mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-24 08:22:07 +00:00
[WIP] Inference support for GPTQ (llama at least)
Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence.
This commit is contained in:
parent
5ce89059f8
commit
9a12941bef
193
server/text_generation_server/utils/gptq/custom_autotune.py
Normal file
193
server/text_generation_server/utils/gptq/custom_autotune.py
Normal file
@ -0,0 +1,193 @@
|
||||
#https://github.com/fpgaminer/GPTQ-triton
|
||||
"""
|
||||
Mostly the same as the autotuner in Triton, but with a few changes like using 40 runs instead of 100.
|
||||
"""
|
||||
|
||||
import builtins
|
||||
import math
|
||||
import time
|
||||
from typing import Dict
|
||||
|
||||
import triton
|
||||
|
||||
|
||||
class Autotuner(triton.KernelInterface):
|
||||
|
||||
def __init__(self, fn, arg_names, configs, key, reset_to_zero, prune_configs_by: Dict = None, nearest_power_of_two: bool = False):
|
||||
'''
|
||||
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
|
||||
'perf_model': performance model used to predicate running time with different configs, returns running time
|
||||
'top_k': number of configs to bench
|
||||
'prune_num_stages_by'(optional): a function used to prune num_stages. It take configs:List[Config] as its input, and returns pruned configs.
|
||||
'nearest_power_of_two'(optional): whether to round key arguments to the nearest power of two when caching tuning results
|
||||
'''
|
||||
if not configs:
|
||||
self.configs = [triton.Config({}, num_warps=4, num_stages=2)]
|
||||
else:
|
||||
self.configs = configs
|
||||
self.key_idx = [arg_names.index(k) for k in key]
|
||||
self.nearest_power_of_two = nearest_power_of_two
|
||||
self.cache = {}
|
||||
# hook to reset all required tensor to zeros before relaunching a kernel
|
||||
self.hook = lambda args: 0
|
||||
if reset_to_zero is not None:
|
||||
self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
|
||||
|
||||
def _hook(args):
|
||||
for i in self.reset_idx:
|
||||
args[i].zero_()
|
||||
|
||||
self.hook = _hook
|
||||
self.arg_names = arg_names
|
||||
# prune configs
|
||||
if prune_configs_by:
|
||||
perf_model, top_k = prune_configs_by['perf_model'], prune_configs_by['top_k']
|
||||
if 'early_config_prune' in prune_configs_by:
|
||||
early_config_prune = prune_configs_by['early_config_prune']
|
||||
else:
|
||||
perf_model, top_k, early_config_prune = None, None, None
|
||||
self.perf_model, self.configs_top_k = perf_model, top_k
|
||||
self.early_config_prune = early_config_prune
|
||||
self.fn = fn
|
||||
|
||||
def _bench(self, *args, config, **meta):
|
||||
# check for conflicts, i.e. meta-parameters both provided
|
||||
# as kwargs and by the autotuner
|
||||
conflicts = meta.keys() & config.kwargs.keys()
|
||||
if conflicts:
|
||||
raise ValueError(f"Conflicting meta-parameters: {', '.join(conflicts)}."
|
||||
" Make sure that you don't re-define auto-tuned symbols.")
|
||||
# augment meta-parameters with tunable ones
|
||||
current = dict(meta, **config.kwargs)
|
||||
|
||||
def kernel_call():
|
||||
if config.pre_hook:
|
||||
config.pre_hook(self.nargs)
|
||||
self.hook(args)
|
||||
self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **current)
|
||||
|
||||
try:
|
||||
# In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses
|
||||
# PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default
|
||||
return triton.testing.do_bench(kernel_call, percentiles=(0.5, 0.2, 0.8), rep=40)
|
||||
except triton.compiler.OutOfResources:
|
||||
return (float('inf'), float('inf'), float('inf'))
|
||||
|
||||
def run(self, *args, **kwargs):
|
||||
self.nargs = dict(zip(self.arg_names, args))
|
||||
if len(self.configs) > 1:
|
||||
key = tuple(args[i] for i in self.key_idx)
|
||||
|
||||
# This reduces the amount of autotuning by rounding the keys to the nearest power of two
|
||||
# In my testing this gives decent results, and greatly reduces the amount of tuning required
|
||||
if self.nearest_power_of_two:
|
||||
key = tuple([2**int(math.log2(x) + 0.5) for x in key])
|
||||
|
||||
if key not in self.cache:
|
||||
# prune configs
|
||||
pruned_configs = self.prune_configs(kwargs)
|
||||
bench_start = time.time()
|
||||
timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
|
||||
bench_end = time.time()
|
||||
self.bench_time = bench_end - bench_start
|
||||
self.cache[key] = builtins.min(timings, key=timings.get)
|
||||
self.hook(args)
|
||||
self.configs_timings = timings
|
||||
config = self.cache[key]
|
||||
else:
|
||||
config = self.configs[0]
|
||||
self.best_config = config
|
||||
if config.pre_hook is not None:
|
||||
config.pre_hook(self.nargs)
|
||||
return self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs)
|
||||
|
||||
def prune_configs(self, kwargs):
|
||||
pruned_configs = self.configs
|
||||
if self.early_config_prune:
|
||||
pruned_configs = self.early_config_prune(self.configs, self.nargs)
|
||||
if self.perf_model:
|
||||
top_k = self.configs_top_k
|
||||
if isinstance(top_k, float) and top_k <= 1.0:
|
||||
top_k = int(len(self.configs) * top_k)
|
||||
if len(pruned_configs) > top_k:
|
||||
est_timing = {config: self.perf_model(**self.nargs, **kwargs, **config.kwargs, num_stages=config.num_stages, num_warps=config.num_warps) for config in pruned_configs}
|
||||
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k]
|
||||
return pruned_configs
|
||||
|
||||
def warmup(self, *args, **kwargs):
|
||||
self.nargs = dict(zip(self.arg_names, args))
|
||||
for config in self.prune_configs(kwargs):
|
||||
self.fn.warmup(
|
||||
*args,
|
||||
num_warps=config.num_warps,
|
||||
num_stages=config.num_stages,
|
||||
**kwargs,
|
||||
**config.kwargs,
|
||||
)
|
||||
self.nargs = None
|
||||
|
||||
|
||||
def autotune(configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False):
|
||||
"""
|
||||
Decorator for auto-tuning a :code:`triton.jit`'d function.
|
||||
.. highlight:: python
|
||||
.. code-block:: python
|
||||
@triton.autotune(configs=[
|
||||
triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4),
|
||||
triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8),
|
||||
],
|
||||
key=['x_size'] # the two above configs will be evaluated anytime
|
||||
# the value of x_size changes
|
||||
)
|
||||
@triton.jit
|
||||
def kernel(x_ptr, x_size, **META):
|
||||
BLOCK_SIZE = META['BLOCK_SIZE']
|
||||
:note: When all the configurations are evaluated, the kernel will run multiple time.
|
||||
This means that whatever value the kernel updates will be updated multiple times.
|
||||
To avoid this undesired behavior, you can use the `reset_to_zero` argument, which
|
||||
reset the value of the provided tensor to `zero` before running any configuration.
|
||||
:param configs: a list of :code:`triton.Config` objects
|
||||
:type configs: list[triton.Config]
|
||||
:param key: a list of argument names whose change in value will trigger the evaluation of all provided configs.
|
||||
:type key: list[str]
|
||||
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
|
||||
'perf_model': performance model used to predicate running time with different configs, returns running time
|
||||
'top_k': number of configs to bench
|
||||
'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It take configs:List[Config] as its input, and returns pruned configs.
|
||||
:param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs.
|
||||
:type reset_to_zero: list[str]
|
||||
"""
|
||||
|
||||
def decorator(fn):
|
||||
return Autotuner(fn, fn.arg_names, configs, key, reset_to_zero, prune_configs_by, nearest_power_of_two)
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def matmul248_kernel_config_pruner(configs, nargs):
|
||||
"""
|
||||
The main purpose of this function is to shrink BLOCK_SIZE_* when the corresponding dimension is smaller.
|
||||
"""
|
||||
m = max(2**int(math.ceil(math.log2(nargs['M']))), 16)
|
||||
n = max(2**int(math.ceil(math.log2(nargs['N']))), 16)
|
||||
k = max(2**int(math.ceil(math.log2(nargs['K']))), 16)
|
||||
|
||||
used = set()
|
||||
for config in configs:
|
||||
block_size_m = min(m, config.kwargs['BLOCK_SIZE_M'])
|
||||
block_size_n = min(n, config.kwargs['BLOCK_SIZE_N'])
|
||||
block_size_k = min(k, config.kwargs['BLOCK_SIZE_K'])
|
||||
group_size_m = config.kwargs['GROUP_SIZE_M']
|
||||
|
||||
if (block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps) in used:
|
||||
continue
|
||||
|
||||
used.add((block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps))
|
||||
yield triton.Config({
|
||||
'BLOCK_SIZE_M': block_size_m,
|
||||
'BLOCK_SIZE_N': block_size_n,
|
||||
'BLOCK_SIZE_K': block_size_k,
|
||||
'GROUP_SIZE_M': group_size_m
|
||||
},
|
||||
num_stages=config.num_stages,
|
||||
num_warps=config.num_warps)
|
444
server/text_generation_server/utils/gptq/quant_linear.py
Normal file
444
server/text_generation_server/utils/gptq/quant_linear.py
Normal file
@ -0,0 +1,444 @@
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
|
||||
try:
|
||||
import triton
|
||||
import triton.language as tl
|
||||
from . import custom_autotune
|
||||
|
||||
# code based https://github.com/fpgaminer/GPTQ-triton
|
||||
@custom_autotune.autotune(
|
||||
configs=[
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 256,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 128,
|
||||
'BLOCK_SIZE_N': 128,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 128,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 128,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 64,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 128,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=2, num_warps=8),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 64,
|
||||
'BLOCK_SIZE_K': 64,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=3, num_warps=8),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 32,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 128,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=2, num_warps=4),
|
||||
],
|
||||
key=['M', 'N', 'K'],
|
||||
nearest_power_of_two=True,
|
||||
prune_configs_by={
|
||||
'early_config_prune': custom_autotune.matmul248_kernel_config_pruner,
|
||||
'perf_model': None,
|
||||
'top_k': None,
|
||||
},
|
||||
)
|
||||
@triton.jit
|
||||
def matmul_248_kernel(a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales, stride_zeros,
|
||||
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, K) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, N) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
g_ptr is of shape (K) int32
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_n = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||||
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
a_mask = (offs_am[:, None] < M)
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
g_ptrs = g_ptr + offs_k
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + offs_bn[None, :]
|
||||
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
|
||||
|
||||
shifter = (offs_k % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_bn % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||||
|
||||
for k in range(0, num_pid_k):
|
||||
g_idx = tl.load(g_ptrs)
|
||||
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = (zeros + 1)
|
||||
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros) * scales # Scale and shift
|
||||
|
||||
accumulator += tl.dot(a, b)
|
||||
a_ptrs += BLOCK_SIZE_K
|
||||
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
|
||||
g_ptrs += BLOCK_SIZE_K
|
||||
|
||||
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
|
||||
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||
|
||||
@custom_autotune.autotune(configs=[
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 256,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 128,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 128,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 128,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 128,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 64,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 128,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=2, num_warps=8),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 64,
|
||||
'BLOCK_SIZE_K': 64,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=3, num_warps=8),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 32,
|
||||
'BLOCK_SIZE_N': 128,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=2, num_warps=4),
|
||||
],
|
||||
key=['M', 'N', 'K'],
|
||||
nearest_power_of_two=True)
|
||||
@triton.jit
|
||||
def transpose_matmul_248_kernel(a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales,
|
||||
stride_zeros, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, N) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, K) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
g_ptr is of shape (K) int32
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_k
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_k = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
|
||||
offs_n = tl.arange(0, BLOCK_SIZE_N)
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
||||
a_mask = (offs_am[:, None] < M)
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
g_ptrs = g_ptr + offs_bk
|
||||
g_idx = tl.load(g_ptrs)
|
||||
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales
|
||||
zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros
|
||||
|
||||
shifter = (offs_bk % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_n % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)
|
||||
|
||||
for n in range(0, num_pid_n):
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = (zeros + 1)
|
||||
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros) * scales # Scale and shift
|
||||
b = tl.trans(b)
|
||||
|
||||
accumulator += tl.dot(a, b)
|
||||
a_ptrs += BLOCK_SIZE_N
|
||||
b_ptrs += BLOCK_SIZE_N
|
||||
scales_ptrs += BLOCK_SIZE_N
|
||||
zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits)
|
||||
|
||||
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K)
|
||||
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||
except:
|
||||
print('trioton not installed.')
|
||||
|
||||
|
||||
def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
with torch.cuda.device(input.device):
|
||||
output = torch.empty((input.shape[0], qweight.shape[1]), device=input.device, dtype=torch.float16)
|
||||
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']), )
|
||||
matmul_248_kernel[grid](input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], input.shape[1], bits, maxq, input.stride(0), input.stride(1), qweight.stride(0),
|
||||
qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0))
|
||||
return output
|
||||
|
||||
|
||||
def transpose_matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
with torch.cuda.device(input.device):
|
||||
output_dim = (qweight.shape[0] * 32) // bits
|
||||
output = torch.empty((input.shape[0], output_dim), device=input.device, dtype=torch.float16)
|
||||
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(output_dim, META['BLOCK_SIZE_K']), )
|
||||
transpose_matmul_248_kernel[grid](input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], output_dim, bits, maxq, input.stride(0), input.stride(1), qweight.stride(0),
|
||||
qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0))
|
||||
return output
|
||||
|
||||
|
||||
class QuantLinearFunction(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
@custom_fwd(cast_inputs=torch.float16)
|
||||
def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
ctx.save_for_backward(qweight, scales, qzeros, g_idx)
|
||||
ctx.bits, ctx.maxq = bits, maxq
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output):
|
||||
qweight, scales, qzeros, g_idx = ctx.saved_tensors
|
||||
bits, maxq = ctx.bits, ctx.maxq
|
||||
grad_input = None
|
||||
|
||||
if ctx.needs_input_grad[0]:
|
||||
grad_input = transpose_matmul248(grad_output, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
return grad_input, None, None, None, None, None, None
|
||||
|
||||
|
||||
class QuantLinear(nn.Module):
|
||||
def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize):
|
||||
super().__init__()
|
||||
self.qweight = qweight
|
||||
self.qzeros = qzeros
|
||||
self.scales = scales
|
||||
self.g_idx = g_idx
|
||||
self.bias = bias
|
||||
if bits not in [2, 4, 8]:
|
||||
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
||||
self.bits = bits
|
||||
self.maxq = 2**self.bits - 1
|
||||
self.groupsize = groupsize
|
||||
|
||||
self.outfeatures = qweight.shape[1]
|
||||
self.infeatures = qweight.shape[0] * 32 // 4
|
||||
|
||||
# expected = (math.ceil(self.infeatures / self.groupsize), self.outfeatures // 32 * self.bits)
|
||||
# assert tuple(self.qzeros.shape) == expected, f"{self.qzeros.shape} != {expected}"
|
||||
# expected = (math.ceil(self.infeatures / self.groupsize), self.outfeatures)
|
||||
# assert tuple(self.scales.shape) == expected, f"{self.scales.shape} != {expected}"
|
||||
# assert self.g_idx.shape == (math.ceil(self.infeatures / self.group_size), outfeatures)
|
||||
|
||||
# def new(cls, bits, groupsize, infeatures, outfeatures, bias):
|
||||
# if bits not in [2, 4, 8]:
|
||||
# raise NotImplementedError("Only 2,4,8 bits are supported.")
|
||||
|
||||
# self.infeatures = infeatures
|
||||
# self.outfeatures = outfeatures
|
||||
# self.bits = bits
|
||||
# self.maxq = 2**self.bits - 1
|
||||
# self.groupsize = groupsize if groupsize != -1 else infeatures
|
||||
|
||||
# self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32))
|
||||
# self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32))
|
||||
# self.register_buffer('scales', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16))
|
||||
# self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32))
|
||||
# if bias:
|
||||
# self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
|
||||
# else:
|
||||
# self.bias = None
|
||||
|
||||
def pack(self, linear, scales, zeros, g_idx=None):
|
||||
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
|
||||
|
||||
scales = scales.t().contiguous()
|
||||
zeros = zeros.t().contiguous()
|
||||
scale_zeros = zeros * scales
|
||||
self.scales = scales.clone().half()
|
||||
if linear.bias is not None:
|
||||
self.bias = linear.bias.clone().half()
|
||||
|
||||
intweight = []
|
||||
for idx in range(self.infeatures):
|
||||
intweight.append(torch.round((linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(torch.int)[:, None])
|
||||
intweight = torch.cat(intweight, dim=1)
|
||||
intweight = intweight.t().contiguous()
|
||||
intweight = intweight.numpy().astype(np.uint32)
|
||||
qweight = np.zeros((intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32)
|
||||
i = 0
|
||||
row = 0
|
||||
while row < qweight.shape[0]:
|
||||
if self.bits in [2, 4, 8]:
|
||||
for j in range(i, i + (32 // self.bits)):
|
||||
qweight[row] |= intweight[j] << (self.bits * (j - i))
|
||||
i += 32 // self.bits
|
||||
row += 1
|
||||
else:
|
||||
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
||||
|
||||
qweight = qweight.astype(np.int32)
|
||||
self.qweight = torch.from_numpy(qweight)
|
||||
|
||||
zeros -= 1
|
||||
zeros = zeros.numpy().astype(np.uint32)
|
||||
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
|
||||
i = 0
|
||||
col = 0
|
||||
while col < qzeros.shape[1]:
|
||||
if self.bits in [2, 4, 8]:
|
||||
for j in range(i, i + (32 // self.bits)):
|
||||
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
|
||||
i += 32 // self.bits
|
||||
col += 1
|
||||
else:
|
||||
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
||||
|
||||
qzeros = qzeros.astype(np.int32)
|
||||
self.qzeros = torch.from_numpy(qzeros)
|
||||
|
||||
def forward(self, x):
|
||||
out_shape = x.shape[:-1] + (self.outfeatures, )
|
||||
out = QuantLinearFunction.apply(x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, self.g_idx, self.bits, self.maxq)
|
||||
out = out + self.bias if self.bias is not None else out
|
||||
return out.reshape(out_shape)
|
||||
|
||||
|
||||
def make_quant_linear(module, names, bits, groupsize, name=''):
|
||||
if isinstance(module, QuantLinear):
|
||||
return
|
||||
for attr in dir(module):
|
||||
tmp = getattr(module, attr)
|
||||
name1 = name + '.' + attr if name != '' else attr
|
||||
if name1 in names:
|
||||
delattr(module, attr)
|
||||
setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None))
|
||||
for name1, child in module.named_children():
|
||||
make_quant_linear(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1)
|
||||
|
||||
|
||||
def autotune_warmup_linear(model, transpose=False):
|
||||
"""
|
||||
Pre-tunes the quantized kernel
|
||||
"""
|
||||
from tqdm import tqdm
|
||||
|
||||
kn_values = {}
|
||||
|
||||
for _, m in model.named_modules():
|
||||
if not isinstance(m, QuantLinear):
|
||||
continue
|
||||
|
||||
k = m.infeatures
|
||||
n = m.outfeatures
|
||||
|
||||
if (k, n) not in kn_values:
|
||||
kn_values[(k, n)] = (m.qweight.cuda(), m.scales.cuda(), m.qzeros.cuda(), m.g_idx.cuda(), m.bits, m.maxq)
|
||||
|
||||
print(f'Found {len(kn_values)} unique KN Linear values.')
|
||||
|
||||
print('Warming up autotune cache ...')
|
||||
with torch.no_grad():
|
||||
for m in tqdm(range(0, 12)):
|
||||
m = 2**m # [1, 2048]
|
||||
for (k, n), (qweight, scales, qzeros, g_idx, bits, maxq) in kn_values.items():
|
||||
a = torch.randn(m, k, dtype=torch.float16, device='cuda')
|
||||
matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
if transpose:
|
||||
a = torch.randn(m, n, dtype=torch.float16, device='cuda')
|
||||
transpose_matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
del kn_values
|
@ -15,6 +15,8 @@ except ImportError:
|
||||
|
||||
from accelerate import init_empty_weights
|
||||
|
||||
from text_generation_server.utils.gptq.quant_linear import QuantLinear
|
||||
|
||||
|
||||
# Monkey patching
|
||||
@classmethod
|
||||
@ -129,7 +131,20 @@ def get_linear(weight, bias, quantize):
|
||||
if bias is not None:
|
||||
linear.bias = nn.Parameter(bias)
|
||||
elif quantize == "gptq":
|
||||
raise NotImplementedError("Soon")
|
||||
try:
|
||||
qweight, qzeros, scales, g_idx, bits, groupsize = weight
|
||||
except Exception:
|
||||
raise NotImplementedError(f"The passed weight is not `gptq` compatible, loader needs to be updated.")
|
||||
|
||||
linear = QuantLinear(
|
||||
qweight,
|
||||
qzeros,
|
||||
scales,
|
||||
g_idx,
|
||||
bias,
|
||||
bits,
|
||||
groupsize,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
|
||||
return linear
|
||||
@ -152,8 +167,14 @@ class TensorParallelHead(SuperLayer):
|
||||
@staticmethod
|
||||
def load(config, prefix: str, weights):
|
||||
weight = weights.get_sharded(f"{prefix}.weight", dim=0)
|
||||
|
||||
# GPTQ doesn't quantize heads (nor embeddings)
|
||||
if config.quantize == "gptq":
|
||||
quantize = None
|
||||
else:
|
||||
quantize = config.quantize
|
||||
return TensorParallelHead(
|
||||
get_linear(weight, bias=None, quantize=config.quantize),
|
||||
get_linear(weight, bias=None, quantize=quantize),
|
||||
process_group=weights.process_group,
|
||||
)
|
||||
|
||||
@ -205,15 +226,29 @@ class TensorParallelColumnLinear(SuperLayer):
|
||||
|
||||
@classmethod
|
||||
def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
|
||||
w = [weights.get_sharded(f"{p}.weight", dim=0) for p in prefixes]
|
||||
weight = torch.cat(w, dim=dim)
|
||||
if config.quantize == "gptq":
|
||||
qweight = torch.cat([weights.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1)
|
||||
qzeros = torch.cat([weights.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1)
|
||||
scales = torch.cat([weights.get_sharded(f"{p}.scales", dim=1) for p in prefixes], dim=1)
|
||||
w = [weights.get_tensor(f"{p}.g_idx") for p in prefixes]
|
||||
for w2 in w[1:]:
|
||||
torch.testing.assert_close(w2, w[0])
|
||||
g_idx = w[0]
|
||||
# TODO Get that from file to be more generic
|
||||
bits = 4
|
||||
groupsize = 128
|
||||
weight = (qweight, qzeros, scales, g_idx, bits, groupsize)
|
||||
else:
|
||||
w = [weights.get_sharded(f"{p}.weight", dim=0) for p in prefixes]
|
||||
weight = torch.cat(w, dim=dim)
|
||||
|
||||
if bias:
|
||||
b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
|
||||
bias = torch.cat(b, dim=0)
|
||||
else:
|
||||
bias = None
|
||||
return cls(get_linear(weight, bias, config.quantize))
|
||||
linear = get_linear(weight, bias, config.quantize)
|
||||
return cls(linear)
|
||||
|
||||
|
||||
class TensorParallelRowLinear(SuperLayer):
|
||||
@ -223,7 +258,20 @@ class TensorParallelRowLinear(SuperLayer):
|
||||
|
||||
@classmethod
|
||||
def load(cls, config, prefix: str, weights, bias: bool):
|
||||
weight = weights.get_sharded(f"{prefix}.weight", dim=1)
|
||||
if config.quantize == "gptq":
|
||||
qweight = weights.get_sharded(f"{prefix}.qweight", dim=0)
|
||||
qzeros = weights.get_tensor(f"{prefix}.qzeros")
|
||||
scales = weights.get_tensor(f"{prefix}.scales")
|
||||
g_idx = weights.get_sharded(f"{prefix}.g_idx", dim=0)
|
||||
|
||||
# TODO Get that from file to be more generic
|
||||
bits = 4
|
||||
groupsize = 128
|
||||
|
||||
weight = (qweight, qzeros, scales, g_idx, bits, groupsize)
|
||||
else:
|
||||
weight = weights.get_sharded(f"{prefix}.weight", dim=1)
|
||||
|
||||
if bias and weights.process_group.rank() == 0:
|
||||
# Rank is only on the first rank process
|
||||
bias = weights.get_tensor(f"{prefix}.bias")
|
||||
|
@ -1,6 +1,7 @@
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
from safetensors import safe_open
|
||||
import torch
|
||||
|
||||
|
||||
class Weights:
|
||||
@ -46,7 +47,10 @@ class Weights:
|
||||
filename = self.get_filename(tensor_name)
|
||||
f = self._get_handle(filename)
|
||||
tensor = f.get_tensor(tensor_name)
|
||||
tensor = tensor.to(dtype=self.dtype)
|
||||
# Special case for gptq which shouldn't convert
|
||||
# u4 which are disguised as int32
|
||||
if tensor.dtype != torch.int32:
|
||||
tensor = tensor.to(dtype=self.dtype)
|
||||
tensor = tensor.to(device=self.device)
|
||||
return tensor
|
||||
|
||||
@ -72,6 +76,9 @@ class Weights:
|
||||
tensor = slice_[:, start:stop]
|
||||
else:
|
||||
raise NotImplementedError("Let's make that generic when needed")
|
||||
tensor = tensor.to(dtype=self.dtype)
|
||||
# Special case for gptq which shouldn't convert
|
||||
# u4 which are disguised as int32
|
||||
if tensor.dtype != torch.int32:
|
||||
tensor = tensor.to(dtype=self.dtype)
|
||||
tensor = tensor.to(device=self.device)
|
||||
return tensor
|
||||
|
Loading…
Reference in New Issue
Block a user