Upgrading exl2. (#2415)

* Upgrading exl2.

* Fixing the other pathways.

* Fix idefics.
This commit is contained in:
Nicolas Patry 2024-08-14 11:58:08 +02:00 committed by yuanwu
parent bae161ab84
commit 4baa6ff59f
10 changed files with 23 additions and 4 deletions

2
.gitignore vendored
View File

@ -9,7 +9,7 @@ backends/client/src/v3/pb
# ROCm auto-generated files
*.hip
server/exllamav2_kernels/exllamav2_kernels/hip/
server/exllamav2
server/exllama_kernels/exllama_kernels/hip/
server/exllama_kernels/exllama_kernels/hip_func/
*_hip.cuh

View File

@ -93,6 +93,7 @@
causal-conv1d
click
einops
exllamav2
fbgemm-gpu
flashinfer
flash-attn

View File

@ -6,6 +6,7 @@ include Makefile-eetq
include Makefile-selective-scan
include Makefile-lorax-punica
include Makefile-fbgemm
include Makefile-exllamav2
unit-tests:
pytest -s -vv -m "not private" tests

12
server/Makefile-exllamav2 Normal file
View File

@ -0,0 +1,12 @@
exllamav2_commit := v0.1.8
build-exllamav2:
git clone https://github.com/turboderp/exllamav2.git exllamav2 && \
cd exllamav2 && git fetch && git checkout $(exllamav2_commit) && \
git submodule update --init --recursive && \
pip install -r requirements.txt && \
CUDA_ARCH_LIST="8.0;9.0a" NVCC_GENCODE="-gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_90a,code=sm_90a" TORCH_CUDA_ARCH_LIST="8.0;9.0a" python setup.py build
install-exllamav2: build-exllamav2
cd exllamav2/ && \
CUDA_ARCH_LIST="8.0;9.0a" NVCC_GENCODE="-gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_90a,code=sm_90a" TORCH_CUDA_ARCH_LIST="8.0;9.0a" python setup.py install

View File

@ -511,6 +511,7 @@ class CausalLM(Model):
config_class=AutoConfig,
batch_class=CausalLMBatch,
):
self.quantize = quantize
self.batch_class = batch_class
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():

View File

@ -872,6 +872,7 @@ class FlashCausalLM(Model):
head_size: Optional[int] = None,
skip_special_tokens: bool = True,
):
self.quantize = quantize
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")

View File

@ -33,6 +33,7 @@ class IDEFICSSharded(IdeficsCausalLM):
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
self.quantize = quantize
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")

View File

@ -580,6 +580,7 @@ class IdeficsCausalLM(Model):
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
self.quantize = quantize
from text_generation_server.models.custom_modeling.idefics_modeling import (
IdeficsForVisionText2Text,
)

View File

@ -553,6 +553,7 @@ class Seq2SeqLM(Model):
tokenizer_class=AutoTokenizer,
aliases=None,
):
self.quantize = quantize
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")

View File

@ -50,12 +50,12 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
self,
model: Model,
cache: Cache,
quantize: Optional[str],
server_urls: List[str],
):
self.cache = cache
self.model = model
self.quantize = quantize
# Quantize is resolved during model loading
self.quantize = model.quantize
self.server_urls = server_urls
# For some reason, inference_mode does not work well with GLOO which we use on CPU
if model.device.type == "cuda":
@ -255,7 +255,7 @@ def serve(
],
)
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
TextGenerationService(model, Cache(), quantize, server_urls), server
TextGenerationService(model, Cache(), server_urls), server
)
SERVICE_NAMES = (
generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name,