Removing dead code.

This commit is contained in:
Ubuntu 2023-06-09 15:59:49 +00:00 committed by Nicolas Patry
parent 9a12941bef
commit 92f85c964d

View File

@ -318,127 +318,8 @@ class QuantLinear(nn.Module):
self.outfeatures = qweight.shape[1] self.outfeatures = qweight.shape[1]
self.infeatures = qweight.shape[0] * 32 // 4 self.infeatures = qweight.shape[0] * 32 // 4
# expected = (math.ceil(self.infeatures / self.groupsize), self.outfeatures // 32 * self.bits)
# assert tuple(self.qzeros.shape) == expected, f"{self.qzeros.shape} != {expected}"
# expected = (math.ceil(self.infeatures / self.groupsize), self.outfeatures)
# assert tuple(self.scales.shape) == expected, f"{self.scales.shape} != {expected}"
# assert self.g_idx.shape == (math.ceil(self.infeatures / self.group_size), outfeatures)
# def new(cls, bits, groupsize, infeatures, outfeatures, bias):
# if bits not in [2, 4, 8]:
# raise NotImplementedError("Only 2,4,8 bits are supported.")
# self.infeatures = infeatures
# self.outfeatures = outfeatures
# self.bits = bits
# self.maxq = 2**self.bits - 1
# self.groupsize = groupsize if groupsize != -1 else infeatures
# self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32))
# self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32))
# self.register_buffer('scales', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16))
# self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32))
# if bias:
# self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
# else:
# self.bias = None
def pack(self, linear, scales, zeros, g_idx=None):
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
self.scales = scales.clone().half()
if linear.bias is not None:
self.bias = linear.bias.clone().half()
intweight = []
for idx in range(self.infeatures):
intweight.append(torch.round((linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(torch.int)[:, None])
intweight = torch.cat(intweight, dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
qweight = np.zeros((intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32)
i = 0
row = 0
while row < qweight.shape[0]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += 32 // self.bits
row += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
zeros -= 1
zeros = zeros.numpy().astype(np.uint32)
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += 32 // self.bits
col += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qzeros = qzeros.astype(np.int32)
self.qzeros = torch.from_numpy(qzeros)
def forward(self, x): def forward(self, x):
out_shape = x.shape[:-1] + (self.outfeatures, ) out_shape = x.shape[:-1] + (self.outfeatures, )
out = QuantLinearFunction.apply(x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, self.g_idx, self.bits, self.maxq) out = QuantLinearFunction.apply(x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, self.g_idx, self.bits, self.maxq)
out = out + self.bias if self.bias is not None else out out = out + self.bias if self.bias is not None else out
return out.reshape(out_shape) return out.reshape(out_shape)
def make_quant_linear(module, names, bits, groupsize, name=''):
if isinstance(module, QuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
delattr(module, attr)
setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None))
for name1, child in module.named_children():
make_quant_linear(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1)
def autotune_warmup_linear(model, transpose=False):
"""
Pre-tunes the quantized kernel
"""
from tqdm import tqdm
kn_values = {}
for _, m in model.named_modules():
if not isinstance(m, QuantLinear):
continue
k = m.infeatures
n = m.outfeatures
if (k, n) not in kn_values:
kn_values[(k, n)] = (m.qweight.cuda(), m.scales.cuda(), m.qzeros.cuda(), m.g_idx.cuda(), m.bits, m.maxq)
print(f'Found {len(kn_values)} unique KN Linear values.')
print('Warming up autotune cache ...')
with torch.no_grad():
for m in tqdm(range(0, 12)):
m = 2**m # [1, 2048]
for (k, n), (qweight, scales, qzeros, g_idx, bits, maxq) in kn_values.items():
a = torch.randn(m, k, dtype=torch.float16, device='cuda')
matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq)
if transpose:
a = torch.randn(m, n, dtype=torch.float16, device='cuda')
transpose_matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq)
del kn_values