARG TARGETPLATFORM
ENV PATH /opt/conda/bin:$PATH
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
build-essential \ build-essential \
ca-certificates \ ca-certificates \
@ -58,119 +62,96 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-ins
curl \ curl \
git && \ git && \
rm -rf /var/lib/apt/lists/* rm -rf /var/lib/apt/lists/*
COPY --from=ghcr.io/astral-sh/uv:0.5.31 /uv /uvx /bin/
# Install conda ENV PATH="$PATH:/root/.local/bin"
# translating Docker's TARGETPLATFORM into mamba arches RUN uv python install ${PYTHON_VERSION}
RUN case ${TARGETPLATFORM} in \ RUN uv venv --python ${PYTHON_VERSION} && uv pip install torch==${PYTORCH_VERSION} torchvision pip setuptools packaging
"linux/arm64") MAMBA_ARCH=aarch64 ;; \ ENV VIRTUAL_ENV=/usr/src/.venv/
*) MAMBA_ARCH=x86_64 ;; \ ENV PATH="$PATH:/usr/src/.venv/bin/"
esac && \
curl -fsSL -v -o ~/mambaforge.sh -O "https://github.com/conda-forge/miniforge/releases/download/${MAMBA_VERSION}/Mambaforge-${MAMBA_VERSION}-Linux-${MAMBA_ARCH}.sh"
RUN chmod +x ~/mambaforge.sh && \
bash ~/mambaforge.sh -b -p /opt/conda && \
rm ~/mambaforge.sh
# Install pytorch
# On arm64 we exit with an error code
RUN case ${TARGETPLATFORM} in \
"linux/arm64") exit 1 ;; \
*) /opt/conda/bin/conda update -y conda && \
/opt/conda/bin/conda install -c "${INSTALL_CHANNEL}" -c "${CUDA_CHANNEL}" -y "python=${PYTHON_VERSION}" "pytorch=$PYTORCH_VERSION" "pytorch-cuda=$(echo $CUDA_VERSION | cut -d'.' -f 1-2)" ;; \
esac && \
/opt/conda/bin/conda clean -ya
# CUDA kernels builder image # CUDA kernels builder image
FROM pytorch-install as kernel-builder FROM pytorch-install AS kernel-builder
ARG MAX_JOBS=8 ARG MAX_JOBS=8
ENV TORCH_CUDA_ARCH_LIST="8.0;8.6;9.0+PTX"
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
ninja-build cmake \ ninja-build cmake \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*
# Build Flash Attention CUDA kernels # Build Flash Attention CUDA kernels
FROM kernel-builder as flash-att-builder FROM kernel-builder AS flash-att-builder
WORKDIR /usr/src WORKDIR /usr/src
COPY server/Makefile-flash-att Makefile COPY server/Makefile-flash-att Makefile
# Build specific version of flash attention # Build specific version of flash attention
RUN make build-flash-attention RUN . .venv/bin/activate && make build-flash-attention
# Build Flash Attention v2 CUDA kernels # Build Flash Attention v2 CUDA kernels
FROM kernel-builder as flash-att-v2-builder FROM kernel-builder AS flash-att-v2-builder
WORKDIR /usr/src WORKDIR /usr/src
COPY server/Makefile-flash-att-v2 Makefile COPY server/Makefile-flash-att-v2 Makefile
# Build specific version of flash attention v2 # Build specific version of flash attention v2
RUN make build-flash-attention-v2-cuda RUN . .venv/bin/activate && make build-flash-attention-v2-cuda
# Build Transformers exllama kernels # Build Transformers exllama kernels
FROM kernel-builder as exllama-kernels-builder FROM kernel-builder AS exllama-kernels-builder
WORKDIR /usr/src WORKDIR /usr/src
COPY server/exllama_kernels/ . COPY server/exllama_kernels/ .
RUN TORCH_CUDA_ARCH_LIST="8.0;8.6+PTX" python setup.py build RUN . .venv/bin/activate && python setup.py build
# Build Transformers exllama kernels # Build Transformers exllama kernels
FROM kernel-builder as exllamav2-kernels-builder FROM kernel-builder AS exllamav2-kernels-builder
WORKDIR /usr/src WORKDIR /usr/src
COPY server/exllamav2_kernels/ . COPY server/Makefile-exllamav2/ Makefile
# Build specific version of transformers # Build specific version of transformers
RUN TORCH_CUDA_ARCH_LIST="8.0;8.6+PTX" python setup.py build RUN . .venv/bin/activate && make build-exllamav2
# Build Transformers awq kernels # Build Transformers awq kernels
FROM kernel-builder as awq-kernels-builder FROM kernel-builder AS awq-kernels-builder
WORKDIR /usr/src WORKDIR /usr/src
COPY server/Makefile-awq Makefile COPY server/Makefile-awq Makefile
# Build specific version of transformers # Build specific version of transformers
RUN TORCH_CUDA_ARCH_LIST="8.0;8.6+PTX" make build-awq RUN . .venv/bin/activate && make build-awq
# Build eetq kernels # Build Lorax Punica kernels
FROM kernel-builder as eetq-kernels-builder FROM kernel-builder AS lorax-punica-builder
WORKDIR /usr/src WORKDIR /usr/src
COPY server/Makefile-eetq Makefile COPY server/Makefile-lorax-punica Makefile
# Build specific version of transformers # Build specific version of transformers
RUN TORCH_CUDA_ARCH_LIST="8.0;8.6+PTX" make build-eetq RUN . .venv/bin/activate && TORCH_CUDA_ARCH_LIST="8.0;8.6+PTX" make build-lorax-punica
# Build Transformers CUDA kernels # Build Transformers CUDA kernels
FROM kernel-builder as custom-kernels-builder FROM kernel-builder AS custom-kernels-builder
WORKDIR /usr/src WORKDIR /usr/src
COPY server/custom_kernels/ . COPY server/custom_kernels/ .
# Build specific version of transformers # Build specific version of transformers
RUN python setup.py build RUN . .venv/bin/activate && python setup.py build
# Build vllm CUDA kernels
FROM kernel-builder as vllm-builder
WORKDIR /usr/src
ENV TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
COPY server/Makefile-vllm Makefile
# Build specific version of vllm
RUN make build-vllm-cuda
# Build mamba kernels # Build mamba kernels
FROM kernel-builder as mamba-builder FROM kernel-builder AS mamba-builder
WORKDIR /usr/src WORKDIR /usr/src
COPY server/Makefile-selective-scan Makefile COPY server/Makefile-selective-scan Makefile
RUN make build-all RUN . .venv/bin/activate && make build-all
# Build flashinfer
FROM kernel-builder AS flashinfer-builder
WORKDIR /usr/src
COPY server/Makefile-flashinfer Makefile
RUN . .venv/bin/activate && make install-flashinfer
# Text Generation Inference base image # Text Generation Inference base image
FROM nvidia/cuda:12.1.0-base-ubuntu22.04 as base FROM nvidia/cuda:12.4.0-base-ubuntu22.04 AS base
# Conda env
ENV PATH=/opt/conda/bin:$PATH \
CONDA_PREFIX=/opt/conda
# Text Generation Inference base env # Text Generation Inference base env
ENV HUGGINGFACE_HUB_CACHE=/data \ ENV HF_HOME=/data \
HF_HUB_ENABLE_HF_TRANSFER=1 \ HF_HUB_ENABLE_HF_TRANSFER=1 \
PORT=80 PORT=80
@ -184,61 +165,83 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-ins
git \ git \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*
# Copy conda with PyTorch installed # RUN curl -LsSf https://astral.sh/uv/install.sh | sh
COPY --from=pytorch-install /opt/conda /opt/conda # ENV PATH="$PATH:/root/.local/bin"
COPY --from=ghcr.io/astral-sh/uv:0.5.31 /uv /uvx /bin/
# Copy build artifacts from flash attention builder
COPY --from=flash-att-builder /usr/src/flash-attention/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
COPY --from=flash-att-builder /usr/src/flash-attention/csrc/layer_norm/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
COPY --from=flash-att-builder /usr/src/flash-attention/csrc/rotary/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from flash attention v2 builder
COPY --from=flash-att-v2-builder /usr/src/flash-attention-v2/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from custom kernels builder
COPY --from=custom-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from exllama kernels builder
COPY --from=exllama-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from exllamav2 kernels builder
COPY --from=exllamav2-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from awq kernels builder
COPY --from=awq-kernels-builder /usr/src/llm-awq/awq/kernels/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from eetq kernels builder
COPY --from=eetq-kernels-builder /usr/src/eetq/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy builds artifacts from vllm builder
COPY --from=vllm-builder /usr/src/vllm/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from mamba builder
COPY --from=mamba-builder /usr/src/mamba/build/lib.linux-x86_64-cpython-310/ /opt/conda/lib/python3.10/site-packages
COPY --from=mamba-builder /usr/src/causal-conv1d/build/lib.linux-x86_64-cpython-310/ /opt/conda/lib/python3.10/site-packages
# Install flash-attention dependencies # Install flash-attention dependencies
RUN pip install einops --no-cache-dir # RUN pip install einops --no-cache-dir
# Copy env with PyTorch installed
COPY --from=pytorch-install /usr/src/.venv /usr/src/.venv
ENV PYTHON_VERSION=3.11
RUN uv python install ${PYTHON_VERSION}
ENV VIRTUAL_ENV=/usr/src/.venv/
ENV PATH="$PATH:/usr/src/.venv/bin/"
# Install server # Install server
COPY proto proto COPY proto proto
COPY server server COPY server server
COPY server/Makefile server/Makefile COPY server/Makefile server/Makefile
ENV HF_KERNELS_CACHE=/kernels
RUN cd server && \ RUN cd server && \
make gen-server && \ uv sync --frozen --extra gen --extra bnb --extra accelerate --extra compressed-tensors --extra quantize --extra peft --extra outlines --extra torch --no-install-project --active && \
pip install -r requirements_cuda.txt && \ make gen-server-raw && \
pip install ".[bnb, accelerate, quantize, peft, outlines]" --no-cache-dir kernels download .
# Install benchmarker RUN cd server && \
COPY --from=builder /usr/src/target/release/text-generation-benchmark /usr/local/bin/text-generation-benchmark uv sync --frozen --extra gen --extra bnb --extra accelerate --extra compressed-tensors --extra quantize --extra peft --extra outlines --extra torch --active --python=${PYTHON_VERSION} && \
# Install router uv pip install nvidia-nccl-cu12==2.25.1 && \
COPY --from=builder /usr/src/target/release/text-generation-router /usr/local/bin/text-generation-router pwd && \
# Install launcher text-generation-server --help
COPY --from=builder /usr/src/target/release/text-generation-launcher /usr/local/bin/text-generation-launcher
# Copy build artifacts from flash attention builder
COPY --from=flash-att-builder /usr/src/flash-attention/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
COPY --from=flash-att-builder /usr/src/flash-attention/csrc/layer_norm/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
COPY --from=flash-att-builder /usr/src/flash-attention/csrc/rotary/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
# Copy build artifacts from flash attention v2 builder
COPY --from=flash-att-v2-builder /usr/src/.venv/lib/python3.11/site-packages/flash_attn_2_cuda.cpython-311-x86_64-linux-gnu.so /usr/src/.venv/lib/python3.11/site-packages
# Copy build artifacts from custom kernels builder
COPY --from=custom-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
# Copy build artifacts from exllama kernels builder
COPY --from=exllama-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
# Copy build artifacts from exllamav2 kernels builder
COPY --from=exllamav2-kernels-builder /usr/src/exllamav2/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
# Copy build artifacts from awq kernels builder
COPY --from=awq-kernels-builder /usr/src/llm-awq/awq/kernels/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
# Copy build artifacts from lorax punica kernels builder
COPY --from=lorax-punica-builder /usr/src/lorax-punica/server/punica_kernels/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
# Copy build artifacts from mamba builder
COPY --from=mamba-builder /usr/src/mamba/build/lib.linux-x86_64-cpython-311/ /usr/src/.venv/lib/python3.11/site-packages
COPY --from=mamba-builder /usr/src/causal-conv1d/build/lib.linux-x86_64-cpython-311/ /usr/src/.venv/lib/python3.11/site-packages
COPY --from=flashinfer-builder /usr/src/.venv/lib/python3.11/site-packages/flashinfer/ /usr/src/.venv/lib/python3.11/site-packages/flashinfer/
# ENV LD_PRELOAD=/opt/conda/lib/python3.11/site-packages/nvidia/nccl/lib/libnccl.so.2
# Required to find libpython within the rust binaries
# This is needed because exl2 tries to load flash-attn
# And fails with our builds.
ENV EXLLAMA_NO_FLASH_ATTN=1
# Deps before the binaries
# The binaries change on every build given we burn the SHA into them
# The deps change less often.
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
build-essential \ build-essential \
g++ \ g++ \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*
# Install benchmarker
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router
COPY --from=builder /usr/src/target/release-opt/text-generation-router /usr/local/bin/text-generation-router
# Install launcher
COPY --from=builder /usr/src/target/release-opt/text-generation-launcher /usr/local/bin/text-generation-launcher
# AWS Sagemaker compatible image # AWS Sagemaker compatible image
FROM base as sagemaker FROM base AS sagemaker
COPY sagemaker-entrypoint.sh entrypoint.sh COPY sagemaker-entrypoint.sh entrypoint.sh
RUN chmod +x entrypoint.sh RUN chmod +x entrypoint.sh
@ -251,5 +254,6 @@ FROM base
COPY ./tgi-entrypoint.sh /tgi-entrypoint.sh COPY ./tgi-entrypoint.sh /tgi-entrypoint.sh
RUN chmod +x /tgi-entrypoint.sh RUN chmod +x /tgi-entrypoint.sh
ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/root/.local/share/uv/python/cpython-3.11.11-linux-x86_64-gnu/lib/"
ENTRYPOINT ["/tgi-entrypoint.sh"] ENTRYPOINT ["/tgi-entrypoint.sh"]
CMD ["--json-output"] # CMD ["--json-output"]

167
Dockerfile.neuron Normal file
View File

@ -0,0 +1,167 @@
# Fetch and extract the TGI sources
FROM alpine AS tgi
RUN mkdir -p /tgi
# Fetch the optimum-neuron sources directly to avoid relying on pypi deployments
FROM alpine AS optimum-neuron
RUN mkdir -p /optimum-neuron
ADD https://github.com/huggingface/optimum-neuron/archive/refs/tags/v0.1.0.tar.gz /optimum-neuron/sources.tar.gz
RUN tar -C /optimum-neuron -xf /optimum-neuron/sources.tar.gz --strip-components=1
# Build cargo components (adapted from TGI original Dockerfile)
# Note: we cannot use the cargo-chef base image as it uses python 3.11
FROM ubuntu:22.04 AS chef
RUN apt-get update -y \
&& apt-get install -y --no-install-recommends \
curl ca-certificates build-essential \
&& rm -rf /var/lib/apt/lists/* \
&& apt-get clean
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- --default-toolchain 1.85.1 --profile minimal -y
ENV PATH="/root/.cargo/bin:${PATH}"
RUN cargo install cargo-chef --locked
WORKDIR /usr/src
FROM chef AS planner
COPY backends/neuron/Cargo.toml Cargo.toml
COPY Cargo.lock Cargo.lock
COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto
COPY router router
COPY backends backends
COPY launcher launcher
RUN cargo chef prepare --recipe-path recipe.json
FROM chef AS builder
RUN apt-get update -y \
&& apt-get install -y --no-install-recommends \
unzip python3-dev libssl-dev pkg-config \
&& rm -rf /var/lib/apt/lists/* \
&& apt-get clean
RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \
unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \
unzip -o $PROTOC_ZIP -d /usr/local 'include/*' && \
rm -f $PROTOC_ZIP
COPY backends/neuron/Cargo.toml Cargo.toml
COPY --from=planner /usr/src/recipe.json recipe.json
RUN cargo chef cook --release --recipe-path recipe.json
COPY Cargo.lock Cargo.lock
COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto
COPY router router
COPY backends backends
COPY launcher launcher
RUN cargo build --release
# Python base image
FROM ubuntu:22.04 AS base
RUN apt-get update -y \
&& apt-get install -y --no-install-recommends \
python3-pip \
python3-setuptools \
python-is-python3 \
&& rm -rf /var/lib/apt/lists/* \
&& apt-get clean
RUN pip3 --no-cache-dir install --upgrade pip
# Python server build image
FROM base AS pyserver
RUN apt-get update -y \
&& apt-get install -y --no-install-recommends \
make \
python3-venv \
&& rm -rf /var/lib/apt/lists/* \
&& apt-get clean
RUN install -d /pyserver
WORKDIR /pyserver
COPY backends/neuron/server server
COPY proto proto
RUN pip3 install -r server/build-requirements.txt
RUN VERBOSE=1 BUILDDIR=/pyserver/build PROTODIR=/pyserver/proto make -C server package
# Neuron base image (used for deployment)
FROM base AS neuron
# Install system prerequisites
RUN apt-get update -y \
&& apt-get install -y --no-install-recommends \
gnupg2 \
wget \
python3-dev \
libexpat1 \
&& rm -rf /var/lib/apt/lists/* \
&& apt-get clean
RUN echo "deb https://apt.repos.neuron.amazonaws.com jammy main" > /etc/apt/sources.list.d/neuron.list
RUN wget -qO - https://apt.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.PUB | apt-key add -
# Install neuronx packages
RUN apt-get update -y \
&& apt-get install -y --no-install-recommends \
aws-neuronx-dkms=2.19.64.0 \
aws-neuronx-collectives=2.23.135.0-3e70920f2 \
aws-neuronx-runtime-lib=2.23.112.0-9b5179492 \
aws-neuronx-tools=2.20.204.0 \
libxml2 \
&& rm -rf /var/lib/apt/lists/* \
&& apt-get clean
ENV PATH="/opt/bin/:/opt/aws/neuron/bin:${PATH}"
# Install manually torch CPU version to avoid pulling CUDA
RUN pip3 install \
torch==2.5.1 \
torchvision==0.20.1 \
--index-url https://download.pytorch.org/whl/cpu
RUN pip3 install \
neuronx-cc==2.16.372.0 \
torch-neuronx==2.5.1.2.4.0 \
transformers-neuronx==0.13.322 \
neuronx-distributed==0.10.1 \
libneuronxla==2.1.681.0 \
--extra-index-url=https://pip.repos.neuron.amazonaws.com
# Install HuggingFace packages
RUN pip3 install \
hf_transfer huggingface_hub
# Install optimum-neuron
COPY --from=optimum-neuron /optimum-neuron optimum-neuron
RUN pip3 install ./optimum-neuron
# TGI base env
ENV HUGGINGFACE_HUB_CACHE=/tmp \
HF_HUB_ENABLE_HF_TRANSFER=1 \
PORT=80
# Disable color logs as they are not supported by CloudWatch
ENV LOGURU_COLORIZE=NO
ENV LOG_COLORIZE=0
# Install router
COPY --from=builder /usr/src/target/release/text-generation-router-v2 /usr/local/bin/text-generation-router
# Install launcher
COPY --from=builder /usr/src/target/release/text-generation-launcher /usr/local/bin/text-generation-launcher
# Install python server
COPY --from=pyserver /pyserver/build/dist dist
RUN pip install dist/text_generation_server*.tar.gz
# Final image
FROM neuron
COPY backends/neuron/tgi_env.py /tgi_env.py
COPY backends/neuron/tgi-entrypoint.sh /tgi-entrypoint.sh
RUN chmod +x /tgi-entrypoint.sh
ENTRYPOINT ["/tgi-entrypoint.sh"]

24
Dockerfile.nix Normal file
View File

@ -0,0 +1,24 @@
# Build the image and get out the docker file:
#
# docker build -t tgi-nix-builder -f Dockerfile.nix
# docker run --log-driver=none tgi-nix-builder | docker load
FROM nixos/nix:2.18.8 AS builder
RUN echo "experimental-features = nix-command flakes" >> /etc/nix/nix.conf
RUN nix profile install nixpkgs#cachix
RUN cachix use text-generation-inference
WORKDIR /root
ADD . .
RUN nix build .
RUN mkdir /tmp/nix-store-closure
RUN cp -R $(nix-store -qR result/) /tmp/nix-store-closure
FROM ubuntu:24.04
WORKDIR /app
# Copy /nix/store
COPY --from=builder /tmp/nix-store-closure /nix/store
COPY --from=builder /root/result /app
RUN ldconfig
CMD ["ldconfig", "/app/bin/text-generation-launcher"]

View File

@ -1,23 +1,24 @@
# Rust builder # Rust builder
FROM lukemathwalker/cargo-chef:latest-rust-1.78 AS chef FROM lukemathwalker/cargo-chef:latest-rust-1.85.1 AS chef
WORKDIR /usr/src WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
FROM chef as planner FROM chef AS planner
COPY Cargo.lock Cargo.lock
COPY Cargo.toml Cargo.toml COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto COPY proto proto
COPY benchmark benchmark COPY benchmark benchmark
COPY router router COPY router router
COPY backends backends
COPY launcher launcher COPY launcher launcher
RUN cargo chef prepare --recipe-path recipe.json RUN cargo chef prepare --recipe-path recipe.json
FROM chef AS builder FROM chef AS builder
ARG GIT_SHA RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
ARG DOCKER_LABEL python3.11-dev
RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \ RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \ curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \
unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \ unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \
@ -25,182 +26,262 @@ RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
rm -f $PROTOC_ZIP rm -f $PROTOC_ZIP
COPY --from=planner /usr/src/recipe.json recipe.json COPY --from=planner /usr/src/recipe.json recipe.json
RUN cargo chef cook --release --recipe-path recipe.json RUN cargo chef cook --profile release-opt --recipe-path recipe.json
ARG GIT_SHA
ARG DOCKER_LABEL
COPY Cargo.lock Cargo.lock
COPY Cargo.toml Cargo.toml COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto COPY proto proto
COPY benchmark benchmark COPY benchmark benchmark
COPY router router COPY router router
COPY backends backends
COPY launcher launcher COPY launcher launcher
RUN cargo build --release RUN cargo build --profile release-opt --frozen
# Text Generation Inference base image for RoCm FROM rocm/dev-ubuntu-22.04:6.3.1-complete AS base
FROM rocm/dev-ubuntu-22.04:6.1.1_hip_update as base
ARG HIPBLASLT_BRANCH="4d40e36"
ARG HIPBLAS_COMMON_BRANCH="7c1566b"
ARG LEGACY_HIPBLASLT_OPTION=
ARG RCCL_BRANCH="648a58d"
ARG RCCL_REPO="https://github.com/ROCm/rccl"
ARG TRITON_BRANCH="e5be006"
ARG TRITON_REPO="https://github.com/triton-lang/triton.git"
ARG PYTORCH_BRANCH="3a585126"
ARG PYTORCH_VISION_BRANCH="v0.19.1"
ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git"
ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git"
ARG FA_BRANCH="b7d29fb"
ARG FA_REPO="https://github.com/ROCm/flash-attention.git"
ARG AITER_BRANCH="21d47a9"
ARG AITER_REPO="https://github.com/ROCm/aiter.git"
ENV PATH=/opt/rocm/llvm/bin:$PATH
ENV ROCM_PATH=/opt/rocm
ENV LD_LIBRARY_PATH=/opt/rocm/lib:/usr/local/lib:
ARG PYTORCH_ROCM_ARCH=gfx90a;gfx942
ENV PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}
ARG PYTHON_VERSION=3.11
RUN mkdir -p /app
WORKDIR /app
ENV DEBIAN_FRONTEND=noninteractive
# Install Python and other dependencies
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
build-essential \ build-essential \
ca-certificates \ ca-certificates \
ccache \ ccache \
curl \ curl \
git \ git \
make \ ninja-build \
libssl-dev \ cmake \
g++ \ software-properties-common \
# Needed to build VLLM & flash. python3.11-dev \
rocthrust-dev \ python3.11-venv && \
hipsparse-dev \ rm -rf /var/lib/apt/lists/*
hipblas-dev \
hipblaslt-dev \
rocblas-dev \
hiprand-dev \
rocrand-dev \
miopen-hip-dev \
hipfft-dev \
hipcub-dev \
hipsolver-dev \
rccl-dev \
cmake \
python3-dev && \
rm -rf /var/lib/apt/lists/*
# Keep in sync with `server/pyproject.toml COPY --from=ghcr.io/astral-sh/uv:0.5.31 /uv /uvx /bin/
ARG MAMBA_VERSION=23.1.0-1 ENV PATH="$PATH:/root/.local/bin"
ARG PYTORCH_VERSION='2.3.0' RUN uv python install ${PYTHON_VERSION}
ARG ROCM_VERSION='6.0.2' RUN uv venv --python ${PYTHON_VERSION} && uv pip install pip setuptools packaging
ARG PYTHON_VERSION='3.10.10' ENV VIRTUAL_ENV=/usr/src/.venv/
# Automatically set by buildx ENV PATH="$PATH:/usr/src/.venv/bin/"
ARG TARGETPLATFORM
ENV PATH /opt/conda/bin:$PATH
# TGI seem to require libssl.so.1.1 instead of libssl.so.3 so we can't use ubuntu 22.04. Ubuntu 20.04 has python==3.8, and TGI requires python>=3.9, hence the need for miniconda. RUN . .venv/bin/activate && pip install -U packaging cmake ninja wheel setuptools pybind11 Cython
# Install mamba
# translating Docker's TARGETPLATFORM into mamba arches
RUN case ${TARGETPLATFORM} in \
"linux/arm64") MAMBA_ARCH=aarch64 ;; \
*) MAMBA_ARCH=x86_64 ;; \
esac && \
curl -fsSL -v -o ~/mambaforge.sh -O "https://github.com/conda-forge/miniforge/releases/download/${MAMBA_VERSION}/Mambaforge-${MAMBA_VERSION}-Linux-${MAMBA_ARCH}.sh"
RUN chmod +x ~/mambaforge.sh && \
bash ~/mambaforge.sh -b -p /opt/conda && \
mamba init && \
rm ~/mambaforge.sh
# Install flash-attention, torch dependencies FROM base AS build_hipblaslt
RUN pip install numpy einops ninja --no-cache-dir ARG HIPBLASLT_BRANCH
ARG HIPBLAS_COMMON_BRANCH
# Set to "--legacy_hipblas_direct" for ROCm<=6.2
ARG LEGACY_HIPBLASLT_OPTION
RUN git clone https://github.com/ROCm/hipBLAS-common.git
RUN . .venv/bin/activate && cd hipBLAS-common \
&& git checkout ${HIPBLAS_COMMON_BRANCH} \
&& mkdir build \
&& cd build \
&& cmake .. \
&& make package \
&& dpkg -i ./*.deb
RUN git clone https://github.com/ROCm/hipBLASLt
RUN . .venv/bin/activate && cd hipBLASLt \
&& git checkout ${HIPBLASLT_BRANCH} \
&& ./install.sh -d --architecture ${PYTORCH_ROCM_ARCH} ${LEGACY_HIPBLASLT_OPTION} \
&& cd build/release \
&& make package
RUN mkdir -p /app/install && cp /app/hipBLASLt/build/release/*.deb /app/hipBLAS-common/build/*.deb /app/install
RUN conda install intel::mkl-static intel::mkl-include FROM base AS build_rccl
RUN pip uninstall -y triton && \ ARG RCCL_BRANCH
git clone --depth 1 --single-branch https://github.com/ROCm/triton.git && \ ARG RCCL_REPO
cd triton/python && \ RUN git clone ${RCCL_REPO}
pip install . RUN . .venv/bin/activate && cd rccl \
&& git checkout ${RCCL_BRANCH} \
&& ./install.sh -p --amdgpu_targets ${PYTORCH_ROCM_ARCH}
RUN mkdir -p /app/install && cp /app/rccl/build/release/*.deb /app/install
RUN git clone --depth 1 --recursive --single-branch --branch 2.3-patched https://github.com/fxmarty/pytorch.git pytorch && cd pytorch && pip install -r requirements.txt --no-cache-dir FROM base AS build_triton
ARG TRITON_BRANCH
ARG TRITON_REPO
RUN git clone ${TRITON_REPO}
RUN . .venv/bin/activate && cd triton \
&& git checkout ${TRITON_BRANCH} \
&& cd python \
&& python3 setup.py bdist_wheel --dist-dir=dist
RUN mkdir -p /app/install && cp /app/triton/python/dist/*.whl /app/install
ARG _GLIBCXX_USE_CXX11_ABI="1" FROM base AS build_amdsmi
ARG CMAKE_PREFIX_PATH="/opt/conda" RUN . .venv/bin/activate && cd /opt/rocm/share/amd_smi \
ARG PYTORCH_ROCM_ARCH="gfx90a;gfx942" && pip wheel . --wheel-dir=dist
ARG BUILD_CAFFE2="0" \ RUN mkdir -p /app/install && cp /opt/rocm/share/amd_smi/dist/*.whl /app/install
BUILD_CAFFE2_OPS="0" \
USE_CUDA="0" \
USE_ROCM="1" \
BUILD_TEST="0" \
USE_FBGEMM="0" \
USE_NNPACK="0" \
USE_QNNPACK="0" \
USE_XNNPACK="0" \
USE_FLASH_ATTENTION="1" \
USE_MEM_EFF_ATTENTION="0"
RUN cd pytorch && python tools/amd_build/build_amd.py && python setup.py install FROM base AS build_pytorch
ARG PYTORCH_BRANCH
ARG PYTORCH_VISION_BRANCH
ARG PYTORCH_REPO
ARG PYTORCH_VISION_REPO
ARG FA_BRANCH
ARG FA_REPO
RUN git clone ${PYTORCH_REPO} pytorch
RUN . .venv/bin/activate && cd pytorch && git checkout ${PYTORCH_BRANCH} && \
pip install -r requirements.txt && git submodule update --init --recursive \
&& python3 tools/amd_build/build_amd.py \
&& CMAKE_PREFIX_PATH=$(python3 -c 'import sys; print(sys.prefix)') python3 setup.py bdist_wheel --dist-dir=dist \
&& pip install dist/*.whl
RUN git clone ${PYTORCH_VISION_REPO} vision
RUN . .venv/bin/activate && cd vision && git checkout ${PYTORCH_VISION_BRANCH} \
&& python3 setup.py bdist_wheel --dist-dir=dist \
&& pip install dist/*.whl
RUN git clone ${FA_REPO}
RUN . .venv/bin/activate && cd flash-attention \
&& git checkout ${FA_BRANCH} \
&& git submodule update --init \
&& MAX_JOBS=64 GPU_ARCHS=${PYTORCH_ROCM_ARCH} python3 setup.py bdist_wheel --dist-dir=dist
RUN mkdir -p /app/install && cp /app/pytorch/dist/*.whl /app/install \
&& cp /app/vision/dist/*.whl /app/install \
&& cp /app/flash-attention/dist/*.whl /app/install
# Set as recommended: https://github.com/ROCm/triton/wiki/A-script-to-set-program-execution-environment-in-ROCm FROM base AS final
ENV HIP_FORCE_DEV_KERNARG=1 RUN --mount=type=bind,from=build_hipblaslt,src=/app/install/,target=/install \
dpkg -i /install/*deb \
&& sed -i 's/, hipblaslt-dev \(.*\), hipcub-dev/, hipcub-dev/g' /var/lib/dpkg/status \
&& sed -i 's/, hipblaslt \(.*\), hipfft/, hipfft/g' /var/lib/dpkg/status
RUN --mount=type=bind,from=build_rccl,src=/app/install/,target=/install \
dpkg -i /install/*deb \
&& sed -i 's/, rccl-dev \(.*\), rocalution/, rocalution/g' /var/lib/dpkg/status \
&& sed -i 's/, rccl \(.*\), rocalution/, rocalution/g' /var/lib/dpkg/status
RUN --mount=type=bind,from=build_triton,src=/app/install/,target=/install \
. .venv/bin/activate && \
pip install /install/*.whl
RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \
. .venv/bin/activate && \
pip install /install/*.whl
RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \
. .venv/bin/activate && \
pip install /install/*.whl
# On MI250 and MI300, performances for flash with Triton FA are slightly better than CK. ARG AITER_REPO
# However, Triton requires a tunning for each prompt length, which is prohibitive. ARG AITER_BRANCH
ENV ROCM_USE_FLASH_ATTN_V2_TRITON=0 RUN git clone --recursive ${AITER_REPO}
RUN . .venv/bin/activate && cd aiter \
&& git checkout ${AITER_BRANCH} \
&& git submodule update --init --recursive \
&& pip install -r requirements.txt \
&& PREBUILD_KERNELS=1 GPU_ARCHS=gfx942 python3 setup.py develop && pip show aiter
FROM base AS kernel-builder RUN rm -rf /var/lib/apt/lists/*
FROM final AS kernel-builder
# # Build vllm kernels # # Build vllm kernels
FROM kernel-builder AS vllm-builder FROM kernel-builder AS vllm-builder
WORKDIR /usr/src
COPY server/Makefile-vllm Makefile COPY server/Makefile-vllm Makefile
RUN . .venv/bin/activate && pip install setuptools_scm
# Build specific version of vllm # Build specific version of vllm
RUN make build-vllm-rocm RUN . .venv/bin/activate && make build-vllm-rocm
# Build Flash Attention v2 kernels
FROM kernel-builder AS flash-att-v2-builder
WORKDIR /usr/src
COPY server/Makefile-flash-att-v2 Makefile
# Build specific version of flash attention v2
RUN make build-flash-attention-v2-rocm
# Build Transformers CUDA kernels (gpt-neox and bloom) # Build Transformers CUDA kernels (gpt-neox and bloom)
FROM kernel-builder as custom-kernels-builder FROM kernel-builder AS custom-kernels-builder
WORKDIR /usr/src
COPY server/custom_kernels/ . COPY server/custom_kernels/ .
RUN python setup.py build RUN . .venv/bin/activate && python3 setup.py bdist_wheel --dist-dir=dist
# Build exllama kernels # Build exllama kernels
FROM kernel-builder as exllama-kernels-builder FROM kernel-builder AS exllama-kernels-builder
WORKDIR /usr/src
COPY server/exllama_kernels/ . COPY server/exllama_kernels/ .
RUN . .venv/bin/activate && python3 setup.py bdist_wheel --dist-dir=dist
RUN python setup.py build
# Build exllama v2 kernels # Build exllama v2 kernels
FROM kernel-builder as exllamav2-kernels-builder FROM kernel-builder AS exllamav2-kernels-builder
WORKDIR /usr/src
COPY server/exllamav2_kernels/ . COPY server/exllamav2_kernels/ .
RUN . .venv/bin/activate && python3 setup.py bdist_wheel --dist-dir=dist
RUN python setup.py build FROM kernel-builder AS marlin-kernels
ENV MARLIN_KERNELS_BRANCH=v0.3.6
ENV VLLM_TARGET_DEVICE=rocm
RUN . .venv/bin/activate && git clone https://github.com/danieldk/marlin-kernels.git && \
cd marlin-kernels && \
git checkout ${MARLIN_KERNELS_BRANCH} && \
python3 setup.py bdist_wheel --dist-dir=dist
FROM base as base-copy FROM kernel-builder AS moe-kernels
ENV MOE_KERNELS_BRANCH=v0.8.2
ENV VLLM_TARGET_DEVICE=rocm
RUN . .venv/bin/activate && git clone https://github.com/danieldk/moe-kernels.git && \
cd moe-kernels && \
git checkout ${MOE_KERNELS_BRANCH} && \
python3 setup.py bdist_wheel --dist-dir=dist
FROM final AS base-copy
# Text Generation Inference base env # Text Generation Inference base env
ENV HUGGINGFACE_HUB_CACHE=/data \ ENV HF_HOME=/data \
HF_HUB_ENABLE_HF_TRANSFER=1 \ HF_HUB_ENABLE_HF_TRANSFER=1 \
PORT=80 PORT=80
# Copy builds artifacts from vllm builder ENV VIRTUAL_ENV=/app/.venv/
COPY --from=vllm-builder /usr/src/vllm/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages ENV PATH="$PATH:/app/.venv/bin/"
# Copy build artifacts from flash attention v2 builder
COPY --from=flash-att-v2-builder /usr/src/flash-attention-v2/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from custom kernels builder
COPY --from=custom-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from exllama kernels builder
COPY --from=exllama-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from exllamav2 kernels builder
COPY --from=exllamav2-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Install server # Install server
COPY proto proto COPY proto proto
COPY server server COPY server server
COPY server/Makefile server/Makefile COPY server/Makefile server/Makefile
RUN cd server && \ RUN cd server && \
make gen-server && \ uv pip install grpcio-tools mypy-protobuf && \
pip install -r requirements_rocm.txt && \ uv pip install -e ".[accelerate, compressed-tensors, peft, outlines]" --no-cache-dir && \
pip install ".[accelerate, peft, outlines]" --no-cache-dir make gen-server-raw
RUN cd server && \
pwd && \
text-generation-server --help
RUN --mount=type=bind,from=vllm-builder,src=/app/vllm/dist,target=/install \
uv pip install /install/*.whl
RUN --mount=type=bind,from=custom-kernels-builder,src=/app/dist,target=/install \
uv pip install /install/*.whl
RUN --mount=type=bind,from=custom-kernels-builder,src=/app/dist,target=/install \
uv pip install /install/*.whl
RUN --mount=type=bind,from=exllama-kernels-builder,src=/app/dist,target=/install \
uv pip install /install/*.whl
RUN --mount=type=bind,from=exllamav2-kernels-builder,src=/app/dist,target=/install \
uv pip install /install/*.whl
RUN --mount=type=bind,from=marlin-kernels,src=/app/marlin-kernels/dist,target=/install \
uv pip install /install/*.whl
RUN --mount=type=bind,from=moe-kernels,src=/app/moe-kernels/dist,target=/install \
uv pip install /install/*.whl
# Install benchmarker # Install benchmarker
COPY --from=builder /usr/src/target/release/text-generation-benchmark /usr/local/bin/text-generation-benchmark COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router # Install router
COPY --from=builder /usr/src/target/release/text-generation-router /usr/local/bin/text-generation-router COPY --from=builder /usr/src/target/release-opt/text-generation-router /usr/local/bin/text-generation-router
# Install launcher # Install launcher
COPY --from=builder /usr/src/target/release/text-generation-launcher /usr/local/bin/text-generation-launcher COPY --from=builder /usr/src/target/release-opt/text-generation-launcher /usr/local/bin/text-generation-launcher
# AWS Sagemaker compatible image # AWS Sagemaker compatible image
FROM base as sagemaker FROM base AS sagemaker
COPY sagemaker-entrypoint.sh entrypoint.sh COPY sagemaker-entrypoint.sh entrypoint.sh
RUN chmod +x entrypoint.sh RUN chmod +x entrypoint.sh
@ -210,8 +291,24 @@ ENTRYPOINT ["./entrypoint.sh"]
# Final image # Final image
FROM base-copy FROM base-copy
# Set AS recommended: https://github.com/ROCm/triton/wiki/A-script-to-set-program-execution-environment-in-ROCm
ENV HIP_FORCE_DEV_KERNARG=1
# On MI250 and MI300, performances for flash with Triton FA are slightly better than CK.
# However, Triton requires a tunning for each prompt length, which is prohibitive.
ENV ROCM_USE_FLASH_ATTN_V2_TRITON=0
ENV ROCM_USE_CUSTOM_PAGED_ATTN=1
ENV PYTORCH_TUNABLEOP_TUNING_AFTER_WARMUP=0
ENV VLLM_MOE_PADDING=0
ENV ATTENTION=paged
ENV PREFIX_CACHING=0
ENV PREFILL_CHUNKING=0
ENV ROCM_USE_SKINNY_GEMM=1
COPY ./tgi-entrypoint.sh /tgi-entrypoint.sh COPY ./tgi-entrypoint.sh /tgi-entrypoint.sh
RUN chmod +x /tgi-entrypoint.sh RUN chmod +x /tgi-entrypoint.sh
ENTRYPOINT ["/tgi-entrypoint.sh"] ENTRYPOINT ["/tgi-entrypoint.sh"]
CMD ["--json-output"] ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/root/.local/share/uv/python/cpython-3.11.11-linux-x86_64-gnu/lib"
ENV PYTHONPATH=/app/.venv/lib/python3.11/site-packages
# CMD ["--json-output"]

126
Dockerfile_gaudi Normal file
View File

@ -0,0 +1,126 @@
# Those arguments are required to build the image
ARG HABANA_VERSION=1.20.0
ARG PYTORCH_VERSION=2.6.0
# Rust builder
FROM lukemathwalker/cargo-chef:latest-rust-1.85.1 AS chef
WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
FROM chef AS planner
COPY Cargo.lock Cargo.lock
COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto
COPY benchmark benchmark
COPY router router
COPY backends backends
COPY launcher launcher
RUN cargo chef prepare --recipe-path recipe.json
FROM chef AS builder
ENV PYO3_PYTHON="/root/.local/bin/python" \
PYTHON_SYS_EXECUTABLE="/root/.local/bin/python" \
PYO3_PYTHON_VERSION="3.10"
RUN curl -LsSf https://astral.sh/uv/install.sh | sh \
&& . $HOME/.local/bin/env \
&& uv python install 3.10 --default --preview \
&& test -f /root/.local/bin/python || (echo "Python 3.10 not found at /root/.local/bin/python" && exit 1)
RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \
unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \
unzip -o $PROTOC_ZIP -d /usr/local 'include/*' && \
rm -f $PROTOC_ZIP
COPY --from=planner /usr/src/recipe.json recipe.json
RUN cargo chef cook --profile release-opt --recipe-path recipe.json
ARG GIT_SHA
ARG DOCKER_LABEL
COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto
COPY benchmark benchmark
COPY router router
COPY backends backends
COPY launcher launcher
RUN cargo build --profile release-opt
# Text Generation Inference base image
ARG HABANA_VERSION
ARG PYTORCH_VERSION
FROM vault.habana.ai/gaudi-docker/${HABANA_VERSION}/ubuntu22.04/habanalabs/pytorch-installer-${PYTORCH_VERSION}:latest AS base
ENV ATTENTION=default
ENV PREFIX_CACHING=0
ENV PREFILL_CHUNKING=0
# Text Generation Inference base env
ENV HF_HOME=/data \
HF_HUB_ENABLE_HF_TRANSFER=1 \
PORT=80
# Assert that Python 3.10 is installed as the launcher is compiled with Python 3.10
RUN python3.10 --version || (echo "Python 3.10 is not installed" && exit 1)
# libssl.so.1.1 is not installed on Ubuntu 22.04 by default, install it
RUN wget http://nz2.archive.ubuntu.com/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2_amd64.deb && \
dpkg -i ./libssl1.1_1.1.1f-1ubuntu2_amd64.deb
WORKDIR /usr/src
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
libssl-dev \
ca-certificates \
make \
curl \
git \
&& rm -rf /var/lib/apt/lists/*
# Install server
COPY proto proto
COPY backends/gaudi/server server
COPY backends/gaudi/server/Makefile server/Makefile
ARG HABANA_VERSION
RUN cd server && \
make gen-server && \
pip install --no-deps -r requirements.txt && \
bash ./dill-0.3.8-patch.sh && \
pip install "git+https://github.com/HabanaAI/DeepSpeed.git@${HABANA_VERSION}" && \
BUILD_CUDA_EXT=0 pip install git+https://github.com/AutoGPTQ/AutoGPTQ.git@097dd04e --no-build-isolation && \
pip install . --no-cache-dir
RUN pip install git+https://github.com/sywangyi/vllm-hpu-extension.git
# Install benchmarker
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router
COPY --from=builder /usr/src/target/release-opt/text-generation-router /usr/local/bin/text-generation-router
# Install launcher
COPY --from=builder /usr/src/target/release-opt/text-generation-launcher /usr/local/bin/text-generation-launcher
# AWS Sagemaker compatible image
FROM base AS sagemaker
COPY sagemaker-entrypoint.sh entrypoint.sh
RUN chmod +x entrypoint.sh
ENTRYPOINT ["./entrypoint.sh"]
# Final image
FROM base
ENV HF_HUB_ENABLE_HF_TRANSFER 1
ENV HABANA_VISIBLE_DEVICES all
ENV OMPI_MCA_btl_vader_single_copy_mechanism NONE
COPY backends/gaudi/tgi-entrypoint.sh /tgi-entrypoint.sh
RUN chmod +x /tgi-entrypoint.sh
ENTRYPOINT ["/tgi-entrypoint.sh"]
CMD ["--json-output"]

View File

@ -1,22 +1,25 @@
FROM lukemathwalker/cargo-chef:latest-rust-1.78 AS chef ARG PLATFORM=xpu
FROM lukemathwalker/cargo-chef:latest-rust-1.85.1 AS chef
WORKDIR /usr/src WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
FROM chef as planner FROM chef AS planner
COPY Cargo.lock Cargo.lock
COPY Cargo.toml Cargo.toml COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto COPY proto proto
COPY benchmark benchmark COPY benchmark benchmark
COPY router router COPY router router
COPY backends backends
COPY launcher launcher COPY launcher launcher
RUN cargo chef prepare --recipe-path recipe.json RUN cargo chef prepare --recipe-path recipe.json
FROM chef AS builder FROM chef AS builder
ARG GIT_SHA RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
ARG DOCKER_LABEL python3.11-dev
RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \ RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \ curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \
unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \ unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \
@ -24,21 +27,53 @@ RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
rm -f $PROTOC_ZIP rm -f $PROTOC_ZIP
COPY --from=planner /usr/src/recipe.json recipe.json COPY --from=planner /usr/src/recipe.json recipe.json
RUN cargo chef cook --release --recipe-path recipe.json RUN cargo chef cook --profile release-opt --recipe-path recipe.json
ARG GIT_SHA
ARG DOCKER_LABEL
COPY Cargo.lock Cargo.lock
COPY Cargo.toml Cargo.toml COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto COPY proto proto
COPY benchmark benchmark COPY benchmark benchmark
COPY router router COPY router router
COPY backends backends
COPY launcher launcher COPY launcher launcher
RUN cargo build --release RUN cargo build --profile release-opt --frozen
# Text Generation Inference base image for Intel # Text Generation Inference base image for Intel
FROM intel/intel-extension-for-pytorch:2.1.30-xpu as base
FROM intel/oneapi-basekit:2025.0.1-0-devel-ubuntu22.04 AS xpu
USER root USER root
ARG MAMBA_VERSION=23.1.0-1
ARG PYTHON_VERSION='3.11.10'
# Automatically set by buildx
ARG TARGETPLATFORM
ENV PATH=/opt/conda/bin:$PATH
# TGI seem to require libssl.so.1.1 instead of libssl.so.3 so we can't use ubuntu 22.04. Ubuntu 20.04 has python==3.8, and TGI requires python>=3.9, hence the need for miniconda.
# Install mamba
# translating Docker's TARGETPLATFORM into mamba arches
RUN case ${TARGETPLATFORM} in \
"linux/arm64") MAMBA_ARCH=aarch64 ;; \
*) MAMBA_ARCH=x86_64 ;; \
esac && \
curl -fsSL -v -o ~/mambaforge.sh -O "https://github.com/conda-forge/miniforge/releases/download/${MAMBA_VERSION}/Mambaforge-${MAMBA_VERSION}-Linux-${MAMBA_ARCH}.sh"
RUN chmod +x ~/mambaforge.sh && \
bash ~/mambaforge.sh -b -p /opt/conda && \
rm ~/mambaforge.sh
RUN case ${TARGETPLATFORM} in \
"linux/arm64") exit 1 ;; \
*) /opt/conda/bin/conda update -y conda && \
/opt/conda/bin/conda install -y "python=${PYTHON_VERSION}" ;; \
esac && \
/opt/conda/bin/conda clean -ya
# libssl.so.1.1 is not installed on Ubuntu 22.04 by default, install it # libssl.so.1.1 is not installed on Ubuntu 22.04 by default, install it
RUN wget http://nz2.archive.ubuntu.com/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2_amd64.deb && \ RUN wget http://nz2.archive.ubuntu.com/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2_amd64.deb && \
dpkg -i ./libssl1.1_1.1.1f-1ubuntu2_amd64.deb dpkg -i ./libssl1.1_1.1.1f-1ubuntu2_amd64.deb
@ -48,44 +83,140 @@ RUN wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | gpg --dea
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB \ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB \
| gpg --dearmor | tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null && echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | tee /etc/apt/sources.list.d/oneAPI.list | gpg --dearmor | tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null && echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | tee /etc/apt/sources.list.d/oneAPI.list
RUN apt-get update && apt install -y intel-basekit xpu-smi RUN echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/intel-for-pytorch-gpu-dev all main" > /tmp/intel-for-pytorch-gpu-dev.list
RUN mv /tmp/intel-for-pytorch-gpu-dev.list /etc/apt/sources.list.d
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt install -y xpu-smi cmake ninja-build pciutils intel-ocloc libnl-genl-3-200
# Text Generation Inference base env # Text Generation Inference base env
ENV HUGGINGFACE_HUB_CACHE=/data \ ENV HF_HOME=/data \
HF_HUB_ENABLE_HF_TRANSFER=1 \ HF_HUB_ENABLE_HF_TRANSFER=1 \
PORT=80 PORT=80
WORKDIR /usr/src WORKDIR /usr/src
RUN wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/xpu/intel_extension_for_pytorch-2.1.30a0-cp310-cp310-linux_x86_64.whl RUN pip install torch==2.6.0 torchvision==0.21.0 --index-url https://download.pytorch.org/whl/xpu
RUN pip install intel_extension_for_pytorch-2.1.30a0-cp310-cp310-linux_x86_64.whl
# Install server # Install server
COPY proto proto COPY proto proto
COPY server server COPY server server
COPY server/Makefile server/Makefile COPY server/Makefile server/Makefile
ENV UV_SYSTEM_PYTHON=1
RUN cd server && \ RUN cd server && \
make gen-server && \ make gen-server && \
pip install -r requirements_cuda.txt && \ pip install -U pip uv && \
pip install ".[accelerate, peft, outlines]" --no-cache-dir uv pip install -e ".[accelerate, compressed-tensors, peft, outlines]" --no-cache-dir
ENV CCL_ROOT=/opt/intel/oneapi/ccl/latest ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/conda/lib
ENV I_MPI_ROOT=/opt/intel/oneapi/mpi/latest
ENV FI_PROVIDER_PATH=/opt/intel/oneapi/mpi/latest/opt/mpi/libfabric/lib/prov:/usr/lib/x86_64-linux-gnu/libfabric
ENV LIBRARY_PATH=/opt/intel/oneapi/mpi/latest/lib:/opt/intel/oneapi/ccl/latest/lib/:/opt/intel/oneapi/mkl/latest/lib/:/opt/intel/oneapi/compiler/latest/lib
ENV LD_LIBRARY_PATH=/opt/intel/oneapi/ccl/latest/lib/:/opt/intel/oneapi/mpi/latest/opt/mpi/libfabric/lib:/opt/intel/oneapi/mpi/latest/lib:/opt/intel/oneapi/mkl/latest/lib:/opt/intel/oneapi/compiler/latest/opt/compiler/lib:/opt/intel/oneapi/compiler/latest/lib:/opt/intel/oneapi/lib:/opt/intel/oneapi/lib/intel64:
ENV PATH=/opt/intel/oneapi/mpi/latest/opt/mpi/libfabric/bin:/opt/intel/oneapi/mpi/latest/bin:/opt/intel/oneapi/mpi/latest/opt/mpi/libfabric/bin:/opt/intel/oneapi/mkl/latest/bin/:/opt/intel/oneapi/compiler/latest/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
ENV CCL_ZE_IPC_EXCHANGE=sockets ENV CCL_ZE_IPC_EXCHANGE=sockets
ENV TORCH_LLM_ALLREDUCE=1
ENV CCL_TOPO_FABRIC_VERTEX_CONNECTION_CHECK=0
ENV TORCH_DEVICE_BACKEND_AUTOLOAD=0
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/oneccl_bind_pt-2.6.0%2Bxpu-cp311-cp311-linux_x86_64.whl
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.6.10%2Bxpu-cp311-cp311-linux_x86_64.whl
# Install benchmarker
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router
COPY --from=builder /usr/src/target/release-opt/text-generation-router /usr/local/bin/text-generation-router
# Install launcher
COPY --from=builder /usr/src/target/release-opt/text-generation-launcher /usr/local/bin/text-generation-launcher
# Text Generation Inference base image for Intel-cpu
FROM ubuntu:22.04 AS cpu
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
curl \
ca-certificates \
make \
g++-12 \
gcc-12 \
git \
wget \
cmake \
libnuma-dev
RUN update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-12 12
RUN update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 12
RUN update-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30
RUN update-alternatives --set cc /usr/bin/gcc
RUN update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++ 30
RUN update-alternatives --set c++ /usr/bin/g++
ENV HUGGINGFACE_HUB_CACHE=/data \
HF_HUB_ENABLE_HF_TRANSFER=1 \
PORT=80
ARG MAMBA_VERSION=23.1.0-1
ARG PYTHON_VERSION='3.11.10'
# Automatically set by buildx
ARG TARGETPLATFORM
ENV PATH=/opt/conda/bin:$PATH
# TGI seem to require libssl.so.1.1 instead of libssl.so.3 so we can't use ubuntu 22.04. Ubuntu 20.04 has python==3.8, and TGI requires python>=3.9, hence the need for miniconda.
# Install mamba
# translating Docker's TARGETPLATFORM into mamba arches
RUN case ${TARGETPLATFORM} in \
"linux/arm64") MAMBA_ARCH=aarch64 ;; \
*) MAMBA_ARCH=x86_64 ;; \
esac && \
curl -fsSL -v -o ~/mambaforge.sh -O "https://github.com/conda-forge/miniforge/releases/download/${MAMBA_VERSION}/Mambaforge-${MAMBA_VERSION}-Linux-${MAMBA_ARCH}.sh"
RUN chmod +x ~/mambaforge.sh && \
bash ~/mambaforge.sh -b -p /opt/conda && \
rm ~/mambaforge.sh
RUN case ${TARGETPLATFORM} in \
"linux/arm64") exit 1 ;; \
*) /opt/conda/bin/conda update -y conda && \
/opt/conda/bin/conda install -y "python=${PYTHON_VERSION}" ;; \
esac && \
/opt/conda/bin/conda clean -ya
RUN conda install -c conda-forge gperftools mkl
RUN pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cpu
RUN pip install triton==3.1.0 py-libnuma
WORKDIR /usr/src
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/cpu/intel_extension_for_pytorch-2.6.0%2Bcpu-cp311-cp311-linux_x86_64.whl
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/cpu/oneccl_bind_pt-2.6.0%2Bcpu-cp311-cp311-linux_x86_64.whl
ENV LD_PRELOAD=/opt/conda/lib/libtcmalloc.so
ENV CCL_ROOT=/opt/conda/lib/python3.11/site-packages/oneccl_bindings_for_pytorch
ENV I_MPI_ROOT=/opt/conda/lib/python3.11/site-packages/oneccl_bindings_for_pytorch
ENV FI_PROVIDER_PATH=/opt/conda/lib/python3.11/site-packages/oneccl_bindings_for_pytorch/opt/mpi/libfabric/lib/prov:/usr/lib64/libfabric
ENV LD_LIBRARY_PATH=/opt/conda/lib/python3.11/site-packages/oneccl_bindings_for_pytorch/opt/mpi/libfabric/lib:/opt/conda/lib/python3.11/site-packages/oneccl_bindings_for_pytorch/lib
ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/opt/conda/lib/"
# Install server
COPY proto proto
COPY server server
COPY server/Makefile server/Makefile
ENV UV_SYSTEM_PYTHON=1
RUN cd server && \
make gen-server && \
pip install -U pip uv && \
uv pip install -e ".[accelerate, compressed-tensors, peft, outlines]" --no-cache-dir
# Install benchmarker # Install benchmarker
COPY --from=builder /usr/src/target/release/text-generation-benchmark /usr/local/bin/text-generation-benchmark COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router # Install router
COPY --from=builder /usr/src/target/release/text-generation-router /usr/local/bin/text-generation-router COPY --from=builder /usr/src/target/release-opt/text-generation-router /usr/local/bin/text-generation-router
# Install launcher # Install launcher
COPY --from=builder /usr/src/target/release/text-generation-launcher /usr/local/bin/text-generation-launcher COPY --from=builder /usr/src/target/release-opt/text-generation-launcher /usr/local/bin/text-generation-launcher
# Final image
FROM base
FROM ${PLATFORM} AS final
ENV ATTENTION=flashdecoding-ipex
ENV PREFIX_CACHING=1
ENV PREFILL_CHUNKING=1
ENV CUDA_GRAPHS=0
ENTRYPOINT ["text-generation-launcher"] ENTRYPOINT ["text-generation-launcher"]
CMD ["--json-output"] CMD ["--json-output"]

88
Dockerfile_llamacpp Normal file
View File

@ -0,0 +1,88 @@
FROM nvidia/cuda:12.8.0-cudnn-devel-ubuntu24.04 AS deps
ARG llamacpp_version=b4827
ARG llamacpp_cuda=OFF
ARG llamacpp_native=ON
ARG llamacpp_cpu_arm_arch=native
ARG cuda_arch=75-real;80-real;86-real;89-real;90-real
WORKDIR /opt/src
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && apt upgrade -y && apt install -y \
clang \
cmake \
curl \
git \
python3-dev \
libssl-dev \
pkg-config \
tar
ADD https://github.com/ggml-org/llama.cpp/archive/refs/tags/${llamacpp_version}.tar.gz /opt/src/
RUN mkdir -p llama.cpp \
&& tar -xzf ${llamacpp_version}.tar.gz -C llama.cpp --strip-components=1 \
&& cd llama.cpp \
&& cmake -B build \
-DCMAKE_INSTALL_PREFIX=/usr \
-DCMAKE_INSTALL_LIBDIR=/usr/lib \
-DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
-DCMAKE_CUDA_ARCHITECTURES=${cuda_arch} \
-DGGML_CUDA=${llamacpp_cuda} \
-DGGML_NATIVE=${llamacpp_native} \
-DGGML_CPU_ARM_ARCH=${llamacpp_cpu_arm_arch} \
-DLLAMA_BUILD_COMMON=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_SERVER=OFF \
&& cmake --build build --parallel --config Release \
&& cmake --install build
WORKDIR /app
COPY rust-toolchain.toml rust-toolchain.toml
RUN curl -sSf https://sh.rustup.rs | sh -s -- --no-modify-path --default-toolchain 1.85.1 --profile minimal -y
ENV PATH="/root/.cargo/bin:$PATH"
RUN cargo install cargo-chef --locked
FROM deps AS planner
COPY . .
RUN cargo chef prepare --recipe-path recipe.json
FROM deps AS builder
COPY --from=planner /app/recipe.json recipe.json
RUN cargo chef cook \
--recipe-path recipe.json \
--profile release \
--package text-generation-router-llamacpp
COPY . .
RUN cargo build \
--profile release \
--package text-generation-router-llamacpp --frozen
FROM nvidia/cuda:12.8.0-cudnn-runtime-ubuntu24.04
WORKDIR /app
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && apt upgrade -y && apt install -y \
python3-venv \
python3-pip
RUN python3 -m venv /venv
ENV PATH="/venv/bin:$PATH"
COPY backends/llamacpp/requirements.txt requirements.txt
COPY --from=builder /opt/src/llama.cpp/gguf-py gguf-py
COPY --from=builder /opt/src/llama.cpp/convert_hf_to_gguf.py /bin/
RUN pip3 install --no-cache-dir \
-r requirements.txt \
-e gguf-py
COPY --from=builder /usr/lib/libllama.so /usr/lib/
COPY --from=builder /usr/lib/libggml*.so /usr/lib/
COPY --from=builder /app/target/release/text-generation-router-llamacpp /usr/bin/
ENV HF_HUB_ENABLE_HF_TRANSFER=1
ENTRYPOINT ["text-generation-router-llamacpp"]

158
Dockerfile_trtllm Normal file
View File

@ -0,0 +1,158 @@
ARG cuda_arch_list="75-real;80-real;86-real;89-real;90-real;100-real;120-real"
ARG cuda_base=12.8.0
ARG build_type=release
ARG ompi_version=4.1.7
ARG sccache_gha_enabled=off
ARG actions_results_url=""
ARG actions_runtime_token=""
# CUDA dependent dependencies resolver stage
FROM nvidia/cuda:${cuda_base}-cudnn-devel-ubuntu24.04 AS cuda-builder
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y \
build-essential \
cmake \
curl \
gcc-14 \
g++-14 \
git \
git-lfs \
lld \
libssl-dev \
libucx-dev \
libasan8 \
libubsan1 \
ninja-build \
pkg-config \
pipx \
python3 \
python3-dev \
python3-setuptools \
tar \
wget --no-install-recommends && \
pipx ensurepath
ENV TGI_INSTALL_PREFIX=/usr/local/tgi
ENV TENSORRT_INSTALL_PREFIX=/usr/local/tensorrt
# Install OpenMPI
FROM cuda-builder AS mpi-builder
WORKDIR /opt/src/mpi
ARG ompi_version
ENV OMPI_VERSION=${ompi_version}
ENV OMPI_TARBALL_FILENAME=openmpi-${OMPI_VERSION}.tar.bz2
ADD --checksum=sha256:54a33cb7ad81ff0976f15a6cc8003c3922f0f3d8ceed14e1813ef3603f22cd34 \
https://download.open-mpi.org/release/open-mpi/v4.1/${OMPI_TARBALL_FILENAME} .
RUN tar --strip-components=1 -xf ${OMPI_TARBALL_FILENAME} &&\
./configure --prefix=/usr/local/mpi --with-cuda=/usr/local/cuda --with-slurm && \
make -j all && \
make install && \
rm -rf ${OMPI_TARBALL_FILENAME}/..
# Install TensorRT
FROM cuda-builder AS trt-builder
COPY backends/trtllm/scripts/install_tensorrt.sh /opt/install_tensorrt.sh
RUN chmod +x /opt/install_tensorrt.sh && \
/opt/install_tensorrt.sh
# Build Backend
FROM cuda-builder AS tgi-builder
WORKDIR /usr/src/text-generation-inference
# Scoped global args reuse
ARG cuda_arch_list
ARG build_type
ARG sccache_gha_enabled
ARG actions_results_url
ARG actions_runtime_token
# Install Rust
ENV PATH="/root/.cargo/bin:$PATH"
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- --default-toolchain 1.85.1 --profile minimal -y && \
chmod -R a+w /root/.rustup && \
chmod -R a+w /root/.cargo && \
cargo install sccache --version ">=0.10.0" --locked
ENV LD_LIBRARY_PATH="/usr/local/mpi/lib:$LD_LIBRARY_PATH"
ENV PKG_CONFIG_PATH="/usr/local/mpi/lib/pkgconfig"
ENV CMAKE_PREFIX_PATH="/usr/local/mpi:/usr/local/tensorrt"
ENV USE_LLD_LINKER=ON
ENV CUDA_ARCH_LIST=${cuda_arch_list}
# SCCACHE Specifics args - before finding a better, more generic, way...
ENV SCCACHE_GHA_ENABLED=${sccache_gha_enabled}
ENV ACTIONS_RESULTS_URL=${actions_results_url}
ENV ACTIONS_RUNTIME_TOKEN=${actions_runtime_token}
COPY Cargo.lock Cargo.lock
COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml
COPY router router
COPY backends backends
COPY benchmark benchmark
COPY launcher launcher
COPY --from=trt-builder /usr/local/tensorrt /usr/local/tensorrt
COPY --from=mpi-builder /usr/local/mpi /usr/local/mpi
ENV RUSTC_WRAPPER=sccache
ENV CMAKE_INSTALL_PREFIX=$TGI_INSTALL_PREFIX
RUN export CC=gcc-14 \
export CXX=g++-14 \
export CMAKE_C_COMPILER_LAUNCHER=sccache && \
export CMAKE_CXX_COMPILER_LAUNCHER=sccache && \
export CMAKE_CUDA_COMPILER_LAUNCHER=sccache && \
mkdir $TGI_INSTALL_PREFIX && mkdir "$TGI_INSTALL_PREFIX/include" && mkdir "$TGI_INSTALL_PREFIX/lib" && \
cargo build --profile ${build_type} --package text-generation-backends-trtllm --bin text-generation-backends-trtllm && \
sccache --show-stats
FROM nvidia/cuda:${cuda_base}-cudnn-runtime-ubuntu24.04 AS runtime
RUN apt update && apt install -y libucx0 pipx python3-minimal python3-dev python3-pip python3-venv && \
rm -rf /var/lib/{apt,dpkg,cache,log}/ && \
pipx ensurepath && \
pipx install --include-deps transformers tokenizers
WORKDIR /usr/local/tgi/bin
ENV PATH=/root/.local/share/pipx/venvs/transformers/bin/:$PATH
ENV LD_LIBRARY_PATH="/usr/local/tgi/lib:/usr/local/mpi/lib:/usr/local/tensorrt/lib:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH"
ENV TOKENIZERS_PARALLELISM=false
ENV OMPI_MCA_plm_rsh_agent=""
COPY --from=mpi-builder /usr/local/mpi /usr/local/mpi
COPY --from=trt-builder /usr/local/tensorrt /usr/local/tensorrt
COPY --from=tgi-builder /usr/local/tgi /usr/local/tgi
COPY --from=tgi-builder /usr/src/text-generation-inference/target/release/text-generation-backends-trtllm /usr/local/tgi/bin/text-generation-launcher
# This is used only for the CI/CD
FROM nvidia/cuda:${cuda_base}-cudnn-runtime-ubuntu24.04 AS ci-runtime
RUN apt update && apt install -y libasan8 libubsan1 libucx0 pipx python3-minimal python3-dev python3-pip python3-venv && \
rm -rf /var/lib/{apt,dpkg,cache,log}/ && \
pipx ensurepath && \
pipx install --include-deps transformers tokenizers
WORKDIR /usr/local/tgi/bin
ENV PATH=/root/.local/share/pipx/venvs/transformers/bin/:$PATH
ENV LD_LIBRARY_PATH="/usr/local/tgi/lib:/usr/local/mpi/lib:/usr/local/tensorrt/lib:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH"
ENV TOKENIZERS_PARALLELISM=false
ENV OMPI_MCA_plm_rsh_agent=""
COPY --from=mpi-builder /usr/local/mpi /usr/local/mpi
COPY --from=trt-builder /usr/local/tensorrt /usr/local/tensorrt
COPY --from=tgi-builder /usr/local/tgi /usr/local/tgi
# Basically we copy from target/debug instead of target/release
COPY --from=tgi-builder /usr/src/text-generation-inference/target/debug/text-generation-backends-trtllm /usr/local/tgi/bin/text-generation-launcher
# This is the final image
FROM runtime
LABEL co.huggingface.vendor="Hugging Face Inc."
LABEL org.opencontainers.image.authors="hardware@hf.co"
LABEL org.opencontainers.title="Text-Generation-Inference TensorRT-LLM Backend"
ENTRYPOINT ["./text-generation-launcher"]
CMD ["--executor-worker", "/usr/local/tgi/bin/executorWorker"]

View File

@ -1,23 +1,22 @@
install-server: install-server:
cd server && make install cd server && make install
install-custom-kernels: install-server-cpu:
if [ "$$BUILD_EXTENSIONS" = "True" ]; then cd server/custom_kernels && python setup.py install; else echo "Custom kernels are disabled, you need to set the BUILD_EXTENSIONS environment variable to 'True' in order to build them. (Please read the docs, kernels might not work on all hardware)"; fi cd server && make install-server
install-integration-tests:
cd integration-tests && pip install -r requirements.txt
cd clients/python && pip install .
install-router: install-router:
cd router && cargo install --path . cargo install --path backends/v3/
install-launcher: install-launcher:
cd launcher && cargo install --path . cargo install --path launcher/
install-benchmark: install-benchmark:
cd benchmark && cargo install --path . cargo install --path benchmark/
install: install-server install-router install-launcher install-custom-kernels install: install-server install-router install-launcher
install-cpu: install-server-cpu install-router install-launcher
server-dev: server-dev:
cd server && make run-dev cd server && make run-dev
@ -28,6 +27,10 @@ router-dev:
rust-tests: install-router install-launcher rust-tests: install-router install-launcher
cargo test cargo test
install-integration-tests:
cd integration-tests && pip install -r requirements.txt
cd clients/python && pip install .
integration-tests: install-integration-tests integration-tests: install-integration-tests
pytest -s -vv -m "not private" integration-tests pytest -s -vv -m "not private" integration-tests
@ -50,3 +53,6 @@ run-falcon-7b-instruct-quantize:
clean: clean:
rm -rf target aml rm -rf target aml
preview_doc:
doc-builder preview text-generation-inference docs/source --not_python_module

143
README.md
View File

@ -1,7 +1,7 @@
<div align="center"> <div align="center">
<a href="https://www.youtube.com/watch?v=jlMAX2Oaht0"> <a href="https://www.youtube.com/watch?v=jlMAX2Oaht0">
<img width=560 width=315 alt="Making TGI deployment optimal" src="https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png"> <img width=560 alt="Making TGI deployment optimal" src="https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png">
</a> </a>
# Text Generation Inference # Text Generation Inference
@ -13,26 +13,28 @@
<img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational"> <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a> </a>
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co) A Rust, Python and gRPC server for text generation inference. Used in production at [Hugging Face](https://huggingface.co)
to power Hugging Chat, the Inference API and Inference Endpoint. to power Hugging Chat, the Inference API and Inference Endpoint.
</div> </div>
## Table of contents ## Table of contents
- [Get Started](#get-started) - [Get Started](#get-started)
- [API Documentation](#api-documentation) - [Docker](#docker)
- [Using a private or gated model](#using-a-private-or-gated-model) - [API documentation](#api-documentation)
- [A note on Shared Memory](#a-note-on-shared-memory-shm) - [Using a private or gated model](#using-a-private-or-gated-model)
- [Distributed Tracing](#distributed-tracing) - [A note on Shared Memory (shm)](#a-note-on-shared-memory-shm)
- [Local Install](#local-install) - [Distributed Tracing](#distributed-tracing)
- [CUDA Kernels](#cuda-kernels) - [Architecture](#architecture)
- [Optimized architectures](#optimized-architectures) - [Local install](#local-install)
- [Run Mistral](#run-a-model) - [Local install (Nix)](#local-install-nix)
- [Run](#run) - [Optimized architectures](#optimized-architectures)
- [Quantization](#quantization) - [Run locally](#run-locally)
- [Develop](#develop) - [Run](#run)
- [Testing](#testing) - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as: Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as:
@ -41,12 +43,15 @@ Text Generation Inference (TGI) is a toolkit for deploying and serving Large Lan
- Tensor Parallelism for faster inference on multiple GPUs - Tensor Parallelism for faster inference on multiple GPUs
- Token streaming using Server-Sent Events (SSE) - Token streaming using Server-Sent Events (SSE)
- Continuous batching of incoming requests for increased total throughput - Continuous batching of incoming requests for increased total throughput
- [Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) compatible with Open AI Chat Completion API
- Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures - Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
- Quantization with : - Quantization with :
- [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) - [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
- [GPT-Q](https://arxiv.org/abs/2210.17323) - [GPT-Q](https://arxiv.org/abs/2210.17323)
- [EETQ](https://github.com/NetEase-FuXi/EETQ) - [EETQ](https://github.com/NetEase-FuXi/EETQ)
- [AWQ](https://github.com/casper-hansen/AutoAWQ) - [AWQ](https://github.com/casper-hansen/AutoAWQ)
- [Marlin](https://github.com/IST-DASLab/marlin)
- [fp8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/)
- [Safetensors](https://github.com/huggingface/safetensors) weight loading - [Safetensors](https://github.com/huggingface/safetensors) weight loading
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) - Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor)) - Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
@ -75,9 +80,11 @@ For a detailed starting guide, please see the [Quick Tour](https://huggingface.c
```shell ```shell
model=HuggingFaceH4/zephyr-7b-beta model=HuggingFaceH4/zephyr-7b-beta
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run # share a volume with the Docker container to avoid downloading weights every run
volume=$PWD/data
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0 --model-id $model docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.2.3 --model-id $model
``` ```
And then you can make requests like And then you can make requests like
@ -89,9 +96,32 @@ curl 127.0.0.1:8080/generate_stream \
-H 'Content-Type: application/json' -H 'Content-Type: application/json'
``` ```
You can also use [TGI's Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) to obtain Open AI Chat Completion API compatible responses.
```bash
curl localhost:8080/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar. **Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0-rocm --model-id $model` instead of the command above. **Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.3-rocm --model-id $model` instead of the command above.
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli): To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
``` ```
@ -105,29 +135,30 @@ The Swagger UI is also available at: [https://huggingface.github.io/text-generat
### Using a private or gated model ### Using a private or gated model
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by You have the option to utilize the `HF_TOKEN` environment variable for configuring the token employed by
`text-generation-inference`. This allows you to gain access to protected resources. `text-generation-inference`. This allows you to gain access to protected resources.
For example, if you want to serve the gated Llama V2 model variants: For example, if you want to serve the gated Llama V2 model variants:
1. Go to https://huggingface.co/settings/tokens 1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token 2. Copy your CLI READ token
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>` 3. Export `HF_TOKEN=<your CLI READ token>`
or with Docker: or with Docker:
```shell ```shell
model=meta-llama/Llama-2-7b-chat-hf model=meta-llama/Meta-Llama-3.1-8B-Instruct
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token> token=<your cli READ token>
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0 --model-id $model docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.2.3 --model-id $model
``` ```
### A note on Shared Memory (shm) ### A note on Shared Memory (shm)
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by [`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
`PyTorch` to do distributed training/inference. `text-generation-inference` make `PyTorch` to do distributed training/inference. `text-generation-inference` makes
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models. use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.
In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
@ -153,24 +184,39 @@ this will impact performance.
### Distributed Tracing ### Distributed Tracing
`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature `text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument. by setting the address to an OTLP collector with the `--otlp-endpoint` argument. The default service name can be
overridden with the `--otlp-service-name` argument
### Architecture ### Architecture
![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png) ![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png)
Detailed blogpost by Adyen on TGI inner workings: [LLM inference at scale with TGI (Martin Iglesias Goyanes - Adyen, 2024)](https://www.adyen.com/knowledge-hub/llm-inference-at-scale-with-tgi)
### Local install ### Local install
You can also opt to install `text-generation-inference` locally. You can also opt to install `text-generation-inference` locally.
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least First clone the repository and change directory into it:
Python 3.9, e.g. using `conda`:
```shell
git clone https://github.com/huggingface/text-generation-inference
cd text-generation-inference
```
Then [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
Python 3.9, e.g. using `conda` or `python venv`:
```shell ```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
#using conda
conda create -n text-generation-inference python=3.11 conda create -n text-generation-inference python=3.11
conda activate text-generation-inference conda activate text-generation-inference
#using python venv
python3 -m venv .venv
source .venv/bin/activate
``` ```
You may also need to install Protoc. You may also need to install Protoc.
@ -204,6 +250,45 @@ text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
sudo apt-get install libssl-dev gcc -y sudo apt-get install libssl-dev gcc -y
``` ```
### Local install (Nix)
Another option is to install `text-generation-inference` locally using [Nix](https://nixos.org). Currently,
we only support Nix on x86_64 Linux with CUDA GPUs. When using Nix, all dependencies can
be pulled from a binary cache, removing the need to build them locally.
First follow the instructions to [install Cachix and enable the TGI cache](https://app.cachix.org/cache/text-generation-inference).
Setting up the cache is important, otherwise Nix will build many of the dependencies
locally, which can take hours.
After that you can run TGI with `nix run`:
```shell
cd text-generation-inference
nix run --extra-experimental-features nix-command --extra-experimental-features flakes . -- --model-id meta-llama/Llama-3.1-8B-Instruct
```
**Note:** when you are using Nix on a non-NixOS system, you have to [make some symlinks](https://danieldk.eu/Nix-CUDA-on-non-NixOS-systems#make-runopengl-driverlib-and-symlink-the-driver-library)
to make the CUDA driver libraries visible to Nix packages.
For TGI development, you can use the `impure` dev shell:
```shell
nix develop .#impure
# Only needed the first time the devshell is started or after updating the protobuf.
(
cd server
mkdir text_generation_server/pb || true
python -m grpc_tools.protoc -I../proto/v3 --python_out=text_generation_server/pb \
--grpc_python_out=text_generation_server/pb --mypy_out=text_generation_server/pb ../proto/v3/generate.proto
find text_generation_server/pb/ -type f -name "*.py" -print0 -exec sed -i -e 's/^\(import.*pb2\)/from . \1/g' {} \;
touch text_generation_server/pb/__init__.py
)
```
All development dependencies (cargo, Python, Torch), etc. are available in this
dev shell.
## Optimized architectures ## Optimized architectures
TGI works out of the box to serve optimized models for all modern models. They can be found in [this list](https://huggingface.co/docs/text-generation-inference/supported_models). TGI works out of the box to serve optimized models for all modern models. They can be found in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).
@ -228,7 +313,7 @@ text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
### Quantization ### Quantization
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement: You can also run pre-quantized weights (AWQ, GPTQ, Marlin) or on-the-fly quantize weights with bitsandbytes, EETQ, fp8, to reduce the VRAM requirement:
```shell ```shell
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize
@ -236,6 +321,8 @@ text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantiz
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`. 4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.
Read more about quantization in the [Quantization documentation](https://huggingface.co/docs/text-generation-inference/en/conceptual/quantization).
## Develop ## Develop
```shell ```shell

BIN
assets/v3_benchmarks.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 209 KiB

View File

@ -6,6 +6,8 @@ authors.workspace = true
homepage.workspace = true homepage.workspace = true
[dependencies] [dependencies]
async-trait = "^0.1"
base64 = { workspace = true }
futures = "^0.3" futures = "^0.3"
grpc-metadata = { path = "../grpc-metadata" } grpc-metadata = { path = "../grpc-metadata" }
prost = "^0.12" prost = "^0.12"

35
backends/client/build.rs Normal file
View File

@ -0,0 +1,35 @@
use std::fs;
fn main() -> Result<(), Box<dyn std::error::Error>> {
println!("cargo:rerun-if-changed=../../proto/");
fs::create_dir_all("src/v2/pb").unwrap_or(());
let mut config = prost_build::Config::new();
config.protoc_arg("--experimental_allow_proto3_optional");
tonic_build::configure()
.build_client(true)
.build_server(false)
.out_dir("src/v2/pb")
.include_file("mod.rs")
.compile_with_config(config, &["../../proto/generate.proto"], &["../../proto"])
.map_err(|e| match e.kind(){
std::io::ErrorKind::NotFound => {panic!("`protoc` not found, install libprotoc")},
std::io::ErrorKind::Other => {panic!("`protoc` version unsupported, upgrade protoc: https://github.com/protocolbuffers/protobuf/releases")},
e => {e}
}).unwrap_or_else(|e| panic!("protobuf compilation failed: {e}"));
fs::create_dir_all("src/v3/pb").unwrap_or(());
let mut config = prost_build::Config::new();
config.protoc_arg("--experimental_allow_proto3_optional");
tonic_build::configure()
.build_client(true)
.build_server(false)
.out_dir("src/v3/pb")
.include_file("mod.rs")
.compile_with_config(config, &["../../proto/v3/generate.proto"], &["../../proto"])
.unwrap_or_else(|e| panic!("protobuf compilation failed: {e}"));
Ok(())
}

View File

@ -0,0 +1,91 @@
//! Text Generation gRPC client library
pub mod v2;
pub mod v3;
use async_trait::async_trait;
use base64::{engine::general_purpose::STANDARD, Engine};
use thiserror::Error;
use tonic::transport;
use tonic::Status;
pub use v3::{Chunk, Image, Input, InputChunk};
#[async_trait]
pub trait Health {
/// Check if a generate server is healthy by asking it to allocate a tensor on device
async fn device_health(&self) -> Result<()>;
/// Check if a generate server is healthy by doing a forward pass.
/// EXPENSIVE
async fn model_health(&self) -> Result<()>;
}
#[derive(Debug)]
pub struct ShardInfo {
pub requires_padding: bool,
pub dtype: String,
pub device_type: String,
pub window_size: Option<u32>,
pub speculate: u32,
}
#[derive(Error, Debug, Clone)]
pub enum ClientError {
#[error("Could not connect to Text Generation server: {0}")]
Connection(String),
#[error("Server error: {0}")]
Generation(String),
#[error("Sharded results are empty")]
EmptyResults,
}
impl From<Status> for ClientError {
fn from(err: Status) -> Self {
let err = Self::Generation(err.message().to_string());
tracing::error!("{err}");
err
}
}
impl From<transport::Error> for ClientError {
fn from(err: transport::Error) -> Self {
let err = Self::Connection(err.to_string());
tracing::error!("{err}");
err
}
}
// Small convenience re-wrapping of `Chunk`.
impl From<Chunk> for InputChunk {
fn from(chunk: Chunk) -> Self {
InputChunk { chunk: Some(chunk) }
}
}
/// Convert input chunks to a stringly-typed input for backwards
/// compat for backends that haven't implemented chunked inputs.
pub trait ChunksToString {
/// Convert chunks to string.
fn chunks_to_string(&self) -> String;
}
impl ChunksToString for Vec<InputChunk> {
fn chunks_to_string(&self) -> String {
let mut output = String::new();
self.iter().for_each(|c| match &c.chunk {
Some(Chunk::Text(text)) => output.push_str(text),
Some(Chunk::Image(Image { data, mimetype })) => {
let encoded = STANDARD.encode(data);
output.push_str(&format!("![](data:{};base64,{})", mimetype, encoded))
}
// We don't create empty chunks, so this should be unreachable.
None => unreachable!("Chunks should never be empty"),
});
output
}
}
static WARMUP_IMAGE_BASE64 :&str = "iVBORw0KGgoAAAANSUhEUgAAABQAAAAUCAIAAAAC64paAAABg2lDQ1BJQ0MgcHJvZmlsZQAAKJF9kT1Iw0AcxV/TSotUROxQxCFDdbKLijjWKhShQqgVWnUwufQLmrQkKS6OgmvBwY/FqoOLs64OroIg+AHi7OCk6CIl/i8ptIjx4Lgf7+497t4BQqvKNDOQADTdMjKppJjLr4rBVwQQwhAERGVm1uckKQ3P8XUPH1/v4jzL+9yfY0AtmAzwicQJVjcs4g3imU2rznmfOMLKskp8Tjxh0AWJH7muuPzGueSwwDMjRjYzTxwhFks9rPQwKxsa8TRxTNV0yhdyLquctzhr1Qbr3JO/MFzQV5a5TnMUKSxiCRJEKGiggiosxGnVSTGRof2kh3/E8UvkUshVASPHAmrQIDt+8D/43a1ZnJp0k8JJoO/Ftj/GgOAu0G7a9vexbbdPAP8zcKV3/bUWMPtJerOrxY6AwW3g4rqrKXvA5Q4QfarLhuxIfppCsQi8n9E35YHhW6B/ze2ts4/TByBLXaVvgINDYLxE2ese7w719vbvmU5/PycecohsjayNAAAACXBIWXMAAC4jAAAuIwF4pT92AAAAB3RJTUUH6AQIEQMnlTSSjwAAABl0RVh0Q29tbWVudABDcmVhdGVkIHdpdGggR0lNUFeBDhcAAAASSURBVDjLY2AYBaNgFIyCoQsABMQAAeRw1DoAAAAASUVORK5CYII=";
pub type Result<T> = std::result::Result<T, ClientError>;

View File

@ -1,8 +1,11 @@
/// Single shard Client /// Single shard Client
use crate::pb::generate::v2::text_generation_service_client::TextGenerationServiceClient; use crate::v2::pb;
use crate::pb::generate::v2::*; use crate::{ClientError, Result};
use crate::Result;
use crate::WARMUP_IMAGE_BASE64;
use grpc_metadata::InjectTelemetryContext; use grpc_metadata::InjectTelemetryContext;
use pb::generate::v2::text_generation_service_client::TextGenerationServiceClient;
use pb::generate::v2::*;
use std::cmp::min; use std::cmp::min;
use std::time::Duration; use std::time::Duration;
use tonic::transport::{Channel, Uri}; use tonic::transport::{Channel, Uri};
@ -42,7 +45,9 @@ impl Client {
#[instrument(skip(self))] #[instrument(skip(self))]
pub async fn service_discovery(&mut self) -> Result<Vec<String>> { pub async fn service_discovery(&mut self) -> Result<Vec<String>> {
let request = tonic::Request::new(ServiceDiscoveryRequest {}).inject_context(); let request = tonic::Request::new(ServiceDiscoveryRequest {}).inject_context();
let response = self.stub.service_discovery(request).await?; let response = self.stub.service_discovery(request).await.map_err(|_| {
ClientError::Connection("Server does not support v2 interface".to_string())
})?;
let urls = response let urls = response
.into_inner() .into_inner()
.urls .urls
@ -118,13 +123,15 @@ impl Client {
if n_tokens == 0 { if n_tokens == 0 {
// 1 request is enough to test vision heads. // 1 request is enough to test vision heads.
// Sending images on other queries messes up easily with truncation. // Sending images on other queries messes up easily with truncation.
inputs.push_str("![]()"); inputs.push_str(&format!(
"![](data:image/jpeg;base64,{WARMUP_IMAGE_BASE64})",
));
} }
requests.push(Request { requests.push(Request {
id: 0, id: 0,
// We truncate the input on the server side to be sure that it has the correct size
inputs, inputs,
// We truncate the input on the server side to be sure that it has the correct size
truncate, truncate,
// Set sampling parameters to also take these ops into account in the max memory // Set sampling parameters to also take these ops into account in the max memory
parameters: Some(NextTokenChooserParameters { parameters: Some(NextTokenChooserParameters {

View File

@ -0,0 +1,13 @@
#[allow(clippy::derive_partial_eq_without_eq)]
mod pb;
mod client;
mod sharded_client;
pub use client::Client;
pub use pb::generate::v2::HealthResponse;
pub use pb::generate::v2::{
Batch, CachedBatch, FinishReason, GeneratedText, Generation, GrammarType, InfoResponse,
NextTokenChooserParameters, Request, StoppingCriteriaParameters, Tokens,
};
pub use sharded_client::ShardedClient;

View File

@ -1,10 +1,17 @@
use crate::client::{DecodeTimings, PrefillTimings};
/// Multi shard Client /// Multi shard Client
use crate::{Batch, CachedBatch, Client, Generation, HealthResponse, ShardInfo}; use crate::{v2, Health, ShardInfo};
use crate::{ClientError, Result}; use crate::{ClientError, Result};
use crate::v2::InfoResponse;
use async_trait::async_trait;
use futures::future::join_all; use futures::future::join_all;
use tonic::transport::Uri; use tonic::transport::Uri;
use tracing::instrument; use tracing::instrument;
use v2::client::{DecodeTimings, PrefillTimings};
use v2::{
Batch, CachedBatch, Client, Generation, GrammarType, HealthResponse,
NextTokenChooserParameters, Request, StoppingCriteriaParameters,
};
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
/// Text Generation Inference gRPC multi client /// Text Generation Inference gRPC multi client
@ -47,7 +54,7 @@ impl ShardedClient {
.iter_mut() .iter_mut()
.map(|client| client.info()) .map(|client| client.info())
.collect(); .collect();
join_all(futures).await.pop().unwrap() join_all(futures).await.pop().unwrap().map(ShardInfo::from)
} }
/// GRPC health check /// GRPC health check
@ -185,3 +192,60 @@ impl ShardedClient {
Ok((generations, next_batch, timings)) Ok((generations, next_batch, timings))
} }
} }
impl From<InfoResponse> for ShardInfo {
fn from(value: InfoResponse) -> Self {
Self {
requires_padding: value.requires_padding,
dtype: value.dtype,
device_type: value.device_type,
window_size: value.window_size,
speculate: value.speculate,
}
}
}
#[async_trait]
impl Health for ShardedClient {
async fn device_health(&self) -> Result<()> {
self.clone().health().await?;
Ok(())
}
async fn model_health(&self) -> Result<()> {
// Dummy batch of 1 token and 1 generated token
let liveness_request = Request {
id: u64::MAX,
inputs: "liveness".to_string(),
truncate: 10,
prefill_logprobs: false,
parameters: Some(NextTokenChooserParameters {
temperature: 1.0,
top_k: 0,
top_p: 1.0,
typical_p: 1.0,
do_sample: false,
seed: 0,
repetition_penalty: 1.0,
frequency_penalty: 0.0,
watermark: false,
grammar: String::new(),
grammar_type: GrammarType::None as i32,
}),
stopping_parameters: Some(StoppingCriteriaParameters {
max_new_tokens: 1,
stop_sequences: vec![],
ignore_eos_token: false,
}),
top_n_tokens: 0,
};
let batch = Batch {
id: u64::MAX,
requests: vec![liveness_request],
size: 1,
max_tokens: 2,
};
self.clone().prefill(batch).await?;
Ok(())
}
}

View File

@ -0,0 +1,304 @@
use crate::v3::{pb, Chunk};
use crate::{ClientError, Result, WARMUP_IMAGE_BASE64};
/// Single shard Client
use base64::engine::general_purpose::STANDARD;
use base64::Engine;
use grpc_metadata::InjectTelemetryContext;
use pb::generate::v3::text_generation_service_client::TextGenerationServiceClient;
use pb::generate::v3::*;
use std::cmp::min;
use std::time::Duration;
use tonic::transport::{Channel, Uri};
use tracing::instrument;
/// Text Generation Inference gRPC client
#[derive(Debug, Clone)]
pub struct Client {
stub: TextGenerationServiceClient<Channel>,
}
impl Client {
/// Returns a client connected to the given url
pub async fn connect(uri: Uri) -> Result<Self> {
let channel = Channel::builder(uri).connect().await?;
Ok(Self {
stub: TextGenerationServiceClient::new(channel),
})
}
/// Returns a client connected to the given unix socket
pub async fn connect_uds(path: String) -> Result<Self> {
let channel = Channel::from_shared("http://[::]:50051".to_string())
.unwrap()
.connect_with_connector(tower::service_fn(move |_: Uri| {
tokio::net::UnixStream::connect(path.clone())
}))
.await?;
Ok(Self {
stub: TextGenerationServiceClient::new(channel),
})
}
/// Returns a list of uris or unix sockets of all shards
#[instrument(skip(self))]
pub async fn service_discovery(&mut self) -> Result<Vec<String>> {
let request = tonic::Request::new(ServiceDiscoveryRequest {}).inject_context();
let response = self.stub.service_discovery(request).await.map_err(|_| {
ClientError::Connection("Server does not support v3 interface".to_string())
})?;
let urls = response
.into_inner()
.urls
.into_iter()
// Remove unix socket prefix
.map(|url| match url.strip_prefix("unix://") {
None => url,
Some(stripped_url) => stripped_url.to_string(),
})
.collect();
Ok(urls)
}
/// Get model info
#[instrument(skip(self))]
pub async fn info(&mut self) -> Result<InfoResponse> {
let request = tonic::Request::new(InfoRequest {}).inject_context();
let response = self.stub.info(request).await?.into_inner();
Ok(response)
}
/// Get model health
#[instrument(skip(self))]
pub async fn health(&mut self) -> Result<HealthResponse> {
let request = tonic::Request::new(HealthRequest {}).inject_context();
let response = self.stub.health(request).await?.into_inner();
Ok(response)
}
/// Clear the past generations cache
#[instrument(skip(self))]
pub async fn clear_cache(&mut self, batch_id: Option<u64>) -> Result<()> {
let request = tonic::Request::new(ClearCacheRequest { id: batch_id }).inject_context();
self.stub.clear_cache(request).await?;
Ok(())
}
/// Filter a cached batch
#[instrument(skip(self))]
pub async fn filter_batch(
&mut self,
batch_id: u64,
request_ids: Vec<u64>,
) -> Result<Option<CachedBatch>> {
let request = tonic::Request::new(FilterBatchRequest {
batch_id,
request_ids,
})
.inject_context();
let filtered_batch = self.stub.filter_batch(request).await?.into_inner();
Ok(filtered_batch.batch)
}
/// Warmup on a max size batch
///
/// Returns the maximum amount of tokens supported by the hardware
#[instrument(skip_all)]
pub async fn warmup(
&mut self,
max_input_tokens: Option<u32>,
max_prefill_tokens: u32,
max_total_tokens: Option<u32>,
max_batch_size: Option<usize>,
) -> Result<(Option<u32>, u32, u32)> {
let mut n_tokens = 0;
let mut requests = Vec::new();
// Create requests
while n_tokens < max_prefill_tokens {
let mut truncate = max_prefill_tokens - n_tokens;
if let Some(max_input_tokens) = max_input_tokens {
truncate = min(max_input_tokens, truncate);
}
let mut input_chunks = Vec::new();
input_chunks.push(Chunk::Text("_test ".to_string().repeat(truncate as usize)).into());
if n_tokens == 0 {
input_chunks.push(
Chunk::Image(Image {
// Safe unwrap, because we control the data.
data: STANDARD.decode(WARMUP_IMAGE_BASE64).unwrap(),
mimetype: "image/jpeg;base64".to_string(),
})
.into(),
);
}
// Send stringly-typed inputs for compatibility for backends that haven't
// been updated to support chunks.
let mut inputs = String::new();
inputs.push_str(&"_test ".to_string().repeat(truncate as usize));
if n_tokens == 0 {
// 1 request is enough to test vision heads.
// Sending images on other queries messes up easily with truncation.
inputs.push_str(&format!(
"![](data:image/jpeg;base64,{WARMUP_IMAGE_BASE64})",
));
}
let max_new_tokens = if let Some(max_total_tokens) = max_total_tokens {
max_total_tokens - truncate
} else {
1
};
requests.push(Request {
id: 0,
inputs,
input_chunks: Some(Input {
chunks: input_chunks,
}),
// We truncate the input on the server side to be sure that it has the correct size
truncate,
// Most request will have that
add_special_tokens: true,
// Blocks and slots will be set on the server side if we use paged attention
blocks: vec![],
slots: vec![],
cache_len: 0,
chunk_len: None,
// Set sampling parameters to also take these ops into account in the max memory
parameters: Some(NextTokenChooserParameters {
temperature: 0.9,
top_k: 10,
top_p: 0.9,
typical_p: 0.9,
do_sample: false,
seed: 0,
repetition_penalty: 1.2,
frequency_penalty: 0.1,
watermark: true,
grammar: String::new(),
grammar_type: GrammarType::None as i32,
}),
stopping_parameters: Some(StoppingCriteriaParameters {
max_new_tokens,
stop_sequences: vec![],
ignore_eos_token: true,
}),
prefill_logprobs: true,
top_n_tokens: 20,
adapter_id: None,
});
n_tokens += truncate;
// Check max_batch_size
if Some(requests.len()) == max_batch_size {
break;
}
}
let batch = Batch {
id: 0,
size: requests.len() as u32,
requests,
max_tokens: max_input_tokens.unwrap_or(0),
max_blocks: 0,
};
let request = tonic::Request::new(WarmupRequest {
batch: Some(batch),
max_input_tokens,
max_prefill_tokens,
max_total_tokens,
})
.inject_context();
let response = self.stub.warmup(request).await?.into_inner();
Ok((
response.max_supported_total_tokens,
response.max_input_tokens,
response.max_total_tokens,
))
}
/// Generate one token for each request in the given batch
///
/// Returns Generation for each request in batch
/// and the next cached batch
#[instrument(skip_all, fields(id = &batch.id, size = &batch.size))]
pub async fn prefill(
&mut self,
batch: Batch,
cached_batch: Option<CachedBatch>,
) -> Result<(Vec<Generation>, Option<CachedBatch>, PrefillTimings)> {
let request = tonic::Request::new(PrefillRequest {
batch: Some(batch),
cached_batch,
})
.inject_context();
let response = self.stub.prefill(request).await?.into_inner();
Ok((
response.generations,
response.batch,
PrefillTimings::new(response.forward_ns, response.decode_ns, response.total_ns),
))
}
/// Generate one token for each request in the given cached batches
///
/// Returns Generation for each request in batches
/// and the next cached batch
#[instrument(skip_all, fields(size = batches.iter().map(|batch|{batch.size}).sum::<u32>()))]
pub async fn decode(
&mut self,
batches: Vec<CachedBatch>,
) -> Result<(Vec<Generation>, Option<CachedBatch>, DecodeTimings)> {
let request = tonic::Request::new(DecodeRequest { batches }).inject_context();
let response = self.stub.decode(request).await?.into_inner();
Ok((
response.generations,
response.batch,
DecodeTimings::new(
response.concat_ns,
response.forward_ns,
response.decode_ns,
response.total_ns,
),
))
}
}
pub struct PrefillTimings {
pub forward: Duration,
pub decode: Duration,
pub total: Duration,
}
impl PrefillTimings {
fn new(forward_ns: u64, decode_ns: u64, total_ns: u64) -> Self {
Self {
forward: Duration::from_nanos(forward_ns),
decode: Duration::from_nanos(decode_ns),
total: Duration::from_nanos(total_ns),
}
}
}
pub struct DecodeTimings {
pub concat: Option<Duration>,
pub forward: Duration,
pub decode: Duration,
pub total: Duration,
}
impl DecodeTimings {
fn new(concat_ns: Option<u64>, forward_ns: u64, decode_ns: u64, total_ns: u64) -> Self {
Self {
concat: concat_ns.map(Duration::from_nanos),
forward: Duration::from_nanos(forward_ns),
decode: Duration::from_nanos(decode_ns),
total: Duration::from_nanos(total_ns),
}
}
}

View File

@ -0,0 +1,13 @@
#[allow(clippy::derive_partial_eq_without_eq)]
mod pb;
mod client;
mod sharded_client;
pub use client::Client;
pub use pb::generate::v3::{
input_chunk::Chunk, Batch, CachedBatch, FinishReason, GeneratedText, Generation, GrammarType,
HealthResponse, Image, InfoResponse, Input, InputChunk, NextTokenChooserParameters, Request,
StoppingCriteriaParameters, Tokens,
};
pub use sharded_client::ShardedClient;

View File

@ -0,0 +1,271 @@
/// Multi shard Client
use crate::{v3, Health, ShardInfo};
use crate::{ClientError, Result};
use crate::v3::{Chunk, InfoResponse, Input};
use async_trait::async_trait;
use futures::future::join_all;
use tonic::transport::Uri;
use tracing::instrument;
use v3::client::{DecodeTimings, PrefillTimings};
use v3::{
Batch, CachedBatch, Client, Generation, GrammarType, HealthResponse,
NextTokenChooserParameters, Request, StoppingCriteriaParameters,
};
#[derive(Debug, Clone)]
/// Text Generation Inference gRPC multi client
pub struct ShardedClient {
clients: Vec<Client>,
}
impl ShardedClient {
fn new(clients: Vec<Client>) -> Self {
Self { clients }
}
/// Create a new ShardedClient from a master client. The master client will communicate with
/// the other shards and returns all uris/unix sockets with the `service_discovery` gRPC method.
async fn from_master_client(mut master_client: Client) -> Result<Self> {
// Get all uris/unix sockets from the master client
let uris = master_client.service_discovery().await?;
let futures = uris.into_iter().map(Client::connect_uds);
let clients: Result<Vec<Client>> = join_all(futures).await.into_iter().collect();
Ok(Self::new(clients?))
}
/// Returns a client connected to the given uri
pub async fn connect(uri: Uri) -> Result<Self> {
let master_client = Client::connect(uri).await?;
Self::from_master_client(master_client).await
}
/// Returns a client connected to the given unix socket
pub async fn connect_uds(path: String) -> Result<Self> {
let master_client = Client::connect_uds(path).await?;
Self::from_master_client(master_client).await
}
/// Get the model info
#[instrument(skip(self))]
pub async fn info(&mut self) -> Result<ShardInfo> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| client.info())
.collect();
join_all(futures).await.pop().unwrap().map(ShardInfo::from)
}
/// GRPC health check
#[instrument(skip(self))]
pub async fn health(&mut self) -> Result<HealthResponse> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| client.health())
.collect();
join_all(futures).await.pop().unwrap()
}
/// Clear the past generations cache
#[instrument(skip(self))]
pub async fn clear_cache(&mut self, batch_id: Option<u64>) -> Result<()> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| client.clear_cache(batch_id))
.collect();
join_all(futures).await.into_iter().collect()
}
/// Filter a cached batch
#[instrument(skip(self))]
pub async fn filter_batch(
&mut self,
batch_id: u64,
request_ids: Vec<u64>,
) -> Result<Option<CachedBatch>> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| Box::pin(client.filter_batch(batch_id, request_ids.clone())))
.collect();
// all shards return the same message
join_all(futures).await.pop().unwrap()
}
/// Warmup on a max size batch
///
/// Returns the maximum amount of tokens supported by the hardware
#[instrument(skip(self))]
pub async fn warmup(
&mut self,
max_input_length: Option<u32>,
max_prefill_tokens: u32,
max_total_tokens: Option<u32>,
max_batch_size: Option<usize>,
) -> Result<(Option<u32>, u32, u32)> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| {
Box::pin(client.warmup(
max_input_length,
max_prefill_tokens,
max_total_tokens,
max_batch_size,
))
})
.collect();
// Take the minimum value
let results = join_all(futures)
.await
.into_iter()
.collect::<Result<Vec<(Option<u32>, u32, u32)>>>()?;
// Take the minimum value
// Different shards hold different parts of vocab, might yield
// different available block size.
let min = results
.iter()
.min()
.expect("Expect at least 1 warmup result");
Ok(*min)
}
/// Generate one token for each request in the given batch
///
/// Returns Generation for each request in batch
/// and the next cached batch
#[instrument(skip_all, fields(id = & batch.id, size = & batch.size))]
pub async fn prefill(
&mut self,
batch: Batch,
cached_batch: Option<CachedBatch>,
) -> Result<(Vec<Generation>, Option<CachedBatch>, PrefillTimings)> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| Box::pin(client.prefill(batch.clone(), cached_batch.clone())))
.collect();
#[allow(clippy::type_complexity)]
let results: Result<Vec<(Vec<Generation>, Option<CachedBatch>, PrefillTimings)>> =
join_all(futures).await.into_iter().collect();
let mut results = results?;
let (mut generations, next_batch, mut timings) =
results.pop().ok_or(ClientError::EmptyResults)?;
// Merge generations from different model shards
for (mut shard_generations, _, shard_timings) in results.into_iter() {
generations.append(&mut shard_generations);
// Return the timings of the slowest shard
if shard_timings.total > timings.total {
timings = shard_timings;
}
}
Ok((generations, next_batch, timings))
}
/// Generate one token for each request in the given cached batches
///
/// Returns Generation for each request in batches
/// and the next cached batch
#[instrument(skip_all, fields(size = batches.iter().map(| batch | {batch.size}).sum::< u32 > ()))]
pub async fn decode(
&mut self,
batches: Vec<CachedBatch>,
) -> Result<(Vec<Generation>, Option<CachedBatch>, DecodeTimings)> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| Box::pin(client.decode(batches.clone())))
.collect();
#[allow(clippy::type_complexity)]
let results: Result<Vec<(Vec<Generation>, Option<CachedBatch>, DecodeTimings)>> =
join_all(futures).await.into_iter().collect();
let mut results = results?;
let (mut generations, next_batch, mut timings) =
results.pop().ok_or(ClientError::EmptyResults)?;
// Merge generations from different model shards
for (mut shard_generations, _, shard_timings) in results.into_iter() {
generations.append(&mut shard_generations);
// Return the timings of the slowest shard
if shard_timings.total > timings.total {
timings = shard_timings;
}
}
Ok((generations, next_batch, timings))
}
}
impl From<InfoResponse> for ShardInfo {
fn from(value: InfoResponse) -> Self {
Self {
requires_padding: value.requires_padding,
dtype: value.dtype,
device_type: value.device_type,
window_size: value.window_size,
speculate: value.speculate,
}
}
}
#[async_trait]
impl Health for ShardedClient {
async fn device_health(&self) -> Result<()> {
self.clone().health().await?;
Ok(())
}
async fn model_health(&self) -> Result<()> {
// Dummy batch of 1 token and 1 generated token
let liveness_request = Request {
id: u64::MAX,
inputs: "liveness".to_string(),
input_chunks: Some(Input {
chunks: vec![Chunk::Text("liveness".into()).into()],
}),
truncate: 10,
add_special_tokens: true,
prefill_logprobs: false,
parameters: Some(NextTokenChooserParameters {
temperature: 1.0,
top_k: 0,
top_p: 1.0,
typical_p: 1.0,
do_sample: false,
seed: 0,
repetition_penalty: 1.0,
frequency_penalty: 0.0,
watermark: false,
grammar: String::new(),
grammar_type: GrammarType::None as i32,
}),
stopping_parameters: Some(StoppingCriteriaParameters {
max_new_tokens: 1,
stop_sequences: vec![],
ignore_eos_token: false,
}),
top_n_tokens: 0,
// Block 0 is reserved for health checks
blocks: vec![0],
slots: (0..16).collect(),
cache_len: 0,
chunk_len: None,
adapter_id: None,
};
let batch = Batch {
id: u64::MAX,
requests: vec![liveness_request],
size: 1,
max_tokens: 2,
max_blocks: 1,
};
self.clone().prefill(batch, None).await?;
Ok(())
}
}

62
backends/gaudi/Makefile Normal file
View File

@ -0,0 +1,62 @@
mkfile_path := $(abspath $(lastword $(MAKEFILE_LIST)))
mkfile_dir := $(dir $(mkfile_path))
root_dir := ${mkfile_dir}/../..
HABANA_VERSION := 1.20.0
PYTORCH_VERSION := 2.6.0
.PHONY: image run-local-dev-container install-dependencies install-server install-router install-launcher local-dev-install
image:
docker build -t tgi-gaudi -f ${root_dir}/Dockerfile_gaudi ${root_dir} --build-arg HABANA_VERSION=$(HABANA_VERSION) --build-arg PYTORCH_VERSION=$(PYTORCH_VERSION)
run-local-dev-container:
docker run -it \
--runtime=habana \
--ipc=host \
--cap-add=sys_nice \
--net=host \
-e HABANA_VISIBLE_DEVICES=all \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none \
-e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \
-e HF_TOKEN=`cat /home/ubuntu/.cache/huggingface/token` \
-e LOG_LEVEL=debug \
-e PORT=8080 \
-v /home/ubuntu/.cache/huggingface:/data \
-v $(PWD):/text-generation-inference \
-w /text-generation-inference \
vault.habana.ai/gaudi-docker/$(HABANA_VERSION)/ubuntu22.04/habanalabs/pytorch-installer-$(PYTORCH_VERSION):latest
install-dependencies:
pip install git+https://github.com/HabanaAI/DeepSpeed.git@$(HABANA_VERSION)
pip install outlines~=0.0.34
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
install-server:
make -C ${root_dir}/backends/gaudi/server install PROTO_PATH=../../../proto/v3
install-router:
make -C ${root_dir} install-router
install-launcher:
make -C ${root_dir} install-launcher
# use source to load the rust in path
local-dev-install: install-dependencies
bash -c 'source "$$HOME/.cargo/env" && \
make install-server && \
make install-router && \
make install-launcher'
# In order to run the integration tests, you need to first build the image (make -C backends/gaudi image)
run-integration-tests:
uv pip install -r ${root_dir}/backends/gaudi/server/integration-tests/requirements.txt
DOCKER_VOLUME=${root_dir}/data \
HF_TOKEN=`cat ${HOME}/.cache/huggingface/token` \
uv run pytest --durations=0 -sv ${root_dir}/backends/gaudi/server/integration-tests
# This is used to capture the expected outputs for the integration tests offering an easy way to add more models to the integration tests
capture-expected-outputs-for-integration-tests:
DOCKER_VOLUME=${root_dir}/data \
HF_TOKEN=`cat ${HOME}/.cache/huggingface/token` \
uv run pytest --durations=0 -sv ${root_dir}/backends/gaudi/server/integration-tests/capture_expected_outputs.py

142
backends/gaudi/README.md Normal file
View File

@ -0,0 +1,142 @@
# Text-generation-inference - Gaudi backend
## Description
This is the TGI backend for Intel Gaudi. This backend is composed of the tgi server optimized for Gaudi hardware.
## Build your own image
The simplest way to build TGI with the Gaudi backend is to use the provided `Makefile`:
Option 1: From the project root directory:
```bash
make -C backends/gaudi image
```
Option 2: From the Gaudi backend directory:
```bash
cd backends/gaudi
make image
```
You can now run the server with the following command:
Option 1: Sharded:
```bash
model=meta-llama/Llama-3.1-8B-Instruct
hf_token=$(cat ${HOME}/.cache/huggingface/token)
volume=${HOME}/.cache/huggingface
docker run --runtime=habana --ipc=host --cap-add=sys_nice \
-p 8080:80 -v $volume:/data \
-e LOG_LEVEL=debug -e HF_TOKEN=$hf_token \
tgi-gaudi --model-id $model \
--sharded true --num-shard 8 \
--max-input-tokens 512 --max-total-tokens 1024 --max-batch-size 8 --max-batch-prefill-tokens 2048
```
Option 2: Non-sharded:
```bash
model=meta-llama/Llama-3.1-8B-Instruct
hf_token=$(cat ${HOME}/.cache/huggingface/token)
volume=${HOME}/.cache/huggingface
docker run --runtime=habana --ipc=host --cap-add=sys_nice \
-p 8080:80 -v $volume:/data \
-e LOG_LEVEL=debug -e HF_TOKEN=$hf_token \
tgi-gaudi --model-id $model \
--max-input-tokens 512 --max-total-tokens 1024 --max-batch-size 4 --max-batch-prefill-tokens 2048
```
## Contributing
### Local Development
This is useful if you want to run the server locally for better debugging.
```bash
make -C backends/gaudi run-local-dev-container
```
Then run the following command inside the container to install tgi for gaudi:
```bash
make -C backends/gaudi local-dev-install
```
Add rust to path:
```bash
. "$HOME/.cargo/env"
```
Option 1: Run the server (sharded model):
```bash
LOG_LEVEL=debug text-generation-launcher \
--model-id meta-llama/Llama-3.1-8B-Instruct \
--sharded true \
--num-shard 8 \
--max-input-tokens 512 \
--max-total-tokens 1024 \
--max-batch-size 8 \
--max-batch-prefill-tokens 2048
```
Option 2: Run the server (non-sharded model):
```bash
LOG_LEVEL=debug text-generation-launcher \
--model-id meta-llama/Llama-3.1-8B-Instruct \
--max-input-tokens 512 \
--max-total-tokens 1024 \
--max-batch-size 4 \
--max-batch-prefill-tokens 2048
```
You can then test the server with the following curl command from another terminal (can be outside the container):
```bash
curl 127.0.0.1:8080/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json'
```
### Integration tests
To run the integration tests, you need to first build the image:
```bash
make -C backends/gaudi image
```
Then run the following command to run the integration tests:
```bash
make -C backends/gaudi run-integration-tests
```
To capture the expected outputs for the integration tests, you can run the following command:
```bash
make -C backends/gaudi capture-expected-outputs-for-integration-tests
```
#### How the integration tests works
The integration tests works as follows:
1. Start a tgi server in a container, similar to the command:
```bash
docker run --runtime=habana --ipc=host --cap-add=sys_nice \
-p 8080:80 -v $volume:/data \
-e LOG_LEVEL=debug -e HF_TOKEN=$hf_token \
tgi-gaudi --model-id $model \
--max-input-tokens 512 --max-total-tokens 1024 --max-batch-size 4 --max-batch-prefill-tokens 2048
```
2. Do a /generate request to the server, similar to the command:
```bash
curl 127.0.0.1:8080/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json'
```
3. Check the output of the server against the expected output:
```python
assert curl_output == expected_output
```
This is the repeated for a set of models and configurations.

View File

@ -0,0 +1,283 @@
# Examples of Docker Commands for Gaudi Backend
This page gives a list of examples of docker run commands for some of the most popular models.
> **Note:** The parameters are chosen for Gaudi2 hardware to maximize performance on this given hardware, please adjust the parameters based on your hardware. For example, if you are using Gaudi3, you may want to increase the batch size.
## Default Precision (BF16)
### Llama3.1-8B on 1 card (BF16)
```bash
model=meta-llama/Meta-Llama-3.1-8B-Instruct
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e PREFILL_BATCH_BUCKET_SIZE=2 \
-e BATCH_BUCKET_SIZE=32 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 --max-batch-size 32 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64
```
### Llama3.1-70B 8 cards (BF16)
```bash
model=meta-llama/Meta-Llama-3.1-70B-Instruct
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 4096 --max-batch-size 256 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512
```
### Llama2-7B on 1 Card (BF16)
```bash
model=meta-llama/Llama-2-7b-chat-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e PREFILL_BATCH_BUCKET_SIZE=2 \
-e BATCH_BUCKET_SIZE=32 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 --max-batch-size 32 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64
```
### Llama2-70B on 8 cards (BF16)
```bash
model=meta-llama/Llama-2-70b-chat-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 4096 --max-batch-size 256 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512
```
### Llava-v1.6-Mistral-7B on 1 card (BF16)
```bash
model=llava-hf/llava-v1.6-mistral-7b-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-e PREFILL_BATCH_BUCKET_SIZE=1 \
-e BATCH_BUCKET_SIZE=1 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
--max-total-tokens 8192 --max-batch-size 4
```
## FP8 Precision
Please refer to the [FP8 Precision](https://huggingface.co/docs/text-generation-inference/backends/gaudi_new#how-to-use-different-precision-formats) section for more details. You need to measure the statistics of the model first before running the model in FP8 precision.
## Llama3.1-8B on 1 Card (FP8)
```bash
model=meta-llama/Meta-Llama-3.1-8B-Instruct
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e PREFILL_BATCH_BUCKET_SIZE=2 \
-e BATCH_BUCKET_SIZE=32 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 --max-batch-size 32 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64
```
## Llama3.1-70B on 8 cards (FP8)
```bash
model=meta-llama/Meta-Llama-3.1-70B-Instruct
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 4096 --max-batch-size 256 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512
```
## Llama2-7B on 1 Card (FP8)
```bash
model=meta-llama/Llama-2-7b-chat-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e PREFILL_BATCH_BUCKET_SIZE=2 \
-e BATCH_BUCKET_SIZE=32 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 --max-batch-size 32 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64
```
## Llama2-70B on 8 Cards (FP8)
```bash
model=meta-llama/Llama-2-70b-chat-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HF_TOKEN=$hf_token \
-e MAX_TOTAL_TOKENS=2048 \
-e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-tokens 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 4096 --max-batch-size 256 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512
```
## Llava-v1.6-Mistral-7B on 1 Card (FP8)
```bash
model=llava-hf/llava-v1.6-mistral-7b-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e PREFILL_BATCH_BUCKET_SIZE=1 \
-e BATCH_BUCKET_SIZE=1 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
--max-total-tokens 8192 --max-batch-size 4
```
## Llava-v1.6-Mistral-7B on 8 Cards (FP8)
```bash
model=llava-hf/llava-v1.6-mistral-7b-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
--cap-add=sys_nice \
--ipc=host \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e PREFILL_BATCH_BUCKET_SIZE=1 \
-e BATCH_BUCKET_SIZE=1 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
--max-total-tokens 8192 --max-batch-size 4
```

164
backends/gaudi/server/.gitignore vendored Normal file
View File

@ -0,0 +1,164 @@
# Byte-compiled / optimized / DLL files
__pycache__/
text_generation_server/__pycache__/
text_generation_server/pb/__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
transformers
safetensors
flash-attention/
flash-attention-v2/
vllm/
llm-awq/
eetq/
mamba/

View File

@ -0,0 +1,38 @@
include Makefile-flash-att
include Makefile-flash-att-v2
include Makefile-vllm
include Makefile-awq
include Makefile-eetq
include Makefile-selective-scan
PROTO_PATH ?= ../proto/v3
unit-tests:
pytest -s -vv -m "not private" tests
gen-server:
# Compile protos
pip install grpcio-tools==1.62.2 mypy-protobuf==3.6.0 'types-protobuf' --no-cache-dir
mkdir text_generation_server/pb || true
python -m grpc_tools.protoc -I$(PROTO_PATH) --python_out=text_generation_server/pb \
--grpc_python_out=text_generation_server/pb --mypy_out=text_generation_server/pb $(PROTO_PATH)/generate.proto
find text_generation_server/pb/ -type f -name "*.py" -print0 -exec sed -i -e 's/^\(import.*pb2\)/from . \1/g' {} \;
touch text_generation_server/pb/__init__.py
install: gen-server
pip install pip --upgrade
pip install --no-deps -r requirements.txt
pip install -e "."
run-dev:
SAFETENSORS_FAST_GPU=1 python -m torch.distributed.run --nproc_per_node=2 text_generation_server/cli.py serve bigscience/bloom-560m --sharded
install-poetry:
curl -sSL https://install.python-poetry.org | python3 -
update-lock:
rm poetry.lock
poetry lock --no-update
export-requirements:
poetry export -o requirements.txt --without-hashes

View File

@ -0,0 +1,15 @@
# Fork that adds only the correct stream to this kernel in order
# to make cuda graphs work.
awq_commit := bd1dc2d5254345cc76ab71894651fb821275bdd4
awq:
rm -rf llm-awq
git clone https://github.com/huggingface/llm-awq
build-awq: awq
cd llm-awq/ && git fetch && git checkout $(awq_commit)
cd llm-awq/awq/kernels && python setup.py build
install-awq: build-awq
pip uninstall awq_inference_engine -y || true
cd llm-awq/awq/kernels && python setup.py install

View File

@ -0,0 +1,13 @@
eetq_commit := 1657b1504faa359e2ce0ac02999439d7ac8c74c0
eetq:
# Clone eetq
pip install packaging
git clone https://github.com/NetEase-FuXi/EETQ.git eetq
build-eetq: eetq
cd eetq && git fetch && git checkout $(eetq_commit) && git submodule update --init --recursive
cd eetq && python setup.py build
install-eetq: build-eetq
cd eetq && python setup.py install

View File

@ -0,0 +1,15 @@
fbgemm_commit := v0.8.0
build-fbgemm:
@if [ ! -d "fbgemm" ]; then \
git clone https://github.com/pytorch/FBGEMM.git fbgemm; \
fi
cd fbgemm && git fetch && git checkout $(fbgemm_commit) && \
git submodule update --init --recursive && \
cd fbgemm_gpu && \
pip install -r requirements.txt && \
CUDA_ARCH_LIST="8.0;9.0a" NVCC_GENCODE="-gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_90a,code=sm_90a" TORCH_CUDA_ARCH_LIST="8.0;9.0a" python setup.py --package_variant genai build
install-fbgemm: build-fbgemm
cd fbgemm/fbgemm_gpu && \
CUDA_ARCH_LIST="8.0;9.0a" NVCC_GENCODE="-gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_90a,code=sm_90a" TORCH_CUDA_ARCH_LIST="8.0;9.0a" python setup.py --package_variant genai install

View File

@ -0,0 +1,12 @@
flash_att_commit := 3a9bfd076f98746c73362328958dbc68d145fbec
build-flash-attention:
if [ ! -d 'flash-attention' ]; then \
pip install -U packaging ninja --no-cache-dir && \
git clone https://github.com/HazyResearch/flash-attention.git; \
fi
cd flash-attention && git fetch && git checkout $(flash_att_commit) && \
MAX_JOBS=8 python setup.py build && cd csrc/layer_norm && python setup.py build && cd ../rotary && python setup.py build
install-flash-attention: build-flash-attention
cd flash-attention && git checkout $(flash_att_commit) && MAX_JOBS=8 python setup.py install && cd csrc/layer_norm && python setup.py install && cd ../rotary && python setup.py install

View File

@ -0,0 +1,21 @@
flash_att_v2_commit_cuda := v2.6.1
flash_att_v2_commit_rocm := 2092111b9f975b3347c652ff7fabd431130256c4
build-flash-attention-v2-cuda:
pip install -U packaging wheel
pip install flash-attn==$(flash_att_v2_commit_cuda)
install-flash-attention-v2-cuda: build-flash-attention-v2-cuda
echo "Flash v2 installed"
build-flash-attention-v2-rocm:
if [ ! -d 'flash-attention-v2' ]; then \
pip install -U packaging ninja --no-cache-dir && \
git clone https://github.com/mht-sharma/flash-attention.git flash-attention-v2 && \
cd flash-attention-v2 && git fetch && git checkout $(flash_att_v2_commit_rocm) && \
git submodule update --init --recursive && GPU_ARCHS="gfx90a;gfx942" PYTORCH_ROCM_ARCH="gfx90a;gfx942" python setup.py build; \
fi
install-flash-attention-v2-rocm: build-flash-attention-v2-rocm
cd flash-attention-v2 && \
GPU_ARCHS="gfx90a;gfx942" PYTORCH_ROCM_ARCH="gfx90a;gfx942" python setup.py install

View File

@ -0,0 +1,28 @@
selective_scan_commit := 2a3704fd47ba817b415627b06fd796b971fdc137
causal-conv1d:
rm -rf causal-conv1d
git clone https://github.com/Dao-AILab/causal-conv1d.git
build-causal-conv1d: causal-conv1d
cd causal-conv1d/ && git checkout v1.1.1 # known latest working version tag
cd causal-conv1d/ && CAUSAL_CONV1D_FORCE_BUILD=TRUE python setup.py build
install-causal-conv1d: build-causal-conv1d
pip uninstall causal-conv1d -y || true
cd causal-conv1d/ && pip install .
# selective-scan dependends on causal-conv1d
selective-scan:
rm -rf mamba
git clone https://github.com/state-spaces/mamba.git mamba
build-selective-scan: selective-scan
cd mamba/ && git fetch && git checkout $(selective_scan_commit)
cd mamba && python setup.py build
install-selective-scan: install-causal-conv1d build-selective-scan
pip uninstall selective-scan-cuda -y || true
cd mamba && pip install .
build-all: build-causal-conv1d build-selective-scan

View File

@ -0,0 +1,23 @@
commit_cuda := d243e9dc7e2c9c2e36a4150ec8e64809cb55c01b
commit_rocm := 4e0929e6e4fa0a3d09d358715c288020ea9dc247
build-vllm-cuda:
if [ ! -d 'vllm' ]; then \
pip install -U ninja packaging --no-cache-dir && \
git clone https://github.com/Narsil/vllm.git vllm; \
fi
cd vllm && git fetch origin && git checkout $(commit_cuda) && python setup.py build
install-vllm-cuda: build-vllm-cuda
cd vllm && git fetch origin && git checkout $(commit_cuda) && pip install -e .
build-vllm-rocm:
if [ ! -d 'vllm' ]; then \
pip install -U ninja packaging --no-cache-dir && \
git clone https://github.com/mht-sharma/vllm.git vllm; \
fi
cd vllm && git fetch && git checkout $(commit_rocm) && \
PYTORCH_ROCM_ARCH="gfx90a;gfx942" python setup.py build
install-vllm-rocm: build-vllm-rocm
cd vllm && git fetch && git checkout $(commit_rocm) && \
PYTORCH_ROCM_ARCH="gfx90a;gfx942" pip install -e .

View File

@ -0,0 +1,15 @@
# Text Generation Inference Python gRPC Server
A Python gRPC server for Text Generation Inference
## Install
```shell
make install
```
## Run
```shell
make run-dev
```

View File

@ -0,0 +1,91 @@
#!/bin/bash
git clone -b dill-0.3.7 https://github.com/uqfoundation/dill.git
pushd dill
cat <<EOF > dill-0.3.7.patch
diff --git a/dill/_dill.py b/dill/_dill.py
index d0cf543..f6eb662 100644
--- a/dill/_dill.py
+++ b/dill/_dill.py
@@ -69,7 +69,15 @@ TypeType = type # 'new-style' classes #XXX: unregistered
XRangeType = range
from types import MappingProxyType as DictProxyType, new_class
from pickle import DEFAULT_PROTOCOL, HIGHEST_PROTOCOL, PickleError, PicklingError, UnpicklingError
-import __main__ as _main_module
+class _LazyMainModule(object):
+ _module = None
+ @property
+ def module(self):
+ if self._module is None:
+ import __main__ as _m_module
+ self._module = _m_module
+ return self._module
+_main_module = _LazyMainModule()
import marshal
import gc
# import zlib
@@ -353,7 +361,7 @@ class Pickler(StockPickler):
_fmode = kwds.pop('fmode', None)
_recurse = kwds.pop('recurse', None)
StockPickler.__init__(self, file, *args, **kwds)
- self._main = _main_module
+ self._main = _main_module.module
self._diff_cache = {}
self._byref = settings['byref'] if _byref is None else _byref
self._strictio = False #_strictio
@@ -435,12 +443,12 @@ class Unpickler(StockUnpickler):
settings = Pickler.settings
_ignore = kwds.pop('ignore', None)
StockUnpickler.__init__(self, *args, **kwds)
- self._main = _main_module
+ self._main = _main_module.module
self._ignore = settings['ignore'] if _ignore is None else _ignore
def load(self): #NOTE: if settings change, need to update attributes
obj = StockUnpickler.load(self)
- if type(obj).__module__ == getattr(_main_module, '__name__', '__main__'):
+ if type(obj).__module__ == getattr(self._main, '__name__', '__main__'):
if not self._ignore:
# point obj class to main
try: obj.__class__ = getattr(self._main, type(obj).__name__)
@@ -1194,11 +1202,11 @@ def save_module_dict(pickler, obj):
logger.trace(pickler, "D1: %s", _repr_dict(obj)) # obj
pickler.write(bytes('c__builtin__\n__main__\n', 'UTF-8'))
logger.trace(pickler, "# D1")
- elif (not is_dill(pickler, child=False)) and (obj == _main_module.__dict__):
+ elif (not is_dill(pickler, child=False)) and (obj == _main_module.module.__dict__):
logger.trace(pickler, "D3: %s", _repr_dict(obj)) # obj
pickler.write(bytes('c__main__\n__dict__\n', 'UTF-8')) #XXX: works in general?
logger.trace(pickler, "# D3")
- elif '__name__' in obj and obj != _main_module.__dict__ \\
+ elif '__name__' in obj and obj != _main_module.module.__dict__ \\
and type(obj['__name__']) is str \\
and obj is getattr(_import_module(obj['__name__'],True), '__dict__', None):
logger.trace(pickler, "D4: %s", _repr_dict(obj)) # obj
diff --git a/dill/session.py b/dill/session.py
index 74234ab..1be8d89 100644
--- a/dill/session.py
+++ b/dill/session.py
@@ -233,7 +233,7 @@ def dump_module(
protocol = settings['protocol']
main = module
if main is None:
- main = _main_module
+ main = _main_module.module
elif isinstance(main, str):
main = _import_module(main)
if not isinstance(main, ModuleType):
@@ -501,7 +501,7 @@ def load_module(
pass
assert loaded is main
_restore_modules(unpickler, main)
- if main is _main_module or main is module:
+ if main is _main_module.module or main is module:
return None
else:
return main
EOF
git apply dill-0.3.7.patch
python -m pip install .
popd
rm -fr dill

View File

@ -0,0 +1,91 @@
#!/bin/bash
git clone -b 0.3.8 https://github.com/uqfoundation/dill.git
pushd dill
cat <<EOF > dill-0.3.8.patch
diff --git a/dill/_dill.py b/dill/_dill.py
index d42432f..1d251e6 100644
--- a/dill/_dill.py
+++ b/dill/_dill.py
@@ -69,7 +69,15 @@ TypeType = type # 'new-style' classes #XXX: unregistered
XRangeType = range
from types import MappingProxyType as DictProxyType, new_class
from pickle import DEFAULT_PROTOCOL, HIGHEST_PROTOCOL, PickleError, PicklingError, UnpicklingError
-import __main__ as _main_module
+class _LazyMainModule(object):
+ _module = None
+ @property
+ def module(self):
+ if self._module is None:
+ import __main__ as _m_module
+ self._module = _m_module
+ return self._module
+_main_module = _LazyMainModule()
import marshal
import gc
# import zlib
@@ -355,7 +363,7 @@ class Pickler(StockPickler):
_fmode = kwds.pop('fmode', None)
_recurse = kwds.pop('recurse', None)
StockPickler.__init__(self, file, *args, **kwds)
- self._main = _main_module
+ self._main = _main_module.module
self._diff_cache = {}
self._byref = settings['byref'] if _byref is None else _byref
self._strictio = False #_strictio
@@ -437,12 +445,12 @@ class Unpickler(StockUnpickler):
settings = Pickler.settings
_ignore = kwds.pop('ignore', None)
StockUnpickler.__init__(self, *args, **kwds)
- self._main = _main_module
+ self._main = _main_module.module
self._ignore = settings['ignore'] if _ignore is None else _ignore
def load(self): #NOTE: if settings change, need to update attributes
obj = StockUnpickler.load(self)
- if type(obj).__module__ == getattr(_main_module, '__name__', '__main__'):
+ if type(obj).__module__ == getattr(self._main, '__name__', '__main__'):
if not self._ignore:
# point obj class to main
try: obj.__class__ = getattr(self._main, type(obj).__name__)
@@ -1199,11 +1207,11 @@ def save_module_dict(pickler, obj):
logger.trace(pickler, "D1: %s", _repr_dict(obj)) # obj
pickler.write(bytes('c__builtin__\n__main__\n', 'UTF-8'))
logger.trace(pickler, "# D1")
- elif (not is_dill(pickler, child=False)) and (obj == _main_module.__dict__):
+ elif (not is_dill(pickler, child=False)) and (obj == _main_module.module.__dict__):
logger.trace(pickler, "D3: %s", _repr_dict(obj)) # obj
pickler.write(bytes('c__main__\n__dict__\n', 'UTF-8')) #XXX: works in general?
logger.trace(pickler, "# D3")
- elif '__name__' in obj and obj != _main_module.__dict__ \\
+ elif '__name__' in obj and obj != _main_module.module.__dict__ \\
and type(obj['__name__']) is str \\
and obj is getattr(_import_module(obj['__name__'],True), '__dict__', None):
logger.trace(pickler, "D4: %s", _repr_dict(obj)) # obj
diff --git a/dill/session.py b/dill/session.py
index e91068a..a921b43 100644
--- a/dill/session.py
+++ b/dill/session.py
@@ -233,7 +233,7 @@ def dump_module(
protocol = settings['protocol']
main = module
if main is None:
- main = _main_module
+ main = _main_module.module
elif isinstance(main, str):
main = _import_module(main)
if not isinstance(main, ModuleType):
@@ -501,7 +501,7 @@ def load_module(
pass
assert loaded is main
_restore_modules(unpickler, main)
- if main is _main_module or main is module:
+ if main is _main_module.module or main is module:
return None
else:
return main
EOF
git apply dill-0.3.8.patch
python -m pip install .
popd
rm -fr dill

View File

@ -0,0 +1,85 @@
import json
import os
from typing import Dict, Any, Generator
import pytest
from test_model import TEST_CONFIGS
UNKNOWN_CONFIGS = {
name: config
for name, config in TEST_CONFIGS.items()
if config["expected_greedy_output"] == "unknown"
or config["expected_batch_output"] == "unknown"
}
@pytest.fixture(scope="module", params=UNKNOWN_CONFIGS.keys())
def test_config(request) -> Dict[str, Any]:
"""Fixture that provides model configurations for testing."""
test_config = UNKNOWN_CONFIGS[request.param]
test_config["test_name"] = request.param
return test_config
@pytest.fixture(scope="module")
def test_name(test_config):
yield test_config["test_name"]
@pytest.fixture(scope="module")
def tgi_service(launcher, test_config, test_name) -> Generator:
"""Fixture that provides a TGI service for testing."""
with launcher(test_config["model_id"], test_name) as service:
yield service
@pytest.mark.asyncio
async def test_capture_expected_outputs(tgi_service, test_config, test_name):
"""Test that captures expected outputs for models with unknown outputs."""
print(f"Testing {test_name} with {test_config['model_id']}")
# Wait for service to be ready
await tgi_service.health(1000)
client = tgi_service.client
# Test single request (greedy)
print("Testing single request...")
response = await client.generate(
test_config["input"],
max_new_tokens=32,
)
greedy_output = response.generated_text
# Test multiple requests (batch)
print("Testing batch requests...")
responses = []
for _ in range(4):
response = await client.generate(
test_config["input"],
max_new_tokens=32,
)
responses.append(response.generated_text)
# Store results in a JSON file
output_file = "server/integration-tests/expected_outputs.json"
results = {}
# Try to load existing results if file exists
if os.path.exists(output_file):
with open(output_file, "r") as f:
results = json.load(f)
# Update results for this model
results[test_name] = {
"model_id": test_config["model_id"],
"input": test_config["input"],
"greedy_output": greedy_output,
"batch_outputs": responses,
"args": test_config["args"],
}
# Save updated results
with open(output_file, "w") as f:
json.dump(results, f, indent=2)
print(f"\nResults for {test_name} saved to {output_file}")

View File

@ -0,0 +1,292 @@
import asyncio
import contextlib
import os
import shlex
import subprocess
import sys
import threading
import time
from tempfile import TemporaryDirectory
from typing import List
import socket
import docker
import pytest
from aiohttp import ClientConnectorError, ClientOSError, ServerDisconnectedError
from docker.errors import NotFound
from loguru import logger
from test_model import TEST_CONFIGS
from text_generation import AsyncClient
from text_generation.types import Response
# Use the latest image from the local docker build
DOCKER_IMAGE = os.getenv("DOCKER_IMAGE", "tgi-gaudi")
DOCKER_VOLUME = os.getenv("DOCKER_VOLUME", None)
HF_TOKEN = os.getenv("HF_TOKEN", None)
assert (
HF_TOKEN is not None
), "HF_TOKEN is not set, please set it as some models are gated and thus the test will fail without it"
if DOCKER_VOLUME is None:
logger.warning(
"DOCKER_VOLUME is not set, this will lead to the tests redownloading the models on each run, consider setting it to speed up testing"
)
LOG_LEVEL = os.getenv("LOG_LEVEL", "info")
BASE_ENV = {
"HF_HUB_ENABLE_HF_TRANSFER": "1",
"LOG_LEVEL": LOG_LEVEL,
"HF_TOKEN": os.getenv("HF_TOKEN", None),
}
HABANA_RUN_ARGS = {
"runtime": "habana",
"ipc_mode": "host",
"cap_add": ["sys_nice"],
}
logger.add(
sys.stderr,
format="<green>{time:YYYY-MM-DD HH:mm:ss}</green> | <level>{level: <8}</level> | <cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>",
level="INFO",
)
def stream_container_logs(container, test_name):
"""Stream container logs in a separate thread."""
try:
for log in container.logs(stream=True, follow=True):
print(
f"[TGI Server Logs - {test_name}] {log.decode('utf-8')}",
end="",
file=sys.stderr,
flush=True,
)
except Exception as e:
logger.error(f"Error streaming container logs: {str(e)}")
class LauncherHandle:
def __init__(self, port: int):
self.client = AsyncClient(f"http://localhost:{port}", timeout=3600)
def _inner_health(self):
raise NotImplementedError
async def health(self, timeout: int = 60):
assert timeout > 0
start_time = time.time()
logger.info(f"Starting health check with timeout of {timeout}s")
for attempt in range(timeout):
if not self._inner_health():
logger.error("Launcher crashed during health check")
raise RuntimeError("Launcher crashed")
try:
await self.client.generate("test")
elapsed = time.time() - start_time
logger.info(f"Health check passed after {elapsed:.1f}s")
return
except (ClientConnectorError, ClientOSError, ServerDisconnectedError) as e:
if attempt == timeout - 1:
logger.error(f"Health check failed after {timeout}s: {str(e)}")
raise RuntimeError(f"Health check failed: {str(e)}")
if attempt % 10 == 0 and attempt != 0: # Only log every 10th attempt
logger.debug(
f"Connection attempt {attempt}/{timeout} failed: {str(e)}"
)
time.sleep(1)
except Exception as e:
logger.error(f"Unexpected error during health check: {str(e)}")
# Get full traceback for debugging
import traceback
logger.error(f"Full traceback:\n{traceback.format_exc()}")
raise
class ContainerLauncherHandle(LauncherHandle):
def __init__(self, docker_client, container_name, port: int):
super(ContainerLauncherHandle, self).__init__(port)
self.docker_client = docker_client
self.container_name = container_name
def _inner_health(self) -> bool:
try:
container = self.docker_client.containers.get(self.container_name)
status = container.status
if status not in ["running", "created"]:
logger.warning(f"Container status is {status}")
# Get container logs for debugging
logs = container.logs().decode("utf-8")
logger.debug(f"Container logs:\n{logs}")
return status in ["running", "created"]
except Exception as e:
logger.error(f"Error checking container health: {str(e)}")
return False
class ProcessLauncherHandle(LauncherHandle):
def __init__(self, process, port: int):
super(ProcessLauncherHandle, self).__init__(port)
self.process = process
def _inner_health(self) -> bool:
return self.process.poll() is None
@pytest.fixture(scope="module")
def data_volume():
tmpdir = TemporaryDirectory()
yield tmpdir.name
try:
# Cleanup the temporary directory using sudo as it contains root files created by the container
subprocess.run(shlex.split(f"sudo rm -rf {tmpdir.name}"), check=True)
except subprocess.CalledProcessError as e:
logger.error(f"Error cleaning up temporary directory: {str(e)}")
@pytest.fixture(scope="module")
def launcher(data_volume):
@contextlib.contextmanager
def docker_launcher(
model_id: str,
test_name: str,
):
logger.info(
f"Starting docker launcher for model {model_id} and test {test_name}"
)
# Get a random available port
def get_free_port():
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(("", 0))
s.listen(1)
port = s.getsockname()[1]
return port
port = get_free_port()
logger.debug(f"Using port {port}")
client = docker.from_env()
container_name = f"tgi-gaudi-test-{test_name.replace('/', '-')}"
try:
container = client.containers.get(container_name)
logger.info(
f"Stopping existing container {container_name} for test {test_name}"
)
container.stop()
container.wait()
except NotFound:
pass
except Exception as e:
logger.error(f"Error handling existing container: {str(e)}")
model_name = next(
name for name, cfg in TEST_CONFIGS.items() if cfg["model_id"] == model_id
)
tgi_args = TEST_CONFIGS[model_name]["args"].copy()
env = BASE_ENV.copy()
# Add model_id to env
env["MODEL_ID"] = model_id
# Add env config that is definied in the fixture parameter
if "env_config" in TEST_CONFIGS[model_name]:
env.update(TEST_CONFIGS[model_name]["env_config"].copy())
volumes = [f"{DOCKER_VOLUME}:/data"]
logger.debug(f"Using volume {volumes}")
try:
logger.info(f"Creating container with name {container_name}")
# Log equivalent docker run command for debugging, this is not actually executed
container = client.containers.run(
DOCKER_IMAGE,
command=tgi_args,
name=container_name,
environment=env,
detach=True,
volumes=volumes,
ports={"80/tcp": port},
**HABANA_RUN_ARGS,
)
logger.info(f"Container {container_name} started successfully")
# Start log streaming in a background thread
log_thread = threading.Thread(
target=stream_container_logs,
args=(container, test_name),
daemon=True, # This ensures the thread will be killed when the main program exits
)
log_thread.start()
# Add a small delay to allow container to initialize
time.sleep(2)
# Check container status after creation
status = container.status
logger.debug(f"Initial container status: {status}")
if status not in ["running", "created"]:
logs = container.logs().decode("utf-8")
logger.error(f"Container failed to start properly. Logs:\n{logs}")
yield ContainerLauncherHandle(client, container.name, port)
except Exception as e:
logger.error(f"Error starting container: {str(e)}")
# Get full traceback for debugging
import traceback
logger.error(f"Full traceback:\n{traceback.format_exc()}")
raise
finally:
try:
container = client.containers.get(container_name)
logger.info(f"Stopping container {container_name}")
container.stop()
container.wait()
container_output = container.logs().decode("utf-8")
print(container_output, file=sys.stderr)
container.remove()
logger.info(f"Container {container_name} removed successfully")
except NotFound:
pass
except Exception as e:
logger.warning(f"Error cleaning up container: {str(e)}")
return docker_launcher
@pytest.fixture(scope="module")
def generate_load():
async def generate_load_inner(
client: AsyncClient, prompt: str, max_new_tokens: int, n: int
) -> List[Response]:
try:
futures = [
client.generate(
prompt,
max_new_tokens=max_new_tokens,
decoder_input_details=True,
)
for _ in range(n)
]
return await asyncio.gather(*futures)
except Exception as e:
logger.error(f"Error generating load: {str(e)}")
raise
return generate_load_inner

View File

@ -0,0 +1,2 @@
[pytest]
asyncio_mode = auto

View File

@ -0,0 +1,7 @@
pytest >= 8.3.5
pytest-asyncio >= 0.26.0
docker >= 7.1.0
Levenshtein >= 0.27.1
loguru >= 0.7.3
aiohttp >= 3.11.14
text-generation

View File

@ -0,0 +1,276 @@
from typing import Any, Dict
from text_generation import AsyncClient
import pytest
from Levenshtein import distance as levenshtein_distance
# The "args" config is not optimized for speed but only check that the inference is working for the different models architectures
TEST_CONFIGS = {
"meta-llama/Llama-3.1-8B-Instruct-shared": {
"model_id": "meta-llama/Llama-3.1-8B-Instruct",
"input": "What is Deep Learning?",
"expected_greedy_output": " A Beginners Guide\nDeep learning is a subset of machine learning that involves the use",
"expected_batch_output": " A Beginners Guide\nDeep learning is a subset of machine learning that involves the use",
"args": [
"--sharded",
"true",
"--num-shard",
"8",
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"8",
"--max-batch-prefill-tokens",
"2048",
],
},
"meta-llama/Llama-3.1-8B-Instruct": {
"model_id": "meta-llama/Llama-3.1-8B-Instruct",
"input": "What is Deep Learning?",
"expected_greedy_output": " A Beginners Guide\nDeep learning is a subset of machine learning that involves the use of artificial neural networks to analyze and interpret data. It is a type of",
"expected_batch_output": " A Beginners Guide\nDeep learning is a subset of machine learning that involves the use of artificial neural networks to analyze and interpret data. It is a type of",
"env_config": {},
"args": [
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
"--max-batch-prefill-tokens",
"2048",
],
},
"meta-llama/Llama-2-7b-chat-hf": {
"model_id": "meta-llama/Llama-2-7b-chat-hf",
"input": "What is Deep Learning?",
"expected_greedy_output": "\n\nDeep learning (also known as deep structured learning) is part of a broader family of machine learning techniques based on artificial neural networks\u2014specific",
"expected_batch_output": "\n\nDeep learning (also known as deep structured learning) is part of a broader family of machine learning techniques based on artificial neural networks\u2014specific",
"args": [
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
"--max-batch-prefill-tokens",
"2048",
],
},
"mistralai/Mistral-7B-Instruct-v0.3": {
"model_id": "mistralai/Mistral-7B-Instruct-v0.3",
"input": "What is Deep Learning?",
"expected_greedy_output": "\n\nDeep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured",
"expected_batch_output": "\n\nDeep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured",
"args": [
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
"--max-batch-prefill-tokens",
"2048",
],
},
"bigcode/starcoder2-3b": {
"model_id": "bigcode/starcoder2-3b",
"input": "What is Deep Learning?",
"expected_greedy_output": "\n\nDeep learning is a subset of machine learning that uses artificial neural networks to perform tasks.\n\nNeural networks are a type of machine learning algorithm that",
"expected_batch_output": "\n\nDeep learning is a subset of machine learning that uses artificial neural networks to perform tasks.\n\nNeural networks are a type of machine learning algorithm that",
"args": [
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
"--max-batch-prefill-tokens",
"2048",
],
},
"google/gemma-7b-it": {
"model_id": "google/gemma-7b-it",
"input": "What is Deep Learning?",
"expected_greedy_output": "\n\nDeep learning is a subset of machine learning that uses artificial neural networks to learn from large amounts of data. Neural networks are inspired by the structure and function of",
"expected_batch_output": "\n\nDeep learning is a subset of machine learning that uses artificial neural networks to learn from large amounts of data. Neural networks are inspired by the structure and function of",
"args": [
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
"--max-batch-prefill-tokens",
"2048",
],
},
"Qwen/Qwen2-0.5B-Instruct": {
"model_id": "Qwen/Qwen2-0.5B-Instruct",
"input": "What is Deep Learning?",
"expected_greedy_output": " Deep Learning is a type of machine learning that is based on the principles of artificial neural networks. It is a type of machine learning that is used to train models",
"expected_batch_output": " Deep Learning is a type of machine learning that is based on the principles of artificial neural networks. It is a type of machine learning that is used to train models",
"args": [
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
"--max-batch-prefill-tokens",
"2048",
],
},
"tiiuae/falcon-7b-instruct": {
"model_id": "tiiuae/falcon-7b-instruct",
"input": "What is Deep Learning?",
"expected_greedy_output": "\nDeep learning is a branch of machine learning that uses artificial neural networks to learn and make decisions. It is based on the concept of hierarchical learning, where a",
"expected_batch_output": "\nDeep learning is a branch of machine learning that uses artificial neural networks to learn and make decisions. It is based on the concept of hierarchical learning, where a",
"args": [
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
],
},
"microsoft/phi-1_5": {
"model_id": "microsoft/phi-1_5",
"input": "What is Deep Learning?",
"expected_greedy_output": "\n\nDeep Learning is a subfield of Machine Learning that focuses on building neural networks with multiple layers of interconnected nodes. These networks are designed to learn from large",
"expected_batch_output": "\n\nDeep Learning is a subfield of Machine Learning that focuses on building neural networks with multiple layers of interconnected nodes. These networks are designed to learn from large",
"args": [
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
],
},
"openai-community/gpt2": {
"model_id": "openai-community/gpt2",
"input": "What is Deep Learning?",
"expected_greedy_output": "\n\nDeep learning is a new field of research that has been around for a long time. It is a new field of research that has been around for a",
"expected_batch_output": "\n\nDeep learning is a new field of research that has been around for a long time. It is a new field of research that has been around for a",
"args": [
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
],
},
"facebook/opt-125m": {
"model_id": "facebook/opt-125m",
"input": "What is Deep Learning?",
"expected_greedy_output": "\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout",
"expected_batch_output": "\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout the Author\n\nAbout",
"args": [
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
],
},
"EleutherAI/gpt-j-6b": {
"model_id": "EleutherAI/gpt-j-6b",
"input": "What is Deep Learning?",
"expected_greedy_output": "\n\nDeep learning is a subset of machine learning that is based on the idea of neural networks. Neural networks are a type of artificial intelligence that is inspired by",
"expected_batch_output": "\n\nDeep learning is a subset of machine learning that is based on the idea of neural networks. Neural networks are a type of artificial intelligence that is inspired by",
"args": [
"--max-input-tokens",
"512",
"--max-total-tokens",
"1024",
"--max-batch-size",
"4",
],
},
}
print(f"Testing {len(TEST_CONFIGS)} models")
@pytest.fixture(scope="module", params=TEST_CONFIGS.keys())
def test_config(request) -> Dict[str, Any]:
"""Fixture that provides model configurations for testing."""
test_config = TEST_CONFIGS[request.param]
test_config["test_name"] = request.param
return test_config
@pytest.fixture(scope="module")
def model_id(test_config):
yield test_config["model_id"]
@pytest.fixture(scope="module")
def test_name(test_config):
yield test_config["test_name"]
@pytest.fixture(scope="module")
def expected_outputs(test_config):
return {
"greedy": test_config["expected_greedy_output"],
# "sampling": model_config["expected_sampling_output"],
"batch": test_config["expected_batch_output"],
}
@pytest.fixture(scope="module")
def input(test_config):
return test_config["input"]
@pytest.fixture(scope="module")
def tgi_service(launcher, model_id, test_name):
with launcher(model_id, test_name) as tgi_service:
yield tgi_service
@pytest.fixture(scope="module")
async def tgi_client(tgi_service) -> AsyncClient:
await tgi_service.health(1000)
return tgi_service.client
@pytest.mark.asyncio
async def test_model_single_request(
tgi_client: AsyncClient, expected_outputs: Dict[str, Any], input: str
):
# Bounded greedy decoding without input
response = await tgi_client.generate(
input,
max_new_tokens=32,
)
assert response.details.generated_tokens == 32
assert response.generated_text == expected_outputs["greedy"]
@pytest.mark.asyncio
async def test_model_multiple_requests(
tgi_client, generate_load, expected_outputs, input
):
num_requests = 4
responses = await generate_load(
tgi_client,
input,
max_new_tokens=32,
n=num_requests,
)
assert len(responses) == 4
expected = expected_outputs["batch"]
for r in responses:
assert r.details.generated_tokens == 32
# Compute the similarity with the expectation using the levenshtein distance
# We should not have more than two substitutions or additions
assert levenshtein_distance(r.generated_text, expected) < 3

3014
backends/gaudi/server/poetry.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,45 @@
[tool.poetry]
name = "text-generation-server"
version = "2.0.4"
description = "Text Generation Inference Python gRPC Server"
authors = ["Olivier Dehaene <olivier@huggingface.co>"]
[tool.poetry.scripts]
text-generation-server = 'text_generation_server.cli:app'
[tool.poetry.dependencies]
python = ">=3.9,<3.13"
protobuf = "^5.0"
grpcio = "^1.71.1"
grpcio-status = "*"
grpcio-reflection = "*"
grpc-interceptor = "^0.15.0"
typer = "^0.15.0"
loguru = "^0.7.3"
opentelemetry-api = "^1.32.0"
opentelemetry-exporter-otlp = "^1.32.0"
opentelemetry-instrumentation-grpc = "^0.53b0"
hf-transfer = "^0.1.9"
sentencepiece = "^0.2.0"
peft = "^0.15"
optimum-habana = "1.17"
transformers = "^4.49"
numpy = "^1.26"
accelerate = "^0.33"
outlines= { version = "^0.0.36", optional = true }
prometheus-client = "^0.21.1"
py-cpuinfo = "^9.0.0"
[tool.poetry.group.dev.dependencies]
grpcio-tools = "*"
pytest = "^8.3.5"
[tool.pytest.ini_options]
markers = ["private: marks tests as requiring an admin hf token (deselect with '-m \"not private\"')"]
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
[tool.poetry.requires-plugins]
poetry-plugin-export = ">=1.8"

View File

@ -0,0 +1,101 @@
accelerate==0.33.0 ; python_version >= "3.9" and python_version < "3.13"
annotated-types==0.7.0 ; python_version >= "3.9" and python_version < "3.13"
attrs==25.3.0 ; python_version >= "3.9" and python_version < "3.13"
certifi==2025.1.31 ; python_version >= "3.9" and python_version < "3.13"
charset-normalizer==3.4.1 ; python_version >= "3.9" and python_version < "3.13"
click==8.1.8 ; python_version >= "3.9" and python_version < "3.13"
cloudpickle==3.1.1 ; python_version >= "3.9" and python_version < "3.13"
colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Windows" or python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32"
deprecated==1.2.18 ; python_version >= "3.9" and python_version < "3.13"
diffusers==0.31.0 ; python_version >= "3.9" and python_version < "3.13"
diskcache==5.6.3 ; python_version >= "3.9" and python_version < "3.13"
filelock==3.18.0 ; python_version >= "3.9" and python_version < "3.13"
fsspec==2025.3.2 ; python_version >= "3.9" and python_version < "3.13"
googleapis-common-protos==1.70.0 ; python_version >= "3.9" and python_version < "3.13"
grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13"
grpcio-reflection==1.71.0 ; python_version >= "3.9" and python_version < "3.13"
grpcio-status==1.71.0 ; python_version >= "3.9" and python_version < "3.13"
grpcio==1.72.0rc1 ; python_version >= "3.9" and python_version < "3.13"
hf-transfer==0.1.9 ; python_version >= "3.9" and python_version < "3.13"
huggingface-hub==0.30.2 ; python_version >= "3.9" and python_version < "3.13"
idna==3.10 ; python_version >= "3.9" and python_version < "3.13"
importlib-metadata==8.6.1 ; python_version >= "3.9" and python_version < "3.13"
interegular==0.3.3 ; python_version >= "3.9" and python_version < "3.13"
jinja2==3.1.6 ; python_version >= "3.9" and python_version < "3.13"
joblib==1.4.2 ; python_version >= "3.9" and python_version < "3.13"
jsonschema-specifications==2024.10.1 ; python_version >= "3.9" and python_version < "3.13"
jsonschema==4.23.0 ; python_version >= "3.9" and python_version < "3.13"
lark==1.2.2 ; python_version >= "3.9" and python_version < "3.13"
llvmlite==0.43.0 ; python_version >= "3.9" and python_version < "3.13"
loguru==0.7.3 ; python_version >= "3.9" and python_version < "3.13"
markdown-it-py==3.0.0 ; python_version >= "3.9" and python_version < "3.13"
markupsafe==3.0.2 ; python_version >= "3.9" and python_version < "3.13"
mdurl==0.1.2 ; python_version >= "3.9" and python_version < "3.13"
mpmath==1.3.0 ; python_version >= "3.9" and python_version < "3.13"
nest-asyncio==1.6.0 ; python_version >= "3.9" and python_version < "3.13"
networkx==3.2.1 ; python_version >= "3.9" and python_version < "3.13"
numba==0.60.0 ; python_version >= "3.9" and python_version < "3.13"
numpy==1.26.4 ; python_version >= "3.9" and python_version < "3.13"
nvidia-cublas-cu12==12.4.5.8 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cuda-cupti-cu12==12.4.127 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cuda-nvrtc-cu12==12.4.127 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cuda-runtime-cu12==12.4.127 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cudnn-cu12==9.1.0.70 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cufft-cu12==11.2.1.3 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-curand-cu12==10.3.5.147 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cusolver-cu12==11.6.1.9 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cusparse-cu12==12.3.1.170 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cusparselt-cu12==0.6.2 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-nccl-cu12==2.21.5 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-nvjitlink-cu12==12.4.127 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
nvidia-nvtx-cu12==12.4.127 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
opentelemetry-api==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-common==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-grpc==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-http==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-instrumentation-grpc==0.53b0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-instrumentation==0.53b0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-proto==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-sdk==1.32.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-semantic-conventions==0.53b0 ; python_version >= "3.9" and python_version < "3.13"
optimum-habana==1.17.0 ; python_version >= "3.9" and python_version < "3.13"
optimum==1.24.0 ; python_version >= "3.9" and python_version < "3.13"
outlines==0.0.36 ; python_version >= "3.9" and python_version < "3.13"
packaging==24.2 ; python_version >= "3.9" and python_version < "3.13"
peft==0.15.1 ; python_version >= "3.9" and python_version < "3.13"
pillow==11.2.1 ; python_version >= "3.9" and python_version < "3.13"
prometheus-client==0.21.1 ; python_version >= "3.9" and python_version < "3.13"
protobuf==5.29.4 ; python_version >= "3.9" and python_version < "3.13"
psutil==7.0.0 ; python_version >= "3.9" and python_version < "3.13"
py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13"
pydantic-core==2.33.1 ; python_version >= "3.9" and python_version < "3.13"
pydantic==2.11.3 ; python_version >= "3.9" and python_version < "3.13"
pygments==2.19.1 ; python_version >= "3.9" and python_version < "3.13"
pyyaml==6.0.2 ; python_version >= "3.9" and python_version < "3.13"
referencing==0.36.2 ; python_version >= "3.9" and python_version < "3.13"
regex==2024.11.6 ; python_version >= "3.9" and python_version < "3.13"
requests==2.32.3 ; python_version >= "3.9" and python_version < "3.13"
rich==14.0.0 ; python_version >= "3.9" and python_version < "3.13"
rpds-py==0.24.0 ; python_version >= "3.9" and python_version < "3.13"
safetensors==0.5.3 ; python_version >= "3.9" and python_version < "3.13"
scikit-learn==1.6.1 ; python_version >= "3.9" and python_version < "3.13"
scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13"
sentence-transformers==3.3.1 ; python_version >= "3.9" and python_version < "3.13"
sentencepiece==0.2.0 ; python_version >= "3.9" and python_version < "3.13"
setuptools==78.1.0 ; python_version >= "3.12" and python_version < "3.13"
shellingham==1.5.4 ; python_version >= "3.9" and python_version < "3.13"
sympy==1.13.1 ; python_version >= "3.9" and python_version < "3.13"
threadpoolctl==3.6.0 ; python_version >= "3.9" and python_version < "3.13"
tokenizers==0.21.1 ; python_version >= "3.9" and python_version < "3.13"
torch==2.6.0 ; python_version >= "3.9" and python_version < "3.13"
tqdm==4.67.1 ; python_version >= "3.9" and python_version < "3.13"
transformers==4.49.0 ; python_version >= "3.9" and python_version < "3.13"
triton==3.2.0 ; python_version >= "3.9" and python_version < "3.13" and platform_system == "Linux" and platform_machine == "x86_64"
typer==0.15.2 ; python_version >= "3.9" and python_version < "3.13"
typing-extensions==4.13.2 ; python_version >= "3.9" and python_version < "3.13"
typing-inspection==0.4.0 ; python_version >= "3.9" and python_version < "3.13"
urllib3==2.4.0 ; python_version >= "3.9" and python_version < "3.13"
win32-setctime==1.2.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32"
wrapt==1.17.2 ; python_version >= "3.9" and python_version < "3.13"
zipp==3.21.0 ; python_version >= "3.9" and python_version < "3.13"

View File

@ -0,0 +1,13 @@
# Origin: https://github.com/predibase/lorax
# Path: lorax/server/lorax_server/adapters/__init__.py
# License: Apache License Version 2.0, January 2004
from text_generation_server.adapters.weights import (
AdapterBatchData,
AdapterBatchMetadata,
)
__all__ = [
"AdapterBatchData",
"AdapterBatchMetadata",
]

View File

@ -0,0 +1,30 @@
# Origin: https://github.com/predibase/lorax
# Path: lorax/server/lorax_server/adapters/config.py
# License: Apache License Version 2.0, January 2004
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Dict, Set, Tuple
import torch
from text_generation_server.adapters.weights import AdapterWeights
@dataclass
class ModuleMap:
module_name: str
module_weights: Dict[str, Tuple[torch.Tensor, str]]
@dataclass
class AdapterConfig(ABC):
base_model_name_or_path: str
@abstractmethod
def map_weights_for_model(
self,
adapter_weights: Dict[int, AdapterWeights],
weight_names: Tuple[str],
) -> Tuple[ModuleMap, Set[str]]:
pass

View File

@ -0,0 +1,471 @@
# Origin: https://github.com/predibase/lorax
# Path: lorax/server/lorax_server/adapters/lora.py
# License: Apache License Version 2.0, January 2004
from collections import defaultdict
from dataclasses import dataclass
from typing import Dict, List, Optional, Set, Tuple, Type, Union
import torch
from peft import LoraConfig as _LoraConfig
from torch.distributed import ProcessGroup
from text_generation_server.adapters.config import AdapterConfig, ModuleMap
from text_generation_server.adapters.weights import (
AdapterBatchMetadata,
AdapterWeights,
BatchAdapterWeights,
)
from text_generation_server.utils.sgmv import (
BGMV_MAX_RANK,
MAX_RANK_CUSTOM,
get_tmp_tensors,
orient_for_rank,
pad_rank,
use_cutlass_shrink,
)
def get_start_stop_idxs_for_rank(offset, size, rank, world_size):
block_size = size // world_size
start = offset + rank * block_size
stop = offset + (rank + 1) * block_size
return start, stop
def shard_on_dim(
t: torch.Tensor, dim: int, process_group: torch.distributed.ProcessGroup
):
world_size = process_group.size()
rank = process_group.rank()
size = t.shape[dim]
start, stop = get_start_stop_idxs_for_rank(0, size, rank, world_size)
if dim == 0:
tensor = t[start:stop]
elif dim == 1:
tensor = t[:, start:stop]
else:
raise NotImplementedError("Let's make that generic when needed")
return tensor
def shard_lora_weights(
weights_a: List[torch.Tensor],
weights_b: List[torch.Tensor],
split_dim: int,
process_group: ProcessGroup,
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
# [hidden_size, r]
weights_a = [
shard_on_dim(w, dim=split_dim, process_group=process_group) for w in weights_a
]
# [r, hidden_size]
weights_b = [shard_on_dim(w, dim=1, process_group=process_group) for w in weights_b]
return weights_a, weights_b
@dataclass
class LoraConfig(AdapterConfig):
r: int
target_modules: Optional[Union[List[str], str]]
fan_in_fan_out: bool
lora_alpha: int
use_rslora: bool
def map_weights_for_model(
self,
adapter_weights: Dict[int, AdapterWeights],
weight_names: Tuple[str],
) -> Tuple[ModuleMap, Set[str]]:
adapter_weight_names = set()
module_map = {}
for weight_name in weight_names:
lora_a_name = f"base_model.model.{weight_name}.lora_A.weight"
lora_b_name = f"base_model.model.{weight_name}.lora_B.weight"
if lora_a_name not in adapter_weights or lora_b_name not in adapter_weights:
continue
module_map[weight_name] = {
"lora_A": (adapter_weights[lora_a_name], lora_a_name),
"lora_B": (adapter_weights[lora_b_name], lora_b_name),
}
adapter_weight_names.add(lora_a_name)
adapter_weight_names.add(lora_b_name)
return module_map, adapter_weight_names
@classmethod
def load(cls, adapter_id: str, api_token: str) -> "LoraConfig":
hf_config = _LoraConfig.from_pretrained(adapter_id, token=api_token)
return cls(
base_model_name_or_path=hf_config.base_model_name_or_path,
r=hf_config.r,
target_modules=hf_config.target_modules,
fan_in_fan_out=hf_config.fan_in_fan_out,
lora_alpha=hf_config.lora_alpha,
use_rslora=(
hf_config.use_rslora if hasattr(hf_config, "use_rslora") else False
),
)
class LoraWeights(AdapterWeights):
"""LoRA weights for a single adapter merged across all layers."""
def __init__(
self,
weights_a: List[torch.Tensor],
weights_b: List[torch.Tensor],
adapter_config: LoraConfig,
):
self.lora_a_r = weights_a[0].size(1) if len(weights_a) > 0 else 1
self.lora_b_r = weights_b[0].size(0) if len(weights_a) > 0 else 1
self._use_cutlass_shrink = use_cutlass_shrink(self.lora_a_r)
self._is_transposed = False
# [num_layers, hidden_size, r]
weights_a = [orient_for_rank(w, w.size(1)).contiguous() for w in weights_a]
self._weights_a = torch.stack(weights_a)
# [num_layers, r, hidden_size]
self._weights_b = torch.stack(weights_b)
self.adapter_config = adapter_config
@property
def weights_a(self) -> torch.Tensor:
if self._is_transposed:
self._transpose_weights()
return self._weights_a
@property
def weights_b(self) -> torch.Tensor:
if self._is_transposed:
self._transpose_weights()
return self._weights_b
@property
def weights_a_t(self) -> torch.Tensor:
if not self._is_transposed:
self._transpose_weights()
return self._weights_a
@property
def weights_b_t(self) -> torch.Tensor:
if not self._is_transposed:
self._transpose_weights()
return self._weights_b
def _transpose_weights(self):
if self._use_cutlass_shrink:
# If we're not using the cutlass shrink, then both SGMV and BGMV use the same orientation
self._weights_a = self._weights_a.transpose(1, 2).contiguous()
self._weights_b = self._weights_b.transpose(1, 2).contiguous()
self._is_transposed = not self._is_transposed
@classmethod
def get_batch_types(cls) -> List[Type[BatchAdapterWeights]]:
return [BatchLoraWeights]
# prepare pre-loaded lora weights for use in the model.
#
# this method processes and organizes lora weights for a specific layer type across all layers:
# - uses `config` (LoraConfig) to apply lora-specific settings like scaling factor.
# - retrieves weights from `module_map` based on the `layer_type`.
# - processes `nlayers` number of layers.
# - converts weights to the specified `dtype`.
# - shards weights across `world_size` number of processes using the `process_group`.
# - maps weights to specific layers using `target_to_layer`.
# - tracks `unused_weight_names` to identify any unused weights.
#
# the method handles weight transposition, scaling, and padding to ensure compatibility
# with SGMV or BGMV operations.
@classmethod
def prepare_weights(
cls,
config: LoraConfig,
module_map: Dict[str, Dict],
layer_type: str,
unused_weight_names: Set[str],
nlayers: int,
dtype: torch.dtype,
world_size: int,
process_group: ProcessGroup,
target_to_layer: Dict[str, Tuple[str, torch.Tensor]],
) -> Optional[AdapterWeights]:
lora_a_list = [None] * nlayers
lora_b_list = [None] * nlayers
for layer_id in range(nlayers):
key = (layer_id, layer_type)
weight_name, layer = target_to_layer[key]
base_weight = layer.base_layer.linear.weight
base_device = base_weight.device
if weight_name not in module_map:
# There is no LoRA weight for this layer type in the adapter
return None
lora_a, lora_a_name = module_map[weight_name]["lora_A"]
lora_a = lora_a.to(base_device, dtype)
lora_b, lora_b_name = module_map[weight_name]["lora_B"]
lora_b = lora_b.to(base_device, dtype)
scale = get_scaling_factor(
config.lora_alpha,
config.r,
uses_rslora=config.use_rslora,
)
unused_weight_names.discard(lora_a_name)
unused_weight_names.discard(lora_b_name)
# Merge scaling factor into lora_b due to associativity of matrix multiplication:
# (A * B) * C = A * (B * C)
lora_a_list[layer_id] = lora_a.transpose(0, 1)
lora_b_list[layer_id] = lora_b.transpose(0, 1) * scale
# pad lora ranks to be compatible with sgmv
lora_a_list = [pad_rank(w, dim=1, world_size=world_size) for w in lora_a_list]
lora_b_list = [pad_rank(w, dim=0, world_size=world_size) for w in lora_b_list]
if lora_a_list:
# update rank if it was padded
padded_rank = lora_a_list[0].size(1)
config.r = padded_rank
return LoraWeights(
*shard_lora_weights(
weights_a=lora_a_list,
weights_b=lora_b_list,
split_dim=0 if layer_type in {"o_proj", "down_proj", "lm_head"} else 1,
process_group=process_group,
),
config,
)
@dataclass
class RankSegments:
rank: int
lora_a_ptr: torch.Tensor
lora_b_ptr: torch.Tensor
# prefill (sgmv)
tmp_shrink: torch.Tensor
tmp_expand: torch.Tensor
segment_starts: torch.Tensor
segment_ends: torch.Tensor
# decode (bgmv)
indices: torch.Tensor
@dataclass
class BatchLoraWeights(BatchAdapterWeights):
lora_a: Dict[int, torch.Tensor]
lora_b: Dict[int, torch.Tensor]
adapter_index_configs: Dict[int, LoraConfig]
rank_data: Dict[int, RankSegments]
use_sgmv: bool
def has_adapter(self, adapter_index: int) -> bool:
return adapter_index in self.adapter_index_configs
def can_vectorize(self, pg: ProcessGroup) -> bool:
return all(
rank_data.rank // pg.size() <= MAX_RANK_CUSTOM
for rank_data in self.rank_data.values()
)
@classmethod
def load(
self,
adapter_weights: Dict[int, AdapterWeights],
meta: AdapterBatchMetadata,
prefill: bool,
prefill_head_indices: Optional[torch.Tensor],
) -> Optional["BatchLoraWeights"]:
adapter_weights = {k: _convert_lora(v) for k, v in adapter_weights.items()}
adapter_weights = {
k: v for k, v in adapter_weights.items() if isinstance(v, LoraWeights)
}
if not adapter_weights:
return None
first_weights = next(iter(adapter_weights.values()))
device = first_weights.weights_a.device
segment_indices = meta.segment_indices
lora_a = {
idx: adapter_weights[idx].weights_a
for idx in segment_indices
if idx in adapter_weights
}
lora_b = {
idx: adapter_weights[idx].weights_b
for idx in segment_indices
if idx in adapter_weights
}
max_rank = max(
(
adapter_weights[idx].lora_a_r
for idx in segment_indices
if idx in adapter_weights
),
default=0,
)
if prefill or max_rank > BGMV_MAX_RANK:
use_sgmv = True
lora_a_ptr = torch.tensor(
[
(
adapter_weights[idx].weights_a.data_ptr()
if idx in adapter_weights
else 0
)
for idx in segment_indices
],
dtype=torch.int64,
device=device,
)
lora_b_ptr = torch.tensor(
[
(
adapter_weights[idx].weights_b.data_ptr()
if idx in adapter_weights
else 0
)
for idx in segment_indices
],
dtype=torch.int64,
device=device,
)
else:
use_sgmv = False
lora_a_ptr = torch.tensor(
[
(
adapter_weights[idx].weights_a_t.data_ptr()
if idx in adapter_weights
else 0
)
for idx in segment_indices
],
dtype=torch.int64,
device=device,
)
lora_b_ptr = torch.tensor(
[
(
adapter_weights[idx].weights_b_t.data_ptr()
if idx in adapter_weights
else 0
)
for idx in segment_indices
],
dtype=torch.int64,
device=device,
)
adapter_index_configs = {
idx: adapter_weights[idx].adapter_config
for idx in segment_indices
if idx in adapter_weights
}
adapter_to_segment = {v: k for k, v in enumerate(segment_indices)}
rank_indices = defaultdict(list)
for segment_idx, adapter_idx in enumerate(segment_indices):
if adapter_idx not in adapter_weights:
continue
rank_indices[adapter_weights[adapter_idx].lora_a_r].append(segment_idx)
if prefill_head_indices is not None:
j, prefill_head_segment_starts, prefill_head_segment_ends = 1, [0], [0]
for head_index in prefill_head_indices:
# j cannot go out of bounds as that would mean there are tokens without corresponding adapters
if head_index < meta.adapter_segments[j]:
prefill_head_segment_ends[-1] += 1
else:
prefill_head_segment_starts.append(prefill_head_segment_ends[-1])
prefill_head_segment_ends.append(prefill_head_segment_ends[-1] + 1)
j += 1
rank_data = {}
for rank, indices in rank_indices.items():
tmp_shrink = None
tmp_expand = None
segment_starts = None
segment_ends = None
batch_indices = None
if use_sgmv:
lora_a_ptr_indices = lora_a_ptr[indices]
tmp_shrink, tmp_expand = get_tmp_tensors(
lora_a_ptr_indices.size(0), rank, device
)
segment_starts = meta.adapter_segments[indices]
segment_ends = meta.adapter_segments[[i + 1 for i in indices]]
if prefill_head_indices is not None:
for i, segment_index in enumerate(indices):
segment_starts[i] = prefill_head_segment_starts[segment_index]
segment_ends[i] = prefill_head_segment_ends[segment_index]
else:
rank_indices = set(indices)
batch_indices = [
adapter_to_segment[idx] for idx in meta.adapter_indices.tolist()
]
batch_indices = [
idx if idx in rank_indices else -1 for idx in batch_indices
]
batch_indices = torch.tensor(
batch_indices, dtype=torch.int64, device=device
)
rank_data[rank] = RankSegments(
rank=rank,
tmp_shrink=tmp_shrink,
tmp_expand=tmp_expand,
lora_a_ptr=lora_a_ptr[indices],
lora_b_ptr=lora_b_ptr[indices],
segment_starts=segment_starts,
segment_ends=segment_ends,
indices=batch_indices,
)
return BatchLoraWeights(
lora_a=lora_a,
lora_b=lora_b,
adapter_index_configs=adapter_index_configs,
rank_data=rank_data,
use_sgmv=use_sgmv,
)
def get_scaling_factor(
lora_alpha: int,
r: int,
uses_rslora: bool = False,
) -> float:
"""Computes the scaling factor for the lora weights."""
if uses_rslora:
return lora_alpha / (r**0.5)
return lora_alpha / r
def _convert_lora(v: AdapterWeights) -> AdapterWeights:
if hasattr(v, "lora_weights"):
return v.lora_weights
return v

View File

@ -0,0 +1,146 @@
# Origin: https://github.com/predibase/lorax
# Path: lorax/server/lorax_server/adapters/weights.py
# License: Apache License Version 2.0, January 2004
from abc import ABC, abstractclassmethod
from collections import defaultdict
from dataclasses import dataclass
from typing import Dict, List, Optional, Set, Type
import torch
@dataclass
class AdapterBatchMetadata:
# [batch_size]
adapter_indices: torch.Tensor
# [num_adapters]
adapter_set: Set[int]
# [num_segments + 1]
adapter_segments: torch.Tensor
# [num_segments]
# maps from segment index to adapter index, i.e.:
# segment_indices[s] == adapter_indices[i]
segment_indices: List[int]
class AdapterWeights(ABC):
@abstractclassmethod
def get_batch_types(cls) -> List[Type["BatchAdapterWeights"]]:
pass
@property
def speculative_tokens(self) -> int:
return 0
class BatchAdapterWeights(ABC):
@abstractclassmethod
def has_adapter(self, adapter_index: int) -> bool:
pass
@abstractclassmethod
def load(
cls,
adapter_weights: Dict[int, AdapterWeights],
meta: "AdapterBatchMetadata",
prefill: bool,
prefill_head_indices: torch.Tensor,
) -> Optional["BatchAdapterWeights"]:
pass
class LayerAdapterWeights:
"""Adapter weights that apply to a particular layer."""
def __init__(self):
self.adapter_weights: Dict[int, AdapterWeights] = {}
def add_adapter(self, adapter_idx: int, weights: AdapterWeights):
self.adapter_weights[adapter_idx] = weights
def remove_adapter(self, adapter_idx: int):
if adapter_idx not in self.adapter_weights:
return
del self.adapter_weights[adapter_idx]
def is_empty(self) -> bool:
return len(self.adapter_weights) == 0
def get_data(
self,
meta: AdapterBatchMetadata,
prefill: bool,
prefill_head_indices: Optional[torch.Tensor],
) -> Dict[str, BatchAdapterWeights]:
# bucket adapters by batch class
adapter_batch_types: Dict[
Type[BatchAdapterWeights], Dict[int, AdapterWeights]
] = defaultdict(dict)
for adapter_index, adapter_weights in self.adapter_weights.items():
for batch_type in adapter_weights.get_batch_types():
adapter_batch_types[batch_type][adapter_index] = adapter_weights
batch_data = {}
for batch_type, adapter_weights in adapter_batch_types.items():
batched_weights = batch_type.load(
adapter_weights, meta, prefill, prefill_head_indices
)
if batched_weights is not None:
batch_data = batched_weights
return batch_data
@dataclass
class AdapterBatchData:
meta: AdapterBatchMetadata
# layer type -> adapter type -> batch weight data
data: Dict[str, Dict[str, BatchAdapterWeights]]
prefill: bool
@staticmethod
def from_meta(
meta: AdapterBatchMetadata,
weights: Dict[str, LayerAdapterWeights],
prefill: bool,
prefill_head_indices: Optional[torch.Tensor],
) -> "AdapterBatchData":
data = {}
for k, v in weights.items():
if v.is_empty():
continue
data[k] = v.get_data(
meta, prefill, prefill_head_indices if k == "lm_head" else None
)
return AdapterBatchData(meta=meta, data=data, prefill=prefill)
def ranks(self) -> Set[int]:
# TODO(travis): refactor to be less coupled to lora implementation
ranks = set()
for lora_data in self.data.values():
if lora_data is None:
continue
for rank_data in lora_data.rank_data.values():
ranks.add(rank_data.rank)
return ranks
def layer_names(self) -> Set[str]:
return set(self.data.keys())
def adapter_keys(self) -> Set[str]:
adapter_keys = set()
for layer_data in self.data.values():
adapter_keys.update(layer_data.keys())
return adapter_keys
@property
def max_rank(self) -> int:
ranks = self.ranks()
return max(ranks) if len(ranks) > 0 else 0

View File

@ -0,0 +1,34 @@
import torch
from typing import Dict, Optional, TypeVar
from text_generation_server.models.types import Batch
B = TypeVar("B", bound=Batch)
class Cache:
def __init__(self):
self.cache: Dict[int, B] = {}
def pop(self, batch_id: int) -> Optional[B]:
return self.cache.pop(batch_id, None)
def set(self, entry: B):
if entry is not None:
self.cache[entry.batch_id] = entry
def delete(self, batch_id: int):
batch = self.pop(batch_id)
if batch is not None:
del batch
if torch.cuda.is_available():
torch.cuda.empty_cache()
def clear(self):
keys = list(self.cache.keys())
for k in keys:
self.delete(k)
def __len__(self):
return len(self.cache.keys())

View File

@ -0,0 +1,426 @@
import os
import psutil
import signal
import sys
import typer
from pathlib import Path
from loguru import logger
from typing import Optional
from enum import Enum
from huggingface_hub import hf_hub_download
from text_generation_server.utils.adapter import parse_lora_adapters
app = typer.Typer()
class Quantization(str, Enum):
gptq = "gptq"
awq = "awq"
fp8 = "fp8"
class Dtype(str, Enum):
float16 = "float16"
bloat16 = "bfloat16"
@app.command()
def serve(
model_id: str,
revision: Optional[str] = None,
sharded: bool = False,
quantize: Optional[Quantization] = None,
speculate: Optional[int] = None,
dtype: Optional[Dtype] = None,
trust_remote_code: bool = False,
uds_path: Path = "/tmp/text-generation-server",
logger_level: str = "INFO",
json_output: bool = False,
otlp_endpoint: Optional[str] = None,
otlp_service_name: str = "text-generation-inference.server",
max_input_tokens: Optional[int] = None,
):
if sharded:
# assert (
# os.getenv("RANK", None) is not None
# ), "RANK must be set when sharded is True"
assert (
os.getenv("WORLD_SIZE", None) is not None
), "WORLD_SIZE must be set when sharded is True"
assert (
os.getenv("MASTER_ADDR", None) is not None
), "MASTER_ADDR must be set when sharded is True"
assert (
os.getenv("MASTER_PORT", None) is not None
), "MASTER_PORT must be set when sharded is True"
# Remove default handler
logger.remove()
logger.add(
sys.stdout,
format="{message}",
filter="text_generation_server",
level=logger_level,
serialize=json_output,
backtrace=True,
diagnose=False,
)
# Import here after the logger is added to log potential import exceptions
from text_generation_server import server
from text_generation_server.tracing import setup_tracing
# Setup OpenTelemetry distributed tracing
if otlp_endpoint is not None:
setup_tracing(otlp_service_name=otlp_service_name, otlp_endpoint=otlp_endpoint)
lora_adapters = parse_lora_adapters(os.getenv("LORA_ADAPTERS"))
# TODO: enable lora with cuda graphs. for now disable cuda graphs if lora is enabled
# and warn the user
if lora_adapters:
logger.warning("LoRA adapters enabled (experimental feature).")
if "CUDA_GRAPHS" in os.environ:
logger.warning(
"LoRA adapters incompatible with CUDA Graphs. Disabling CUDA Graphs."
)
global CUDA_GRAPHS
CUDA_GRAPHS = None
# Downgrade enum into str for easier management later on
quantize = None if quantize is None else quantize.value
dtype = "bfloat16" if dtype is None else dtype.value
logger.info(f"quantize={quantize}")
if dtype is not None and quantize not in {
None,
"bitsandbytes",
"bitsandbytes-nf4",
"bitsandbytes-fp4",
"gptq",
"awq",
"fp8",
}:
raise RuntimeError(
"Only 1 can be set between `dtype` and `quantize`, as they both decide how goes the final model."
)
logger.info("CLI SHARDED = {} DTYPE = {}".format(sharded, dtype))
if sharded and os.getenv("ATTENTION", "default") not in {"paged"}:
tgi_file = Path(__file__).resolve().parent / "tgi_service.py"
num_shard = int(os.getenv("WORLD_SIZE", "1"))
logger.info("CLI SHARDED = {}".format(num_shard))
import subprocess
cmd = (
f"deepspeed --num_nodes 1 --num_gpus {num_shard} --no_local_rank {tgi_file}"
)
cmd += f" --model_id {model_id} --revision {revision} --sharded {sharded}"
cmd += f" --dtype {dtype} --trust_remote_code {trust_remote_code} --uds_path {uds_path}"
cmd += f" --quantize {quantize} --max_input_tokens {max_input_tokens}"
if speculate is not None:
cmd += f"--speculate {speculate}"
logger.info("CLI server start deepspeed ={} ".format(cmd))
sys.stdout.flush()
sys.stderr.flush()
with subprocess.Popen(cmd, shell=True, executable="/bin/bash") as proc:
do_terminate = False
current_handler = signal.getsignal(signal.SIGTERM)
def terminate_handler(sig, frame):
nonlocal do_terminate
do_terminate = True
if callable(current_handler):
current_handler(sig, frame)
signal.signal(signal.SIGTERM, terminate_handler)
finished = False
while not finished:
try:
if do_terminate:
parent = psutil.Process(proc.pid)
all_procs = parent.children(recursive=True) + [parent]
for p in all_procs:
try:
p.terminate()
except psutil.NoSuchProcess:
pass
_, alive = psutil.wait_procs(all_procs, timeout=30)
for p in alive:
p.kill()
do_terminate = False
proc.wait(timeout=3)
except subprocess.TimeoutExpired:
pass
else:
finished = True
sys.stdout.flush()
sys.stderr.flush()
if proc.returncode != 0:
logger.error(f"{cmd} exited with status = {proc.returncode}")
return proc.returncode
else:
server.serve(
model_id,
lora_adapters,
revision,
sharded,
quantize,
speculate,
dtype,
trust_remote_code,
uds_path,
max_input_tokens,
)
@app.command()
def download_weights(
model_id: str,
revision: Optional[str] = None,
extension: str = ".safetensors",
auto_convert: bool = True,
logger_level: str = "INFO",
json_output: bool = False,
trust_remote_code: bool = False,
merge_lora: bool = False,
):
# Remove default handler
logger.remove()
logger.add(
sys.stdout,
format="{message}",
filter="text_generation_server",
level=logger_level,
serialize=json_output,
backtrace=True,
diagnose=False,
)
# Import here after the logger is added to log potential import exceptions
from text_generation_server import utils
# Test if files were already download
try:
utils.weight_files(model_id, revision, extension)
logger.info("Files are already present on the host. " "Skipping download.")
return
# Local files not found
except (utils.LocalEntryNotFoundError, FileNotFoundError, utils.EntryNotFoundError):
pass
is_local_model = (Path(model_id).exists() and Path(model_id).is_dir()) or os.getenv(
"WEIGHTS_CACHE_OVERRIDE", None
) is not None
if not is_local_model:
# TODO: maybe reverse the default value of merge_lora?
# currently by default we don't merge the weights with the base model
if merge_lora:
try:
hf_hub_download(
model_id, revision=revision, filename="adapter_config.json"
)
utils.download_and_unload_peft(
model_id, revision, trust_remote_code=trust_remote_code
)
is_local_model = True
utils.weight_files(model_id, revision, extension)
return
except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
pass
else:
try:
utils.peft.download_peft(
model_id, revision, trust_remote_code=trust_remote_code
)
except Exception:
pass
try:
import json
config = hf_hub_download(
model_id, revision=revision, filename="config.json"
)
with open(config, "r") as f:
config = json.load(f)
base_model_id = config.get("base_model_name_or_path", None)
if base_model_id and base_model_id != model_id:
try:
logger.info(f"Downloading parent model {base_model_id}")
download_weights(
model_id=base_model_id,
revision="main",
extension=extension,
auto_convert=auto_convert,
logger_level=logger_level,
json_output=json_output,
trust_remote_code=trust_remote_code,
)
except Exception:
pass
except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
pass
# Try to download weights from the hub
try:
filenames = utils.weight_hub_files(model_id, revision, extension)
utils.download_weights(filenames, model_id, revision)
# Successfully downloaded weights
return
# No weights found on the hub with this extension
except utils.EntryNotFoundError as e:
# Check if we want to automatically convert to safetensors or if we can use .bin weights instead
if not extension == ".safetensors" or not auto_convert:
raise e
elif (Path(model_id) / "adapter_config.json").exists():
# Try to load as a local PEFT model
try:
utils.download_and_unload_peft(
model_id, revision, trust_remote_code=trust_remote_code
)
utils.weight_files(model_id, revision, extension)
return
except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
pass
elif (Path(model_id) / "config.json").exists():
# Try to load as a local Medusa model
try:
import json
config = Path(model_id) / "config.json"
with open(config, "r") as f:
config = json.load(f)
base_model_id = config.get("base_model_name_or_path", None)
if base_model_id:
try:
logger.info(f"Downloading parent model {base_model_id}")
download_weights(
model_id=base_model_id,
revision="main",
extension=extension,
auto_convert=auto_convert,
logger_level=logger_level,
json_output=json_output,
trust_remote_code=trust_remote_code,
)
except Exception:
pass
except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
pass
# Try to see if there are local pytorch weights
try:
# Get weights for a local model, a hub cached model and inside the WEIGHTS_CACHE_OVERRIDE
try:
local_pt_files = utils.weight_files(model_id, revision, ".bin")
except Exception:
local_pt_files = utils.weight_files(model_id, revision, ".pt")
# No local pytorch weights
except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
if extension == ".safetensors":
logger.warning(
f"No safetensors weights found for model {model_id} at revision {revision}. "
f"Downloading PyTorch weights."
)
# Try to see if there are pytorch weights on the hub
pt_filenames = utils.weight_hub_files(model_id, revision, ".bin")
# Download pytorch weights
local_pt_files = utils.download_weights(pt_filenames, model_id, revision)
if auto_convert:
if not trust_remote_code:
logger.warning(
"🚨🚨BREAKING CHANGE in 2.0🚨🚨: Safetensors conversion is disabled without `--trust-remote-code` because "
"Pickle files are unsafe and can essentially contain remote code execution!"
"Please check for more information here: https://huggingface.co/docs/text-generation-inference/basic_tutorials/safety",
)
logger.warning(
f"No safetensors weights found for model {model_id} at revision {revision}. "
f"Converting PyTorch weights to safetensors."
)
# Safetensors final filenames
local_st_files = [
p.parent / f"{p.stem.lstrip('pytorch_')}.safetensors"
for p in local_pt_files
]
try:
import transformers
import json
if is_local_model:
config_filename = os.path.join(model_id, "config.json")
else:
config_filename = hf_hub_download(
model_id, revision=revision, filename="config.json"
)
with open(config_filename, "r") as f:
config = json.load(f)
architecture = config["architectures"][0]
class_ = getattr(transformers, architecture)
# Name for this varible depends on transformers version.
discard_names = getattr(class_, "_tied_weights_keys", [])
except Exception:
discard_names = []
# Convert pytorch weights to safetensors
utils.convert_files(local_pt_files, local_st_files, discard_names)
@app.command()
def quantize(
model_id: str,
output_dir: str,
revision: Optional[str] = None,
logger_level: str = "INFO",
json_output: bool = False,
trust_remote_code: bool = False,
upload_to_model_id: Optional[str] = None,
percdamp: float = 0.01,
act_order: bool = False,
groupsize: int = 128,
):
if revision is None:
revision = "main"
download_weights(
model_id=model_id,
revision=revision,
logger_level=logger_level,
json_output=json_output,
)
from text_generation_server.layers.gptq.quantize import quantize
quantize(
model_id=model_id,
bits=4,
groupsize=groupsize,
output_dir=output_dir,
revision=revision,
trust_remote_code=trust_remote_code,
upload_to_model_id=upload_to_model_id,
percdamp=percdamp,
act_order=act_order,
sym=True,
)
if __name__ == "__main__":
app()

View File

@ -0,0 +1,53 @@
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
import os
import habana_frameworks.torch as htorch
quant_config = os.getenv("QUANT_CONFIG", "")
is_quantization_enabled = quant_config != ""
if is_quantization_enabled:
os.environ.setdefault("ENABLE_EXPERIMENTAL_FLAGS", "true")
os.environ.setdefault("USE_DEFAULT_QUANT_PARAM", "true")
os.environ.setdefault("UPDATE_GRAPH_OUTPUT_MME", "false")
os.environ.setdefault("ENABLE_CALC_DYNAMIC_RANGE", "false")
os.environ.setdefault("UPDATE_MME_OUTPUT_PRECISION_FILTER", "v_proj,matmul_av")
os.environ.setdefault("EXPERIMENTAL_WEIGHT_SHARING", "FALSE")
def patch_scoped_linear_all_reduce(model):
from deepspeed.module_inject.layers import LinearAllreduce
from optimum.habana.transformers.models.modeling_all_models import (
ScopedLinearAllReduce,
)
for name, module in model.named_children():
if type(module) is LinearAllreduce:
SL = ScopedLinearAllReduce(mod=module)
setattr(model, name, SL)
patch_scoped_linear_all_reduce(module)
def setup_quantization(model):
if is_quantization_enabled:
htorch.core.quantization._mark_params_as_const(model)
htorch.core.quantization._check_params_as_const(model)
htorch.core.hpu_initialize(model)
return model
def prepare_model_for_quantization(model):
if is_quantization_enabled:
if model.config.model_type in [
"llama",
"falcon",
"qwen2",
"starcoder2",
"gemma",
]:
patch_scoped_linear_all_reduce(model)
from neural_compressor.torch.quantization import FP8Config, convert
config = FP8Config.from_json_file(quant_config)
model = convert(model, config)
return model

View File

@ -0,0 +1,45 @@
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
import torch
import grpc
from google.rpc import status_pb2, code_pb2
from grpc_status import rpc_status
from grpc_interceptor.server import AsyncServerInterceptor
from loguru import logger
from typing import Callable, Any
import traceback
import os
class ExceptionInterceptor(AsyncServerInterceptor):
async def intercept(
self,
method: Callable,
request_or_iterator: Any,
context: grpc.ServicerContext,
method_name: str,
) -> Any:
try:
response = method(request_or_iterator, context)
return await response
except Exception as err:
trace = " " + traceback.format_exc() if os.environ.get("DUMP_STACK") else ""
method_name = method_name.split("/")[-1]
logger.exception(f"Method {method_name} encountered an error.")
# Runtime Error cannot be recovered from
if isinstance(err, RuntimeError):
exit(1)
if torch.cuda.is_available():
torch.cuda.empty_cache()
from .utils.debug import dbg_trace
dbg_trace("EXCEPTION", traceback.format_exc())
await context.abort_with_status(
rpc_status.to_status(
status_pb2.Status(code=code_pb2.INTERNAL, message=str(err) + trace)
)
)

View File

@ -0,0 +1,34 @@
from text_generation_server.layers.tensor_parallel import (
TensorParallelColumnLinear,
TensorParallelRowLinear,
TensorParallelEmbedding,
)
from text_generation_server.layers.linear import (
get_linear,
FastLinear,
)
from text_generation_server.layers.speculative import SpeculativeHead
# Just to add the `load` methods.
from text_generation_server.layers.layernorm import load_layer_norm
from text_generation_server.layers.conv import load_conv2d
from text_generation_server.layers.lora import (
LoraLinear,
TensorParallelMultiAdapterLinear,
TensorParallelAdapterRowLinear,
)
__all__ = [
"get_linear",
"FastLinear",
"TensorParallelColumnLinear",
"TensorParallelRowLinear",
"TensorParallelEmbedding",
"SpeculativeHead",
"LoraLinear",
"TensorParallelMultiAdapterLinear",
"TensorParallelAdapterRowLinear",
"load_layer_norm",
"load_conv2d",
]

View File

@ -0,0 +1,28 @@
from .common import (
Seqlen,
HPUPagedAttentionMetadata,
trim_attn_metadata,
trim_seqlen_metadata,
)
from .hpu import (
SUPPORTS_WINDOWING,
attention,
paged_attention,
)
# KVCache needs `reshape_and_cache`, so ensure that it is defined already.
from .kv_cache import KVCache, get_kv_scales
__all__ = [
"attention",
"get_kv_scales",
"paged_attention",
"SUPPORTS_WINDOWING",
"KVCache",
"Seqlen",
"HPUPagedAttentionMetadata",
"trim_seqlen_metadata",
"trim_attn_metadata",
]

View File

@ -0,0 +1,147 @@
from dataclasses import dataclass
import torch
from typing import Optional, List, Dict
import collections
_TYPE_CACHE = {}
@dataclass
class HPUPagedAttentionMetadata:
"""Metadata for PagedAttention."""
block_list: Optional[torch.Tensor]
block_mapping: Optional[torch.Tensor]
block_usage: Optional[torch.Tensor]
block_scales: Optional[torch.Tensor]
block_groups: Optional[torch.Tensor]
attn_bias: Optional[torch.Tensor]
def subtuple(
obj: object,
typename: str,
to_copy: List[str],
to_override: Optional[Dict[str, object]] = None,
):
if obj is None:
return None
if to_override is None:
to_override = {}
fields = set(to_copy) | set(to_override.keys())
if isinstance(obj, dict):
values = {key: obj[key] for key in fields if key in obj}
else:
values = {f: to_override.get(f, getattr(obj, f)) for f in fields}
if typename not in _TYPE_CACHE:
_TYPE_CACHE[typename] = collections.namedtuple(typename, " ".join(fields))
return _TYPE_CACHE[typename](**values)
def trim_attn_metadata(metadata: HPUPagedAttentionMetadata) -> object:
# NOTE(kzawora): To anyone working on this in the future:
# Trimming metadata is required when using HPUGraphs.
# Attention metadata is going to be hashed by PT bridge, and
# appropriate HPUGraphs will be matched based on all inputs' hash.
# Before you put more keys in here, make sure you know their
# value type and make sure you know how it's going to be hashed.
# You can find that information in input_hash function
# in habana_frameworks/torch/hpu/graphs.py. You can also hash
# it manually with torch.hpu.graphs.input_hash(attention_metadata)
# If you use primitive types here - they will get hashed based
# on their value. You *will* get lots of excessive graph captures
# (and an OOM eventually) if you decide to put something like
# seq_len int here.
# If you absolutely need a scalar, put it in a tensor. Tensors
# get hashed using their metadata, not their values:
# input_hash(torch.tensor(123)) == input_hash(torch.tensor(321))
# input_hash(123) != input_hash(321)
# input_hash("abc") != input_hash("cba")
attention_metadata = subtuple(
metadata,
"TrimmedAttentionMetadata",
[
"block_list",
"block_mapping",
"block_usage",
"block_scales",
"block_groups",
"attn_bias",
],
)
return attention_metadata
@dataclass
class Seqlen:
input_lengths: torch.Tensor
cache_lengths: torch.Tensor
cu_seqlen_q: Optional[torch.Tensor]
cu_seqlen_k: Optional[torch.Tensor]
def __init__(
self,
input_lengths,
cache_lengths,
cu_seqlen_q=None,
):
self.input_lengths = input_lengths
self.cache_lengths = cache_lengths
device = self.input_lengths.device
shape = self.input_lengths.shape
if cu_seqlen_q is None:
cu_seqlen_q = torch.arange(
shape[0] + 1,
device=device,
dtype=torch.int32,
)
cu_seqlen_k = torch.zeros(shape[-1] + 1, device=device, dtype=torch.int32)
# cuda graphs don't like this and this is necessary to clamp within mistral
# Although FA2 might not want the clamping
# cu_seqlen_k[0] = 0
total = self.input_lengths + self.cache_lengths
torch.cumsum(total, -1, out=cu_seqlen_k[1:])
self.cu_seqlen_q = cu_seqlen_q
self.cu_seqlen_k = cu_seqlen_k
def clamp(self, max):
# Flash decoding doesn't need to clamp
return self
def trim_seqlen_metadata(metadata: Seqlen) -> object:
# NOTE(kzawora): To anyone working on this in the future:
# Trimming metadata is required when using HPUGraphs.
# Attention metadata is going to be hashed by PT bridge, and
# appropriate HPUGraphs will be matched based on all inputs' hash.
# Before you put more keys in here, make sure you know their
# value type and make sure you know how it's going to be hashed.
# You can find that information in input_hash function
# in habana_frameworks/torch/hpu/graphs.py. You can also hash
# it manually with torch.hpu.graphs.input_hash(attention_metadata)
# If you use primitive types here - they will get hashed based
# on their value. You *will* get lots of excessive graph captures
# (and an OOM eventually) if you decide to put something like
# seq_len int here.
# If you absolutely need a scalar, put it in a tensor. Tensors
# get hashed using their metadata, not their values:
# input_hash(torch.tensor(123)) == input_hash(torch.tensor(321))
# input_hash(123) != input_hash(321)
# input_hash("abc") != input_hash("cba")
attention_metadata = subtuple(
metadata,
"TrimmedSeqlen",
[
"input_lengths",
"cache_lengths",
"cu_seqlen_q",
"cu_seqlen_k",
],
)
return attention_metadata

View File

@ -0,0 +1,95 @@
import torch
from text_generation_server.layers.attention import Seqlen, HPUPagedAttentionMetadata
from typing import Optional
from text_generation_server.layers.attention.kv_cache import KVCache, KVScales
from vllm_hpu_extension import ops
from vllm_hpu_extension.utils import Matmul
from habana_frameworks.torch.hpex.kernels import FusedSDPA
from vllm_hpu_extension.utils import ModuleFusedSDPA
import os
SUPPORTS_WINDOWING = False
def fetch_from_cache(cache, blocks):
if os.environ.get("VLLM_CONTIGUOUS_PA", "true").lower() == "true":
return cache[: blocks.size(0)]
else:
return cache.index_select(0, blocks)
def attention(
*,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: KVCache,
kv_scales: KVScales,
seqlen: Seqlen,
softmax_scale: float,
window_size_left: int = -1,
causal: bool = True,
softcap: Optional[float] = None,
):
fsdpa_op = ModuleFusedSDPA(FusedSDPA)
bs = seqlen.input_lengths.shape[0]
_, head_num, head_size = query.shape
_, kv_head_num, head_size = key.shape
query = query.view(bs, -1, head_num, head_size).transpose(1, 2)
key = key.view(bs, -1, kv_head_num, head_size).transpose(1, 2)
value = value.view(bs, -1, kv_head_num, head_size).transpose(1, 2)
attn_output = fsdpa_op(
query,
key,
value,
attn_mask=None,
dropout_p=0.0,
is_causal=causal,
scale=softmax_scale,
softmax_mode="None",
recompute_mode=None,
valid_sequence_lengths=seqlen.input_lengths,
padding_side="left",
)
attn_output = attn_output.transpose(1, 2).squeeze(0).contiguous()
return attn_output
def paged_attention(
query: torch.Tensor,
kv_cache: KVCache,
kv_head_mapping: torch.Tensor,
softmax_scale: float,
seqlen: Seqlen,
*,
kv_scales: KVScales,
softcap: Optional[float] = None,
hpu_attention_meta: HPUPagedAttentionMetadata,
):
batch_size, head_num, head_size = query.shape
output = ops.flat_pa(
query=query.view(batch_size, 1, head_num * head_size),
key_cache=kv_cache.key,
value_cache=kv_cache.value,
block_list=hpu_attention_meta.block_list,
block_mapping=hpu_attention_meta.block_mapping,
block_bias=hpu_attention_meta.attn_bias,
block_scales=hpu_attention_meta.block_scales,
block_groups=hpu_attention_meta.block_groups,
scale=softmax_scale,
matmul_qk_op=Matmul(),
matmul_av_op=Matmul(),
batch2block_matmul_op=Matmul(),
block2batch_matmul_op=Matmul(),
keys_fetch_func=fetch_from_cache,
values_fetch_func=fetch_from_cache,
)
# Reshape the output tensor.
return output.view(batch_size, head_num, head_size)
__all__ = [
"SUPPORTS_WINDOWING",
"attention",
"paged_attention",
]

View File

@ -0,0 +1,139 @@
from typing import Tuple
from dataclasses import dataclass, field
import torch
from text_generation_server.models.globals import BLOCK_SIZE
from text_generation_server.utils.weights import Weights
from vllm_hpu_extension import cache_ops
@dataclass
class KVScales:
"""
Key-value scales for FP8 KV cache.
This data class stores key and value scales both as a GPU tensor and
as a GPU float. This inconvenience is necessary because some functions
(e.g. scaling kernels) take scales as a GPU tensor, whereas others
(e.g. flashinfer) take scales as a CPU scalar.
"""
key_scale: torch.Tensor
value_scale: torch.Tensor
key_scale_cpu: float = field(init=False)
value_scale_cpu: float = field(init=False)
def __post_init__(self):
if self.key_scale.numel() != 1 or self.value_scale.numel() != 1:
raise ValueError("Key and value scales must be scalar tensors.")
self.key_scale_cpu = self.key_scale.item()
self.value_scale_cpu = self.value_scale.item()
class KVCache:
"""
Key-value cache for attention layers.
"""
kv_cache: Tuple[torch.Tensor, torch.Tensor]
def __init__(
self,
*,
num_blocks: int,
num_heads: int,
head_size: int,
dtype: torch.dtype,
device: torch.device,
):
"""Construct the key-value cache for a layer."""
## TODO FP8 kv cache support
self.kv_cache = (
torch.zeros(
(num_blocks, BLOCK_SIZE, num_heads, head_size),
dtype=dtype,
device=device,
),
torch.zeros(
(num_blocks, BLOCK_SIZE, num_heads, head_size),
dtype=dtype,
device=device,
),
)
@property
def dtype(self):
"""Get the data type of the cache."""
return self.kv_cache[0].dtype
@property
def key(self):
"""Get the key cache."""
return self.kv_cache[0]
@property
def value(self):
"""Get the value cache."""
return self.kv_cache[1]
def store(
self,
*,
key: torch.Tensor,
value: torch.Tensor,
slots: torch.Tensor,
kv_scales: KVScales,
):
"""Store the key and value at the given slots."""
## TODO FP8 kv cache support
key_cache = self.kv_cache[0]
value_cache = self.kv_cache[1]
paged_reshape_and_cache(
key,
value,
key_cache,
value_cache,
slots,
kv_scales.key_scale_cpu,
kv_scales.value_scale_cpu,
)
def paged_reshape_and_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slots: torch.Tensor,
k_scale: float = 1.0,
v_scale: float = 1.0,
):
block_idx = slots // BLOCK_SIZE
block_offset = slots % BLOCK_SIZE
cache_ops.insert_or_update_cache(key, key_cache, block_idx, block_offset)
cache_ops.insert_or_update_cache(value, value_cache, block_idx, block_offset)
def get_kv_scales(weights: Weights, prefix: str) -> KVScales:
"""Load KV cache scales."""
key_scale = torch.tensor(1.0, dtype=torch.float32, device=weights.device)
value_scale = key_scale
if weights.has_tensor(f"{prefix}.k_scale") and weights.has_tensor(
f"{prefix}.v_scale"
):
key_scale = weights.get_tensor(f"{prefix}.k_scale", to_dtype=False).float()
value_scale = weights.get_tensor(f"{prefix}.v_scale", to_dtype=False).float()
elif weights.has_tensor(f"{prefix}.kv_scale"):
# Fall back to older more coarse-grained scale when available.
key_scale = weights.get_tensor(f"{prefix}.kv_scale").float()
value_scale = key_scale
return KVScales(key_scale=key_scale, value_scale=value_scale)

View File

@ -0,0 +1,97 @@
import torch
from typing import List
AWQ_PACK_ORDER = [0, 2, 4, 6, 1, 3, 5, 7]
REVERSE_AWQ_PACK_ORDER = [0, 4, 1, 5, 2, 6, 3, 7]
def pack(imatrix: torch.Tensor, direction: str = "column"):
"""
Packs a 4-bit integer matrix into a packed 32-bit integer matrix.
Args:
imatrix (torch.Tensor): matrix of integers
direction (str): direction of packing, either "column" or "row"
Returns:
qmatrix (torch.Tensor): packed matrix of integers
"""
shifts = torch.arange(0, 32, 4, dtype=torch.int32, device=imatrix.device)
imatrix = imatrix.to(torch.int8) & 0x0F # eventually correct overflow
if direction == "column":
imatrix = imatrix.view(-1, imatrix.shape[1] // (32 // 4), (32 // 4))
qmatrix = torch.bitwise_left_shift(imatrix, shifts[None, None, :]).sum(dim=-1)
elif direction == "row":
imatrix = imatrix.view(imatrix.shape[0] // (32 // 4), (32 // 4), -1)
qmatrix = torch.bitwise_left_shift(imatrix, shifts[None, :, None]).sum(dim=1)
qmatrix = qmatrix.to(torch.int32)
return qmatrix
def unpack(qmatrix: torch.Tensor, direction: str = "column"):
"""
Unpacks a 32-bit packed integer matrix into a 4-bit integer matrix.
Args:
qmatrix (torch.Tensor): matrix of packed integers
direction (str): direction of unpacking, either "column" or "row"
Returns:
imatrix (torch.Tensor): matrix of integers
"""
shifts = torch.arange(0, 32, 4, device=qmatrix.device)
if direction == "column":
imatrix = torch.bitwise_right_shift(
qmatrix[:, :, None], shifts[None, None, :]
).view(qmatrix.shape[0], -1)
elif direction == "row":
imatrix = torch.bitwise_right_shift(
qmatrix[:, None, :], shifts[None, :, None]
).view(-1, qmatrix.shape[-1])
imatrix = imatrix.to(torch.int8) & 0x0F # eventually correct overflow
return imatrix
def apply_order(
imatrix: torch.Tensor,
direction: str = "column",
order: List[int] = AWQ_PACK_ORDER,
):
"""
Applies the order to a 4-bit integer matrix.
Args:
imatrix (torch.Tensor): matrix of integers
direction (str): direction of applying order, either "column" or "row"
order (List[int]): order to apply, default is AWQ_PACK_ORDER
Returns:
imatrix (torch.Tensor): matrix of integers
"""
if direction == "column":
imatrix = imatrix.view(-1, (32 // 4))[:, order].view(imatrix.shape)
elif direction == "row":
imatrix = imatrix.view((32 // 4), -1)[order, :].view(imatrix.shape)
return imatrix
def fast_awq_to_gptq(qweight, qzeros):
# awq uses column packing for both weights and zeros
izeros = unpack(qzeros, direction="column")
iweights = unpack(qweight, direction="column")
# Reverse the order of the iweight and izeros tensors
izeros = apply_order(izeros, direction="column", order=REVERSE_AWQ_PACK_ORDER)
iweights = apply_order(iweights, direction="column", order=REVERSE_AWQ_PACK_ORDER)
# Subtract 1 from the izeros tensor (gptq adds 1 to the zeros)
izeros = izeros - 1
# exllama uses row packing for weights and column packing for zeros
qzeros = pack(izeros, direction="column")
qweight = pack(iweights, direction="row")
return qweight, qzeros

View File

@ -0,0 +1,3 @@
from .hpu import WQLinear
__all__ = ["WQLinear"]

View File

@ -0,0 +1,134 @@
from typing import Optional
import torch
import torch.nn as nn
try:
import habana_frameworks.torch.hpu # noqa: F401
convert_from_uint4 = torch.ops.hpu.convert_from_uint4
except Exception as e:
hpu_import_exception = e
def error_raiser_hpu(*args, **kwargs):
raise ValueError(
f"Trying to use HPU, but could not import the HPU framework with the following error: {hpu_import_exception}"
)
convert_from_uint4 = error_raiser_hpu
AWQ_REVERSE_ORDER = [0, 4, 1, 5, 2, 6, 3, 7]
def unpack_awq(qweight: torch.Tensor, qzeros: torch.Tensor, bits: int):
shifts = torch.arange(0, 32, bits, device=qzeros.device)
# unpacking columnwise
iweights = torch.bitwise_right_shift(qweight[:, :, None], shifts[None, None, :]).to(
torch.int8 # smallest dtype available
)
iweights = iweights.view(iweights.shape[0], -1)
# unpacking columnwise
if qzeros is not None:
izeros = torch.bitwise_right_shift(
qzeros[:, :, None], shifts[None, None, :]
).to(
torch.int8 # smallest dtype available
)
izeros = izeros.view(izeros.shape[0], -1)
else:
izeros = qzeros
return iweights, izeros
def reverse_awq_order(iweights: torch.Tensor, izeros: torch.Tensor, bits: int):
reverse_order_tensor = torch.arange(
iweights.shape[-1],
dtype=torch.int32,
device=izeros.device,
)
reverse_order_tensor = reverse_order_tensor.view(-1, 32 // bits)
reverse_order_tensor = reverse_order_tensor[:, AWQ_REVERSE_ORDER]
reverse_order_tensor = reverse_order_tensor.view(-1)
if izeros is not None:
izeros = izeros[:, reverse_order_tensor]
iweights = iweights[:, reverse_order_tensor]
return iweights, izeros
def unpack_weight_and_zeros(qweight, qzeros, bits):
# Unpack the qweight and qzeros tensors
iweight, izeros = unpack_awq(qweight, qzeros, bits)
# Reverse the order of the iweight and izeros tensors
iweight, izeros = reverse_awq_order(iweight, izeros, bits)
# overflow checks
iweight = torch.bitwise_and(iweight, (2**bits) - 1)
izeros = torch.bitwise_and(izeros, (2**bits) - 1)
return iweight, izeros
def pack_tensor(input, bits=4):
normal = input.to(torch.int32)
q = torch.zeros(
(normal.shape[0], normal.shape[1] // 32 * bits),
dtype=torch.int32,
device=input.device,
)
i = 0
col = 0
while col < q.shape[1]:
for j in range(i, i + (32 // bits)):
q[:, col] |= normal[:, j] << (bits * (j - i))
i += 32 // bits
col += 1
q = q.to(torch.int32)
return q
class WQLinear(nn.Module):
def __init__(
self, w_bit, group_size, qweight, qzeros, scales, bias: Optional[torch.Tensor]
):
super().__init__()
if w_bit not in [4]:
raise NotImplementedError("Only 4-bit are supported for now.")
self.in_features = qweight.shape[0]
self.out_features = qweight.shape[1] * 32 // w_bit
self.w_bit = w_bit
self.group_size = group_size if group_size != -1 else self.in_features
# quick sanity check (make sure aligment)
assert self.in_features % self.group_size == 0
assert self.out_features % (32 // self.w_bit) == 0
self.qweight = qweight
self.qzeros = qzeros
self.scales = scales
self.bias = bias
self._preprocessing()
def _preprocessing(self):
device = self.qweight.device
weight, zeros = unpack_weight_and_zeros(
self.qweight.cpu(), self.qzeros.cpu(), self.w_bit
)
self.qweight = pack_tensor(weight).to(device)
self.qzeros = pack_tensor(zeros).to(device)
@torch.no_grad()
def forward(self, x):
out_shape = x.shape[:-1] + (self.out_features,)
x = x.reshape(-1, x.shape[-1])
weights = convert_from_uint4(self.qweight, self.scales, self.qzeros, x.dtype)
outputs = torch.matmul(x, weights)
outputs = outputs + self.bias if self.bias is not None else outputs
outputs = outputs.reshape(out_shape)
return outputs

View File

@ -0,0 +1,124 @@
from dataclasses import dataclass
import bitsandbytes as bnb
import torch
from bitsandbytes.nn import Int8Params, Params4bit
from text_generation_server.utils.weights import UnquantizedWeight
@dataclass
class BNBWeight(UnquantizedWeight):
weight: torch.Tensor
def get_linear(self, bias: torch.Tensor):
return Linear8bitLt(self.weight, bias, has_fp16_weights=False, threshold=6.0)
class Linear8bitLt(torch.nn.Module):
def __init__(
self,
weight,
bias,
has_fp16_weights=True,
memory_efficient_backward=False,
threshold=0.0,
index=None,
):
super().__init__()
assert (
not memory_efficient_backward
), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
self.state = bnb.MatmulLtState()
self.index = index
# Necessary for stacked layers
self.state.threshold = threshold
self.state.has_fp16_weights = has_fp16_weights
self.state.memory_efficient_backward = memory_efficient_backward
if threshold > 0.0 and not has_fp16_weights:
self.state.use_pool = True
self.weight = Int8Params(
weight.data,
has_fp16_weights=has_fp16_weights,
requires_grad=has_fp16_weights,
)
self.weight.cuda(weight.device)
self.bias = bias
def init_8bit_state(self):
self.state.CB = self.weight.CB
self.state.SCB = self.weight.SCB
self.weight.CB = None
self.weight.SCB = None
def forward(self, x: torch.Tensor):
self.state.is_training = self.training
if self.weight.CB is not None:
self.init_8bit_state()
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
if not self.state.has_fp16_weights:
if self.state.CB is not None and self.state.CxB is not None:
# we converted 8-bit row major to turing/ampere format in the first inference pass
# we no longer need the row-major weight
del self.state.CB
self.weight.data = self.state.CxB
return out
@dataclass
class BNBFP4Weight(UnquantizedWeight):
weight: torch.Tensor
def get_linear(self, bias: torch.Tensor):
return Linear4bit(self.weight, bias, quant_type="fp4")
@dataclass
class BNBNF4Weight(UnquantizedWeight):
weight: torch.Tensor
def get_linear(self, bias: torch.Tensor):
return Linear4bit(self.weight, bias, quant_type="nf4")
class Linear4bit(torch.nn.Module):
def __init__(self, weight, bias, quant_type):
super().__init__()
self.weight = Params4bit(
weight.data,
requires_grad=False,
compress_statistics=True,
quant_type=quant_type,
)
self.compute_dtype = None
self.weight.cuda(weight.device)
self.bias = bias
def forward(self, x: torch.Tensor):
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
if getattr(self.weight, "quant_state", None) is None:
print(
"FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
)
inp_dtype = x.dtype
if self.compute_dtype is not None:
x = x.to(self.compute_dtype)
bias = None if self.bias is None else self.bias.to(self.compute_dtype)
out = bnb.matmul_4bit(
x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
)
out = out.to(inp_dtype)
return out

View File

@ -0,0 +1,41 @@
from accelerate import init_empty_weights
import torch
@classmethod
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
weight = weights.get_tensor(f"{prefix}.weight")
bias = weights.get_tensor(f"{prefix}.bias")
with init_empty_weights():
conv2d = cls(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
)
conv2d.weight = torch.nn.Parameter(weight)
conv2d.bias = torch.nn.Parameter(bias)
return conv2d
@classmethod
def load_conv2d_no_bias(
cls, prefix, weights, in_channels, out_channels, kernel_size, stride
):
weight = weights.get_tensor(f"{prefix}.weight")
with init_empty_weights():
conv2d = cls(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
)
conv2d.weight = torch.nn.Parameter(weight)
conv2d.bias = None
return conv2d
torch.nn.Conv2d.load = load_conv2d
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias

View File

@ -0,0 +1,78 @@
from dataclasses import dataclass
from typing import List, Union
import torch
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
@dataclass
class Exl2Weight(Weight):
"""
Exllama2 exl2 quantized weights.
"""
q_weight: torch.Tensor
q_scale: torch.Tensor
q_invperm: torch.Tensor
q_scale_max: torch.Tensor
q_groups: torch.Tensor
def __post_init__(self):
self.q_scale_max /= 256
self.q_invperm = self.q_invperm.short()
@property
def device(self) -> torch.device:
return self.q_weight.device
def get_linear(self, bias: torch.Tensor):
from text_generation_server.layers.gptq import ExllamaQuantLinear
return ExllamaQuantLinear(self, bias)
class Exl2WeightsLoader(WeightsLoader):
"""Loader for exl2-quantized weights."""
def get_weights(self, weights: "Weights", prefix: str):
"""
Get weights at the given prefix and apply without tensor paralllism.
"""
try:
q_weight = weights.get_tensor(f"{prefix}.q_weight")
except RuntimeError:
raise RuntimeError(
"Cannot load `exl2`-quantized weight, make sure the model is already quantized."
)
q_scale = weights.get_tensor(f"{prefix}.q_scale")
q_invperm = weights.get_tensor(f"{prefix}.q_invperm")
q_scale_max = weights.get_tensor(f"{prefix}.q_scale_max")
q_groups = weights.get_tensor(f"{prefix}.q_groups")
return Exl2Weight(
q_weight=q_weight,
q_scale=q_scale,
q_invperm=q_invperm,
q_scale_max=q_scale_max,
q_groups=q_groups,
)
def get_weights_col_packed(
self,
weights: Weights,
prefix: str,
block_sizes: Union[int, List[int]],
):
raise RuntimeError("Column-packed weights are not supported for exl")
def get_weights_col(self, weights: Weights, prefix: str):
# Sharding is not yet supported, so we return the weights as-is.
return self.get_weights(weights, prefix)
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
raise ValueError("get_multi_weights_col is not supported for exl2")
def get_weights_row(self, weights: Weights, prefix: str):
# Sharding is not yet supported, so we return the weights as-is.
return self.get_weights(weights, prefix)

View File

@ -0,0 +1,458 @@
from dataclasses import dataclass
from typing import Optional, Tuple, Type, Union, List
import torch
from text_generation_server.utils.weights import (
Weight,
WeightsLoader,
UnquantizedWeight,
Weights,
)
from vllm_hpu_extension.ops import scaled_fp8_quant
from vllm_hpu_extension.scales import get_hpu_gaudi2_scale_factor, is_hpu_gaudi2
import habana_frameworks.torch.utils.experimental as htexp
w8a8_block_fp8_matmul = None
per_token_group_quant_fp8 = None
quant_dtype: torch.dtype = torch.float8_e4m3fn
def get_fp8_linear(force_w8a16: bool = False) -> Type[torch.nn.Module]:
"""
Return an FP8 linear `Module` that is compatible with the current system.
"""
# On other systems let Torch decide if the hardware supports FP8.
return Fp8Linear
def normalize_e4m3fn_to_native_float8(
weight: torch.Tensor,
weight_scale: torch.Tensor,
input_scale: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
return weight, weight_scale, input_scale
def per_tensor_dequantize(
tensor: torch.Tensor,
inv_scale: Union[float, torch.Tensor],
dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
device = tensor.device
dtype = torch.bfloat16
if htexp._get_device_type() == htexp.synDeviceType.synDeviceGaudi2:
# dequant on cpu to avoid nan on gaudi2
tensor = tensor.to("cpu")
fake_qweight = tensor.to(dtype).to(device)
dq_weight = fake_qweight * inv_scale
return dq_weight
def requantize_with_max_scale(
weight: torch.Tensor,
weight_scale: torch.Tensor,
logical_widths: int,
dtype: torch.dtype,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Max scale to be used for requanitzation.
max_w_scale = weight_scale.max()
if is_hpu_gaudi2():
max_w_scale = max_w_scale * get_hpu_gaudi2_scale_factor()
start = 0
for idx, logical_width in enumerate(logical_widths):
end = start + logical_width
weight_dq = per_tensor_dequantize(
weight[start:end, :], weight_scale[idx], dtype
)
weight[start:end, :], max_w_scale_normalized = fp8_quantize(
weight_dq, max_w_scale
)
start = end
return weight, max_w_scale_normalized
def fp8_quantize(
weight: torch.Tensor,
scale: Optional[torch.Tensor] = None,
scale_upper_bound: Optional[torch.Tensor] = None,
qdtype: torch.dtype = torch.float8_e4m3fn,
scalar: bool = False,
):
"""
This function returns a reciprocal of the scale, so that a tensor can be unscaled
by multiplying it with the returned scale. If a scale is given through the `scale`
argument, it must also be a reciprocal (so that scales from an FP8 checkpoint can
be used without modification).
"""
shape = weight.shape
qweight, scale = scaled_fp8_quant(
weight.reshape(-1, shape[-1]),
scale=scale,
scale_ub=scale_upper_bound,
# TODO: don't do this when we have to use the Torch kernel.
use_per_token_if_dynamic=not scalar,
)
return qweight.reshape(shape), scale
class HybridFP8UnquantLoader(WeightsLoader):
"""Weight loader that loads FP8 and unquantized Torch tensors."""
def __init__(
self,
activation_scale_ub: Optional[float],
to_fp8: bool,
weight_block_size: Optional[List[int]] = None,
):
self.activation_scale_ub = activation_scale_ub
self.to_fp8 = to_fp8
self.weight_block_size = weight_block_size
def get_weights(self, weights: "Weights", prefix: str):
w = weights.get_tensor(f"{prefix}.weight")
if w.dtype == torch.float8_e4m3fn:
if self.weight_block_size is not None:
scale = weights.get_tensor(f"{prefix}.weight_scale_inv")
return Fp8Weight(
weight=w,
weight_scale=scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
weight_block_size=self.weight_block_size,
)
# FP8 branch
scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
input_scale = None
if weights.has_tensor(f"{prefix}.input_scale"):
input_scale = (
weights.get_tensor(f"{prefix}.input_scale", to_dtype=False)
.reshape(-1)
.max()
)
logical_widths = [w.shape[0]]
w, scale = requantize_with_max_scale(
w, scale.unsqueeze(0), logical_widths, weights.dtype
)
return Fp8Weight(
weight=w,
weight_scale=scale,
input_scale=input_scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
if self.to_fp8:
return Fp8Weight(weight=w, dtype=weights.dtype)
return UnquantizedWeight(w)
def get_weights_col_packed(
self,
weights: Weights,
prefix: str,
block_sizes: Union[int, List[int]],
):
w = weights.get_packed_sharded(
f"{prefix}.weight", dim=0, block_sizes=block_sizes
)
if w.dtype == torch.float8_e4m3fn:
# FP8 branch
scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
if scale.numel() > 1:
scale = weights.get_packed_sharded(
f"{prefix}.weight_scale",
dim=0,
block_sizes=block_sizes,
to_dtype=False,
)
input_scale = None
if weights.has_tensor(f"{prefix}.input_scale"):
input_scale = weights.get_tensor(
f"{prefix}.input_scale", to_dtype=False
)
if input_scale.numel() > 1:
input_scale = weights.get_packed_sharded(
f"{prefix}.input_scale",
dim=0,
block_sizes=block_sizes,
to_dtype=False,
)
input_scale = input_scale.reshape(-1).max()
logical_widths = [w.shape[0]]
w, scale = requantize_with_max_scale(
w, scale.unsqueeze(0), logical_widths, weights.dtype
)
return Fp8Weight(
weight=w,
weight_scale=scale,
input_scale=input_scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
if self.to_fp8:
return Fp8Weight(weight=w, dtype=weights.dtype)
return UnquantizedWeight(w)
def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int):
# FIXME: Force to_device to false as fp8 weights do not support torch.cat on device yet
w = [
weights.get_sharded(f"{p}.weight", dim=0, to_device=False) for p in prefixes
]
shapes = [x.shape for x in w]
# Concat then send to the device
w = torch.cat(w, dim=dim).to(weights.device)
# FP8 branch
if w.dtype == torch.float8_e4m3fn:
if self.weight_block_size is not None:
scale = [
weights.get_sharded(f"{p}.weight_scale_inv", dim=0, to_device=False)
for p in prefixes
]
scale = torch.cat(scale, dim=dim)
scale = scale.to(weights.device)
return Fp8Weight(
weight=w,
weight_scale=scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
weight_block_size=self.weight_block_size,
)
scale = [
_load_scalar_or_matrix_scale(weights, f"{p}.weight_scale", shape)
for p, shape in zip(prefixes, shapes)
]
scale = torch.cat(scale, dim=0).reshape(-1)
input_scale = [
_load_scalar_or_matrix_scale(weights, f"{p}.input_scale", shape)
for p, shape in zip(prefixes, shapes)
if weights.has_tensor(f"{p}.input_scale")
]
assert len(input_scale) == 0 or len(input_scale) == len(prefixes)
input_scale = (
torch.cat(input_scale, dim=0).reshape(-1).max()
if len(input_scale) != 0
else None
)
logical_widths = [x[0] for x in shapes]
w, scale = requantize_with_max_scale(
w, scale.to(weights.device), logical_widths, weights.dtype
)
return Fp8Weight(
weight=w,
weight_scale=scale,
input_scale=input_scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
if self.to_fp8:
return Fp8Weight(weight=w, dtype=weights.dtype)
return UnquantizedWeight(w)
def get_weights_row(self, weights: "Weights", prefix: str):
w = weights.get_sharded(f"{prefix}.weight", dim=1)
# FP8 branch
if w.dtype == torch.float8_e4m3fn:
if self.weight_block_size is not None:
# XXX: Yes the weights is named scale_inv, but corresponds to scale it seems.
scale = weights.get_sharded(f"{prefix}.weight_scale_inv", dim=1)
return Fp8Weight(
weight=w,
weight_scale=scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
weight_block_size=self.weight_block_size,
)
scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
input_scale = None
if weights.has_tensor(f"{prefix}.input_scale"):
input_scale = (
weights.get_tensor(f"{prefix}.input_scale", to_dtype=False)
.reshape(-1)
.max()
)
logical_widths = [w.shape[0]]
w, scale = requantize_with_max_scale(
w, scale.unsqueeze(0), logical_widths, weights.dtype
)
return Fp8Weight(
weight=w,
weight_scale=scale,
input_scale=input_scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
if self.to_fp8:
return Fp8Weight(weight=w, dtype=weights.dtype)
return UnquantizedWeight(w)
@dataclass
class Fp8Weight(Weight):
weight: torch.Tensor
dtype: torch.dtype
weight_scale: Optional[torch.Tensor] = None
input_scale: Optional[torch.Tensor] = None
activation_scale_ub: Optional[float] = None
force_w8a16: bool = False
weight_block_size: Optional[List[int]] = None
def get_linear(self, bias: torch.Tensor):
if self.weight_scale is None:
return get_fp8_linear(force_w8a16=self.force_w8a16).from_unquant(
self.weight, bias, self.dtype
)
# This is not checked by the fbgemm kernels, but they require contiguous
# memory. Can be non-contiguous when we e.g. expand from scalars.
self.weight_scale = self.weight_scale.contiguous()
return get_fp8_linear(force_w8a16=self.force_w8a16).from_fp8(
weight=self.weight,
scale=self.weight_scale,
dtype=self.dtype,
bias=bias,
input_scale=self.input_scale,
scale_upper_bound=self.activation_scale_ub,
weight_block_size=self.weight_block_size,
)
class Fp8Linear(torch.nn.Module):
_device_identity_cache = {}
def __init__(
self,
qweight: torch.Tensor,
scale: torch.Tensor,
dtype: torch.dtype,
bias: Optional[torch.Tensor] = None,
input_scale: Optional[torch.Tensor] = None,
scale_upper_bound: Optional[float] = None,
weight_block_size: Optional[List[int]] = None,
) -> None:
super().__init__()
self.dtype = dtype
self.qweight = qweight
self.scale = scale.float()
self.input_scale = input_scale.float() if input_scale is not None else None
self.weight_block_size = weight_block_size
self.scale_upper_bound = scale_upper_bound
self.bias = bias if bias is not None else None
@classmethod
def from_unquant(cls, weight, bias, dtype):
qweight, scale = fp8_quantize(weight, scalar=True)
return cls(
qweight=qweight,
scale=scale,
dtype=dtype,
bias=bias,
input_scale=None,
scale_upper_bound=None,
)
@classmethod
def from_fp8(
cls,
weight: torch.Tensor,
scale: torch.Tensor,
dtype: torch.dtype,
bias: Optional[torch.Tensor] = None,
**kwargs,
) -> "Fp8Linear":
input_scale = kwargs.get("input_scale", None)
scale_upper_bound = kwargs.get("scale_upper_bound", None)
weight_block_size = kwargs.get("weight_block_size", None)
return cls(
qweight=weight,
scale=scale,
input_scale=input_scale,
scale_upper_bound=scale_upper_bound,
bias=bias,
dtype=dtype,
weight_block_size=weight_block_size,
)
@classmethod
def get_shared_device_identity(cls, device):
# Input scaling factors are no longer optional in _scaled_mm starting
# from pytorch 2.5. Allocating a dummy tensor to pass as input_scale
if device not in cls._device_identity_cache:
cls._device_identity_cache[device] = torch.ones(1, device=device)
return cls._device_identity_cache[device]
def forward(self, input: torch.Tensor) -> torch.Tensor:
if self.weight_block_size is not None:
# https://arxiv.org/pdf/2412.19437
# At a more granular level. As illustrated in Figure 7 (a), (1) for activations, we group and
# scale elements on a 1x128 tile basis (i.e., per token per 128 channels); and (2) for weights, we
# group and scale elements on a 128x128 block basis (i.e., per 128 input channels per 128 output
# channels).
qinput, scale = per_token_group_quant_fp8(input, self.weight_block_size[1])
output = w8a8_block_fp8_matmul(
qinput,
self.qweight,
scale,
self.scale,
self.weight_block_size,
output_dtype=input.dtype,
)
if self.bias is not None:
output = output + self.bias
return output.to(dtype=input.dtype)
qinput, scale = fp8_quantize(
input,
self.input_scale,
scale_upper_bound=self.scale_upper_bound,
scalar=True,
)
output = torch._scaled_mm(
qinput,
self.qweight.t(),
out_dtype=self.dtype,
scale_a=scale,
scale_b=self.scale,
bias=self.bias,
)
if isinstance(output, tuple) and len(output) == 2:
output = output[0]
return output
def _load_scalar_or_matrix_scale(weights: Weights, prefix: str, shape: torch.Size):
scale = weights.get_tensor(prefix, to_dtype=False)
if scale.numel() > 1:
scale = weights.get_sharded(prefix, dim=0, to_dtype=False)
return scale.reshape(-1)

View File

@ -0,0 +1,357 @@
from dataclasses import dataclass
from typing import List, Optional, Union
import torch
from loguru import logger
from text_generation_server.utils.log import log_once
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
from .hpu import QuantLinear
@dataclass
class GPTQWeight(Weight):
qweight: torch.Tensor
qzeros: torch.Tensor
scales: torch.Tensor
g_idx: Optional[torch.Tensor]
bits: int
groupsize: int
use_awq_kernel: bool
use_exllama: bool
def __post_init__(self):
if self.scales.dtype == torch.float:
self.scales = self.scales.half()
@property
def device(self) -> torch.device:
return self.qweight.device
def get_linear(self, bias: torch.Tensor):
if self.use_awq_kernel:
try:
from text_generation_server.layers.awq.quantize import WQLinear
return WQLinear(
w_bit=self.bits,
group_size=self.groupsize,
qweight=self.qweight,
qzeros=self.qzeros,
scales=self.scales,
bias=bias,
)
except ImportError:
raise NotImplementedError(
"You do not seem to have awq installed, either install it (cd server && make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
)
else:
return QuantLinear(
self.qweight,
self.qzeros,
self.scales,
self.g_idx,
bias,
self.bits,
self.groupsize,
)
class GPTQWeightsLoader(WeightsLoader):
"""
Loader for GPTQ- and AWQ-quantized weights.
"""
def __init__(
self,
*,
bits: int,
desc_act: bool,
groupsize: int,
quant_method: str,
quantize: str,
sym: bool,
):
self.bits = bits
self.desc_act = desc_act
self.groupsize = groupsize
self.quant_method = quant_method
self.quantize = quantize
self.sym = sym
def get_weights(self, weights: Weights, prefix: str):
self._get_gptq_params(weights)
use_exllama = True
if self.bits != 4:
use_exllama = False
if self.desc_act:
log_once(logger.warning, "Disabling exllama because desc_act=True")
use_exllama = False
try:
qweight = weights.get_tensor(f"{prefix}.qweight")
except RuntimeError:
raise RuntimeError(
"Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
)
if self.quantize == "gptq" and self.quant_method == "gptq":
g_idx = weights.get_tensor(f"{prefix}.g_idx")
else:
g_idx = None
qzeros = weights.get_tensor(f"{prefix}.qzeros")
scales = weights.get_tensor(f"{prefix}.scales")
if use_exllama and g_idx is not None:
g_idx = g_idx - g_idx[0]
if self.quantize == "gptq" and self.quant_method == "awq":
log_once(
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
)
from text_generation_server.layers.awq.conversion_utils import (
fast_awq_to_gptq,
)
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
if use_exllama:
g_idx = None
else:
g_idx = (
torch.arange(
qweight.shape[0] * (32 // self.bits),
device=qweight.device,
)
// self.groupsize
).to(dtype=torch.int32)
return GPTQWeight(
qweight=qweight,
qzeros=qzeros,
scales=scales,
g_idx=g_idx,
bits=self.bits,
groupsize=self.groupsize,
use_exllama=use_exllama,
)
def get_weights_col_packed(
self,
weights: Weights,
prefix: str,
block_sizes: Union[int, List[int]],
):
try:
qweight = weights.get_packed_sharded(
f"{prefix}.qweight", dim=1, block_sizes=block_sizes
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{self.quantize}` weight, make sure the model is already quantized."
)
scales = weights.get_packed_sharded(
f"{prefix}.scales", dim=1, block_sizes=block_sizes
)
scales = scales.to(dtype=weights.dtype)
self._get_gptq_params(weights)
qzeros = weights.get_packed_sharded(
f"{prefix}.qzeros", dim=1, block_sizes=block_sizes
)
if self.quantize == "gptq" and self.quant_method == "gptq":
g_idx = weights.get_tensor(f"{prefix}.g_idx")
elif self.quantize == "gptq" and self.quant_method == "awq":
log_once(
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
)
from text_generation_server.layers.awq.conversion_utils import (
fast_awq_to_gptq,
)
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
g_idx = (
torch.arange(
qweight.shape[0] * (32 // self.bits),
device=qweight.device,
)
// self.groupsize
).to(dtype=torch.int32)
else:
g_idx = None
return GPTQWeight(
qweight=qweight,
qzeros=qzeros,
scales=scales,
g_idx=g_idx,
bits=self.bits,
groupsize=self.groupsize,
use_awq_kernel=self.quantize == "awq",
use_exllama=False,
)
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
try:
qweight = torch.cat(
[weights.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{self.quantize}` weight, make sure the model is already quantized"
)
scales = torch.cat(
[weights.get_sharded(f"{p}.scales", dim=1) for p in prefixes], dim=1
)
self._get_gptq_params(weights)
qzeros = torch.cat(
[weights.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1
)
use_exllama = self.bits == 4 and self.quantize == "gptq" and not self.desc_act
if self.quantize == "gptq" and self.quant_method == "gptq":
w = [weights.get_tensor(f"{p}.g_idx") for p in prefixes]
for w2 in w[1:]:
torch.testing.assert_close(w2, w[0])
g_idx = w[0]
elif self.quantize == "gptq" and self.quant_method == "awq":
log_once(
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
)
from text_generation_server.layers.awq.conversion_utils import (
fast_awq_to_gptq,
)
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
if use_exllama:
g_idx = None
else:
g_idx = (
torch.arange(
qweight.shape[0] * (32 // self.bits),
device=qweight.device,
)
// self.groupsize
).to(dtype=torch.int32)
else:
g_idx = None
return GPTQWeight(
qweight=qweight,
qzeros=qzeros,
scales=scales,
g_idx=g_idx,
bits=self.bits,
groupsize=self.groupsize,
use_awq_kernel=self.quantize == "awq",
use_exllama=use_exllama,
)
def get_weights_row(self, weights: Weights, prefix: str):
self._get_gptq_params(weights)
use_exllama = True
desc_act = self.desc_act
if self.bits != 4:
use_exllama = False
if self.desc_act:
log_once(logger.warning, "Disabling exllama because desc_act=True")
use_exllama = False
try:
qweight = weights.get_sharded(f"{prefix}.qweight", dim=0)
except RuntimeError:
raise RuntimeError(
"Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
)
if self.quantize == "gptq" and self.quant_method == "gptq":
g_idx = weights.get_sharded(f"{prefix}.g_idx", dim=0)
else:
g_idx = None
if weights.process_group.size() > 1:
if g_idx is not None:
if (
not torch.equal(
# Remove g_idx[0] to adapt the check with TP>1.
(g_idx - g_idx[0]).cpu(),
torch.tensor(
[i // self.groupsize for i in range(g_idx.shape[0])],
dtype=torch.int32,
),
)
and not (g_idx == 0).all()
):
# Exllama implementation does not support row tensor parallelism with act-order, as
# it would require to reorder input activations that are split unto several GPUs
use_exllama = False
desc_act = True
from text_generation_server.layers.gptq import (
GPTQWeight,
)
if not desc_act and self.groupsize != -1:
qzeros = weights.get_sharded(f"{prefix}.qzeros", dim=0)
scales = weights.get_sharded(f"{prefix}.scales", dim=0)
if g_idx is not None:
# qzeros, scales sharded, and g_idx must be adjusted accordingly
g_idx = g_idx - g_idx[0]
else:
qzeros = weights.get_tensor(f"{prefix}.qzeros")
scales = weights.get_tensor(f"{prefix}.scales")
if self.quantize == "gptq" and self.quant_method == "awq":
log_once(
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
)
from text_generation_server.layers.awq.conversion_utils import (
fast_awq_to_gptq,
)
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
if use_exllama:
g_idx = None
else:
g_idx = (
torch.arange(
qweight.shape[0] * (32 // self.bits),
device=qweight.device,
)
// self.groupsize
).to(dtype=torch.int32)
return GPTQWeight(
qweight=qweight,
qzeros=qzeros,
scales=scales,
g_idx=g_idx,
bits=self.bits,
groupsize=self.groupsize,
use_awq_kernel=self.quantize == "awq",
use_exllama=use_exllama,
)
def _get_gptq_params(self, weights: Weights):
if weights.has_tensor("gptq_bits") and weights.has_tensor("gptq_groupsize"):
self.bits = weights.get_tensor("gptq_bits").item()
self.groupsize = weights.get_tensor("gptq_groupsize").item()
self.desc_act = False
# `server quantize` used asymmetric quantization unconditionally
# before the `gptq_sym` setting tensor was added.
self.sym = (
weights.get_tensor("gptq_sym").item()
if weights.has_tensor("gptq_sym")
else False
)
self.quant_method = "gptq"

View File

@ -0,0 +1,186 @@
import math
import numpy as np
import torch
import torch.nn as nn
try:
convert_from_uint4 = torch.ops.hpu.convert_from_uint4
except Exception as e:
hpu_import_exception = e
def error_raiser_hpu(*args, **kwargs):
raise ValueError(
f"Trying to use HPU, but could not import the HPU framework with the following error: {hpu_import_exception}"
)
convert_from_uint4 = error_raiser_hpu
def pack_tensor(input, bits=4):
normal = input.to(torch.int32)
q = torch.zeros((normal.shape[0], normal.shape[1] // 32 * bits), dtype=torch.int32)
i = 0
col = 0
while col < q.shape[1]:
for j in range(i, i + (32 // bits)):
q[:, col] |= normal[:, j] << (bits * (j - i))
i += 32 // bits
col += 1
q = q.to(torch.int32)
return q
class QuantLinear(nn.Module):
def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize):
super().__init__()
self.register_buffer("qweight", qweight)
self.register_buffer("qzeros", qzeros)
self.register_buffer("scales", scales)
self.register_buffer("g_idx", g_idx)
if bias is not None:
self.register_buffer("bias", bias)
else:
self.bias = None
if bits not in [4]:
raise NotImplementedError("Only 4 bits are supported.")
self.bits = bits
self.maxq = 2**self.bits - 1
self.groupsize = groupsize
self.outfeatures = qweight.shape[1]
self.infeatures = qweight.shape[0] * 32 // bits
self.wf = torch.tensor(
list(range(0, 32, self.bits)), dtype=torch.int32
).unsqueeze(0)
self._preprocessing()
def unpack_zeros_from_cuda_old_format(self):
zeros = torch.bitwise_right_shift(
torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 32 // self.bits),
self.wf.unsqueeze(0),
).to(torch.int16 if self.bits == 8 else torch.int8)
zeros = zeros + 1
zeros = torch.bitwise_and(zeros, (2**self.bits) - 1).to(
self.scales.dtype
) # NOTE: It appears that casting here after the `zeros = zeros + 1` is important.
zeros = zeros.reshape(-1, zeros.shape[1] * zeros.shape[2])
return zeros
def unpack_weight_from_cuda_old_format(self):
weight = torch.bitwise_right_shift(
torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1),
self.wf.unsqueeze(-1),
).to(torch.int16 if self.bits == 8 else torch.int8)
weight = torch.bitwise_and(weight, (2**self.bits) - 1)
weight = weight.reshape((weight.shape[0] * weight.shape[1], weight.shape[2]))
return weight
def _preprocessing(self):
orig_device = self.qweight.device
self.qweight = self.qweight.cpu()
weight = self.unpack_weight_from_cuda_old_format()
new_qweight = pack_tensor(weight)
self.qweight = new_qweight.to(orig_device)
# TODO: Support group indexing and remove the check
columns = self.qweight.shape[0]
g_idx_trivial = [i // self.groupsize for i in range(columns)]
g_idx_trivial = torch.tensor(
g_idx_trivial, dtype=torch.int32, device=self.g_idx.device
)
assert torch.equal(
self.g_idx, g_idx_trivial
), "Non-trivial tensor g_idx is not supported"
self.qzeros = self.qzeros.cpu()
zeros = self.unpack_zeros_from_cuda_old_format()
new_qzeros = pack_tensor(zeros)
self.qzeros = new_qzeros.to(orig_device)
@classmethod
def new(cls, bits, groupsize, infeatures, outfeatures, bias):
if bits not in [4]:
raise NotImplementedError("Only 4 bits are supported.")
qweight = torch.zeros((infeatures // 32 * bits, outfeatures), dtype=torch.int32)
qzeros = torch.zeros(
(math.ceil(infeatures / groupsize), outfeatures // 32 * bits),
dtype=torch.int32,
)
scales = torch.zeros(
(math.ceil(infeatures / groupsize), outfeatures), dtype=torch.float16
)
g_idx = torch.tensor(
[i // groupsize for i in range(infeatures)], dtype=torch.int32
)
if bias:
bias = torch.zeros((outfeatures), dtype=torch.float16)
else:
bias = None
return cls(qweight, qzeros, scales, g_idx, bias, bits, groupsize)
def pack(self, linear, scales, zeros, g_idx=None):
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
self.scales = scales.clone().half()
if linear.bias is not None:
self.bias = linear.bias.clone().half()
intweight = []
for idx in range(self.infeatures):
intweight.append(
torch.round(
(linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]])
/ self.scales[self.g_idx[idx]]
).to(torch.int)[:, None]
)
intweight = torch.cat(intweight, dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
qweight = np.zeros(
(intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32
)
i = 0
row = 0
while row < qweight.shape[0]:
if self.bits in [4]:
for j in range(i, i + (32 // self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += 32 // self.bits
row += 1
else:
raise NotImplementedError("Only 4 bits are supported.")
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
zeros -= 1
zeros = zeros.numpy().astype(np.uint32)
qzeros = np.zeros(
(zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32
)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [4]:
for j in range(i, i + (32 // self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += 32 // self.bits
col += 1
else:
raise NotImplementedError("Only 4 bits are supported.")
qzeros = qzeros.astype(np.int32)
self.qzeros = torch.from_numpy(qzeros)
def forward(self, x):
out_shape = x.shape[:-1] + (self.outfeatures,)
x = x.reshape(-1, x.shape[-1])
weight = convert_from_uint4(self.qweight, self.scales, self.qzeros, x.dtype)
out = torch.matmul(x, weight)
out = out.reshape(out_shape)
out = out + self.bias if self.bias is not None else out
return out

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,56 @@
import torch
# copied from https://github.com/openppl-public/ppq/blob/master/ppq/quantization/measure/norm.py
def torch_snr_error(
y_pred: torch.Tensor, y_real: torch.Tensor, reduction: str = "mean"
) -> torch.Tensor:
"""
Compute SNR between y_pred(tensor) and y_real(tensor)
SNR can be calcualted as following equation:
SNR(pred, real) = (pred - real) ^ 2 / (real) ^ 2
if x and y are matrixs, SNR error over matrix should be the mean value of SNR error over all elements.
SNR(pred, real) = mean((pred - real) ^ 2 / (real) ^ 2)
Args:
y_pred (torch.Tensor): _description_
y_real (torch.Tensor): _description_
reduction (str, optional): _description_. Defaults to 'mean'.
Raises:
ValueError: _description_
ValueError: _description_
Returns:
torch.Tensor: _description_
"""
if y_pred.shape != y_real.shape:
raise ValueError(
f"Can not compute snr loss for tensors with different shape. "
f"({y_pred.shape} and {y_real.shape})"
)
reduction = str(reduction).lower()
if y_pred.ndim == 1:
y_pred = y_pred.unsqueeze(0)
y_real = y_real.unsqueeze(0)
y_pred = y_pred.flatten(start_dim=1)
y_real = y_real.flatten(start_dim=1)
noise_power = torch.pow(y_pred - y_real, 2).sum(dim=-1)
signal_power = torch.pow(y_real, 2).sum(dim=-1)
snr = (noise_power) / (signal_power + 1e-7)
if reduction == "mean":
return torch.mean(snr)
elif reduction == "sum":
return torch.sum(snr)
elif reduction == "none":
return snr
else:
raise ValueError("Unsupported reduction method.")

View File

@ -0,0 +1,67 @@
import torch
from torch import nn
from accelerate import init_empty_weights
# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
weight = weights.get_tensor(f"{prefix}.weight")
bias = weights.get_tensor(f"{prefix}.bias")
with init_empty_weights():
ln = cls(weight.shape, eps=eps)
ln.weight = torch.nn.Parameter(weight)
ln.bias = torch.nn.Parameter(bias)
return ln
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
weight = weights.get_tensor(f"{prefix}.weight")
with init_empty_weights():
ln = cls(weight.shape, eps=eps)
ln.weight = torch.nn.Parameter(weight)
ln.bias = None
return ln
torch.nn.LayerNorm.load = load_layer_norm
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
class FastLayerNorm(nn.LayerNorm):
def forward(self, hidden_states, residual=None):
if residual is not None:
hidden_states += residual
residual = hidden_states
return super().forward(hidden_states), residual
class FastRMSNorm(nn.Module):
def __init__(self, weight: torch.Tensor, eps: float):
super().__init__()
self.weight = nn.Parameter(weight)
self.variance_epsilon = eps
@classmethod
def load(cls, prefix, weights, eps=1e-6):
weight = weights.get_tensor(f"{prefix}.weight")
return cls(weight, eps)
def forward(self, hidden_states, residual=None):
from vllm_hpu_extension.kernels import rms_norm
orig_shape = hidden_states.shape
if residual is not None:
residual += hidden_states.view(residual.shape)
else:
residual = hidden_states
# Note: HPUFusedRMSNorm requires 3D tensors as inputs
if len(orig_shape) == 2:
residual = residual.unsqueeze(0)
x = rms_norm().apply(residual, self.weight, self.variance_epsilon)
return x.view(orig_shape), residual.view(orig_shape)

View File

@ -0,0 +1,38 @@
import torch
from torch.nn import functional as F
class FastLinear(torch.nn.Module):
def __init__(
self,
weight,
bias,
) -> None:
super().__init__()
self.weight = torch.nn.Parameter(weight, requires_grad=False)
if bias is not None:
self.bias = torch.nn.Parameter(bias, requires_grad=False)
else:
self.bias = None
@classmethod
def load(cls, config, prefix: str, weights, bias: bool):
weight = weights.get_tensor(f"{prefix}.weight")
if bias:
bias = weights.get_tensor(f"{prefix}.bias")
else:
bias = None
return cls(weight, bias)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return F.linear(input, self.weight, self.bias)
def get_linear(weight, bias):
# Weights that are loaded through methods that are not
# quantization-aware are still bare tensors. We may want
# to change this in the future.
if isinstance(weight, torch.Tensor):
return FastLinear(weight, bias)
return weight.get_linear(bias)

View File

@ -0,0 +1,279 @@
from typing import TYPE_CHECKING, Optional, List
import torch
import torch.distributed
from torch import nn
from torch.distributed import ProcessGroup
from text_generation_server.utils.sgmv import (
add_lora_a_bgmv,
add_lora_b_bgmv,
has_sgmv,
lora_a_sgmv_cutlass,
lora_b_sgmv_cutlass,
orient_for_rank,
)
if TYPE_CHECKING:
from text_generation_server.adapters import AdapterBatchData
from text_generation_server.adapters.lora import BatchLoraWeights
class LoraLinear(nn.Module):
def __init__(
self, base_layer: nn.Module, layer_id: int, process_group: ProcessGroup
):
super().__init__()
self.base_layer = base_layer
self.layer_id = layer_id
self.process_group = process_group
def forward_layer_type(
self,
result: torch.Tensor,
input: torch.Tensor,
adapter_data: "AdapterBatchData",
layer_type: str,
start_idx: int,
end_idx: int,
) -> torch.Tensor:
if adapter_data is None:
return result
data: Optional["BatchLoraWeights"] = adapter_data.data.get(layer_type)
if has_sgmv() and data is not None and data.can_vectorize(self.process_group):
# In tensor-parallel configurations, each GPU processes a specific segment of the output.
# The 'result' tensor represents the full output, which can vary in size based on
# the layer type (e.g., attention vs. feed-forward layers). We define the current
# segment using start_idx and end_idx. If the segment size doesn't match this GPU's
# slice of 'result', we create a zero tensor of the correct size for LoRA computation.
# This approach ensures accurate LoRA application across various layer sizes and
# configurations, adapting to different model architectures and parallelization strategies.
#
# Example scenarios where this is necessary:
# 1. The adapter's size doesn't evenly divide across GPUs.
# 2. We're processing the last segment which might be smaller.
# 3. Different projection layers (q, k, v) have different sizes.
if end_idx - start_idx != result.shape[1]:
proj = torch.zeros_like(result[:, start_idx:end_idx])
else:
proj = result
for r, rank_segments in data.rank_data.items():
lora_a_ptr = rank_segments.lora_a_ptr
lora_b_ptr = rank_segments.lora_b_ptr
if lora_a_ptr is None or lora_b_ptr is None:
raise ValueError("LoRA data is missing")
if data.use_sgmv:
# Use SGMV for prefill
v = lora_a_sgmv_cutlass(
input,
rank_segments.tmp_shrink,
lora_a_ptr,
rank_segments.segment_starts,
rank_segments.segment_ends,
self.layer_id,
r,
)
if self.process_group.size() > 1:
v = self.collect_lora_a(v)
lora_b_sgmv_cutlass(
proj,
v,
rank_segments.tmp_expand,
lora_b_ptr,
rank_segments.segment_starts,
rank_segments.segment_ends,
self.layer_id,
)
else:
# Use BGMV for decode
v = torch.zeros(
(input.size(0), r), dtype=input.dtype, device=input.device
)
# TODO: error with [-1, 0], but not [0, -1]
add_lora_a_bgmv(
v,
input,
lora_a_ptr,
rank_segments.indices,
self.layer_id,
)
if self.process_group.size() > 1:
v = self.collect_lora_a(v)
add_lora_b_bgmv(
proj,
v,
lora_b_ptr,
rank_segments.indices,
self.layer_id,
)
if end_idx - start_idx != result.shape[1]:
result[:, start_idx:end_idx] += proj
else:
for adapter_index in adapter_data.meta.adapter_set:
if data is not None and data.has_adapter(adapter_index):
adapter_mask = (
(adapter_data.meta.adapter_indices == adapter_index)
.to(input.dtype)
.view(-1, 1)
)
layer_result = self.forward_lora(
input, data, adapter_index, adapter_mask
)
result[:, start_idx:end_idx] += layer_result
return result
def forward_lora(
self,
input: torch.Tensor,
data: "BatchLoraWeights",
adapter_index: int,
adapter_mask: torch.Tensor,
) -> torch.Tensor:
lora_a = data.lora_a[adapter_index][self.layer_id, :, :]
lora_b = data.lora_b[adapter_index][self.layer_id, :, :]
lora_a = orient_for_rank(lora_a, lora_b.size(0))
a_out = input @ lora_a
if self.process_group.size() > 1:
a_out = self.collect_lora_a(a_out)
result = (a_out @ lora_b) * adapter_mask
return result
def collect_lora_a(self, a_out: torch.Tensor) -> torch.Tensor:
raise NotImplementedError("Implemented in subclasses")
class TensorParallelMultiAdapterLinear(LoraLinear):
def __init__(
self,
base_layer: nn.Module,
layer_id: int,
layer_names: List[str],
sizes: List[int],
process_group: ProcessGroup,
):
super().__init__(base_layer, layer_id, process_group)
self.layer_names = layer_names
self.sizes = sizes
@classmethod
def load(
cls,
base_layer: nn.Module,
layer_id: int,
layer_names: List[str],
sizes: List[int],
process_group: ProcessGroup,
):
return TensorParallelMultiAdapterLinear(
base_layer, layer_id, layer_names, sizes, process_group
)
def forward(
self, input: torch.Tensor, adapter_data: "AdapterBatchData"
) -> torch.Tensor:
result = self.base_layer(input)
# noop if no layer names are provided (e.g. for models without adapters)
if self.layer_names is None:
return result
# handle models like Bloom that have inputs of shape
# (batch_size, sequence_length, hidden_size)
# we need to reshape them to (batch_size * sequence_length, hidden_size)
# for the LoRA computation, then reshape back
prev_shape = result.shape
is_3d = len(input.shape) >= 3
if is_3d:
input = input.reshape(-1, input.shape[-1])
result = result.reshape(-1, result.shape[-1])
offset = 0
for i, layer_name in enumerate(self.layer_names):
start_idx = offset // self.process_group.size()
# The 'sizes' parameter is essential in tensor-parallel setups for handling multiple
# projection layers (q_proj, k_proj, v_proj) by defining their output dimensions. It
# ensures correct slicing of the result tensor, accommodating variations like grouped-query
# attention where k_proj and v_proj differ from q_proj. This allows precise application of
# LoRA adapters to each sub-component of the multi-head attention mechanism, managing the
# different projection sizes across layers and model architectures.
if self.sizes is not None:
offset += self.sizes[i]
end_idx = offset // self.process_group.size()
else:
end_idx = result.shape[1]
result = self.forward_layer_type(
result, input, adapter_data, layer_name, start_idx, end_idx
)
if is_3d:
result = result.reshape(prev_shape)
return result
def collect_lora_a(self, a_out: torch.Tensor) -> torch.Tensor:
# Tensor parallel implementation of X @ A@B, where A and B are sharded column-wise.
# We use an all-gather between X@A and (X@A)@B to ensure alignment across ranks.
#
# TODO(travis): this is not very efficient as we do an all-gather for every adapter,
# instead we could pre-allocate a (B, a, r) tensor for all adapters with the same
# rank, compute `a_out` on each, and then slice them into the buffer as shown here:
# https://discuss.pytorch.org/t/concatenate-tensors-without-memory-copying/34609
gathered_tensors = [
torch.empty_like(a_out) for _ in range(self.process_group.size())
]
torch.distributed.all_gather(gathered_tensors, a_out)
return torch.cat(gathered_tensors, dim=1)
class TensorParallelAdapterRowLinear(LoraLinear):
def __init__(self, base_layer, layer_id, layer_name, process_group):
super().__init__(base_layer, layer_id, process_group)
self.layer_name = layer_name
@classmethod
def load(cls, base_layer, layer_id, layer_name, process_group):
return cls(base_layer, layer_id, layer_name, process_group)
def forward(
self, input: torch.Tensor, adapter_data: "AdapterBatchData"
) -> torch.Tensor:
result = self.base_layer(input)
if self.layer_name is None:
return result
# Fused all-gather + all-reduce from S-LoRA paper: https://arxiv.org/abs/2311.03285
stride = result.shape[-1] // self.process_group.size()
start_idx = self.process_group.rank() * stride
end_idx = (self.process_group.rank() + 1) * stride
self.forward_layer_type(
result, input, adapter_data, self.layer_name, start_idx, end_idx
)
return result
def collect_lora_a(self, a_out: torch.Tensor) -> torch.Tensor:
# Tensor parallel implementation of X @ A@B, where A and B are sharded row-wise.
# We use an all-reduce between X@A and (X@A)@B to ensure alignment across ranks.
#
# TODO(travis): this is not very efficient as we do an all-reduce for every adapter,
# instead we could pre-allocate a (B, a, r) tensor for all adapters with the same
# rank, compute `a_out` on each, and then slice them into the buffer as shown here:
# https://discuss.pytorch.org/t/concatenate-tensors-without-memory-copying/34609
torch.distributed.all_reduce(a_out, group=self.process_group)
return a_out

View File

@ -0,0 +1,191 @@
import torch
from torch import nn
from typing import Tuple, Optional
from text_generation_server.utils.speculate import get_speculate
from text_generation_server.layers.linear import FastLinear
from text_generation_server.layers.tensor_parallel import (
TensorParallelHead,
TensorParallelColumnLinear,
)
class ResBlock(torch.nn.Module):
def __init__(self, config, prefix, weights):
super().__init__()
self.linear = FastLinear.load(
config, prefix=f"{prefix}.linear", weights=weights, bias=True
)
self.act = torch.nn.SiLU()
def forward(self, x):
return x + self.act(self.linear(x))
class MedusaModel(torch.nn.Module):
def __init__(self, config, medusa_config, weights):
super().__init__()
self.heads = torch.nn.ModuleList(
[
MedusaHead(config, medusa_config, prefix=f"{i}", weights=weights)
for i in range(get_speculate())
]
)
def forward(self, x):
if not self.heads:
return None
speculative_logits = torch.stack([head(x) for head in self.heads], dim=1)
return speculative_logits
class MedusaHead(torch.nn.Module):
def __init__(self, config, medusa_config, prefix, weights):
super().__init__()
self.blocks = torch.nn.ModuleList(
[
ResBlock(config, prefix=f"{prefix}.{i}", weights=weights)
for i in range(medusa_config["medusa_num_layers"])
]
)
n = len(self.blocks)
self.out = FastLinear.load(
config, prefix=f"{prefix}.{n}", weights=weights, bias=False
)
def forward(self, x):
for block in self.blocks:
x = block(x)
x = self.out(x)
return x
class MedusaHeadV1(nn.Module):
def __init__(self, lm_head, medusa):
super().__init__()
self.lm_head = lm_head
self.medusa = medusa
@staticmethod
def load(config, prefix: str, weights):
from pathlib import Path
from safetensors import safe_open
import json
speculator = config.speculator
path = speculator["path"]
medusa_config = str(Path(path) / "config.json")
for fname in speculator["model_paths"]:
filename = str(Path(path) / fname)
with open(medusa_config, "r") as f:
medusa_config = json.load(f)
routing = weights.routing
with safe_open(filename, framework="pytorch") as f:
for k in f.keys():
if k in routing and routing[k] != filename:
raise RuntimeError(
f"Key {k} was found in multiple files: {filename} and {routing[k]}"
)
routing[k] = filename
medusa = MedusaModel(config, medusa_config, weights)
lm_head = TensorParallelHead.load(config, prefix, weights)
return MedusaHeadV1(lm_head, medusa)
def forward(
self, input: torch.Tensor
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
logits = self.lm_head(input)
# If we have too many tokens, we skip speculative logits
if input.shape[0] > 128:
return logits, None
speculative_logits = self.medusa(input)
return logits, speculative_logits
class MedusaHeadV2(nn.Module):
def __init__(self, config, prefix, weights):
super().__init__()
from pathlib import Path
from safetensors import safe_open
import json
speculator_path = config.speculator["path"]
medusa_config = str(Path(speculator_path) / "config.json")
filename = str(Path(speculator_path) / "medusa_lm_head.safetensors")
with open(medusa_config, "r") as f:
medusa_config = json.load(f)
routing = weights.routing
with safe_open(filename, framework="pytorch") as f:
for k in f.keys():
if k in routing and routing[k] != filename:
raise RuntimeError(
f"Key {k} was found in multiple files: {filename} and {routing[k]}"
)
routing[k] = filename
self.n_medusa_heads = get_speculate()
assert medusa_config["medusa_num_layers"] == 1
self.linear = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{i}.0.linear" for i in range(self.n_medusa_heads)],
dim=0,
weights=weights,
bias=True,
)
self.process_group = weights.process_group
self.world_size = self.process_group.size()
self.rank = self.process_group.rank()
self.act = torch.nn.SiLU()
self.lm_head = TensorParallelHead.load(config, prefix, weights)
def forward(self, x):
# If we have too many tokens, we skip speculative logits
if x.shape[0] > 128:
logits = self.lm_head(x)
return logits, None
size = x.shape[-1]
block_size = (size + self.world_size - 1) // self.world_size
start = self.rank * block_size
stop = (self.rank + 1) * block_size
x_block = x[:, start:stop]
# Compute all medusa heads at the same time, then reshape and move the n_medusa_heads dim to dim 1
medusa_res = self.act(self.linear(x)).reshape(
*x_block.shape[:-1], self.n_medusa_heads, x_block.shape[-1]
)
# Apply all residual medusa heads
output = x[:, start:stop].unsqueeze(-2) + medusa_res
# Gather medusa heads
world_output = [
torch.empty_like(output) for _ in range(self.process_group.size())
]
torch.distributed.all_gather(world_output, output, group=self.process_group)
world_output = torch.cat(world_output, dim=-1)
# Stack x and medusa residual x
stacked_x = torch.cat([x.unsqueeze(-2), world_output], dim=-2)
# Compute lm head on x + medusa residual x
logits = self.lm_head(stacked_x)
# Finally, split logits from speculative logits
logits, speculative_logits = torch.split(
logits, [1, self.n_medusa_heads], dim=-2
)
# Squeeze added dimension
logits = logits.squeeze(-2)
return logits, speculative_logits

View File

@ -0,0 +1,282 @@
import torch
import math
from torch import nn
from torch.nn import functional as F
from typing import Optional, Tuple
from text_generation_server.layers import TensorParallelEmbedding, FastLinear
from text_generation_server.layers.tensor_parallel import TensorParallelHead
from text_generation_server.utils.speculate import get_speculate
class MLPSpeculatorLayerNorm(nn.Module):
"""
A L2 normalization implementation
...
Args
----
normalized_shape : int
Dimensionality of input data (size of final tensor axis)
elementwise_scale_weight : torch.Tensor
learned scaling term after normalization?
elementwise_shift_bias : torch.Tensor
learned bias term after normalization?
eps : float
Safety term to prevent division by zero. Make sure the chosen value fits in the range of your encoding scheme (i.e. fp16 requires eps >= 6e-8).
"""
def __init__(
self,
prefix,
config,
weights,
eps=1e-06,
):
super(MLPSpeculatorLayerNorm, self).__init__()
self.weight = weights.get_tensor(f"{prefix}.weight")
self.bias = weights.get_tensor(f"{prefix}.bias")
self.eps = eps
def forward(self, x):
xf = x
xf = xf * torch.rsqrt(xf.pow(2).mean(-1, keepdim=True) + self.eps)
x = xf.type_as(x)
x = self.weight * x
x = x + self.bias
return x
INV_SQRT2 = 2**-0.5
def simple_norm(x: torch.Tensor, eps=1e-06):
xf = x
xf = xf * torch.rsqrt(xf.pow(2).mean(-1, keepdim=True) + eps)
x = xf.type_as(x)
return x * INV_SQRT2
class MLPSpeculatorModelTied(torch.nn.Module):
def __init__(self, config, prefix, weights):
super().__init__()
self.config = config
self.n_predict = get_speculate()
self.hidden_size = config.hidden_size
self.emb = TensorParallelEmbedding(f"{prefix}.emb.0", weights)
self.proj0 = FastLinear.load(
config,
prefix=f"{prefix}.proj.0",
weights=weights,
bias=False,
)
self.proj1 = FastLinear.load(
config,
prefix=f"{prefix}.proj.1",
weights=weights,
bias=False,
)
self.head = FastLinear.load(config, f"{prefix}.head.0", weights, bias=False)
self.ln = MLPSpeculatorLayerNorm(
prefix=f"{prefix}.ln.0",
config=config,
weights=weights,
)
# Weights ensure that state_0 accounts for 50% of state magnitude by final head in expectation
self.state_weight = 0.5 ** (0.5 / self.n_predict) if self.n_predict > 0 else 1
self.activation = nn.GELU()
self.vsize = config.vocab_size
self.inner_dim = config.speculator_config["inner_dim"]
self.top_k_tokens_per_head = [1] * self.n_predict
self.emb_weight = math.sqrt(1 - self.state_weight**2) * math.sqrt(
self.inner_dim / 2
)
self.emb.weight *= self.emb_weight
def forward(
self,
hidden_states: torch.Tensor,
input_ids: torch.Tensor,
):
top_k_tokens_per_head = self.top_k_tokens_per_head
# k indicates # of candidates
# h indicates # of generated tokens
state = hidden_states
b = state.size(0)
ind = input_ids.unsqueeze(0)
all_probs = torch.empty(
b, self.n_predict, self.vsize, device=state.device
) # b k h v
assert (
len(top_k_tokens_per_head) == self.n_predict
), f"You must provide a topk number for each head ({self.n_predict} heads, {len(top_k_tokens_per_head)} provided)"
for i in range(self.n_predict):
# Project and predict
z = self.emb(ind)
# z = z.mul(self.emb_weight) # b k d
if i == 0:
state = self.proj0(state) * self.state_weight + z
else:
state = self.proj1(state) * self.state_weight + z
state = self.activation(self.ln(state)) # b k d
probs = F.log_softmax(self.head(state), dim=-1) # b k v
_probs, preds = probs.topk(top_k_tokens_per_head[i], dim=-1) # b k k'
# Update candidate set with new predictions
# Update distribution set with new logits
all_probs[:, i] = probs.exp()
# Update state, log_probs and ind for new predictions
state = state.unsqueeze(2).expand(
-1, -1, top_k_tokens_per_head[i], -1
) # b k k' d
state = state.reshape(-1, b, state.size(3)) # b kk' d
ind = preds.view(-1, b) # b kk'
speculative_logits = all_probs
return speculative_logits
class MLPSpeculatorModel(torch.nn.Module):
def __init__(self, config, prefix, weights):
super().__init__()
self.config = config
self.n_predict = get_speculate()
self.hidden_size = config.hidden_size
self.emb = nn.ModuleList(
[
TensorParallelEmbedding(f"{prefix}.emb.{i}", weights)
for i in range(self.n_predict)
]
)
self.proj = [
FastLinear.load(
config,
prefix=f"{prefix}.proj.{i}",
weights=weights,
bias=False,
)
for i in range(self.n_predict)
]
self.head = nn.ModuleList(
[
FastLinear.load(config, f"{prefix}.head.{i}", weights, bias=False)
for i in range(self.n_predict)
]
)
self.ln = nn.ModuleList(
[
MLPSpeculatorLayerNorm(
prefix=f"{prefix}.ln.{i}",
config=config,
weights=weights,
)
for i in range(self.n_predict)
]
)
# Weights ensure that state_0 accounts for 50% of state magnitude by final head in expectation
self.state_weight = 0.5 ** (0.5 / self.n_predict) if self.n_predict > 0 else 1
self.activation = nn.GELU()
self.vsize = config.vocab_size
self.inner_dim = config.speculator_config["inner_dim"]
self.top_k_tokens_per_head = [1] * self.n_predict
self.emb_weight = math.sqrt(1 - self.state_weight**2) * math.sqrt(
self.inner_dim / 2
)
self.emb.weight *= self.emb_weight
def forward(
self,
hidden_states: torch.Tensor,
input_ids: torch.Tensor,
):
top_k_tokens_per_head = self.top_k_tokens_per_head
# k indicates # of candidates
# h indicates # of generated tokens
state = hidden_states
b = state.size(0)
ind = input_ids.unsqueeze(0)
all_probs = torch.empty(
b, self.n_predict, self.vsize, device=state.device
) # b k h v
assert (
len(top_k_tokens_per_head) == self.n_predict
), f"You must provide a topk number for each head ({self.n_predict} heads, {len(top_k_tokens_per_head)} provided)"
for i in range(self.n_predict):
# Project and predict
z = self.emb[i](ind)
# z = z.mul(self.emb_weight) # b k d
state = self.proj[i](state) * self.state_weight + z
state = self.activation(self.ln[i](state)) # b k d
probs = F.log_softmax(self.head[i](state), dim=-1) # b k v
_probs, preds = probs.topk(top_k_tokens_per_head[i], dim=-1) # b k k'
# Update candidate set with new predictions
# Update distribution set with new logits
all_probs[:, i] = probs.exp()
# Update state, log_probs and ind for new predictions
state = state.unsqueeze(2).expand(
-1, -1, top_k_tokens_per_head[i], -1
) # b k k' d
state = state.reshape(-1, b, state.size(3)) # b kk' d
ind = preds.view(-1, b) # b kk'
speculative_logits = all_probs
return speculative_logits
class MLPSpeculatorHead(nn.Module):
def __init__(self, lm_head, mlp_speculator, scale_input: bool):
super().__init__()
self.lm_head = lm_head
self.mlp_speculator = mlp_speculator
self.scale_input = scale_input
def forward(
self, input: torch.Tensor
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
logits = self.lm_head(input)
# If we have too many tokens, we skip speculative logits
if input.shape[0] > 128:
return logits, None
input_ids = logits.argmax(dim=-1)
if self.scale_input:
input = simple_norm(input)
speculative_logits = self.mlp_speculator(input, input_ids)
return logits, speculative_logits
@staticmethod
def load(config, prefix: str, weights):
from pathlib import Path
from safetensors import safe_open
speculator_path = config.speculator["path"]
for fname in config.speculator["model_paths"]:
filename = str(Path(speculator_path) / fname)
routing = weights.routing
with safe_open(filename, framework="pytorch") as f:
for k in f.keys():
if k in routing and routing[k] != filename:
raise RuntimeError(
f"Key {k} was found in multiple files: {filename} and {routing[k]}"
)
routing[k] = filename
tie_weights = config.speculator_config.get("tie_weights", False)
if tie_weights:
mlp_speculator = MLPSpeculatorModelTied(config, "speculator", weights)
else:
mlp_speculator = MLPSpeculatorModel(config, "speculator", weights)
# This is used in https://huggingface.co/ibm-fms/llama3-70b-accelerator
scale_input = config.speculator_config.get("scale_input", False)
lm_head = TensorParallelHead.load(config, prefix, weights)
return MLPSpeculatorHead(lm_head, mlp_speculator, scale_input)

View File

@ -0,0 +1,250 @@
from typing import Optional, Protocol, runtime_checkable
import torch
import torch.nn as nn
from loguru import logger
from transformers.activations import ACT2FN
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelRowLinear,
)
from text_generation_server.layers.fp8 import HybridFP8UnquantLoader
from text_generation_server.layers.moe.unquantized import UnquantizedSparseMoELayer
from text_generation_server.layers.moe.fp8 import FP8SparseMoELayer
from text_generation_server.utils.log import log_once
from text_generation_server.utils.weights import (
DefaultWeightsLoader,
Weights,
UnquantizedWeight,
)
from .fused_moe import fused_topk, grouped_topk
# NOTE: we are using a protocol here, because multiple inherance is not nice.
# We need `Module`, and `Module` -> some abstract class -> some concrete
# class inheritance is whacky.
@runtime_checkable
class MoELayer(Protocol):
def __init__(
self,
*,
n_expert_group: Optional[int],
n_experts: int,
prefix: str,
renormalize: bool,
topk: int,
topk_group: Optional[int],
weights: Weights,
gate_proj_name: str = "gate_proj",
up_proj_name: str = "up_proj",
down_proj_name: str = "down_proj",
hidden_act: str = "silu",
scoring_func: Optional[str] = None,
e_score_correction_bias: Optional[float] = None,
): ...
def forward(
self, x: torch.Tensor, *, gating_output: torch.Tensor
) -> torch.Tensor: ...
class DenseMoELayer(nn.Module):
"""
Layer for MoE that applies *all* experts to each tokens and then weights
their outputs based on the calculated routing. This layer is much slower
than `SparseMoELayer` and should only be used when no fused kernels are
available (e.g. for unsupported quantizers).
"""
def __init__(
self,
*,
n_expert_group: Optional[int],
n_experts: int,
prefix: str,
renormalize: bool,
topk: int,
topk_group: Optional[int],
weights: Weights,
gate_proj_name: str = "gate_proj",
up_proj_name: str = "up_proj",
down_proj_name: str = "down_proj",
hidden_act: str = "silu",
scoring_func: Optional[str] = None,
e_score_correction_bias: Optional[float] = None,
):
super().__init__()
assert scoring_func is None, "scoring func is not handled"
assert e_score_correction_bias is None, "scoring correction bias is not handled"
log_once(
logger.info,
"No fused layers are available for this model type, using (slower) dense MoE layer",
)
assert (n_expert_group is None) == (
topk_group is None
), "n_expert_group and topk_group must both be None or have some value"
self.n_expert_group = n_expert_group
self.n_experts = n_experts
self.renormalize = renormalize
self.topk = topk
self.topk_group = topk_group
if "gelu" in hidden_act:
self.act = lambda x: torch.nn.functional.gelu(
x,
approximate=(
"tanh"
if hidden_act in ["gelu_fast", "gelu_pytorch_tanh"]
else "none"
),
)
elif "silu" in hidden_act:
self.act = torch.nn.functional.silu
else:
self.act = ACT2FN[hidden_act]
self.gate_proj = [
TensorParallelColumnLinear.load(
None,
prefix=f"{prefix}.{i}.{gate_proj_name}",
weights=weights,
bias=False,
)
for i in range(self.n_experts)
]
self.up_proj = [
TensorParallelColumnLinear.load(
None,
prefix=f"{prefix}.{i}.{up_proj_name}",
weights=weights,
bias=False,
)
for i in range(self.n_experts)
]
self.down_proj = [
TensorParallelRowLinear.load(
None,
prefix=f"{prefix}.{i}.{down_proj_name}",
weights=weights,
bias=False,
)
for i in range(self.n_experts)
]
self.process_group = weights.process_group
def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor:
"""
x: (sequence_length, model_dim)
gating_output: (sequence_length, n_experts)
"""
# optional reshape
input_shape = x.shape
x = x.view(-1, input_shape[-1])
if self.n_expert_group is not None and self.topk_group is not None:
topk_weights, topk_ids = grouped_topk(
x,
gating_output,
self.topk,
renormalize=self.renormalize,
num_expert_group=self.n_expert_group,
topk_group=self.topk_group,
)
else:
topk_weights, topk_ids = fused_topk(
x, gating_output, self.topk, self.renormalize
)
topk_weights = topk_weights.to(x.dtype)
weights = torch.zeros(
topk_ids.shape[0], self.n_experts, dtype=x.dtype, device=x.device
)
weights.scatter_(1, topk_ids.long(), topk_weights.to(weights.dtype))
out = torch.zeros_like(x)
for i in range(self.n_experts):
h = self.act(self.gate_proj[i](x)) * self.up_proj[i](x)
h = self.down_proj[i](h, reduce=False)
out += h * weights[:, i].view(-1, 1)
return out
class SparseMoELayer(nn.Module):
"""
Layer for MoE that uses fused kernels to only apply the active experts
for each token (rather than applying all experts and selecting the
outputs of active experts).
"""
def __init__(
self,
*,
n_expert_group: Optional[int],
n_experts: int,
prefix: str,
renormalize: bool,
topk: int,
topk_group: Optional[int],
weights: Weights,
scoring_func: Optional[str] = "softmax",
e_score_correction_bias: Optional[float] = None,
gate_proj_name: str = "gate_proj",
up_proj_name: str = "up_proj",
down_proj_name: str = "down_proj",
):
super().__init__()
if (
isinstance(weights.loader, DefaultWeightsLoader)
and isinstance(weights.loader.weight_class, UnquantizedWeight)
) or isinstance(weights.loader, HybridFP8UnquantLoader):
if (
isinstance(weights.loader, HybridFP8UnquantLoader)
and weights.loader.to_fp8
):
cls = FP8SparseMoELayer
else:
cls = UnquantizedSparseMoELayer
else:
raise ValueError(
f"Unsupported weights loader: {type(weights.loader)}, sparse MoE is only supported for unquantized, AWQ, and GPTQ weights"
)
log_once(
logger.info,
"Using MoE layer wih fused gemm",
)
self.moe = cls(
n_expert_group=n_expert_group,
n_experts=n_experts,
prefix=prefix,
renormalize=renormalize,
topk=topk,
topk_group=topk_group,
weights=weights,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
gate_proj_name=gate_proj_name,
up_proj_name=up_proj_name,
down_proj_name=down_proj_name,
)
def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor:
return self.moe(x, gating_output=gating_output)
@staticmethod
def is_supported(weights: Weights) -> bool:
return (
isinstance(weights.loader, DefaultWeightsLoader)
and isinstance(weights.loader.weight_class, UnquantizedWeight)
) or isinstance(weights.loader, HybridFP8UnquantLoader)

View File

@ -0,0 +1,173 @@
from typing import Optional
import torch
import torch.nn as nn
from text_generation_server.utils.weights import Weights
from text_generation_server.layers.fp8 import (
Fp8Weight,
fp8_quantize,
quant_dtype,
normalize_e4m3fn_to_native_float8,
)
try:
from .unquantized import fused_moe
except Exception:
fused_moe = None
class FP8SparseMoELayer(nn.Module):
def __init__(
self,
*,
n_expert_group: Optional[int],
n_experts: int,
prefix: str,
renormalize: bool,
topk: int,
topk_group: Optional[int],
weights: Weights,
scoring_func: Optional[str] = "softmax",
e_score_correction_bias: Optional[float] = None,
gate_proj_name: str = "gate_proj",
up_proj_name: str = "up_proj",
down_proj_name: str = "down_proj",
):
super().__init__()
assert (n_expert_group is None) == (
topk_group is None
), "n_expert_group and topk_group must both be None or have some value"
self.n_expert_group = n_expert_group
self.topk = topk
self.topk_group = topk_group
self.renormalize = renormalize
self.weight_block_size = weights.weights_loader.weight_block_size
self.scoring_func = scoring_func
self.e_score_correction_bias = e_score_correction_bias
(
self.gate_up_proj,
self.gate_up_proj_weight_scale,
self.gate_up_proj_input_scale,
) = _load_expert_multi_weights_col(
prefix=prefix,
n_experts=n_experts,
gate_proj_name=gate_proj_name,
up_proj_name=up_proj_name,
weights=weights,
)
self.down_proj, self.down_proj_weight_scale, self.down_proj_input_scale = (
_load_expert_weights_row(
prefix=prefix,
n_experts=n_experts,
name=down_proj_name,
weights=weights,
)
)
def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor:
return fused_moe(
x,
w1=self.gate_up_proj,
w2=self.down_proj,
gating_output=gating_output,
topk=self.topk,
renormalize=self.renormalize,
inplace=True,
use_grouped_topk=self.n_expert_group is not None,
num_expert_group=self.n_expert_group,
topk_group=self.topk_group,
scoring_func=self.scoring_func,
e_score_correction_bias=self.e_score_correction_bias,
use_fp8_w8a8=True,
w1_scale=self.gate_up_proj_weight_scale,
w2_scale=self.down_proj_weight_scale,
a1_scale=self.gate_up_proj_input_scale,
a2_scale=self.down_proj_input_scale,
)
def _load_expert_weights(
get_weight_fn,
*,
prefix: str,
n_experts: int,
name: str,
weights: Weights,
) -> torch.Tensor:
all_weight = None
all_weight_scales = None
max_input_scale = None
for i in range(n_experts):
weight = get_weight_fn(prefix, i, name, weights)
assert isinstance(weight, Fp8Weight)
if all_weight is None:
all_weight = torch.empty(
(n_experts,) + weight.weight.shape,
dtype=quant_dtype,
device=weight.weight.device,
)
if all_weight_scales is None:
all_weight_scales = torch.empty(
(n_experts,) + weight.weight_scale.shape,
dtype=torch.float32,
device=weight.weight.device,
)
if weight.weight.dtype in {torch.float8_e4m3fn, torch.float8_e4m3fnuz}:
all_weight[i], all_weight_scales[i], current_input_scale = (
normalize_e4m3fn_to_native_float8(
weight.weight, weight.weight_scale, weight.input_scale
)
)
if current_input_scale is not None:
if max_input_scale is None or current_input_scale > max_input_scale:
max_input_scale = current_input_scale
else:
all_weight[i], all_weight_scales[i] = fp8_quantize(
weight.weight, scalar=True
)
assert all_weight is not None
return all_weight, all_weight_scales, max_input_scale
def _load_expert_multi_weights_col(
*,
prefix: str,
n_experts: int,
gate_proj_name: str,
up_proj_name: str,
weights: Weights,
) -> torch.Tensor:
def get_weight_fn(prefix, i, name, weights):
return weights.get_multi_weights_col(
[f"{prefix}.{i}.{gate_proj_name}", f"{prefix}.{i}.{up_proj_name}"], 0
)
return _load_expert_weights(
get_weight_fn, prefix=prefix, n_experts=n_experts, name=None, weights=weights
)
def _load_expert_weights_row(
*,
prefix: str,
n_experts: int,
name: str,
weights: Weights,
) -> torch.Tensor:
def get_weight_fn(prefix, i, name, weights):
return weights.get_weights_row(f"{prefix}.{i}.{name}")
return _load_expert_weights(
get_weight_fn, prefix=prefix, n_experts=n_experts, name=name, weights=weights
)

View File

@ -0,0 +1,65 @@
# coding=utf-8
# Copyright 2023, 2024 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import torch
def grouped_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
num_expert_group: int = 0,
topk_group: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
scores = torch.softmax(gating_output, dim=-1)
num_token = scores.shape[0]
group_scores = (
scores.view(num_token, num_expert_group, -1).max(dim=-1).values
) # [n, n_group]
group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=False)[
1
] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, n_group]
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
score_mask = (
group_mask.unsqueeze(-1)
.expand(num_token, num_expert_group, scores.shape[-1] // num_expert_group)
.reshape(num_token, -1)
) # [n, e]
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
topk_weights, topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights, topk_ids
def fused_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
topk_weights = torch.nn.functional.softmax(
gating_output, dim=1, dtype=torch.float32
)
topk_weights, topk_ids = torch.topk(topk_weights, topk, dim=-1)
if renormalize:
topk_weights /= topk_weights.sum(dim=-1, keepdim=True)
return topk_weights, topk_ids

Some files were not shown because too many files have changed in this diff Show More