mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-08 19:04:52 +00:00
Optimum neuron 0.3.0 (#3308)
* chore(neuron): update to optimum-neuron 0.3.0 Dependencies were changed accordingly, because Neuron SDK was updated to v2.24. * test: sample is not deterministic Also modify the temperature in decode test to avoid granite early stopping. * test(neuron): adjust expectations after graph changes * test(neuron): use greedy for stop sequences --------- Co-authored-by: David Corvoysier <david@huggingface.co>
This commit is contained in:
parent
d618424d50
commit
8801ba12cf
@ -5,7 +5,7 @@ RUN mkdir -p /tgi
|
|||||||
# Fetch the optimum-neuron sources directly to avoid relying on pypi deployments
|
# Fetch the optimum-neuron sources directly to avoid relying on pypi deployments
|
||||||
FROM alpine AS optimum-neuron
|
FROM alpine AS optimum-neuron
|
||||||
RUN mkdir -p /optimum-neuron
|
RUN mkdir -p /optimum-neuron
|
||||||
ADD https://github.com/huggingface/optimum-neuron/archive/refs/tags/v0.2.2.tar.gz /optimum-neuron/sources.tar.gz
|
ADD https://github.com/huggingface/optimum-neuron/archive/refs/tags/v0.3.0.tar.gz /optimum-neuron/sources.tar.gz
|
||||||
RUN tar -C /optimum-neuron -xf /optimum-neuron/sources.tar.gz --strip-components=1
|
RUN tar -C /optimum-neuron -xf /optimum-neuron/sources.tar.gz --strip-components=1
|
||||||
|
|
||||||
# Build cargo components (adapted from TGI original Dockerfile)
|
# Build cargo components (adapted from TGI original Dockerfile)
|
||||||
@ -108,10 +108,10 @@ RUN wget -qO - https://apt.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEU
|
|||||||
# Install neuronx packages
|
# Install neuronx packages
|
||||||
RUN apt-get update -y \
|
RUN apt-get update -y \
|
||||||
&& apt-get install -y --no-install-recommends \
|
&& apt-get install -y --no-install-recommends \
|
||||||
aws-neuronx-dkms=2.20.28.0 \
|
aws-neuronx-dkms=2.22.2.0 \
|
||||||
aws-neuronx-collectives=2.24.59.0-838c7fc8b \
|
aws-neuronx-collectives=2.26.43.0-47cc904ea \
|
||||||
aws-neuronx-runtime-lib=2.24.53.0-f239092cc \
|
aws-neuronx-runtime-lib=2.26.42.0-2ff3b5c7d \
|
||||||
aws-neuronx-tools=2.22.61.0 \
|
aws-neuronx-tools=2.24.54.0 \
|
||||||
libxml2 \
|
libxml2 \
|
||||||
&& rm -rf /var/lib/apt/lists/* \
|
&& rm -rf /var/lib/apt/lists/* \
|
||||||
&& apt-get clean
|
&& apt-get clean
|
||||||
@ -120,15 +120,15 @@ ENV PATH="/opt/bin/:/opt/aws/neuron/bin:${PATH}"
|
|||||||
|
|
||||||
# Install manually torch CPU version to avoid pulling CUDA
|
# Install manually torch CPU version to avoid pulling CUDA
|
||||||
RUN pip3 install \
|
RUN pip3 install \
|
||||||
torch==2.5.1 \
|
torch==2.7.0 \
|
||||||
torchvision==0.20.1 \
|
torchvision==0.22.0 \
|
||||||
--index-url https://download.pytorch.org/whl/cpu
|
--index-url https://download.pytorch.org/whl/cpu
|
||||||
|
|
||||||
RUN pip3 install \
|
RUN pip3 install \
|
||||||
neuronx-cc==2.17.194.0 \
|
neuronx-cc==2.19.8089.0+8ab9f450 \
|
||||||
torch-neuronx==2.5.1.2.6.0 \
|
torch-neuronx==2.7.0.2.8.6734+ac864f72 \
|
||||||
neuronx-distributed==0.11.0 \
|
neuronx-distributed==0.13.14393+b8569585 \
|
||||||
libneuronxla==2.2.1630.0 \
|
libneuronxla==2.2.4410.0+835a67fb \
|
||||||
--extra-index-url=https://pip.repos.neuron.amazonaws.com
|
--extra-index-url=https://pip.repos.neuron.amazonaws.com
|
||||||
|
|
||||||
# Install HuggingFace packages
|
# Install HuggingFace packages
|
||||||
|
@ -11,7 +11,14 @@ def test_decode(neuron_model_config):
|
|||||||
for do_sample in [True, False]:
|
for do_sample in [True, False]:
|
||||||
mode = "sample" if do_sample else "greedy"
|
mode = "sample" if do_sample else "greedy"
|
||||||
print(f"{config_name}[{mode}]")
|
print(f"{config_name}[{mode}]")
|
||||||
_test_decode(config_name, generator, do_sample)
|
generated_text = _test_decode(config_name, generator, do_sample)
|
||||||
|
if not do_sample:
|
||||||
|
expected_text = {
|
||||||
|
"llama": " The world was holding its breath as the world's top scientists and engineers gathered at the secret underground facility",
|
||||||
|
"qwen2": " I was sitting in my room, staring at the clock, when a knock at the door. I",
|
||||||
|
"granite": "\n\nThis opening line is from George Orwell's dystopian novel, \"1",
|
||||||
|
}[config_name]
|
||||||
|
assert generated_text == expected_text
|
||||||
generator.clear()
|
generator.clear()
|
||||||
|
|
||||||
|
|
||||||
@ -21,7 +28,11 @@ def _test_decode(config_name, generator, do_sample):
|
|||||||
)
|
)
|
||||||
max_new_tokens = 20
|
max_new_tokens = 20
|
||||||
request = create_request(
|
request = create_request(
|
||||||
id=0, inputs=input_text, max_new_tokens=max_new_tokens, do_sample=do_sample
|
id=0,
|
||||||
|
inputs=input_text,
|
||||||
|
max_new_tokens=max_new_tokens,
|
||||||
|
do_sample=do_sample,
|
||||||
|
temperature=0.9,
|
||||||
)
|
)
|
||||||
max_length = generator.model.neuron_config.sequence_length
|
max_length = generator.model.neuron_config.sequence_length
|
||||||
batch = Batch(id=0, requests=[request], size=1, max_tokens=max_length)
|
batch = Batch(id=0, requests=[request], size=1, max_tokens=max_length)
|
||||||
@ -38,18 +49,4 @@ def _test_decode(config_name, generator, do_sample):
|
|||||||
output = generations[0].generated_text
|
output = generations[0].generated_text
|
||||||
assert output.generated_tokens == max_new_tokens
|
assert output.generated_tokens == max_new_tokens
|
||||||
assert output.finish_reason == 0
|
assert output.finish_reason == 0
|
||||||
if do_sample:
|
return output.text
|
||||||
expected_text = {
|
|
||||||
"llama": " I sat alone in the café",
|
|
||||||
"qwen2": " The air was so still",
|
|
||||||
"granite": "1984, George Orwell",
|
|
||||||
}[config_name]
|
|
||||||
assert expected_text in output.text
|
|
||||||
else:
|
|
||||||
print(output.text)
|
|
||||||
expected_text = {
|
|
||||||
"llama": " The world was holding its breath as the world's top scientists and engineers gathered at the secret underground facility",
|
|
||||||
"qwen2": " I was sitting in my room, staring at the ceiling, when the door opened and in came a",
|
|
||||||
"granite": "\n\nThis opening line from George Orwell's dystopian novel \"198",
|
|
||||||
}[config_name]
|
|
||||||
assert output.text == expected_text
|
|
||||||
|
@ -44,23 +44,17 @@ def _test_prefill(config_name, generator, batch_size, do_sample):
|
|||||||
# because of static batching
|
# because of static batching
|
||||||
assert next_batch.max_tokens == batch_size * max_length
|
assert next_batch.max_tokens == batch_size * max_length
|
||||||
assert len(generations) == batch_size
|
assert len(generations) == batch_size
|
||||||
if do_sample:
|
expectations = {
|
||||||
expectations = {
|
"llama": [578, " The"],
|
||||||
"llama": [358, " I"],
|
"qwen2": [358, " I"],
|
||||||
"qwen2": [576, " The"],
|
"granite": [203, "\n"],
|
||||||
"granite": [308, " ("],
|
}[config_name]
|
||||||
}[config_name]
|
# Greedy mode should always generate the same output
|
||||||
else:
|
if not do_sample:
|
||||||
expectations = {
|
for g in generations:
|
||||||
"llama": [578, " The"],
|
tokens = g.tokens
|
||||||
"qwen2": [358, " I"],
|
assert tokens.ids[0] == expectations[0]
|
||||||
"granite": [203, "\n"],
|
assert tokens.texts[0] == expectations[1]
|
||||||
}[config_name]
|
|
||||||
for g in generations:
|
|
||||||
tokens = g.tokens
|
|
||||||
assert tokens.ids[0] == expectations[0]
|
|
||||||
assert tokens.texts[0] == expectations[1]
|
|
||||||
|
|
||||||
|
|
||||||
def test_prefill_truncate(neuron_model_config):
|
def test_prefill_truncate(neuron_model_config):
|
||||||
config_name = neuron_model_config["name"]
|
config_name = neuron_model_config["name"]
|
||||||
@ -88,8 +82,8 @@ def test_prefill_truncate(neuron_model_config):
|
|||||||
# be different because of the truncation
|
# be different because of the truncation
|
||||||
expectations = {
|
expectations = {
|
||||||
"llama": [" He", "iens", "\x08", " He"],
|
"llama": [" He", "iens", "\x08", " He"],
|
||||||
"qwen2": [" He", " The", " He", " He"],
|
"qwen2": [" He", "<|endoftext|>", " ", " The"],
|
||||||
"granite": ["\n", "\n", " I", " He"],
|
"granite": ["\n", "\n", "\n", "\n"],
|
||||||
}[config_name]
|
}[config_name]
|
||||||
for i, g in enumerate(generations):
|
for i, g in enumerate(generations):
|
||||||
tokens = g.tokens
|
tokens = g.tokens
|
||||||
|
@ -22,22 +22,22 @@ async def test_model_single_request(tgi_service):
|
|||||||
greedy_expectations = {
|
greedy_expectations = {
|
||||||
"llama": " and how does it work?\nDeep learning is a subset of machine learning that uses artificial",
|
"llama": " and how does it work?\nDeep learning is a subset of machine learning that uses artificial",
|
||||||
"qwen2": " - Deep Learning is a subset of Machine Learning that involves the use of artificial neural networks",
|
"qwen2": " - Deep Learning is a subset of Machine Learning that involves the use of artificial neural networks",
|
||||||
"granite": "\n\nDeep learning is a subset of machine learning techniques based on artificial neural networks",
|
"granite": "\n\nDeep Learning is a subset of machine learning that is inspired by the structure and",
|
||||||
"qwen3": " A Deep Learning is a subset of machine learning that uses neural networks with multiple layers to",
|
"qwen3": " And Why Should You Care?\n\nDeep learning is a subset of machine learning that uses neural",
|
||||||
"phi3": "\n\nDeep learning is a subfield of machine learning that focuses on creating",
|
"phi3": "\n\nDeep learning is a subfield of machine learning that focuses on creating",
|
||||||
}
|
}
|
||||||
assert response.generated_text == greedy_expectations[service_name]
|
assert response.generated_text == greedy_expectations[service_name]
|
||||||
|
|
||||||
# Greedy bounded with input
|
# Greedy bounded with input
|
||||||
response = await tgi_service.client.text_generation(
|
greedy_response = await tgi_service.client.text_generation(
|
||||||
"What is Deep Learning?",
|
"What is Deep Learning?",
|
||||||
max_new_tokens=17,
|
max_new_tokens=17,
|
||||||
return_full_text=True,
|
return_full_text=True,
|
||||||
details=True,
|
details=True,
|
||||||
decoder_input_details=True,
|
decoder_input_details=True,
|
||||||
)
|
)
|
||||||
assert response.details.generated_tokens == 17
|
assert greedy_response.details.generated_tokens == 17
|
||||||
assert response.generated_text == prompt + greedy_expectations[service_name]
|
assert greedy_response.generated_text == prompt + greedy_expectations[service_name]
|
||||||
|
|
||||||
# Sampling
|
# Sampling
|
||||||
response = await tgi_service.client.text_generation(
|
response = await tgi_service.client.text_generation(
|
||||||
@ -52,16 +52,12 @@ async def test_model_single_request(tgi_service):
|
|||||||
# The response must be different
|
# The response must be different
|
||||||
assert not response.startswith(greedy_expectations[service_name])
|
assert not response.startswith(greedy_expectations[service_name])
|
||||||
|
|
||||||
# Sampling with stop sequence (using one of the words returned from the previous test)
|
# Greedy with stop sequence (using one of the words returned from the previous test)
|
||||||
stop_sequence = response.split(" ")[-5]
|
stop_sequence = greedy_response.generated_text.split(" ")[-5]
|
||||||
response = await tgi_service.client.text_generation(
|
response = await tgi_service.client.text_generation(
|
||||||
"What is Deep Learning?",
|
"What is Deep Learning?",
|
||||||
do_sample=True,
|
do_sample=False,
|
||||||
top_k=50,
|
|
||||||
top_p=0.9,
|
|
||||||
repetition_penalty=1.2,
|
|
||||||
max_new_tokens=128,
|
max_new_tokens=128,
|
||||||
seed=42,
|
|
||||||
stop_sequences=[stop_sequence],
|
stop_sequences=[stop_sequence],
|
||||||
)
|
)
|
||||||
assert response.endswith(stop_sequence)
|
assert response.endswith(stop_sequence)
|
||||||
@ -81,8 +77,8 @@ async def test_model_multiple_requests(tgi_service, neuron_generate_load):
|
|||||||
expectations = {
|
expectations = {
|
||||||
"llama": "Deep learning is a subset of machine learning that uses artificial",
|
"llama": "Deep learning is a subset of machine learning that uses artificial",
|
||||||
"qwen2": "Deep Learning is a subset of Machine Learning that involves",
|
"qwen2": "Deep Learning is a subset of Machine Learning that involves",
|
||||||
"granite": "Deep learning is a subset of machine learning techniques",
|
"granite": "Deep Learning is a subset of machine learning that is inspired by the structure and",
|
||||||
"qwen3": "Deep Learning is a subset of machine learning that uses neural networks",
|
"qwen3": " And Why Should You Care?\n\nDeep learning is a subset of machine learning that uses neural",
|
||||||
"phi3": "Deep learning is a subfield of machine learning that focuses on creating",
|
"phi3": "Deep learning is a subfield of machine learning that focuses on creating",
|
||||||
}
|
}
|
||||||
expected = expectations[tgi_service.client.service_name]
|
expected = expectations[tgi_service.client.service_name]
|
||||||
|
Loading…
Reference in New Issue
Block a user