mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-11 20:34:54 +00:00
continue refactoring
This commit is contained in:
parent
ba59da1589
commit
dc07ad2691
@ -1,5 +1,599 @@
|
||||
mod health;
|
||||
pub(crate) mod v2;
|
||||
pub(crate) mod v3;
|
||||
// pub(crate) mod v3;
|
||||
|
||||
pub(crate) use health::HealthCheck;
|
||||
|
||||
use crate::validation::{Validation, ValidationError, ValidGenerateRequest};
|
||||
use crate::{
|
||||
ChatTemplateInputs, ChatTemplateVersions, FinishReason, GenerateRequest,
|
||||
HubProcessorConfig, HubTokenizerConfig, Message, MessageChunk,
|
||||
PrefillToken, Text, TextMessage, Token,
|
||||
};
|
||||
use crate::{FunctionRef, FunctionsMap, GrammarType, Properties, Tool, ToolType, Tools};
|
||||
use futures::future::try_join_all;
|
||||
use minijinja::{Environment, ErrorKind, Template};
|
||||
use serde_json::{json, Map, Value};
|
||||
use std::collections::HashMap;
|
||||
use std::sync::{
|
||||
atomic::{AtomicBool},
|
||||
Arc,
|
||||
};
|
||||
use text_generation_client::v2::{ShardedClient};
|
||||
use thiserror::Error;
|
||||
use tokio::sync::{mpsc, Notify, OwnedSemaphorePermit, Semaphore, TryAcquireError};
|
||||
use tokio::time::Instant;
|
||||
use tokio_stream::wrappers::UnboundedReceiverStream;
|
||||
use tokio_stream::StreamExt;
|
||||
use tracing::{instrument, Span};
|
||||
|
||||
/// Queue entry
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct Entry {
|
||||
/// Request
|
||||
pub request: ValidGenerateRequest,
|
||||
/// Response sender to communicate between the Infer struct and the batching_task
|
||||
pub response_tx: mpsc::UnboundedSender<Result<InferStreamResponse, InferError>>,
|
||||
/// Span that will live as long as entry
|
||||
pub span: Span,
|
||||
/// Temporary span used as a guard when logging inference, wait times...
|
||||
pub temp_span: Option<Span>,
|
||||
/// Instant when this entry was queued
|
||||
pub queue_time: Instant,
|
||||
/// Instant when this entry was added to a batch
|
||||
pub batch_time: Option<Instant>,
|
||||
}
|
||||
|
||||
pub(crate) trait InferQueue {
|
||||
/// Append an entry to the queue
|
||||
#[instrument(skip_all)]
|
||||
fn append(&self, entry: Entry);
|
||||
}
|
||||
|
||||
|
||||
/// Inference struct
|
||||
#[derive(Clone)]
|
||||
pub struct Infer {
|
||||
/// Validation
|
||||
validation: Validation,
|
||||
/// Request queue
|
||||
queue: Arc<dyn InferQueue + Send + Sync>,
|
||||
/// Notify batcher on queue appends
|
||||
batching_task_notifier: Arc<Notify>,
|
||||
/// Chat template
|
||||
chat_template: Option<ChatTemplate>,
|
||||
/// Inference limit
|
||||
limit_concurrent_requests: Arc<Semaphore>,
|
||||
}
|
||||
|
||||
|
||||
|
||||
impl Infer {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub(crate) fn new(
|
||||
client: ShardedClient,
|
||||
validation: Validation,
|
||||
waiting_served_ratio: f32,
|
||||
max_batch_prefill_tokens: u32,
|
||||
max_batch_total_tokens: u32,
|
||||
max_waiting_tokens: usize,
|
||||
max_batch_size: Option<usize>,
|
||||
max_concurrent_requests: usize,
|
||||
requires_padding: bool,
|
||||
window_size: Option<u32>,
|
||||
speculate: u32,
|
||||
generation_health: Arc<AtomicBool>,
|
||||
tokenizer_config: HubTokenizerConfig,
|
||||
processor_config: HubProcessorConfig,
|
||||
) -> Self {
|
||||
let queue = v2::Queue::new(requires_padding, 16, window_size, speculate);
|
||||
let batching_task_notifier = Arc::new(Notify::new());
|
||||
|
||||
// Spawn batching background task that contains all the inference logic
|
||||
tokio::spawn(v2::batching_task(
|
||||
client,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
max_batch_size,
|
||||
queue.clone(),
|
||||
batching_task_notifier.clone(),
|
||||
generation_health,
|
||||
));
|
||||
|
||||
let chat_template = tokenizer_config
|
||||
.chat_template
|
||||
.or(processor_config.chat_template)
|
||||
.and_then(|t| match t {
|
||||
ChatTemplateVersions::Single(template) => Some(template),
|
||||
ChatTemplateVersions::Multiple(templates) => templates
|
||||
.into_iter()
|
||||
.find(|t| t.name == "default")
|
||||
.map(|t| t.template),
|
||||
})
|
||||
.map(|t| {
|
||||
// .strip() is not supported in minijinja
|
||||
// .capitalize() is not supported in minijinja but we can use | capitalize
|
||||
let t = t
|
||||
.replace(".strip()", " | trim")
|
||||
.replace(".capitalize()", " | capitalize");
|
||||
ChatTemplate::new(t, tokenizer_config.bos_token, tokenizer_config.eos_token)
|
||||
});
|
||||
|
||||
// Inference limit with a semaphore
|
||||
let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));
|
||||
|
||||
Self {
|
||||
validation,
|
||||
queue: Arc::new(queue),
|
||||
batching_task_notifier,
|
||||
chat_template,
|
||||
limit_concurrent_requests: semaphore,
|
||||
}
|
||||
}
|
||||
|
||||
/// Add a new request to the queue and return a stream of InferStreamResponse
|
||||
#[instrument(skip_all)]
|
||||
pub(crate) async fn generate_stream(
|
||||
&self,
|
||||
request: GenerateRequest,
|
||||
) -> Result<GenerateStreamResponse, InferError> {
|
||||
// Limit concurrent requests by acquiring a permit from the semaphore
|
||||
let permit = self
|
||||
.clone()
|
||||
.limit_concurrent_requests
|
||||
.try_acquire_owned()
|
||||
.map_err(|err| {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
|
||||
tracing::error!("{err}");
|
||||
err
|
||||
})?;
|
||||
|
||||
// Validate request
|
||||
let valid_request = self.validation.validate(request).await.map_err(|err| {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
||||
tracing::error!("{err}");
|
||||
err
|
||||
})?;
|
||||
|
||||
// MPSC channel to communicate with the background batching task
|
||||
let (response_tx, response_rx) = mpsc::unbounded_channel();
|
||||
let input_length = valid_request.input_length;
|
||||
|
||||
// Append the request to the queue
|
||||
self.queue.append(Entry {
|
||||
request: valid_request,
|
||||
response_tx,
|
||||
span: Span::current(),
|
||||
temp_span: None,
|
||||
queue_time: Instant::now(),
|
||||
batch_time: None,
|
||||
});
|
||||
|
||||
// Notify the background task that we have a new entry in the queue that needs
|
||||
// to be batched
|
||||
self.batching_task_notifier.notify_one();
|
||||
|
||||
// Return stream
|
||||
Ok((
|
||||
permit,
|
||||
input_length,
|
||||
UnboundedReceiverStream::new(response_rx),
|
||||
))
|
||||
}
|
||||
|
||||
/// Tokenizer the input
|
||||
#[instrument(skip_all)]
|
||||
pub(crate) async fn tokenize(
|
||||
&self,
|
||||
request: GenerateRequest,
|
||||
) -> Result<Option<tokenizers::Encoding>, InferError> {
|
||||
// Tokenize request
|
||||
let inputs = request.inputs;
|
||||
let truncate = request.parameters.truncate;
|
||||
let encoding = self
|
||||
.validation
|
||||
.tokenize(inputs, truncate)
|
||||
.await
|
||||
.map_err(|err| {
|
||||
tracing::error!("Tokenization {err}");
|
||||
err
|
||||
})?;
|
||||
|
||||
// Return Encoding
|
||||
Ok(encoding.map(|(encoding, _)| encoding))
|
||||
}
|
||||
|
||||
/// Apply the chat template to the chat request
|
||||
#[instrument(skip_all)]
|
||||
pub(crate) fn apply_chat_template(
|
||||
&self,
|
||||
messages: Vec<Message>,
|
||||
grammar_with_prompt: Option<(GrammarType, String)>,
|
||||
) -> Result<String, InferError> {
|
||||
self.chat_template
|
||||
.as_ref()
|
||||
.ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))?
|
||||
.apply(messages, grammar_with_prompt)
|
||||
.map_err(|e| {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "template");
|
||||
tracing::error!("{e}");
|
||||
e
|
||||
})
|
||||
}
|
||||
|
||||
/// Add a new request to the queue and return a InferResponse
|
||||
#[instrument(skip_all)]
|
||||
pub(crate) async fn generate(
|
||||
&self,
|
||||
request: GenerateRequest,
|
||||
) -> Result<InferResponse, InferError> {
|
||||
let use_top_tokens = request.parameters.top_n_tokens.is_some_and(|x| x > 0);
|
||||
|
||||
// Create stream and keep semaphore permit as long as generate lives
|
||||
let (_permit, _input_length, mut stream) = self.generate_stream(request).await?;
|
||||
|
||||
// Return values
|
||||
let mut result_prefill = Vec::new();
|
||||
let mut result_tokens = Vec::new();
|
||||
let mut result_top_tokens = Vec::new();
|
||||
let mut result_generated_text = None;
|
||||
let mut result_start = None;
|
||||
let mut result_queued = None;
|
||||
|
||||
// Iterate on stream
|
||||
while let Some(response) = stream.next().await {
|
||||
match response? {
|
||||
// Add prefill tokens
|
||||
InferStreamResponse::Prefill(prefill_tokens) => {
|
||||
result_prefill = prefill_tokens;
|
||||
}
|
||||
// Push last token
|
||||
InferStreamResponse::Intermediate { token, top_tokens } => {
|
||||
result_tokens.push(token);
|
||||
result_top_tokens.push(top_tokens);
|
||||
}
|
||||
// Final message
|
||||
// Set return values
|
||||
InferStreamResponse::End {
|
||||
token,
|
||||
generated_text,
|
||||
start,
|
||||
queued,
|
||||
top_tokens,
|
||||
} => {
|
||||
result_tokens.push(token);
|
||||
result_top_tokens.push(top_tokens);
|
||||
result_generated_text = Some(generated_text);
|
||||
result_start = Some(start);
|
||||
result_queued = Some(queued)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check that we received a `InferStreamResponse::End` message
|
||||
if let (Some(generated_text), Some(queued), Some(start)) =
|
||||
(result_generated_text, result_queued, result_start)
|
||||
{
|
||||
Ok(InferResponse {
|
||||
prefill: result_prefill,
|
||||
_input_length,
|
||||
tokens: result_tokens,
|
||||
generated_text,
|
||||
queued,
|
||||
start,
|
||||
top_tokens: if use_top_tokens {
|
||||
result_top_tokens
|
||||
} else {
|
||||
Vec::new()
|
||||
},
|
||||
})
|
||||
} else {
|
||||
let err = InferError::IncompleteGeneration;
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
|
||||
tracing::error!("{err}");
|
||||
Err(err)
|
||||
}
|
||||
}
|
||||
/// Add best_of new requests to the queue and return a InferResponse of the sequence with
|
||||
/// the highest log probability per token
|
||||
#[instrument(skip(self, request))]
|
||||
pub(crate) async fn generate_best_of(
|
||||
&self,
|
||||
request: GenerateRequest,
|
||||
best_of: usize,
|
||||
) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
|
||||
// validate best_of parameter separately
|
||||
let best_of = self.validation.validate_best_of(best_of)?;
|
||||
|
||||
// create multiple generate requests
|
||||
let mut infer_responses: Vec<InferResponse> =
|
||||
try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;
|
||||
|
||||
// get the sequence with the highest log probability per token
|
||||
let mut max_index = 0;
|
||||
let mut max_logprob: f32 = f32::MIN;
|
||||
|
||||
for (i, response) in infer_responses.iter().enumerate() {
|
||||
// mean logprobs of the generated tokens
|
||||
let sequence_logprob = response
|
||||
.tokens
|
||||
.iter()
|
||||
.map(|token| token.logprob)
|
||||
.sum::<f32>()
|
||||
/ response.tokens.len() as f32;
|
||||
|
||||
// set best sequence
|
||||
if sequence_logprob > max_logprob {
|
||||
max_index = i;
|
||||
max_logprob = sequence_logprob;
|
||||
}
|
||||
}
|
||||
let best_response = infer_responses.remove(max_index);
|
||||
Ok((best_response, infer_responses))
|
||||
}
|
||||
}
|
||||
|
||||
/// Raise a exception (custom function) used in the chat templates
|
||||
fn raise_exception(err_text: String) -> Result<String, minijinja::Error> {
|
||||
Err(minijinja::Error::new(ErrorKind::SyntaxError, err_text))
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct ChatTemplate {
|
||||
template: Template<'static, 'static>,
|
||||
bos_token: Option<String>,
|
||||
eos_token: Option<String>,
|
||||
use_default_tool_template: bool,
|
||||
}
|
||||
|
||||
impl ChatTemplate {
|
||||
fn new(template: String, bos_token: Option<String>, eos_token: Option<String>) -> Self {
|
||||
let mut env = Box::new(Environment::new());
|
||||
let template_str = template.into_boxed_str();
|
||||
env.add_function("raise_exception", raise_exception);
|
||||
|
||||
// check if contains the tools variable within the template
|
||||
let use_default_tool_template =
|
||||
!template_str.as_ref().replace(' ', "").contains("{{tools}}");
|
||||
// leaking env and template_str as read-only, static resources for performance.
|
||||
let template = Box::leak(env)
|
||||
.template_from_str(Box::leak(template_str))
|
||||
.unwrap();
|
||||
|
||||
Self {
|
||||
template,
|
||||
bos_token,
|
||||
eos_token,
|
||||
use_default_tool_template,
|
||||
}
|
||||
}
|
||||
|
||||
fn apply(
|
||||
&self,
|
||||
mut messages: Vec<Message>,
|
||||
grammar_with_prompt: Option<(GrammarType, String)>,
|
||||
) -> Result<String, InferError> {
|
||||
if self.use_default_tool_template {
|
||||
if let Some(last_message) = messages.last_mut() {
|
||||
if let Some((GrammarType::Json(tools), tool_prompt)) = grammar_with_prompt {
|
||||
last_message.content.push(MessageChunk::Text(Text {
|
||||
text: format!("\n---\n{}\n{}", tool_prompt, tools),
|
||||
}));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let messages: Vec<TextMessage> = messages.into_iter().map(|c| c.into()).collect();
|
||||
|
||||
self.template
|
||||
.render(ChatTemplateInputs {
|
||||
messages,
|
||||
bos_token: self.bos_token.as_deref(),
|
||||
eos_token: self.eos_token.as_deref(),
|
||||
add_generation_prompt: true,
|
||||
tools: None,
|
||||
tools_prompt: None,
|
||||
})
|
||||
.map_err(InferError::TemplateError)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct ToolGrammar {}
|
||||
|
||||
impl ToolGrammar {
|
||||
pub fn apply(
|
||||
tools: Option<Vec<Tool>>,
|
||||
tool_choice: Option<ToolType>,
|
||||
) -> Result<Option<Tools>, InferError> {
|
||||
if let Some((req_tools, tool_choice)) = tools.zip(tool_choice) {
|
||||
// let tool_prompt = tool_prompt.unwrap_or_default();
|
||||
let tools_to_use = match tool_choice {
|
||||
ToolType::FunctionName(name) => {
|
||||
vec![req_tools
|
||||
.iter()
|
||||
.find(|tool| tool.function.name == *name)
|
||||
.unwrap_or_else(|| panic!("Tool with name {} not found", name))
|
||||
.clone()]
|
||||
}
|
||||
ToolType::OneOf => req_tools.to_owned(),
|
||||
};
|
||||
|
||||
// adds the error notification function for LLM feedback if required
|
||||
let mut text_response_properties = Map::new();
|
||||
text_response_properties.insert(
|
||||
"error".to_string(),
|
||||
serde_json::json!({
|
||||
"type": "string",
|
||||
"description": "The error or issue to notify"
|
||||
}),
|
||||
);
|
||||
text_response_properties.insert(
|
||||
"_name".to_string(),
|
||||
serde_json::json!({
|
||||
"type": "string",
|
||||
"const": "notify_error"
|
||||
}),
|
||||
);
|
||||
|
||||
let functions: HashMap<String, serde_json::Value> = tools_to_use
|
||||
.iter()
|
||||
.map(|tool| {
|
||||
let func = tool.function.clone();
|
||||
|
||||
// Clone the existing parameters, which are expected to be a JSON object
|
||||
let mut params = if let Value::Object(params) = &func.arguments {
|
||||
params.clone()
|
||||
} else {
|
||||
Map::new()
|
||||
};
|
||||
|
||||
// Insert the function's description at the top level, outside of properties
|
||||
params.insert(
|
||||
"description".to_string(),
|
||||
Value::String(func.description.clone().unwrap_or_default()),
|
||||
);
|
||||
|
||||
// Ensure 'properties' exists and is an object
|
||||
let properties = params
|
||||
.entry("properties".to_string())
|
||||
.or_insert_with(|| json!({}))
|
||||
.as_object_mut()
|
||||
.unwrap();
|
||||
|
||||
// Insert the constant for the function name inside 'properties'
|
||||
properties.insert(
|
||||
"_name".to_string(),
|
||||
json!({
|
||||
"type": "string",
|
||||
"const": func.name.clone(),
|
||||
// "description": "The name of the function"
|
||||
}),
|
||||
);
|
||||
|
||||
// Check if 'required' exists, and it is an array. If not, create an empty array.
|
||||
let required = params
|
||||
.entry("required".to_string())
|
||||
.or_insert_with(|| json!([]))
|
||||
.as_array_mut()
|
||||
.unwrap();
|
||||
|
||||
// Add 'name' to the 'required' array if it is not already present
|
||||
if !required.iter().any(|r| r == "_name") {
|
||||
required.push(json!("_name"));
|
||||
}
|
||||
|
||||
(func.name, Value::Object(params))
|
||||
})
|
||||
.chain([(
|
||||
"notify_error".to_string(),
|
||||
serde_json::json!({
|
||||
"properties": text_response_properties,
|
||||
"required": ["error", "_name"],
|
||||
"type": "object"
|
||||
}),
|
||||
)])
|
||||
.collect();
|
||||
|
||||
let tools = Tools {
|
||||
functions_map: FunctionsMap { functions },
|
||||
properties: Properties {
|
||||
function: tools_to_use
|
||||
.iter()
|
||||
.map(|tool| FunctionRef {
|
||||
ref_path: format!("#/$functions/{}", tool.function.name.clone()),
|
||||
})
|
||||
.chain(std::iter::once(FunctionRef {
|
||||
ref_path: "#/$functions/notify_error".to_string(),
|
||||
}))
|
||||
.collect(),
|
||||
},
|
||||
};
|
||||
|
||||
return Ok(Some(tools));
|
||||
}
|
||||
// Err(InferError::ToolError("No tools provided".to_string()))
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
|
||||
/// Type alias for generation responses
|
||||
pub(crate) type GenerateStreamResponse = (
|
||||
OwnedSemaphorePermit,
|
||||
u32, // input_length
|
||||
UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
|
||||
);
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct GeneratedText {
|
||||
pub(crate) text: String,
|
||||
pub(crate) generated_tokens: u32,
|
||||
pub(crate) finish_reason: FinishReason,
|
||||
pub(crate) seed: Option<u64>,
|
||||
}
|
||||
|
||||
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(crate) enum InferStreamResponse {
|
||||
// Optional first message
|
||||
Prefill(Vec<PrefillToken>),
|
||||
// Intermediate messages
|
||||
Intermediate {
|
||||
token: Token,
|
||||
top_tokens: Vec<Token>,
|
||||
},
|
||||
// Last message
|
||||
End {
|
||||
token: Token,
|
||||
top_tokens: Vec<Token>,
|
||||
generated_text: GeneratedText,
|
||||
start: Instant,
|
||||
queued: Instant,
|
||||
},
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct InferResponse {
|
||||
/// input_length is the input as perceived by the rust tokenizer in the
|
||||
/// validation pathway. It is redundant with prefill.len() but prefill
|
||||
/// has data only if the user asked for it. This will always be filled.
|
||||
pub(crate) _input_length: u32,
|
||||
pub(crate) prefill: Vec<PrefillToken>,
|
||||
pub(crate) tokens: Vec<Token>,
|
||||
pub(crate) generated_text: GeneratedText,
|
||||
pub(crate) queued: Instant,
|
||||
pub(crate) start: Instant,
|
||||
pub(crate) top_tokens: Vec<Vec<Token>>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
pub enum InferError {
|
||||
#[error("Request failed during generation: {0}")]
|
||||
GenerationError(String),
|
||||
#[error("Model is overloaded")]
|
||||
Overloaded(#[from] TryAcquireError),
|
||||
#[error("Input validation error: {0}")]
|
||||
ValidationError(#[from] ValidationError),
|
||||
#[error("Incomplete generation")]
|
||||
IncompleteGeneration,
|
||||
#[error("Template error: {0}")]
|
||||
TemplateError(#[from] minijinja::Error),
|
||||
#[error("Tool error: {0}")]
|
||||
ToolError(String),
|
||||
}
|
||||
|
||||
impl InferError {
|
||||
pub(crate) fn error_type(&self) -> &str {
|
||||
match self {
|
||||
InferError::GenerationError(_) => "generation",
|
||||
InferError::Overloaded(_) => "overloaded",
|
||||
InferError::ValidationError(_) => "validation",
|
||||
InferError::IncompleteGeneration => "incomplete_generation",
|
||||
InferError::TemplateError(_) => "template_error",
|
||||
InferError::ToolError(_) => "tool_error",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,511 +1,27 @@
|
||||
/// Batching and inference logic
|
||||
|
||||
use crate::infer::v2::{Queue, Entry};
|
||||
use crate::validation::{Validation, ValidationError};
|
||||
use crate::{
|
||||
ChatTemplateInputs, ChatTemplateVersions, FinishReason, GenerateRequest,
|
||||
HubProcessorConfig, HubTokenizerConfig, Message, MessageChunk,
|
||||
PrefillToken, Text, TextMessage, Token,
|
||||
};
|
||||
use crate::{FunctionRef, FunctionsMap, GrammarType, Properties, Tool, ToolType, Tools};
|
||||
use futures::future::try_join_all;
|
||||
use minijinja::{Environment, ErrorKind, Template};
|
||||
use crate::infer::Entry;
|
||||
use crate::infer::v2::{Queue};
|
||||
use crate::{FinishReason, PrefillToken, Token};
|
||||
use nohash_hasher::IntMap;
|
||||
use serde_json::{json, Map, Value};
|
||||
use std::collections::HashMap;
|
||||
use std::sync::{
|
||||
atomic::{AtomicBool, Ordering},
|
||||
Arc,
|
||||
};
|
||||
use text_generation_client::v2::{Batch, CachedBatch, Generation, ShardedClient};
|
||||
use text_generation_client::{v2, ClientError};
|
||||
use thiserror::Error;
|
||||
use text_generation_client::{ClientError};
|
||||
use tokio::sync::mpsc::error::SendError;
|
||||
use tokio::sync::{mpsc, Notify, OwnedSemaphorePermit, Semaphore, TryAcquireError};
|
||||
use tokio::sync::Notify;
|
||||
use tokio::time::Instant;
|
||||
use tokio_stream::wrappers::UnboundedReceiverStream;
|
||||
use tokio_stream::StreamExt;
|
||||
use tracing::{info_span, instrument, Instrument, Span};
|
||||
|
||||
/// Inference struct
|
||||
#[derive(Clone)]
|
||||
pub struct Infer {
|
||||
/// Validation
|
||||
validation: Validation,
|
||||
/// Request queue
|
||||
queue: Queue,
|
||||
/// Shared state
|
||||
shared: Arc<Shared>,
|
||||
/// Chat template
|
||||
chat_template: Option<ChatTemplate>,
|
||||
/// Inference limit
|
||||
limit_concurrent_requests: Arc<Semaphore>,
|
||||
}
|
||||
|
||||
/// Infer shared state
|
||||
struct Shared {
|
||||
/// Batching background Tokio task notifier
|
||||
batching_task: Notify,
|
||||
}
|
||||
|
||||
/// Raise a exception (custom function) used in the chat templates
|
||||
fn raise_exception(err_text: String) -> Result<String, minijinja::Error> {
|
||||
Err(minijinja::Error::new(ErrorKind::SyntaxError, err_text))
|
||||
}
|
||||
|
||||
impl Infer {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub(crate) fn new(
|
||||
client: ShardedClient,
|
||||
validation: Validation,
|
||||
waiting_served_ratio: f32,
|
||||
max_batch_prefill_tokens: u32,
|
||||
max_batch_total_tokens: u32,
|
||||
max_waiting_tokens: usize,
|
||||
max_batch_size: Option<usize>,
|
||||
max_concurrent_requests: usize,
|
||||
requires_padding: bool,
|
||||
window_size: Option<u32>,
|
||||
speculate: u32,
|
||||
generation_health: Arc<AtomicBool>,
|
||||
tokenizer_config: HubTokenizerConfig,
|
||||
processor_config: HubProcessorConfig,
|
||||
) -> Self {
|
||||
let queue = Queue::new(requires_padding, 16, window_size, speculate);
|
||||
let shared = Arc::new(Shared {
|
||||
batching_task: Notify::new(),
|
||||
});
|
||||
|
||||
// Spawn batching background task that contains all the inference logic
|
||||
tokio::spawn(batching_task(
|
||||
client,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
max_batch_size,
|
||||
queue.clone(),
|
||||
shared.clone(),
|
||||
generation_health,
|
||||
));
|
||||
|
||||
let chat_template = tokenizer_config
|
||||
.chat_template
|
||||
.or(processor_config.chat_template)
|
||||
.and_then(|t| match t {
|
||||
ChatTemplateVersions::Single(template) => Some(template),
|
||||
ChatTemplateVersions::Multiple(templates) => templates
|
||||
.into_iter()
|
||||
.find(|t| t.name == "default")
|
||||
.map(|t| t.template),
|
||||
})
|
||||
.map(|t| {
|
||||
// .strip() is not supported in minijinja
|
||||
// .capitalize() is not supported in minijinja but we can use | capitalize
|
||||
let t = t
|
||||
.replace(".strip()", " | trim")
|
||||
.replace(".capitalize()", " | capitalize");
|
||||
ChatTemplate::new(t, tokenizer_config.bos_token, tokenizer_config.eos_token)
|
||||
});
|
||||
|
||||
// Inference limit with a semaphore
|
||||
let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));
|
||||
|
||||
Self {
|
||||
validation,
|
||||
queue,
|
||||
shared,
|
||||
chat_template,
|
||||
limit_concurrent_requests: semaphore,
|
||||
}
|
||||
}
|
||||
|
||||
/// Add a new request to the queue and return a stream of InferStreamResponse
|
||||
#[instrument(skip_all)]
|
||||
pub(crate) async fn generate_stream(
|
||||
&self,
|
||||
request: GenerateRequest,
|
||||
) -> Result<GenerateStreamResponse, InferError> {
|
||||
// Limit concurrent requests by acquiring a permit from the semaphore
|
||||
let permit = self
|
||||
.clone()
|
||||
.limit_concurrent_requests
|
||||
.try_acquire_owned()
|
||||
.map_err(|err| {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
|
||||
tracing::error!("{err}");
|
||||
err
|
||||
})?;
|
||||
|
||||
// Validate request
|
||||
let valid_request = self.validation.validate(request).await.map_err(|err| {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
||||
tracing::error!("{err}");
|
||||
err
|
||||
})?;
|
||||
|
||||
// MPSC channel to communicate with the background batching task
|
||||
let (response_tx, response_rx) = mpsc::unbounded_channel();
|
||||
let input_length = valid_request.input_length;
|
||||
|
||||
// Append the request to the queue
|
||||
self.queue.append(Entry {
|
||||
request: valid_request,
|
||||
response_tx,
|
||||
span: Span::current(),
|
||||
temp_span: None,
|
||||
queue_time: Instant::now(),
|
||||
batch_time: None,
|
||||
});
|
||||
|
||||
// Notify the background task that we have a new entry in the queue that needs
|
||||
// to be batched
|
||||
self.shared.batching_task.notify_one();
|
||||
|
||||
// Return stream
|
||||
Ok((
|
||||
permit,
|
||||
input_length,
|
||||
UnboundedReceiverStream::new(response_rx),
|
||||
))
|
||||
}
|
||||
|
||||
/// Tokenizer the input
|
||||
#[instrument(skip_all)]
|
||||
pub(crate) async fn tokenize(
|
||||
&self,
|
||||
request: GenerateRequest,
|
||||
) -> Result<Option<tokenizers::Encoding>, InferError> {
|
||||
// Tokenize request
|
||||
let inputs = request.inputs;
|
||||
let truncate = request.parameters.truncate;
|
||||
let encoding = self
|
||||
.validation
|
||||
.tokenize(inputs, truncate)
|
||||
.await
|
||||
.map_err(|err| {
|
||||
tracing::error!("Tokenization {err}");
|
||||
err
|
||||
})?;
|
||||
|
||||
// Return Encoding
|
||||
Ok(encoding.map(|(encoding, _)| encoding))
|
||||
}
|
||||
|
||||
/// Apply the chat template to the chat request
|
||||
#[instrument(skip_all)]
|
||||
pub(crate) fn apply_chat_template(
|
||||
&self,
|
||||
messages: Vec<Message>,
|
||||
grammar_with_prompt: Option<(GrammarType, String)>,
|
||||
) -> Result<String, InferError> {
|
||||
self.chat_template
|
||||
.as_ref()
|
||||
.ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))?
|
||||
.apply(messages, grammar_with_prompt)
|
||||
.map_err(|e| {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "template");
|
||||
tracing::error!("{e}");
|
||||
e
|
||||
})
|
||||
}
|
||||
|
||||
/// Add a new request to the queue and return a InferResponse
|
||||
#[instrument(skip_all)]
|
||||
pub(crate) async fn generate(
|
||||
&self,
|
||||
request: GenerateRequest,
|
||||
) -> Result<InferResponse, InferError> {
|
||||
let use_top_tokens = request.parameters.top_n_tokens.is_some_and(|x| x > 0);
|
||||
|
||||
// Create stream and keep semaphore permit as long as generate lives
|
||||
let (_permit, _input_length, mut stream) = self.generate_stream(request).await?;
|
||||
|
||||
// Return values
|
||||
let mut result_prefill = Vec::new();
|
||||
let mut result_tokens = Vec::new();
|
||||
let mut result_top_tokens = Vec::new();
|
||||
let mut result_generated_text = None;
|
||||
let mut result_start = None;
|
||||
let mut result_queued = None;
|
||||
|
||||
// Iterate on stream
|
||||
while let Some(response) = stream.next().await {
|
||||
match response? {
|
||||
// Add prefill tokens
|
||||
InferStreamResponse::Prefill(prefill_tokens) => {
|
||||
result_prefill = prefill_tokens;
|
||||
}
|
||||
// Push last token
|
||||
InferStreamResponse::Intermediate { token, top_tokens } => {
|
||||
result_tokens.push(token);
|
||||
result_top_tokens.push(top_tokens);
|
||||
}
|
||||
// Final message
|
||||
// Set return values
|
||||
InferStreamResponse::End {
|
||||
token,
|
||||
generated_text,
|
||||
start,
|
||||
queued,
|
||||
top_tokens,
|
||||
} => {
|
||||
result_tokens.push(token);
|
||||
result_top_tokens.push(top_tokens);
|
||||
result_generated_text = Some(generated_text);
|
||||
result_start = Some(start);
|
||||
result_queued = Some(queued)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check that we received a `InferStreamResponse::End` message
|
||||
if let (Some(generated_text), Some(queued), Some(start)) =
|
||||
(result_generated_text, result_queued, result_start)
|
||||
{
|
||||
Ok(InferResponse {
|
||||
prefill: result_prefill,
|
||||
_input_length,
|
||||
tokens: result_tokens,
|
||||
generated_text,
|
||||
queued,
|
||||
start,
|
||||
top_tokens: if use_top_tokens {
|
||||
result_top_tokens
|
||||
} else {
|
||||
Vec::new()
|
||||
},
|
||||
})
|
||||
} else {
|
||||
let err = InferError::IncompleteGeneration;
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
|
||||
tracing::error!("{err}");
|
||||
Err(err)
|
||||
}
|
||||
}
|
||||
/// Add best_of new requests to the queue and return a InferResponse of the sequence with
|
||||
/// the highest log probability per token
|
||||
#[instrument(skip(self, request))]
|
||||
pub(crate) async fn generate_best_of(
|
||||
&self,
|
||||
request: GenerateRequest,
|
||||
best_of: usize,
|
||||
) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
|
||||
// validate best_of parameter separately
|
||||
let best_of = self.validation.validate_best_of(best_of)?;
|
||||
|
||||
// create multiple generate requests
|
||||
let mut infer_responses: Vec<InferResponse> =
|
||||
try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;
|
||||
|
||||
// get the sequence with the highest log probability per token
|
||||
let mut max_index = 0;
|
||||
let mut max_logprob: f32 = f32::MIN;
|
||||
|
||||
for (i, response) in infer_responses.iter().enumerate() {
|
||||
// mean logprobs of the generated tokens
|
||||
let sequence_logprob = response
|
||||
.tokens
|
||||
.iter()
|
||||
.map(|token| token.logprob)
|
||||
.sum::<f32>()
|
||||
/ response.tokens.len() as f32;
|
||||
|
||||
// set best sequence
|
||||
if sequence_logprob > max_logprob {
|
||||
max_index = i;
|
||||
max_logprob = sequence_logprob;
|
||||
}
|
||||
}
|
||||
let best_response = infer_responses.remove(max_index);
|
||||
Ok((best_response, infer_responses))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct ChatTemplate {
|
||||
template: Template<'static, 'static>,
|
||||
bos_token: Option<String>,
|
||||
eos_token: Option<String>,
|
||||
use_default_tool_template: bool,
|
||||
}
|
||||
|
||||
impl ChatTemplate {
|
||||
fn new(template: String, bos_token: Option<String>, eos_token: Option<String>) -> Self {
|
||||
let mut env = Box::new(Environment::new());
|
||||
let template_str = template.into_boxed_str();
|
||||
env.add_function("raise_exception", raise_exception);
|
||||
|
||||
// check if contains the tools variable within the template
|
||||
let use_default_tool_template =
|
||||
!template_str.as_ref().replace(' ', "").contains("{{tools}}");
|
||||
// leaking env and template_str as read-only, static resources for performance.
|
||||
let template = Box::leak(env)
|
||||
.template_from_str(Box::leak(template_str))
|
||||
.unwrap();
|
||||
|
||||
Self {
|
||||
template,
|
||||
bos_token,
|
||||
eos_token,
|
||||
use_default_tool_template,
|
||||
}
|
||||
}
|
||||
|
||||
fn apply(
|
||||
&self,
|
||||
mut messages: Vec<Message>,
|
||||
grammar_with_prompt: Option<(GrammarType, String)>,
|
||||
) -> Result<String, InferError> {
|
||||
if self.use_default_tool_template {
|
||||
if let Some(last_message) = messages.last_mut() {
|
||||
if let Some((GrammarType::Json(tools), tool_prompt)) = grammar_with_prompt {
|
||||
last_message.content.push(MessageChunk::Text(Text {
|
||||
text: format!("\n---\n{}\n{}", tool_prompt, tools),
|
||||
}));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let messages: Vec<TextMessage> = messages.into_iter().map(|c| c.into()).collect();
|
||||
|
||||
self.template
|
||||
.render(ChatTemplateInputs {
|
||||
messages,
|
||||
bos_token: self.bos_token.as_deref(),
|
||||
eos_token: self.eos_token.as_deref(),
|
||||
add_generation_prompt: true,
|
||||
tools: None,
|
||||
tools_prompt: None,
|
||||
})
|
||||
.map_err(InferError::TemplateError)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct ToolGrammar {}
|
||||
|
||||
impl ToolGrammar {
|
||||
pub fn apply(
|
||||
tools: Option<Vec<Tool>>,
|
||||
tool_choice: Option<ToolType>,
|
||||
) -> Result<Option<Tools>, InferError> {
|
||||
if let Some((req_tools, tool_choice)) = tools.zip(tool_choice) {
|
||||
// let tool_prompt = tool_prompt.unwrap_or_default();
|
||||
let tools_to_use = match tool_choice {
|
||||
ToolType::FunctionName(name) => {
|
||||
vec![req_tools
|
||||
.iter()
|
||||
.find(|tool| tool.function.name == *name)
|
||||
.unwrap_or_else(|| panic!("Tool with name {} not found", name))
|
||||
.clone()]
|
||||
}
|
||||
ToolType::OneOf => req_tools.to_owned(),
|
||||
};
|
||||
|
||||
// adds the error notification function for LLM feedback if required
|
||||
let mut text_response_properties = Map::new();
|
||||
text_response_properties.insert(
|
||||
"error".to_string(),
|
||||
serde_json::json!({
|
||||
"type": "string",
|
||||
"description": "The error or issue to notify"
|
||||
}),
|
||||
);
|
||||
text_response_properties.insert(
|
||||
"_name".to_string(),
|
||||
serde_json::json!({
|
||||
"type": "string",
|
||||
"const": "notify_error"
|
||||
}),
|
||||
);
|
||||
|
||||
let functions: HashMap<String, serde_json::Value> = tools_to_use
|
||||
.iter()
|
||||
.map(|tool| {
|
||||
let func = tool.function.clone();
|
||||
|
||||
// Clone the existing parameters, which are expected to be a JSON object
|
||||
let mut params = if let Value::Object(params) = &func.arguments {
|
||||
params.clone()
|
||||
} else {
|
||||
Map::new()
|
||||
};
|
||||
|
||||
// Insert the function's description at the top level, outside of properties
|
||||
params.insert(
|
||||
"description".to_string(),
|
||||
Value::String(func.description.clone().unwrap_or_default()),
|
||||
);
|
||||
|
||||
// Ensure 'properties' exists and is an object
|
||||
let properties = params
|
||||
.entry("properties".to_string())
|
||||
.or_insert_with(|| json!({}))
|
||||
.as_object_mut()
|
||||
.unwrap();
|
||||
|
||||
// Insert the constant for the function name inside 'properties'
|
||||
properties.insert(
|
||||
"_name".to_string(),
|
||||
json!({
|
||||
"type": "string",
|
||||
"const": func.name.clone(),
|
||||
// "description": "The name of the function"
|
||||
}),
|
||||
);
|
||||
|
||||
// Check if 'required' exists, and it is an array. If not, create an empty array.
|
||||
let required = params
|
||||
.entry("required".to_string())
|
||||
.or_insert_with(|| json!([]))
|
||||
.as_array_mut()
|
||||
.unwrap();
|
||||
|
||||
// Add 'name' to the 'required' array if it is not already present
|
||||
if !required.iter().any(|r| r == "_name") {
|
||||
required.push(json!("_name"));
|
||||
}
|
||||
|
||||
(func.name, Value::Object(params))
|
||||
})
|
||||
.chain([(
|
||||
"notify_error".to_string(),
|
||||
serde_json::json!({
|
||||
"properties": text_response_properties,
|
||||
"required": ["error", "_name"],
|
||||
"type": "object"
|
||||
}),
|
||||
)])
|
||||
.collect();
|
||||
|
||||
let tools = Tools {
|
||||
functions_map: FunctionsMap { functions },
|
||||
properties: Properties {
|
||||
function: tools_to_use
|
||||
.iter()
|
||||
.map(|tool| FunctionRef {
|
||||
ref_path: format!("#/$functions/{}", tool.function.name.clone()),
|
||||
})
|
||||
.chain(std::iter::once(FunctionRef {
|
||||
ref_path: "#/$functions/notify_error".to_string(),
|
||||
}))
|
||||
.collect(),
|
||||
},
|
||||
};
|
||||
|
||||
return Ok(Some(tools));
|
||||
}
|
||||
// Err(InferError::ToolError("No tools provided".to_string()))
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
use tracing::{info_span, instrument, Instrument};
|
||||
use crate::infer::{GeneratedText, InferError, InferStreamResponse};
|
||||
|
||||
/// Batching logic
|
||||
/// Will be launched in a background Tokio task
|
||||
///
|
||||
/// Batches requests and sends them to the inference server
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
async fn batching_task(
|
||||
pub(crate) async fn batching_task(
|
||||
mut client: ShardedClient,
|
||||
waiting_served_ratio: f32,
|
||||
max_batch_prefill_tokens: u32,
|
||||
@ -513,13 +29,13 @@ async fn batching_task(
|
||||
max_waiting_tokens: usize,
|
||||
max_batch_size: Option<usize>,
|
||||
queue: Queue,
|
||||
shared: Arc<Shared>,
|
||||
notifier: Arc<Notify>,
|
||||
generation_health: Arc<AtomicBool>,
|
||||
) {
|
||||
// Infinite loop
|
||||
loop {
|
||||
// Wait for a notification from the Infer struct
|
||||
shared.batching_task.notified().await;
|
||||
notifier.notified().await;
|
||||
|
||||
// Get the next batch from the queue
|
||||
// This batch might be smaller than the maximum batch size if there are not enough requests
|
||||
@ -880,28 +396,13 @@ fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
|
||||
});
|
||||
}
|
||||
|
||||
/// Type alias for generation responses
|
||||
pub(crate) type GenerateStreamResponse = (
|
||||
OwnedSemaphorePermit,
|
||||
u32, // input_length
|
||||
UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
|
||||
);
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct GeneratedText {
|
||||
pub(crate) text: String,
|
||||
pub(crate) generated_tokens: u32,
|
||||
pub(crate) finish_reason: FinishReason,
|
||||
pub(crate) seed: Option<u64>,
|
||||
}
|
||||
|
||||
impl From<v2::GeneratedText> for GeneratedText {
|
||||
fn from(value: v2::GeneratedText) -> Self {
|
||||
let v2_finish_reason = v2::FinishReason::try_from(value.finish_reason).unwrap();
|
||||
impl From<text_generation_client::v2::GeneratedText> for GeneratedText {
|
||||
fn from(value: text_generation_client::v2::GeneratedText) -> Self {
|
||||
let v2_finish_reason = text_generation_client::v2::FinishReason::try_from(value.finish_reason).unwrap();
|
||||
let finish_reason = match v2_finish_reason {
|
||||
v2::FinishReason::Length => FinishReason::Length,
|
||||
v2::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
|
||||
v2::FinishReason::StopSequence => FinishReason::StopSequence,
|
||||
text_generation_client::v2::FinishReason::Length => FinishReason::Length,
|
||||
text_generation_client::v2::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
|
||||
text_generation_client::v2::FinishReason::StopSequence => FinishReason::StopSequence,
|
||||
};
|
||||
|
||||
Self {
|
||||
@ -913,68 +414,6 @@ impl From<v2::GeneratedText> for GeneratedText {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(crate) enum InferStreamResponse {
|
||||
// Optional first message
|
||||
Prefill(Vec<PrefillToken>),
|
||||
// Intermediate messages
|
||||
Intermediate {
|
||||
token: Token,
|
||||
top_tokens: Vec<Token>,
|
||||
},
|
||||
// Last message
|
||||
End {
|
||||
token: Token,
|
||||
top_tokens: Vec<Token>,
|
||||
generated_text: GeneratedText,
|
||||
start: Instant,
|
||||
queued: Instant,
|
||||
},
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct InferResponse {
|
||||
/// input_length is the input as perceived by the rust tokenizer in the
|
||||
/// validation pathway. It is redundant with prefill.len() but prefill
|
||||
/// has data only if the user asked for it. This will always be filled.
|
||||
pub(crate) _input_length: u32,
|
||||
pub(crate) prefill: Vec<PrefillToken>,
|
||||
pub(crate) tokens: Vec<Token>,
|
||||
pub(crate) generated_text: GeneratedText,
|
||||
pub(crate) queued: Instant,
|
||||
pub(crate) start: Instant,
|
||||
pub(crate) top_tokens: Vec<Vec<Token>>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
pub enum InferError {
|
||||
#[error("Request failed during generation: {0}")]
|
||||
GenerationError(String),
|
||||
#[error("Model is overloaded")]
|
||||
Overloaded(#[from] TryAcquireError),
|
||||
#[error("Input validation error: {0}")]
|
||||
ValidationError(#[from] ValidationError),
|
||||
#[error("Incomplete generation")]
|
||||
IncompleteGeneration,
|
||||
#[error("Template error: {0}")]
|
||||
TemplateError(#[from] minijinja::Error),
|
||||
#[error("Tool error: {0}")]
|
||||
ToolError(String),
|
||||
}
|
||||
|
||||
impl InferError {
|
||||
pub(crate) fn error_type(&self) -> &str {
|
||||
match self {
|
||||
InferError::GenerationError(_) => "generation",
|
||||
InferError::Overloaded(_) => "overloaded",
|
||||
InferError::ValidationError(_) => "validation",
|
||||
InferError::IncompleteGeneration => "incomplete_generation",
|
||||
InferError::TemplateError(_) => "template_error",
|
||||
InferError::ToolError(_) => "tool_error",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// tests
|
||||
#[cfg(test)]
|
||||
mod tests {
|
@ -1,5 +1,5 @@
|
||||
mod infer;
|
||||
mod batcher;
|
||||
mod queue;
|
||||
|
||||
pub(crate) use infer::{Infer, InferError, InferStreamResponse, InferResponse, ToolGrammar};
|
||||
pub(crate) use queue::{Entry, Queue};
|
||||
pub(crate) use batcher::batching_task;
|
||||
pub(crate) use queue::Queue;
|
||||
|
@ -1,6 +1,6 @@
|
||||
use crate::infer::v2::{InferError, InferStreamResponse};
|
||||
use crate::infer::{Entry, InferQueue};
|
||||
use crate::validation::{
|
||||
ValidGenerateRequest, ValidGrammar, ValidParameters, ValidStoppingParameters,
|
||||
ValidGrammar, ValidParameters, ValidStoppingParameters,
|
||||
};
|
||||
use nohash_hasher::{BuildNoHashHasher, IntMap};
|
||||
use std::cmp::min;
|
||||
@ -15,23 +15,6 @@ use tokio::sync::{mpsc, oneshot};
|
||||
use tokio::time::Instant;
|
||||
use tracing::{info_span, instrument, Span};
|
||||
|
||||
/// Queue entry
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct Entry {
|
||||
/// Request
|
||||
pub request: ValidGenerateRequest,
|
||||
/// Response sender to communicate between the Infer struct and the batching_task
|
||||
pub response_tx: mpsc::UnboundedSender<Result<InferStreamResponse, InferError>>,
|
||||
/// Span that will live as long as entry
|
||||
pub span: Span,
|
||||
/// Temporary span used as a guard when logging inference, wait times...
|
||||
pub temp_span: Option<Span>,
|
||||
/// Instant when this entry was queued
|
||||
pub queue_time: Instant,
|
||||
/// Instant when this entry was added to a batch
|
||||
pub batch_time: Option<Instant>,
|
||||
}
|
||||
|
||||
/// Request Queue
|
||||
#[derive(Debug, Clone)]
|
||||
pub(crate) struct Queue {
|
||||
@ -39,6 +22,19 @@ pub(crate) struct Queue {
|
||||
queue_sender: mpsc::UnboundedSender<QueueCommand>,
|
||||
}
|
||||
|
||||
|
||||
impl InferQueue for Queue {
|
||||
/// Append an entry to the queue
|
||||
#[instrument(skip_all)]
|
||||
fn append(&self, entry: Entry) {
|
||||
// Send append command to the background task managing the state
|
||||
// Unwrap is safe here
|
||||
self.queue_sender
|
||||
.send(QueueCommand::Append(Box::new(entry), Span::current()))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
impl Queue {
|
||||
pub(crate) fn new(
|
||||
requires_padding: bool,
|
||||
@ -61,16 +57,6 @@ impl Queue {
|
||||
Self { queue_sender }
|
||||
}
|
||||
|
||||
/// Append an entry to the queue
|
||||
#[instrument(skip_all)]
|
||||
pub(crate) fn append(&self, entry: Entry) {
|
||||
// Send append command to the background task managing the state
|
||||
// Unwrap is safe here
|
||||
self.queue_sender
|
||||
.send(QueueCommand::Append(Box::new(entry), Span::current()))
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
// Get the next batch
|
||||
#[instrument(skip(self))]
|
||||
pub(crate) async fn next_batch(
|
||||
|
@ -1,7 +1,8 @@
|
||||
/// HTTP Server logic
|
||||
|
||||
use crate::config::Config;
|
||||
use crate::infer::HealthCheck;
|
||||
use crate::infer::v2::{Infer, InferError, InferResponse, InferStreamResponse, ToolGrammar};
|
||||
use crate::infer::{Infer, InferError, InferResponse, InferStreamResponse, ToolGrammar};
|
||||
use crate::validation::ValidationError;
|
||||
use crate::{
|
||||
BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest,
|
||||
@ -34,7 +35,7 @@ use std::convert::Infallible;
|
||||
use std::net::SocketAddr;
|
||||
use std::sync::atomic::AtomicBool;
|
||||
use std::sync::Arc;
|
||||
use text_generation_client::{v2::ShardedClient, ShardInfo, ClientError};
|
||||
use text_generation_client::{v2::ShardedClient, ClientError};
|
||||
use tokenizers::Tokenizer;
|
||||
use tokio::select;
|
||||
use tokio::signal;
|
||||
@ -372,7 +373,7 @@ async fn generate_stream(
|
||||
Json(req): Json<GenerateRequest>,
|
||||
) -> (
|
||||
HeaderMap,
|
||||
Sse<impl Stream<Item = Result<Event, Infallible>>>,
|
||||
Sse<impl Stream<Item=Result<Event, Infallible>>>,
|
||||
) {
|
||||
let span = tracing::Span::current();
|
||||
let on_message_callback = |stream_token: StreamResponse| {
|
||||
@ -391,7 +392,7 @@ async fn generate_stream_internal(
|
||||
Json(req): Json<GenerateRequest>,
|
||||
on_message_callback: impl Fn(StreamResponse) -> Event,
|
||||
span: tracing::Span,
|
||||
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
|
||||
) -> (HeaderMap, impl Stream<Item=Result<Event, Infallible>>) {
|
||||
let start_time = Instant::now();
|
||||
metrics::increment_counter!("tgi_request_count");
|
||||
|
||||
@ -559,38 +560,38 @@ async fn generate_stream_internal(
|
||||
|
||||
/// Generate tokens
|
||||
#[utoipa::path(
|
||||
post,
|
||||
tag = "Text Generation Inference",
|
||||
path = "/v1/completions",
|
||||
request_body = CompletionRequest,
|
||||
responses(
|
||||
(status = 200, description = "Generated Chat Completion",
|
||||
content(
|
||||
("application/json" = Completion),
|
||||
("text/event-stream" = CompletionCompleteChunk),
|
||||
)),
|
||||
(status = 424, description = "Generation Error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Request failed during generation"})),
|
||||
(status = 429, description = "Model is overloaded", body = ErrorResponse,
|
||||
example = json ! ({"error": "Model is overloaded"})),
|
||||
(status = 422, description = "Input validation error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Input validation error"})),
|
||||
(status = 500, description = "Incomplete generation", body = ErrorResponse,
|
||||
example = json ! ({"error": "Incomplete generation"})),
|
||||
)
|
||||
)]
|
||||
post,
|
||||
tag = "Text Generation Inference",
|
||||
path = "/v1/completions",
|
||||
request_body = CompletionRequest,
|
||||
responses(
|
||||
(status = 200, description = "Generated Chat Completion",
|
||||
content(
|
||||
("application/json" = Completion),
|
||||
("text/event-stream" = CompletionCompleteChunk),
|
||||
)),
|
||||
(status = 424, description = "Generation Error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Request failed during generation"})),
|
||||
(status = 429, description = "Model is overloaded", body = ErrorResponse,
|
||||
example = json ! ({"error": "Model is overloaded"})),
|
||||
(status = 422, description = "Input validation error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Input validation error"})),
|
||||
(status = 500, description = "Incomplete generation", body = ErrorResponse,
|
||||
example = json ! ({"error": "Incomplete generation"})),
|
||||
)
|
||||
)]
|
||||
#[instrument(
|
||||
skip_all,
|
||||
fields(
|
||||
// parameters = ? req.parameters,
|
||||
total_time,
|
||||
validation_time,
|
||||
queue_time,
|
||||
inference_time,
|
||||
time_per_token,
|
||||
seed,
|
||||
)
|
||||
)]
|
||||
skip_all,
|
||||
fields(
|
||||
// parameters = ? req.parameters,
|
||||
total_time,
|
||||
validation_time,
|
||||
queue_time,
|
||||
inference_time,
|
||||
time_per_token,
|
||||
seed,
|
||||
)
|
||||
)]
|
||||
async fn completions(
|
||||
Extension(infer): Extension<Infer>,
|
||||
Extension(compute_type): Extension<ComputeType>,
|
||||
@ -726,7 +727,7 @@ async fn completions(
|
||||
on_message_callback,
|
||||
span_clone.clone(),
|
||||
)
|
||||
.await;
|
||||
.await;
|
||||
|
||||
// send and dont wait for response
|
||||
let _ = header_tx.send(header_map);
|
||||
@ -833,7 +834,7 @@ async fn completions(
|
||||
Json(generate_request),
|
||||
span_clone,
|
||||
)
|
||||
.await;
|
||||
.await;
|
||||
result.map(|(headers, generation)| (index, headers, generation))
|
||||
};
|
||||
responses.push(response_future);
|
||||
@ -964,38 +965,38 @@ async fn completions(
|
||||
|
||||
/// Generate tokens
|
||||
#[utoipa::path(
|
||||
post,
|
||||
tag = "Text Generation Inference",
|
||||
path = "/v1/chat/completions",
|
||||
request_body = ChatRequest,
|
||||
responses(
|
||||
(status = 200, description = "Generated Chat Completion",
|
||||
content(
|
||||
("application/json" = ChatCompletion),
|
||||
("text/event-stream" = ChatCompletionChunk),
|
||||
)),
|
||||
(status = 424, description = "Generation Error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Request failed during generation"})),
|
||||
(status = 429, description = "Model is overloaded", body = ErrorResponse,
|
||||
example = json ! ({"error": "Model is overloaded"})),
|
||||
(status = 422, description = "Input validation error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Input validation error"})),
|
||||
(status = 500, description = "Incomplete generation", body = ErrorResponse,
|
||||
example = json ! ({"error": "Incomplete generation"})),
|
||||
)
|
||||
)]
|
||||
post,
|
||||
tag = "Text Generation Inference",
|
||||
path = "/v1/chat/completions",
|
||||
request_body = ChatRequest,
|
||||
responses(
|
||||
(status = 200, description = "Generated Chat Completion",
|
||||
content(
|
||||
("application/json" = ChatCompletion),
|
||||
("text/event-stream" = ChatCompletionChunk),
|
||||
)),
|
||||
(status = 424, description = "Generation Error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Request failed during generation"})),
|
||||
(status = 429, description = "Model is overloaded", body = ErrorResponse,
|
||||
example = json ! ({"error": "Model is overloaded"})),
|
||||
(status = 422, description = "Input validation error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Input validation error"})),
|
||||
(status = 500, description = "Incomplete generation", body = ErrorResponse,
|
||||
example = json ! ({"error": "Incomplete generation"})),
|
||||
)
|
||||
)]
|
||||
#[instrument(
|
||||
skip_all,
|
||||
fields(
|
||||
// parameters = ? req.parameters,
|
||||
total_time,
|
||||
validation_time,
|
||||
queue_time,
|
||||
inference_time,
|
||||
time_per_token,
|
||||
seed,
|
||||
)
|
||||
)]
|
||||
skip_all,
|
||||
fields(
|
||||
// parameters = ? req.parameters,
|
||||
total_time,
|
||||
validation_time,
|
||||
queue_time,
|
||||
inference_time,
|
||||
time_per_token,
|
||||
seed,
|
||||
)
|
||||
)]
|
||||
async fn chat_completions(
|
||||
Extension(infer): Extension<Infer>,
|
||||
Extension(compute_type): Extension<ComputeType>,
|
||||
@ -1150,7 +1151,7 @@ async fn chat_completions(
|
||||
on_message_callback,
|
||||
span,
|
||||
)
|
||||
.await;
|
||||
.await;
|
||||
let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
|
||||
Ok((headers, sse).into_response())
|
||||
} else {
|
||||
@ -1220,32 +1221,32 @@ async fn chat_completions(
|
||||
|
||||
/// Generate tokens from Vertex request
|
||||
#[utoipa::path(
|
||||
post,
|
||||
tag = "Text Generation Inference",
|
||||
path = "/vertex",
|
||||
request_body = VertexRequest,
|
||||
responses(
|
||||
(status = 200, description = "Generated Text", body = VertexResponse),
|
||||
(status = 424, description = "Generation Error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Request failed during generation"})),
|
||||
(status = 429, description = "Model is overloaded", body = ErrorResponse,
|
||||
example = json ! ({"error": "Model is overloaded"})),
|
||||
(status = 422, description = "Input validation error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Input validation error"})),
|
||||
(status = 500, description = "Incomplete generation", body = ErrorResponse,
|
||||
example = json ! ({"error": "Incomplete generation"})),
|
||||
)
|
||||
)]
|
||||
post,
|
||||
tag = "Text Generation Inference",
|
||||
path = "/vertex",
|
||||
request_body = VertexRequest,
|
||||
responses(
|
||||
(status = 200, description = "Generated Text", body = VertexResponse),
|
||||
(status = 424, description = "Generation Error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Request failed during generation"})),
|
||||
(status = 429, description = "Model is overloaded", body = ErrorResponse,
|
||||
example = json ! ({"error": "Model is overloaded"})),
|
||||
(status = 422, description = "Input validation error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Input validation error"})),
|
||||
(status = 500, description = "Incomplete generation", body = ErrorResponse,
|
||||
example = json ! ({"error": "Incomplete generation"})),
|
||||
)
|
||||
)]
|
||||
#[instrument(
|
||||
skip_all,
|
||||
fields(
|
||||
total_time,
|
||||
validation_time,
|
||||
queue_time,
|
||||
inference_time,
|
||||
time_per_token,
|
||||
seed,
|
||||
)
|
||||
skip_all,
|
||||
fields(
|
||||
total_time,
|
||||
validation_time,
|
||||
queue_time,
|
||||
inference_time,
|
||||
time_per_token,
|
||||
seed,
|
||||
)
|
||||
)]
|
||||
async fn vertex_compatibility(
|
||||
Extension(infer): Extension<Infer>,
|
||||
@ -1290,17 +1291,17 @@ async fn vertex_compatibility(
|
||||
Json(generate_request),
|
||||
span.clone(),
|
||||
)
|
||||
.await
|
||||
.map(|(_, Json(generation))| generation.generated_text)
|
||||
.map_err(|_| {
|
||||
(
|
||||
StatusCode::INTERNAL_SERVER_ERROR,
|
||||
Json(ErrorResponse {
|
||||
error: "Incomplete generation".into(),
|
||||
error_type: "Incomplete generation".into(),
|
||||
}),
|
||||
)
|
||||
})
|
||||
.await
|
||||
.map(|(_, Json(generation))| generation.generated_text)
|
||||
.map_err(|_| {
|
||||
(
|
||||
StatusCode::INTERNAL_SERVER_ERROR,
|
||||
Json(ErrorResponse {
|
||||
error: "Incomplete generation".into(),
|
||||
error_type: "Incomplete generation".into(),
|
||||
}),
|
||||
)
|
||||
})
|
||||
}
|
||||
})
|
||||
.collect::<FuturesUnordered<_>>()
|
||||
@ -1313,16 +1314,16 @@ async fn vertex_compatibility(
|
||||
|
||||
/// Tokenize inputs
|
||||
#[utoipa::path(
|
||||
post,
|
||||
tag = "Text Generation Inference",
|
||||
path = "/tokenize",
|
||||
request_body = GenerateRequest,
|
||||
responses(
|
||||
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
|
||||
(status = 404, description = "No tokenizer found", body = ErrorResponse,
|
||||
example = json ! ({"error": "No fast tokenizer available"})),
|
||||
)
|
||||
)]
|
||||
post,
|
||||
tag = "Text Generation Inference",
|
||||
path = "/tokenize",
|
||||
request_body = GenerateRequest,
|
||||
responses(
|
||||
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
|
||||
(status = 404, description = "No tokenizer found", body = ErrorResponse,
|
||||
example = json ! ({"error": "No fast tokenizer available"})),
|
||||
)
|
||||
)]
|
||||
#[instrument(skip_all)]
|
||||
async fn tokenize(
|
||||
Extension(infer): Extension<Infer>,
|
||||
@ -1471,88 +1472,99 @@ pub async fn run(
|
||||
)]
|
||||
struct ApiDoc;
|
||||
|
||||
// Instantiate sharded client from the master unix socket
|
||||
let mut sharded_client = ShardedClient::connect_uds(master_shard_uds_path)
|
||||
.await
|
||||
.map_err(WebServerError::Connection)?;
|
||||
// Clear the cache; useful if the webserver rebooted
|
||||
sharded_client
|
||||
.clear_cache(None)
|
||||
.await
|
||||
.map_err(WebServerError::Cache)?;
|
||||
// Get info from the shard
|
||||
let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;
|
||||
|
||||
// Warmup model
|
||||
tracing::info!("Warming up model");
|
||||
let max_batch_total_tokens = match sharded_client
|
||||
.warmup(
|
||||
max_input_tokens as u32,
|
||||
max_batch_prefill_tokens,
|
||||
max_total_tokens as u32,
|
||||
max_batch_size,
|
||||
)
|
||||
.await
|
||||
.map_err(WebServerError::Warmup)?
|
||||
{
|
||||
// Older models do not support automatic max-batch-total-tokens
|
||||
None => {
|
||||
let max_batch_total_tokens = max_batch_total_tokens
|
||||
.unwrap_or(16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)));
|
||||
tracing::warn!("Model does not support automatic max batch total tokens");
|
||||
max_batch_total_tokens
|
||||
}
|
||||
// Flash attention models return their max supported total tokens
|
||||
Some(max_supported_batch_total_tokens) => {
|
||||
// Warn if user added his own max-batch-total-tokens as we will ignore it
|
||||
if max_batch_total_tokens.is_some() {
|
||||
tracing::warn!(
|
||||
// Open connection, get model info and warmup
|
||||
let (infer, health_ext, shard_info, max_batch_total_tokens) = {
|
||||
// Helper function to check both v2 and v3
|
||||
let check_max_batch_total_tokens = |max_supported_batch_total_tokens: Option<u32>| {
|
||||
match max_supported_batch_total_tokens {
|
||||
// Older models do not support automatic max-batch-total-tokens
|
||||
None => {
|
||||
let max_batch_total_tokens = max_batch_total_tokens
|
||||
.unwrap_or(16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)));
|
||||
tracing::warn!("Model does not support automatic max batch total tokens");
|
||||
Ok(max_batch_total_tokens)
|
||||
}
|
||||
// Flash attention models return their max supported total tokens
|
||||
Some(max_supported_batch_total_tokens) => {
|
||||
// Warn if user added his own max-batch-total-tokens as we will ignore it
|
||||
if max_batch_total_tokens.is_some() {
|
||||
tracing::warn!(
|
||||
"`--max-batch-total-tokens` is deprecated for Flash \
|
||||
Attention models."
|
||||
);
|
||||
tracing::warn!(
|
||||
tracing::warn!(
|
||||
"Inferred max batch total tokens: {max_supported_batch_total_tokens}"
|
||||
);
|
||||
}
|
||||
if max_total_tokens as u32 > max_supported_batch_total_tokens {
|
||||
return Err(WebServerError::NotEnoughMemory(max_total_tokens))
|
||||
}
|
||||
}
|
||||
if max_total_tokens as u32 > max_supported_batch_total_tokens {
|
||||
return Err(WebServerError::NotEnoughMemory(max_total_tokens));
|
||||
}
|
||||
|
||||
max_supported_batch_total_tokens
|
||||
}
|
||||
Ok(max_supported_batch_total_tokens)
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Create state
|
||||
let validation = Validation::new(
|
||||
validation_workers,
|
||||
tokenizer,
|
||||
config,
|
||||
max_best_of,
|
||||
max_stop_sequences,
|
||||
max_top_n_tokens,
|
||||
max_input_tokens,
|
||||
max_total_tokens,
|
||||
grammar_support,
|
||||
);
|
||||
let generation_health = Arc::new(AtomicBool::new(false));
|
||||
|
||||
// Try to open a v3 client
|
||||
// Instantiate sharded client from the master unix socket
|
||||
let mut sharded_client = ShardedClient::connect_uds(master_shard_uds_path)
|
||||
.await
|
||||
.map_err(WebServerError::Connection)?;
|
||||
// Clear the cache; useful if the webserver rebooted
|
||||
sharded_client
|
||||
.clear_cache(None)
|
||||
.await
|
||||
.map_err(WebServerError::Cache)?;
|
||||
// Get info from the shard
|
||||
let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;
|
||||
|
||||
// Warmup model
|
||||
tracing::info!("Warming up model");
|
||||
let max_batch_total_tokens = check_max_batch_total_tokens(sharded_client
|
||||
.warmup(
|
||||
max_input_tokens as u32,
|
||||
max_batch_prefill_tokens,
|
||||
max_total_tokens as u32,
|
||||
max_batch_size,
|
||||
)
|
||||
.await
|
||||
.map_err(WebServerError::Warmup)?)?;
|
||||
tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}");
|
||||
|
||||
let health_ext = HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
|
||||
let infer = Infer::new(
|
||||
sharded_client,
|
||||
validation,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
max_batch_size,
|
||||
max_concurrent_requests,
|
||||
shard_info.requires_padding,
|
||||
shard_info.window_size,
|
||||
shard_info.speculate,
|
||||
generation_health,
|
||||
tokenizer_config,
|
||||
processor_config,
|
||||
);
|
||||
|
||||
(infer, health_ext, shard_info, max_batch_total_tokens)
|
||||
};
|
||||
tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}");
|
||||
|
||||
// Create state
|
||||
let validation = Validation::new(
|
||||
validation_workers,
|
||||
tokenizer,
|
||||
config,
|
||||
max_best_of,
|
||||
max_stop_sequences,
|
||||
max_top_n_tokens,
|
||||
max_input_tokens,
|
||||
max_total_tokens,
|
||||
grammar_support,
|
||||
);
|
||||
let generation_health = Arc::new(AtomicBool::new(false));
|
||||
let health_ext = HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
|
||||
let infer = Infer::new(
|
||||
sharded_client,
|
||||
validation,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
max_batch_size,
|
||||
max_concurrent_requests,
|
||||
shard_info.requires_padding,
|
||||
shard_info.window_size,
|
||||
shard_info.speculate,
|
||||
generation_health,
|
||||
tokenizer_config,
|
||||
processor_config,
|
||||
);
|
||||
|
||||
// Duration buckets
|
||||
let duration_matcher = Matcher::Suffix(String::from("duration"));
|
||||
@ -1645,8 +1657,8 @@ pub async fn run(
|
||||
|
||||
#[derive(OpenApi)]
|
||||
#[openapi(
|
||||
paths(vertex_compatibility),
|
||||
components(schemas(VertexInstance, VertexRequest, VertexResponse))
|
||||
paths(vertex_compatibility),
|
||||
components(schemas(VertexInstance, VertexRequest, VertexResponse))
|
||||
)]
|
||||
struct VertextApiDoc;
|
||||
|
||||
@ -1756,7 +1768,7 @@ async fn shutdown_signal() {
|
||||
};
|
||||
|
||||
#[cfg(unix)]
|
||||
let terminate = async {
|
||||
let terminate = async {
|
||||
signal::unix::signal(signal::unix::SignalKind::terminate())
|
||||
.expect("failed to install signal handler")
|
||||
.recv()
|
||||
@ -1764,7 +1776,7 @@ async fn shutdown_signal() {
|
||||
};
|
||||
|
||||
#[cfg(not(unix))]
|
||||
let terminate = std::future::pending::<()>();
|
||||
let terminate = std::future::pending::<()>();
|
||||
|
||||
tokio::select! {
|
||||
_ = ctrl_c => {},
|
||||
@ -1821,5 +1833,5 @@ pub enum WebServerError {
|
||||
#[error("Not enough memory to handle `max_total_tokens={0}`")]
|
||||
NotEnoughMemory(usize),
|
||||
#[error("Axum error: {0}")]
|
||||
Axum(#[from] axum::BoxError)
|
||||
Axum(#[from] axum::BoxError),
|
||||
}
|
Loading…
Reference in New Issue
Block a user