Commit Graph

367 Commits

Author SHA1 Message Date
Nicolas Patry
4baa6ff59f Upgrading exl2. (#2415)
* Upgrading exl2.

* Fixing the other pathways.

* Fix idefics.
2024-09-25 06:07:40 +00:00
Wang, Yi
7a4d831d17 add numa to improve cpu inference perf (#2330)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-09-25 06:06:17 +00:00
drbh
8e6bfa2fc5 feat: validate template variables before apply and improve sliding wi… (#2403)
* feat: validate template variables before apply and improve sliding window check

* fix: improve missing template var test
2024-09-25 06:05:43 +00:00
Daniël de Kok
f586cc7f0c Add support for prefix caching to the v3 router (#2392)
This change adds support for prefix caching to the v3 router. This
is broken up from the backend support to ease reviewing.

For now prefix caching is only enabled with `USE_PREFIX_CACHING=1`
in this case, the router will switch to `RadixAllocator`. This
allocator uses a radix trie to keep track of prefills that were
seen prior. If a new prefill is a prefix of a previously-seen
prefil, the router will send a request with `prefix_len>0`, which
can be used by the backend to decide to reuse KV blocks from the
cache, rather than recomputing them.

Even though backend support is not added in this PR, the backend
will still work with prefix caching enabled. The prefix lengths
are just ignored and not used.
2024-09-25 06:05:08 +00:00
Nicolas Patry
849bd93dc3 Using an enum for flash backens (paged/flashdecoding/flashinfer) (#2385)
* Using an enum for flash backens (paged/flashdecoding/flashinfer)

* Early exit on server too.

* Clippy.

* Fix clippy and fmt.
2024-09-25 06:04:51 +00:00
Vaibhav Srivastav
1d4a35a23c Update documentation for Supported models (#2386)
* Minor doc fixes

* up.

* Other minor updates.
2024-09-25 06:04:51 +00:00
Daniël de Kok
4a16da5d49 Add FlashInfer support (#2354)
This change adds support for FlashInfer. FlashInfer can be enabled using
`FLASH_INFER=1` and is currently only implemented in `FlashCausalLM`.
Since this functionality is currently only for testing, FlashInfer is
not installed anywhere yet.

The FlashInfer API is quite different from FlashAttention/vLLM in that
it requires more global bookkeeping:

* A wrapper class needs to be contstructed (which we just call *state*).
  Since this is fairly expensive (due to pinned host memory allocation),
  we only do this once in a FlashCausalLM instance or for each CUDA
  Graph size.
* Each model forward call needs to be wrapped in `begin_forward` and
  `end_forward`. This sets up data structures that can be reused for all
  calls to attention for that forward call.

When calling attention, we need access to the state object. To avoid
passing an argument down the call chain (which would require changes to
all models), we use a context variable.

Each model forward call is wrapped using a context manager that does all
the bookkeeping for such a call:

* Set the context variable to the forward call's state.
* Call `begin_forward` on the state.
* Yield.
* Call `end_forward` on the state.
* Reset the context variable.

We cannot use a single shared global variable for this, since e.g. CUDA
Graphs of different sizes each have their own state.
2024-09-25 06:01:59 +00:00
drbh
853fb96fec fix: prefer hidden_activation over hidden_act in gemma2 (#2381) 2024-09-25 05:55:39 +00:00
Wang, Yi
3893d00927 fix EleutherAI/gpt-neox-20b does not work in tgi (#2346)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-09-25 05:55:39 +00:00
drbh
06b638f310 Pr 2374 ci branch (#2378)
* Update __init__.py

Fix issue with NoneType comparison for max_input_tokens and sliding_window

- Add default values for max_input_tokens and sliding_window to handle None cases.
- Ensure the comparison between max_input_tokens and sliding_window is handled correctly to prevent TypeError.
- This change addresses the error: TypeError: '<=' not supported between instances of 'int' and 'NoneType'.

* Update __init__.py

Handle NoneType in sliding_window comparison to fix TypeError in __init__.py by ensuring the comparison logic accounts for NoneType values, preventing errors and improving code robustness.

* fix: syntax/style tweak

---------

Co-authored-by: Praz <prazanth2006@gmail.com>
2024-09-25 05:55:39 +00:00
drbh
9b1b545bb4 Fix the prefix for OPT model in opt_modelling.py #2370 (CI RUN) (#2371)
* Fix the bug

* fix: run lints

* fix: small syntax tweak

---------

Co-authored-by: Sadra Barikbin <sadraqazvin1@yahoo.com>
2024-09-25 05:55:39 +00:00
drbh
3ea8e8a2d5 add gptj modeling in TGI #2366 (CI RUN) (#2372)
* add gptj modeling

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix: update docs for model addition

* fix: adjust syntax typo

* fix: adjust syntax typo again

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
2024-09-25 05:55:39 +00:00
almersawi
11fab8a20c fix: fix num_ln_in_parallel_attn attribute name typo in RWConfig (#2350)
Co-authored-by: Islam Almersawi <islam.almersawi@openinnovation.ai>
2024-09-25 05:55:39 +00:00
drbh
3ccde430d9 fix: prefer original layernorm names for 180B (#2365) 2024-09-25 05:55:39 +00:00
drbh
db873be177 fix: default num_ln_in_parallel_attn to one if not supplied (#2364) 2024-09-25 05:55:39 +00:00
drbh
688321bcc4 fix: attempt forward on flash attn2 to check hardware support (#2335)
* fix: attempt forward on flash attn2 to check hardware support

* fix: warn window_size_left when using flash attn 1

* fix: prefer version check over test op and avoid window_size_left if not flash attn2

* fix: improve condtional and error message

* fix: update sliding window conditional

* fix: simplify changes and revert model changes

* fix: avoid changing conditional

* fix: typo tweak
2024-09-25 05:55:39 +00:00
Daniël de Kok
48fec7b198 Unify attention output handling (#2343)
- Always return the hidden states.
- Create the output tensor inside the `attention` and `paged_attention`
  functions.

This removes the difference between how the output is handled between
attention (output parameter) and paged attention (return value). This
also removes the assumption that the attention implementation can
write to an output tensor (in preparation of FlashInfer).
2024-09-25 05:55:39 +00:00
Wang, Yi
d70da59c25 enable HuggingFaceM4/idefics-9b in intel gpu (#2338)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-09-25 05:55:39 +00:00
drbh
c73d1d604f Pr 2290 ci run (#2329)
* MODEL_ID propagation fix

* fix: remove global model id

---------

Co-authored-by: root <root@tw031.pit.tensorwave.lan>
2024-09-25 05:55:39 +00:00
drbh
a87791d7c9 feat: add ruff and resolve issue (#2262)
* feat: add ruff and resolve issue

* fix: update client exports and adjust after rebase

* fix: adjust syntax to avoid circular import

* fix: adjust client ruff settings

* fix: lint and refactor import check and avoid model enum as global names

* fix: improve fbgemm_gpu check and lints

* fix: update lints

* fix: prefer comparing model enum over str

* fix: adjust lints and ignore specific rules

* fix: avoid unneeded quantize check
2024-09-25 05:46:24 +00:00
Daniël de Kok
fc6d80fdb8 Support tied embeddings in 0.5B and 1.5B Qwen2 models (#2313) 2024-09-25 05:41:43 +00:00
drbh
7ebee37641 fix: refactor adapter weight loading and mapping (#2193)
* fix: refactor adapter weight loading and mapping

* feat: enable lora load from directory

* fix: adjust launcher for local lora adapters

* feat: improve weight loading and add tests

* fix: improve logging and rebase syntax issue

* fix: impove adapter merge comments and remove unused conditional

* fix: improve get_model_with_lora_adapters naming

* fix: comment typo
2024-09-25 05:39:58 +00:00
Wang, Yi
d93931567d fix of use of unquantized weights in cohere GQA loading, also enable … (#2291)
fix of use of unquantized weights in cohere GQA loading, also enable the model in intel platform

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-09-25 05:39:58 +00:00
Wang, Yi
204142153f fix crash in multi-modal (#2245)
* fix crash in multi-modal

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update according to review comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix llava_next regression in latest main

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-09-25 05:39:58 +00:00
shaltielshmid
69b67b7add Add support for Mistral-Nemo by supporting head_dim through config (#2254)
* Support passing head_dim through config

* Using `head_dim` as a fallback is necessary since it's a non standard
key in mistralConfig (as defined in transformers).

* Shorter diff.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-09-25 05:31:31 +00:00
Nicolas Patry
31eb03dbe2 Fixing mistral nemo. (#2276) 2024-09-25 05:31:30 +00:00
Nicolas Patry
568cc9f3d0 Softcapping for gemma2. (#2273)
* Softcapping for gemma2.

* Less clutter.

* No access to transformers config, only config_dict here.

* 0.0 is the null value in the C++ API.
2024-09-25 05:31:08 +00:00
OlivierDehaene
a7515b8af1 fix(server): fix fp8 weight loading (#2268)
* fix(server): fix fp8 weight loading

* fixed scales loading

* update snap

* revert default dtype
2024-09-25 05:31:08 +00:00
icyboy™
a5aee82a69 Hotfix: fix of use of unquantized weights in Mixtral GQA loading (#2269)
* Update idefics_causal_lm.py

Fix syntax issues

* fix dbrx & opt model prefix bug

* Hotfix: fix of use of unquantized weights in Mixtral GQA loading
2024-09-25 05:30:41 +00:00
OlivierDehaene
d13215da8f fix(server): fix deepseekv2 loading (#2266) 2024-09-25 05:30:41 +00:00
OlivierDehaene
85f10ec5c9 feat(fp8): use fbgemm kernels and load fp8 weights directly (#2248)
* feat(fp8): add support for fbgemm

* allow loading fp8 weights directly

* update outlines

* fix makefile

* build fbgemm

* avoid circular import and fix dockerfile

* add default dtype

* refactored weights loader

* fix auto conversion

* fix quantization config parsing

* force new nccl on install

* missing get_weights implementation

* increase timeout
2024-09-25 05:30:41 +00:00
Daniël de Kok
c1638a56f1 Add support for Deepseek V2 (#2224)
Deepseek V2 is a MoE model from Deepseek. Relevant variations
compared to other models:

- Grouped top-K in expert selection.
- mscale in yarn is calculated using the `mscale` and `mscale_all_dim`
  configuration options.
- `mscale_all_dim` is also used in scaling attention softmax.
- Permuting of the query/key representations before applying rotary
  embeddings.
- Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`).
  So, we need weight loads that supports quantized weights. To this
  end `{Weights,WeightLoader}.get_weight` was added.
- The query/key head dimensionality differs from that of the value,
  so we need to pad during attention.
- Heads with size 192, needs an extension to our paged attention
  fork and we need to ensure that the KV cache is allocated with the
  correct size.
- Shared experts.
2024-09-25 05:27:40 +00:00
Daniël de Kok
e658d95c23 Hotfix: pass through model revision in VlmCausalLM (#2258) 2024-09-25 05:27:40 +00:00
Daniël de Kok
990ea793c0 Hotfix: fix MPT after recent refactor (#2257) 2024-09-25 05:27:40 +00:00
Daniël de Kok
ba0dfb6fb1 Hotfix: various GPT-based model fixes (#2256) 2024-09-25 05:27:40 +00:00
Daniël de Kok
394f8c7d2b Hotfix: fix of use of unquantized weights in Gemma GQA loading (#2255) 2024-09-25 05:27:40 +00:00
Daniël de Kok
2dd680b799 Improve the handling of quantized weights (#2250)
* Improve the handling of quantized weights

Handling of quantized weights was split between two mechanisms:

- For quantized checkpoints, we used the new weight loader
  infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
  instead relied on conditional in `get_linear`.

Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.

This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:

- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
  `get_linear` does not need to know how to handle quantizer linear
  layers.
- All quantizer weights are strongly typed, we don't pass around
  raw tensors.
- We don't have to pass around the `quantizer` string everywhere.

* Exclude non-MLP layers when using FP8 quantization with Llama
2024-09-25 05:27:40 +00:00
OlivierDehaene
118ee57f82 fix(server): fix cohere (#2249) 2024-09-25 05:27:40 +00:00
Daniël de Kok
e955f7b536 Add support for AWQ-quantized Idefics2 (#2233)
Fixes #2036.
2024-09-25 05:27:40 +00:00
Daniël de Kok
2a6c3caf1d Move quantized weight handling out of the Weights class (#2194)
Quantized weights were loaded in the `Weights` class, but this was
getting quite unwieldy, where every higher level method to load weights
was a long conditional to cover all the different quantizers.

This change moves loading of quantized weights out of the `Weights`
class. This is done by defining a simple `WeightsLoader` interface
that is implemented by `Exl2WeightsLoader`, `GPTQWeightsLoader`,
and `MarlinWeightsLoader`. These implementations are in the quantizers'
respective modules. The `Weights` class provides the low-level load
operations (such as loading tensors or sharded tensors), but delegates
loads that need quantizer-specific weight processing to a loader. The
loaders still use the low-level functionality provided by `Weights`.

I initially tried making a hierarchy where a class like `GPTQWeights`
would inherit from `Weights`. But it is not very flexible (e.g. does
not work well with the new weight storage mock used in tests) and
the implicit indirections made the code harder to follow.
2024-09-25 05:27:40 +00:00
Daniël de Kok
540e710c3f Falcon/DBRX: get correct number of key-value heads (#2205) 2024-09-25 05:21:34 +00:00
Daniël de Kok
17594916ed Fix incorrect cache allocation with multi-query (#2203)
We wouldn't allocate any memory in multi-query (1 KV head). Fixes
Starcoder et al.
2024-09-25 05:21:34 +00:00
Daniël de Kok
f11fd699b6 hotfix: Fix number of KV heads (#2202)
Fix number of KV heads
2024-09-25 05:21:34 +00:00
icyboy™
8e3d1e6c3f fix dbrx & opt model prefix bug (#2201)
* Update idefics_causal_lm.py

Fix syntax issues

* fix dbrx & opt model prefix bug
2024-09-25 05:21:34 +00:00
Daniël de Kok
508e308088 Consistently take prefix in model constructors (#2191)
* Consistently take `prefix` in model constructors

* Release test check fix

* Misc refactor-related fixes
2024-09-25 05:21:34 +00:00
Daniël de Kok
1e7ce69f20 Fix Starcoder2 after refactor (#2189) 2024-09-25 05:20:28 +00:00
Nicolas Patry
e481a9bb9b Hotfixing after refactor. 2024-09-25 05:20:28 +00:00
Nicolas Patry
1b434e8019 Refactor dead code - Removing all flash_xxx.py files. (#2166)
* Refactor dead code.

* First working step.

* Remove a lot of duplicated code.

* More dead code.

* More cleanup.

* Fix Santacoder test.

* Fixing the simple tests.

* Fixing sharding.

* Fixes for VLM.

* Fixing santacoder (num_kv_heads hardcoded).

* Removing more dead code.

* Fixing `config.n_head`.

* Stopping earlier because of `<end_of_utterance>` in idefics2.

* Addresses comments.

* Removing the dead code.

* Fuse back mistral into FlashCausalLM.

* Finish removal.

* Fixing docs + causal_lm `batch_class`.

* Fixing docs + causal.lm.

* Add default to Gemma Causality.

* Default value for gemma/gemma2.

* Wrong default.
2024-09-25 05:20:28 +00:00
Nicolas Patry
d580215a24 Hotfixing qwen2 and starcoder2 (which also get clamping). (#2167) 2024-09-24 03:58:36 +00:00
drbh
e913f3ad2d fix: use the base layers weight in mistral rocm (#2155) 2024-09-24 03:58:13 +00:00