mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-11 20:34:54 +00:00
wip
This commit is contained in:
parent
679c670293
commit
ba59da1589
5
router/src/infer/mod.rs
Normal file
5
router/src/infer/mod.rs
Normal file
@ -0,0 +1,5 @@
|
||||
mod health;
|
||||
pub(crate) mod v2;
|
||||
pub(crate) mod v3;
|
||||
|
||||
pub(crate) use health::HealthCheck;
|
@ -1,9 +1,11 @@
|
||||
/// Batching and inference logic
|
||||
|
||||
use crate::infer::v2::{Queue, Entry};
|
||||
use crate::validation::{Validation, ValidationError};
|
||||
use crate::{
|
||||
ChatTemplateInputs, ChatTemplateVersions, Entry, FinishReason, GenerateRequest,
|
||||
GenerateStreamResponse, HubProcessorConfig, HubTokenizerConfig, Message, MessageChunk,
|
||||
PrefillToken, Queue, Text, TextMessage, Token,
|
||||
ChatTemplateInputs, ChatTemplateVersions, FinishReason, GenerateRequest,
|
||||
HubProcessorConfig, HubTokenizerConfig, Message, MessageChunk,
|
||||
PrefillToken, Text, TextMessage, Token,
|
||||
};
|
||||
use crate::{FunctionRef, FunctionsMap, GrammarType, Properties, Tool, ToolType, Tools};
|
||||
use futures::future::try_join_all;
|
||||
@ -19,7 +21,7 @@ use text_generation_client::v2::{Batch, CachedBatch, Generation, ShardedClient};
|
||||
use text_generation_client::{v2, ClientError};
|
||||
use thiserror::Error;
|
||||
use tokio::sync::mpsc::error::SendError;
|
||||
use tokio::sync::{mpsc, Notify, Semaphore, TryAcquireError};
|
||||
use tokio::sync::{mpsc, Notify, OwnedSemaphorePermit, Semaphore, TryAcquireError};
|
||||
use tokio::time::Instant;
|
||||
use tokio_stream::wrappers::UnboundedReceiverStream;
|
||||
use tokio_stream::StreamExt;
|
||||
@ -878,6 +880,13 @@ fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
|
||||
});
|
||||
}
|
||||
|
||||
/// Type alias for generation responses
|
||||
pub(crate) type GenerateStreamResponse = (
|
||||
OwnedSemaphorePermit,
|
||||
u32, // input_length
|
||||
UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
|
||||
);
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct GeneratedText {
|
||||
pub(crate) text: String,
|
5
router/src/infer/v2/mod.rs
Normal file
5
router/src/infer/v2/mod.rs
Normal file
@ -0,0 +1,5 @@
|
||||
mod infer;
|
||||
mod queue;
|
||||
|
||||
pub(crate) use infer::{Infer, InferError, InferStreamResponse, InferResponse, ToolGrammar};
|
||||
pub(crate) use queue::{Entry, Queue};
|
@ -1,5 +1,4 @@
|
||||
use crate::infer::InferError;
|
||||
use crate::infer::InferStreamResponse;
|
||||
use crate::infer::v2::{InferError, InferStreamResponse};
|
||||
use crate::validation::{
|
||||
ValidGenerateRequest, ValidGrammar, ValidParameters, ValidStoppingParameters,
|
||||
};
|
1657
router/src/infer/v3/infer.rs
Normal file
1657
router/src/infer/v3/infer.rs
Normal file
File diff suppressed because it is too large
Load Diff
5
router/src/infer/v3/mod.rs
Normal file
5
router/src/infer/v3/mod.rs
Normal file
@ -0,0 +1,5 @@
|
||||
mod infer;
|
||||
mod queue;
|
||||
|
||||
pub(crate) use infer::{Infer, InferError, InferStreamResponse, InferResponse, ToolGrammar};
|
||||
pub(crate) use queue::{Entry, Queue};
|
671
router/src/infer/v3/queue.rs
Normal file
671
router/src/infer/v3/queue.rs
Normal file
@ -0,0 +1,671 @@
|
||||
use crate::infer::v3::{InferError, InferStreamResponse};
|
||||
use crate::validation::{
|
||||
ValidGenerateRequest, ValidGrammar, ValidParameters, ValidStoppingParameters,
|
||||
};
|
||||
use nohash_hasher::{BuildNoHashHasher, IntMap};
|
||||
use std::cmp::min;
|
||||
use std::collections::VecDeque;
|
||||
use text_generation_client::v3::{
|
||||
Batch, GrammarType, NextTokenChooserParameters, Request, StoppingCriteriaParameters,
|
||||
};
|
||||
use tokio::sync::{mpsc, oneshot};
|
||||
use tokio::time::Instant;
|
||||
use tracing::{info_span, instrument, Span};
|
||||
|
||||
/// Queue entry
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct Entry {
|
||||
/// Request
|
||||
pub request: ValidGenerateRequest,
|
||||
/// Response sender to communicate between the Infer struct and the batching_task
|
||||
pub response_tx: mpsc::UnboundedSender<Result<InferStreamResponse, InferError>>,
|
||||
/// Span that will live as long as entry
|
||||
pub span: Span,
|
||||
/// Temporary span used as a guard when logging inference, wait times...
|
||||
pub temp_span: Option<Span>,
|
||||
/// Instant when this entry was queued
|
||||
pub queue_time: Instant,
|
||||
/// Instant when this entry was added to a batch
|
||||
pub batch_time: Option<Instant>,
|
||||
}
|
||||
|
||||
/// Request Queue
|
||||
#[derive(Debug, Clone)]
|
||||
pub(crate) struct Queue {
|
||||
/// Channel to communicate with the background queue task
|
||||
queue_sender: mpsc::UnboundedSender<QueueCommand>,
|
||||
}
|
||||
|
||||
impl Queue {
|
||||
pub(crate) fn new(
|
||||
requires_padding: bool,
|
||||
block_size: u32,
|
||||
window_size: Option<u32>,
|
||||
speculate: u32,
|
||||
) -> Self {
|
||||
// Create channel
|
||||
let (queue_sender, queue_receiver) = mpsc::unbounded_channel();
|
||||
|
||||
// Launch background queue task
|
||||
tokio::spawn(queue_task(
|
||||
requires_padding,
|
||||
block_size,
|
||||
window_size,
|
||||
speculate,
|
||||
queue_receiver,
|
||||
));
|
||||
|
||||
Self { queue_sender }
|
||||
}
|
||||
|
||||
/// Append an entry to the queue
|
||||
#[instrument(skip_all)]
|
||||
pub(crate) fn append(&self, entry: Entry) {
|
||||
// Send append command to the background task managing the state
|
||||
// Unwrap is safe here
|
||||
self.queue_sender
|
||||
.send(QueueCommand::Append(Box::new(entry), Span::current()))
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
// Get the next batch
|
||||
#[instrument(skip(self))]
|
||||
pub(crate) async fn next_batch(
|
||||
&self,
|
||||
min_size: Option<usize>,
|
||||
max_size: Option<usize>,
|
||||
prefill_token_budget: u32,
|
||||
token_budget: u32,
|
||||
) -> Option<NextBatch> {
|
||||
// Create response channel
|
||||
let (response_sender, response_receiver) = oneshot::channel();
|
||||
// Send next batch command to the background task managing the state
|
||||
// Unwrap is safe here
|
||||
self.queue_sender
|
||||
.send(QueueCommand::NextBatch {
|
||||
min_size,
|
||||
max_size,
|
||||
prefill_token_budget,
|
||||
token_budget,
|
||||
response_sender,
|
||||
span: Span::current(),
|
||||
})
|
||||
.unwrap();
|
||||
// Await on response channel
|
||||
// Unwrap is safe here
|
||||
response_receiver.await.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
// Background task responsible of the queue state
|
||||
async fn queue_task(
|
||||
requires_padding: bool,
|
||||
block_size: u32,
|
||||
window_size: Option<u32>,
|
||||
speculate: u32,
|
||||
mut receiver: mpsc::UnboundedReceiver<QueueCommand>,
|
||||
) {
|
||||
let mut state = State::new(requires_padding, block_size, window_size, speculate);
|
||||
|
||||
while let Some(cmd) = receiver.recv().await {
|
||||
match cmd {
|
||||
QueueCommand::Append(entry, span) => {
|
||||
span.in_scope(|| state.append(*entry));
|
||||
metrics::increment_gauge!("tgi_queue_size", 1.0);
|
||||
}
|
||||
QueueCommand::NextBatch {
|
||||
min_size,
|
||||
max_size,
|
||||
prefill_token_budget,
|
||||
token_budget,
|
||||
response_sender,
|
||||
span,
|
||||
} => span.in_scope(|| {
|
||||
let next_batch =
|
||||
state.next_batch(min_size, max_size, prefill_token_budget, token_budget);
|
||||
response_sender.send(next_batch).unwrap();
|
||||
metrics::gauge!("tgi_queue_size", state.entries.len() as f64);
|
||||
}),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Queue State
|
||||
#[derive(Debug)]
|
||||
struct State {
|
||||
/// Queue entries organized in a Vec
|
||||
entries: VecDeque<(u64, Entry)>,
|
||||
|
||||
/// Id of the next entry
|
||||
next_id: u64,
|
||||
|
||||
/// Id of the next batch
|
||||
next_batch_id: u64,
|
||||
|
||||
/// Whether the model is using padding
|
||||
requires_padding: bool,
|
||||
|
||||
/// Paged Attention block size
|
||||
block_size: u32,
|
||||
|
||||
/// Sliding window
|
||||
window_size: Option<u32>,
|
||||
|
||||
/// Speculation amount
|
||||
speculate: u32,
|
||||
}
|
||||
|
||||
impl State {
|
||||
fn new(
|
||||
requires_padding: bool,
|
||||
block_size: u32,
|
||||
window_size: Option<u32>,
|
||||
speculate: u32,
|
||||
) -> Self {
|
||||
Self {
|
||||
entries: VecDeque::with_capacity(128),
|
||||
next_id: 0,
|
||||
next_batch_id: 0,
|
||||
requires_padding,
|
||||
block_size,
|
||||
window_size,
|
||||
speculate,
|
||||
}
|
||||
}
|
||||
|
||||
/// Append an entry to the queue
|
||||
fn append(&mut self, mut entry: Entry) {
|
||||
// Create a span that will live as long as the entry is in the queue waiting to be batched
|
||||
let queue_span = info_span!(parent: &entry.span, "queued");
|
||||
entry.temp_span = Some(queue_span);
|
||||
|
||||
// Push entry in the queue
|
||||
self.entries.push_back((self.next_id, entry));
|
||||
self.next_id += 1;
|
||||
}
|
||||
|
||||
// Get the next batch
|
||||
fn next_batch(
|
||||
&mut self,
|
||||
min_size: Option<usize>,
|
||||
max_size: Option<usize>,
|
||||
prefill_token_budget: u32,
|
||||
token_budget: u32,
|
||||
) -> Option<NextBatch> {
|
||||
if self.entries.is_empty() {
|
||||
tracing::debug!("No queue");
|
||||
return None;
|
||||
}
|
||||
|
||||
// Check if we have enough entries
|
||||
if let Some(min_size) = min_size {
|
||||
if self.entries.len() < min_size {
|
||||
tracing::debug!("Not enough entries");
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
// Pad prefill_token_budget to be a multiple of block size
|
||||
let prefill_token_budget =
|
||||
((prefill_token_budget + self.block_size - 1) / self.block_size) * self.block_size;
|
||||
|
||||
// Create span for this batch to add context to inference calls
|
||||
let next_batch_span = info_span!(parent: None, "batch", batch_size = tracing::field::Empty);
|
||||
next_batch_span.follows_from(&Span::current());
|
||||
|
||||
let mut batch_requests = Vec::with_capacity(self.entries.len());
|
||||
let mut batch_entries =
|
||||
IntMap::with_capacity_and_hasher(self.entries.len(), BuildNoHashHasher::default());
|
||||
|
||||
let mut max_input_length = 0;
|
||||
let mut prefill_tokens: u32 = 0;
|
||||
let mut decode_tokens: u32 = 0;
|
||||
|
||||
// Pop entries starting from the front of the queue
|
||||
while let Some((id, mut entry)) = self.entries.pop_front() {
|
||||
// Filter entries where the response receiver was dropped (== entries where the request
|
||||
// was dropped by the client)
|
||||
if entry.response_tx.is_closed() {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
|
||||
tracing::debug!("Dropping entry");
|
||||
continue;
|
||||
}
|
||||
|
||||
if self.requires_padding {
|
||||
// We pad to max input length in the Python shards
|
||||
// We need to take these padding tokens into the equation
|
||||
max_input_length = max_input_length.max(entry.request.input_length);
|
||||
prefill_tokens = (batch_requests.len() + 1) as u32 * max_input_length
|
||||
} else {
|
||||
// pad to block size
|
||||
prefill_tokens += ((entry.request.input_length + self.block_size - 1)
|
||||
/ self.block_size)
|
||||
* self.block_size;
|
||||
}
|
||||
|
||||
if self.requires_padding {
|
||||
decode_tokens += entry.request.stopping_parameters.max_new_tokens;
|
||||
} else {
|
||||
let max_new_tokens = match self.window_size {
|
||||
None => entry.request.stopping_parameters.max_new_tokens,
|
||||
Some(window_size) => min(
|
||||
window_size.saturating_sub(entry.request.input_length),
|
||||
entry.request.stopping_parameters.max_new_tokens,
|
||||
),
|
||||
};
|
||||
|
||||
// pad to block size
|
||||
decode_tokens +=
|
||||
((max_new_tokens + self.block_size - 1) / self.block_size) * self.block_size;
|
||||
}
|
||||
|
||||
if prefill_tokens > prefill_token_budget
|
||||
|| (prefill_tokens + decode_tokens + self.speculate) > token_budget
|
||||
{
|
||||
// Entry is over budget
|
||||
// Add it back to the front
|
||||
tracing::debug!("Over budget: prefill_tokens={prefill_tokens} > {prefill_token_budget} || {prefill_tokens} + {decode_tokens} + {} > {token_budget}", self.speculate);
|
||||
self.entries.push_front((id, entry));
|
||||
break;
|
||||
}
|
||||
|
||||
tracing::debug!("Accepting entry");
|
||||
// Create a new span to link the batch back to this entry
|
||||
let entry_batch_span = info_span!(parent: &entry.span, "infer");
|
||||
// Add relationships
|
||||
next_batch_span.follows_from(&entry_batch_span);
|
||||
entry_batch_span.follows_from(&next_batch_span);
|
||||
// Update entry
|
||||
entry.temp_span = Some(entry_batch_span);
|
||||
|
||||
batch_requests.push(Request {
|
||||
id,
|
||||
prefill_logprobs: entry.request.decoder_input_details,
|
||||
inputs: entry.request.inputs.clone(),
|
||||
truncate: entry.request.truncate,
|
||||
parameters: Some(NextTokenChooserParameters::from(
|
||||
entry.request.parameters.clone(),
|
||||
)),
|
||||
stopping_parameters: Some(StoppingCriteriaParameters::from(
|
||||
entry.request.stopping_parameters.clone(),
|
||||
)),
|
||||
top_n_tokens: entry.request.top_n_tokens,
|
||||
});
|
||||
// Set batch_time
|
||||
entry.batch_time = Some(Instant::now());
|
||||
// Insert in batch_entries IntMap
|
||||
batch_entries.insert(id, entry);
|
||||
|
||||
// Check if max_size
|
||||
if Some(batch_requests.len()) == max_size {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Empty batch
|
||||
if batch_requests.is_empty() {
|
||||
tracing::debug!("Filterered out all entries");
|
||||
return None;
|
||||
}
|
||||
|
||||
// Check if our batch is big enough
|
||||
if let Some(min_size) = min_size {
|
||||
// Batch is too small
|
||||
if batch_requests.len() < min_size {
|
||||
// Add back entries to the queue in the correct order
|
||||
for r in batch_requests.into_iter().rev() {
|
||||
let id = r.id;
|
||||
let entry = batch_entries.remove(&id).unwrap();
|
||||
self.entries.push_front((id, entry));
|
||||
}
|
||||
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
// Final batch size
|
||||
let size = batch_requests.len() as u32;
|
||||
next_batch_span.record("batch_size", size);
|
||||
|
||||
let batch = Batch {
|
||||
id: self.next_batch_id,
|
||||
requests: batch_requests,
|
||||
size,
|
||||
max_tokens: (prefill_tokens + decode_tokens),
|
||||
};
|
||||
// Increment batch id
|
||||
self.next_batch_id += 1;
|
||||
|
||||
metrics::histogram!("tgi_batch_next_size", batch.size as f64);
|
||||
|
||||
Some((batch_entries, batch, next_batch_span))
|
||||
}
|
||||
}
|
||||
|
||||
type NextBatch = (IntMap<u64, Entry>, Batch, Span);
|
||||
|
||||
#[derive(Debug)]
|
||||
enum QueueCommand {
|
||||
Append(Box<Entry>, Span),
|
||||
NextBatch {
|
||||
min_size: Option<usize>,
|
||||
max_size: Option<usize>,
|
||||
prefill_token_budget: u32,
|
||||
token_budget: u32,
|
||||
response_sender: oneshot::Sender<Option<NextBatch>>,
|
||||
span: Span,
|
||||
},
|
||||
}
|
||||
|
||||
impl From<ValidParameters> for NextTokenChooserParameters {
|
||||
fn from(value: ValidParameters) -> Self {
|
||||
let (grammar, grammar_type) = match value.grammar {
|
||||
None => (String::new(), GrammarType::None),
|
||||
|
||||
Some(grammar) => match grammar {
|
||||
ValidGrammar::Json(grammar_string) => (grammar_string, GrammarType::Json),
|
||||
ValidGrammar::Regex(grammar_string) => (grammar_string, GrammarType::Regex),
|
||||
},
|
||||
};
|
||||
|
||||
Self {
|
||||
temperature: value.temperature,
|
||||
top_k: value.top_k,
|
||||
top_p: value.top_p,
|
||||
typical_p: value.typical_p,
|
||||
do_sample: value.do_sample,
|
||||
seed: value.seed,
|
||||
repetition_penalty: value.repetition_penalty,
|
||||
frequency_penalty: value.frequency_penalty,
|
||||
watermark: value.watermark,
|
||||
grammar,
|
||||
grammar_type: grammar_type.into(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<ValidStoppingParameters> for StoppingCriteriaParameters {
|
||||
fn from(value: ValidStoppingParameters) -> Self {
|
||||
Self {
|
||||
max_new_tokens: value.max_new_tokens,
|
||||
stop_sequences: value.stop_sequences,
|
||||
ignore_eos_token: value.ignore_eos_token,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use text_generation_client::{
|
||||
GrammarType as ProtoGrammarType, NextTokenChooserParameters, StoppingCriteriaParameters,
|
||||
};
|
||||
use tracing::info_span;
|
||||
|
||||
fn default_entry() -> (
|
||||
Entry,
|
||||
mpsc::UnboundedReceiver<Result<InferStreamResponse, InferError>>,
|
||||
) {
|
||||
let (response_tx, receiver_tx) = mpsc::unbounded_channel();
|
||||
|
||||
let entry = Entry {
|
||||
request: ValidGenerateRequest {
|
||||
inputs: String::new(),
|
||||
input_length: 0,
|
||||
truncate: 0,
|
||||
decoder_input_details: false,
|
||||
parameters: NextTokenChooserParameters {
|
||||
temperature: 0.0,
|
||||
top_k: 0,
|
||||
top_p: 0.0,
|
||||
typical_p: 0.0,
|
||||
do_sample: false,
|
||||
seed: 0,
|
||||
repetition_penalty: 0.0,
|
||||
frequency_penalty: 0.0,
|
||||
watermark: false,
|
||||
grammar: String::new(),
|
||||
grammar_type: ProtoGrammarType::None as i32,
|
||||
},
|
||||
stopping_parameters: StoppingCriteriaParameters {
|
||||
ignore_eos_token: false,
|
||||
max_new_tokens: 1,
|
||||
stop_sequences: vec![],
|
||||
},
|
||||
top_n_tokens: 0,
|
||||
},
|
||||
response_tx,
|
||||
span: info_span!("entry"),
|
||||
temp_span: None,
|
||||
queue_time: Instant::now(),
|
||||
batch_time: None,
|
||||
};
|
||||
(entry, receiver_tx)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_append() {
|
||||
let mut state = State::new(false, 1, None, 0);
|
||||
let (entry, _guard) = default_entry();
|
||||
|
||||
assert_eq!(state.next_id, 0);
|
||||
assert_eq!(state.entries.len(), 0);
|
||||
|
||||
state.append(entry);
|
||||
|
||||
assert_eq!(state.next_id, 1);
|
||||
assert_eq!(state.entries.len(), 1);
|
||||
let (id, _) = state.entries.remove(0).unwrap();
|
||||
assert_eq!(id, 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_next_batch_empty() {
|
||||
let mut state = State::new(false, 1, None, 0);
|
||||
|
||||
assert!(state.next_batch(None, None, 1, 1).is_none());
|
||||
assert!(state.next_batch(Some(1), None, 1, 1).is_none());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_next_batch_min_size() {
|
||||
let mut state = State::new(false, 1, None, 0);
|
||||
let (entry1, _guard1) = default_entry();
|
||||
let (entry2, _guard2) = default_entry();
|
||||
state.append(entry1);
|
||||
state.append(entry2);
|
||||
|
||||
let (entries, batch, _) = state.next_batch(None, None, 2, 2).unwrap();
|
||||
assert_eq!(entries.len(), 2);
|
||||
assert!(entries.contains_key(&0));
|
||||
assert!(entries.contains_key(&1));
|
||||
assert!(entries.get(&0).unwrap().batch_time.is_some());
|
||||
assert!(entries.get(&1).unwrap().batch_time.is_some());
|
||||
assert_eq!(batch.id, 0);
|
||||
assert_eq!(batch.size, 2);
|
||||
|
||||
assert_eq!(state.next_id, 2);
|
||||
assert_eq!(state.entries.len(), 0);
|
||||
assert_eq!(state.next_batch_id, 1);
|
||||
|
||||
let (entry3, _guard3) = default_entry();
|
||||
state.append(entry3);
|
||||
|
||||
assert!(state.next_batch(Some(2), None, 2, 2).is_none());
|
||||
|
||||
assert_eq!(state.next_id, 3);
|
||||
assert_eq!(state.entries.len(), 1);
|
||||
let (id, _) = state.entries.remove(0).unwrap();
|
||||
assert_eq!(id, 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_next_batch_max_size() {
|
||||
let mut state = State::new(false, 1, None, 0);
|
||||
let (entry1, _guard1) = default_entry();
|
||||
let (entry2, _guard2) = default_entry();
|
||||
state.append(entry1);
|
||||
state.append(entry2);
|
||||
|
||||
let (entries, batch, _) = state.next_batch(None, Some(1), 2, 2).unwrap();
|
||||
assert_eq!(entries.len(), 1);
|
||||
assert!(entries.contains_key(&0));
|
||||
assert!(entries.get(&0).unwrap().batch_time.is_some());
|
||||
assert_eq!(batch.id, 0);
|
||||
assert_eq!(batch.size, 1);
|
||||
|
||||
assert_eq!(state.next_id, 2);
|
||||
assert_eq!(state.entries.len(), 1);
|
||||
assert_eq!(state.next_batch_id, 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_next_batch_token_budget() {
|
||||
let mut state = State::new(false, 1, None, 0);
|
||||
let (entry1, _guard1) = default_entry();
|
||||
let (entry2, _guard2) = default_entry();
|
||||
state.append(entry1);
|
||||
state.append(entry2);
|
||||
|
||||
let (entries, batch, _) = state.next_batch(None, None, 1, 1).unwrap();
|
||||
assert_eq!(entries.len(), 1);
|
||||
assert!(entries.contains_key(&0));
|
||||
assert_eq!(batch.id, 0);
|
||||
assert_eq!(batch.size, 1);
|
||||
|
||||
assert_eq!(state.next_id, 2);
|
||||
assert_eq!(state.entries.len(), 1);
|
||||
assert_eq!(state.next_batch_id, 1);
|
||||
|
||||
let (entry3, _guard3) = default_entry();
|
||||
state.append(entry3);
|
||||
|
||||
let (entries, batch, _) = state.next_batch(None, None, 3, 3).unwrap();
|
||||
assert_eq!(entries.len(), 2);
|
||||
assert!(entries.contains_key(&1));
|
||||
assert!(entries.contains_key(&2));
|
||||
assert_eq!(batch.id, 1);
|
||||
assert_eq!(batch.size, 2);
|
||||
|
||||
assert_eq!(state.next_id, 3);
|
||||
assert_eq!(state.entries.len(), 0);
|
||||
assert_eq!(state.next_batch_id, 2);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_queue_append() {
|
||||
let queue = Queue::new(false, 1, None, 0);
|
||||
let (entry, _guard) = default_entry();
|
||||
queue.append(entry);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_queue_next_batch_empty() {
|
||||
let queue = Queue::new(false, 1, None, 0);
|
||||
|
||||
assert!(queue.next_batch(None, None, 1, 1).await.is_none());
|
||||
assert!(queue.next_batch(Some(1), None, 1, 1).await.is_none());
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_queue_next_batch_min_size() {
|
||||
let queue = Queue::new(false, 1, None, 0);
|
||||
let (entry1, _guard1) = default_entry();
|
||||
let (entry2, _guard2) = default_entry();
|
||||
queue.append(entry1);
|
||||
queue.append(entry2);
|
||||
|
||||
let (entries, batch, _) = queue.next_batch(None, None, 2, 2).await.unwrap();
|
||||
assert_eq!(entries.len(), 2);
|
||||
assert!(entries.contains_key(&0));
|
||||
assert!(entries.contains_key(&1));
|
||||
assert!(entries.get(&0).unwrap().batch_time.is_some());
|
||||
assert!(entries.get(&1).unwrap().batch_time.is_some());
|
||||
assert_eq!(batch.id, 0);
|
||||
assert_eq!(batch.size, 2);
|
||||
|
||||
let (entry3, _guard3) = default_entry();
|
||||
queue.append(entry3);
|
||||
|
||||
// Not enough requests pending
|
||||
assert!(queue.next_batch(Some(2), None, 2, 2).await.is_none());
|
||||
// Not enough token budget
|
||||
assert!(queue.next_batch(Some(1), None, 0, 0).await.is_none());
|
||||
// Ok
|
||||
let (entries2, batch2, _) = queue.next_batch(Some(1), None, 2, 2).await.unwrap();
|
||||
assert_eq!(entries2.len(), 1);
|
||||
assert!(entries2.contains_key(&2));
|
||||
assert!(entries2.get(&2).unwrap().batch_time.is_some());
|
||||
assert_eq!(batch2.id, 1);
|
||||
assert_eq!(batch2.size, 1);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_queue_next_batch_max_size() {
|
||||
let queue = Queue::new(false, 1, None, 0);
|
||||
let (entry1, _guard1) = default_entry();
|
||||
let (entry2, _guard2) = default_entry();
|
||||
queue.append(entry1);
|
||||
queue.append(entry2);
|
||||
|
||||
let (entries, batch, _) = queue.next_batch(None, Some(1), 2, 2).await.unwrap();
|
||||
assert_eq!(entries.len(), 1);
|
||||
assert!(entries.contains_key(&0));
|
||||
assert!(entries.get(&0).unwrap().batch_time.is_some());
|
||||
assert_eq!(batch.id, 0);
|
||||
assert_eq!(batch.size, 1);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_queue_next_batch_token_budget() {
|
||||
let queue = Queue::new(false, 1, None, 0);
|
||||
let (entry1, _guard1) = default_entry();
|
||||
let (entry2, _guard2) = default_entry();
|
||||
queue.append(entry1);
|
||||
queue.append(entry2);
|
||||
|
||||
let (entries, batch, _) = queue.next_batch(None, None, 1, 1).await.unwrap();
|
||||
assert_eq!(entries.len(), 1);
|
||||
assert!(entries.contains_key(&0));
|
||||
assert_eq!(batch.id, 0);
|
||||
assert_eq!(batch.size, 1);
|
||||
|
||||
let (entry3, _guard3) = default_entry();
|
||||
queue.append(entry3);
|
||||
|
||||
let (entries, batch, _) = queue.next_batch(None, None, 3, 3).await.unwrap();
|
||||
assert_eq!(entries.len(), 2);
|
||||
assert!(entries.contains_key(&1));
|
||||
assert!(entries.contains_key(&2));
|
||||
assert_eq!(batch.id, 1);
|
||||
assert_eq!(batch.size, 2);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_queue_next_batch_token_speculate() {
|
||||
let queue = Queue::new(false, 1, None, 2);
|
||||
let (entry1, _guard1) = default_entry();
|
||||
let (entry2, _guard2) = default_entry();
|
||||
queue.append(entry1);
|
||||
queue.append(entry2);
|
||||
|
||||
// Budget of 1 is not enough
|
||||
assert!(queue.next_batch(None, None, 1, 1).await.is_none());
|
||||
|
||||
let (entries, batch, _) = queue.next_batch(None, None, 6, 6).await.unwrap();
|
||||
assert_eq!(entries.len(), 2);
|
||||
assert!(entries.contains_key(&0));
|
||||
assert!(entries.contains_key(&1));
|
||||
assert_eq!(batch.id, 0);
|
||||
assert_eq!(batch.size, 2);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_queue_next_batch_dropped_receiver() {
|
||||
let queue = Queue::new(false, 1, None, 0);
|
||||
let (entry, _) = default_entry();
|
||||
queue.append(entry);
|
||||
|
||||
assert!(queue.next_batch(None, None, 1, 1).await.is_none());
|
||||
}
|
||||
}
|
@ -1,27 +1,15 @@
|
||||
pub mod config;
|
||||
mod health;
|
||||
/// Text Generation Inference Webserver
|
||||
|
||||
pub mod config;
|
||||
mod infer;
|
||||
mod queue;
|
||||
pub mod server;
|
||||
mod validation;
|
||||
|
||||
use infer::{Infer, InferError, InferStreamResponse};
|
||||
use queue::{Entry, Queue};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use tokio::sync::OwnedSemaphorePermit;
|
||||
use tokio_stream::wrappers::UnboundedReceiverStream;
|
||||
use tracing::warn;
|
||||
use utoipa::ToSchema;
|
||||
use validation::Validation;
|
||||
|
||||
/// Type alias for generation responses
|
||||
pub(crate) type GenerateStreamResponse = (
|
||||
OwnedSemaphorePermit,
|
||||
u32, // input_length
|
||||
UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
|
||||
);
|
||||
|
||||
#[derive(Clone, Deserialize, ToSchema)]
|
||||
pub(crate) struct VertexInstance {
|
||||
#[schema(example = "What is Deep Learning?")]
|
||||
@ -158,7 +146,7 @@ pub struct Info {
|
||||
#[schema(example = "4")]
|
||||
pub max_stop_sequences: usize,
|
||||
#[schema(example = "1024")]
|
||||
pub max_input_length: usize,
|
||||
pub max_input_tokens: usize,
|
||||
#[schema(example = "2048")]
|
||||
pub max_total_tokens: usize,
|
||||
#[schema(example = "1.2")]
|
||||
|
@ -12,7 +12,6 @@ use std::fs::File;
|
||||
use std::io::BufReader;
|
||||
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
|
||||
use std::path::{Path, PathBuf};
|
||||
use text_generation_client::{v2::ShardedClient, ClientError};
|
||||
use text_generation_router::config::Config;
|
||||
use text_generation_router::{server, HubModelInfo, HubProcessorConfig, HubTokenizerConfig};
|
||||
use thiserror::Error;
|
||||
@ -315,58 +314,7 @@ async fn main() -> Result<(), RouterError> {
|
||||
Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
|
||||
};
|
||||
|
||||
// Instantiate sharded client from the master unix socket
|
||||
let mut sharded_client = ShardedClient::connect_uds(master_shard_uds_path)
|
||||
.await
|
||||
.map_err(RouterError::Connection)?;
|
||||
// Clear the cache; useful if the webserver rebooted
|
||||
sharded_client
|
||||
.clear_cache(None)
|
||||
.await
|
||||
.map_err(RouterError::Cache)?;
|
||||
// Get info from the shard
|
||||
let shard_info = sharded_client.info().await.map_err(RouterError::Info)?;
|
||||
|
||||
// Warmup model
|
||||
tracing::info!("Warming up model");
|
||||
let max_supported_batch_total_tokens = match sharded_client
|
||||
.warmup(
|
||||
max_input_tokens as u32,
|
||||
max_batch_prefill_tokens,
|
||||
max_total_tokens as u32,
|
||||
max_batch_size,
|
||||
)
|
||||
.await
|
||||
.map_err(RouterError::Warmup)?
|
||||
{
|
||||
// Older models do not support automatic max-batch-total-tokens
|
||||
None => {
|
||||
let max_batch_total_tokens = max_batch_total_tokens
|
||||
.unwrap_or(16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)));
|
||||
tracing::warn!("Model does not support automatic max batch total tokens");
|
||||
max_batch_total_tokens
|
||||
}
|
||||
// Flash attention models return their max supported total tokens
|
||||
Some(max_supported_batch_total_tokens) => {
|
||||
// Warn if user added his own max-batch-total-tokens as we will ignore it
|
||||
if max_batch_total_tokens.is_some() {
|
||||
tracing::warn!(
|
||||
"`--max-batch-total-tokens` is deprecated for Flash \
|
||||
Attention models."
|
||||
);
|
||||
tracing::warn!(
|
||||
"Inferred max batch total tokens: {max_supported_batch_total_tokens}"
|
||||
);
|
||||
}
|
||||
if max_total_tokens as u32 > max_supported_batch_total_tokens {
|
||||
return Err(RouterError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_supported_batch_total_tokens}")));
|
||||
}
|
||||
|
||||
max_supported_batch_total_tokens
|
||||
}
|
||||
};
|
||||
tracing::info!("Setting max batch total tokens to {max_supported_batch_total_tokens}");
|
||||
tracing::info!("Connected");
|
||||
|
||||
// Determine the server port based on the feature and environment variable.
|
||||
let port = if cfg!(feature = "google") {
|
||||
@ -387,8 +335,8 @@ async fn main() -> Result<(), RouterError> {
|
||||
|
||||
// Run server
|
||||
server::run(
|
||||
master_shard_uds_path,
|
||||
model_info,
|
||||
shard_info,
|
||||
compat_return_full_text,
|
||||
max_concurrent_requests,
|
||||
max_best_of,
|
||||
@ -398,10 +346,9 @@ async fn main() -> Result<(), RouterError> {
|
||||
max_total_tokens,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
max_supported_batch_total_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
max_batch_size,
|
||||
sharded_client,
|
||||
tokenizer,
|
||||
config,
|
||||
validation_workers,
|
||||
@ -557,16 +504,8 @@ pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConf
|
||||
enum RouterError {
|
||||
#[error("Argument validation error: {0}")]
|
||||
ArgumentValidation(String),
|
||||
#[error("Unable to connect to the Python model shards: {0}")]
|
||||
Connection(ClientError),
|
||||
#[error("Unable to clear the Python model shards cache: {0}")]
|
||||
Cache(ClientError),
|
||||
#[error("Unable to get the Python model shards info: {0}")]
|
||||
Info(ClientError),
|
||||
#[error("Unable to warmup the Python model shards: {0}")]
|
||||
Warmup(ClientError),
|
||||
#[error("WebServer error: {0}")]
|
||||
WebServer(#[from] server::WebServerError),
|
||||
#[error("Tokio runtime failed to start: {0}")]
|
||||
Tokio(#[from] std::io::Error),
|
||||
#[error("Axum webserver failed: {0}")]
|
||||
Axum(#[from] axum::BoxError),
|
||||
}
|
||||
|
@ -1,11 +1,11 @@
|
||||
/// HTTP Server logic
|
||||
use crate::config::Config;
|
||||
use crate::health::HealthCheck;
|
||||
use crate::infer::{InferError, InferResponse, InferStreamResponse, ToolGrammar};
|
||||
use crate::infer::HealthCheck;
|
||||
use crate::infer::v2::{Infer, InferError, InferResponse, InferStreamResponse, ToolGrammar};
|
||||
use crate::validation::ValidationError;
|
||||
use crate::{
|
||||
BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest,
|
||||
GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig, Infer,
|
||||
GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig,
|
||||
Info, Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token,
|
||||
TokenizeResponse, Usage, Validation,
|
||||
};
|
||||
@ -34,7 +34,7 @@ use std::convert::Infallible;
|
||||
use std::net::SocketAddr;
|
||||
use std::sync::atomic::AtomicBool;
|
||||
use std::sync::Arc;
|
||||
use text_generation_client::{v2::ShardedClient, ShardInfo};
|
||||
use text_generation_client::{v2::ShardedClient, ShardInfo, ClientError};
|
||||
use tokenizers::Tokenizer;
|
||||
use tokio::select;
|
||||
use tokio::signal;
|
||||
@ -44,6 +44,7 @@ use tower_http::cors::{AllowOrigin, CorsLayer};
|
||||
use tracing::{info_span, instrument, Instrument};
|
||||
use utoipa::OpenApi;
|
||||
use utoipa_swagger_ui::SwaggerUi;
|
||||
use thiserror::Error;
|
||||
|
||||
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
|
||||
#[utoipa::path(
|
||||
@ -1374,21 +1375,20 @@ pub(crate) struct ComputeType(String);
|
||||
/// Serving method
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub async fn run(
|
||||
master_shard_uds_path: String,
|
||||
model_info: HubModelInfo,
|
||||
shard_info: ShardInfo,
|
||||
compat_return_full_text: bool,
|
||||
max_concurrent_requests: usize,
|
||||
max_best_of: usize,
|
||||
max_stop_sequences: usize,
|
||||
max_top_n_tokens: u32,
|
||||
max_input_length: usize,
|
||||
max_input_tokens: usize,
|
||||
max_total_tokens: usize,
|
||||
waiting_served_ratio: f32,
|
||||
max_batch_prefill_tokens: u32,
|
||||
max_batch_total_tokens: u32,
|
||||
max_batch_total_tokens: Option<u32>,
|
||||
max_waiting_tokens: usize,
|
||||
max_batch_size: Option<usize>,
|
||||
client: ShardedClient,
|
||||
tokenizer: Option<Tokenizer>,
|
||||
config: Option<Config>,
|
||||
validation_workers: usize,
|
||||
@ -1402,7 +1402,7 @@ pub async fn run(
|
||||
messages_api_enabled: bool,
|
||||
grammar_support: bool,
|
||||
max_client_batch_size: usize,
|
||||
) -> Result<(), axum::BoxError> {
|
||||
) -> Result<(), WebServerError> {
|
||||
// OpenAPI documentation
|
||||
#[derive(OpenApi)]
|
||||
#[openapi(
|
||||
@ -1471,6 +1471,58 @@ pub async fn run(
|
||||
)]
|
||||
struct ApiDoc;
|
||||
|
||||
// Instantiate sharded client from the master unix socket
|
||||
let mut sharded_client = ShardedClient::connect_uds(master_shard_uds_path)
|
||||
.await
|
||||
.map_err(WebServerError::Connection)?;
|
||||
// Clear the cache; useful if the webserver rebooted
|
||||
sharded_client
|
||||
.clear_cache(None)
|
||||
.await
|
||||
.map_err(WebServerError::Cache)?;
|
||||
// Get info from the shard
|
||||
let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;
|
||||
|
||||
// Warmup model
|
||||
tracing::info!("Warming up model");
|
||||
let max_batch_total_tokens = match sharded_client
|
||||
.warmup(
|
||||
max_input_tokens as u32,
|
||||
max_batch_prefill_tokens,
|
||||
max_total_tokens as u32,
|
||||
max_batch_size,
|
||||
)
|
||||
.await
|
||||
.map_err(WebServerError::Warmup)?
|
||||
{
|
||||
// Older models do not support automatic max-batch-total-tokens
|
||||
None => {
|
||||
let max_batch_total_tokens = max_batch_total_tokens
|
||||
.unwrap_or(16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)));
|
||||
tracing::warn!("Model does not support automatic max batch total tokens");
|
||||
max_batch_total_tokens
|
||||
}
|
||||
// Flash attention models return their max supported total tokens
|
||||
Some(max_supported_batch_total_tokens) => {
|
||||
// Warn if user added his own max-batch-total-tokens as we will ignore it
|
||||
if max_batch_total_tokens.is_some() {
|
||||
tracing::warn!(
|
||||
"`--max-batch-total-tokens` is deprecated for Flash \
|
||||
Attention models."
|
||||
);
|
||||
tracing::warn!(
|
||||
"Inferred max batch total tokens: {max_supported_batch_total_tokens}"
|
||||
);
|
||||
}
|
||||
if max_total_tokens as u32 > max_supported_batch_total_tokens {
|
||||
return Err(WebServerError::NotEnoughMemory(max_total_tokens))
|
||||
}
|
||||
|
||||
max_supported_batch_total_tokens
|
||||
}
|
||||
};
|
||||
tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}");
|
||||
|
||||
// Create state
|
||||
let validation = Validation::new(
|
||||
validation_workers,
|
||||
@ -1479,14 +1531,14 @@ pub async fn run(
|
||||
max_best_of,
|
||||
max_stop_sequences,
|
||||
max_top_n_tokens,
|
||||
max_input_length,
|
||||
max_input_tokens,
|
||||
max_total_tokens,
|
||||
grammar_support,
|
||||
);
|
||||
let generation_health = Arc::new(AtomicBool::new(false));
|
||||
let health_ext = HealthCheck::new(Arc::new(client.clone()), generation_health.clone());
|
||||
let health_ext = HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
|
||||
let infer = Infer::new(
|
||||
client,
|
||||
sharded_client,
|
||||
validation,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
@ -1516,7 +1568,7 @@ pub async fn run(
|
||||
// Input Length buckets
|
||||
let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
|
||||
let input_length_buckets: Vec<f64> = (0..100)
|
||||
.map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
|
||||
.map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
|
||||
.collect();
|
||||
// Generated tokens buckets
|
||||
let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
|
||||
@ -1570,7 +1622,7 @@ pub async fn run(
|
||||
max_concurrent_requests,
|
||||
max_best_of,
|
||||
max_stop_sequences,
|
||||
max_input_length,
|
||||
max_input_tokens,
|
||||
max_total_tokens,
|
||||
waiting_served_ratio,
|
||||
max_batch_total_tokens,
|
||||
@ -1666,6 +1718,8 @@ pub async fn run(
|
||||
.layer(OtelAxumLayer::default())
|
||||
.layer(cors_layer);
|
||||
|
||||
tracing::info!("Connected");
|
||||
|
||||
if ngrok {
|
||||
#[cfg(feature = "ngrok")]
|
||||
{
|
||||
@ -1688,7 +1742,7 @@ pub async fn run(
|
||||
let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
|
||||
axum::serve(listener, app)
|
||||
.with_graceful_shutdown(shutdown_signal())
|
||||
.await?;
|
||||
.await.map_err(|err| WebServerError::Axum(Box::new(err)))?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@ -1753,3 +1807,19 @@ impl From<InferError> for Event {
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
pub enum WebServerError {
|
||||
#[error("Unable to connect to the Python model shards: {0}")]
|
||||
Connection(ClientError),
|
||||
#[error("Unable to clear the Python model shards cache: {0}")]
|
||||
Cache(ClientError),
|
||||
#[error("Unable to get the Python model shards info: {0}")]
|
||||
Info(ClientError),
|
||||
#[error("Unable to warmup the Python model shards: {0}")]
|
||||
Warmup(ClientError),
|
||||
#[error("Not enough memory to handle `max_total_tokens={0}`")]
|
||||
NotEnoughMemory(usize),
|
||||
#[error("Axum error: {0}")]
|
||||
Axum(#[from] axum::BoxError)
|
||||
}
|
Loading…
Reference in New Issue
Block a user