mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-09 19:34:53 +00:00
working model
This commit is contained in:
parent
9541c8f146
commit
622daeb0c8
@ -83,9 +83,7 @@ def get_model(
|
||||
if "bigcode" in model_id:
|
||||
if sharded:
|
||||
if not FLASH_ATTENTION:
|
||||
raise NotImplementedError(
|
||||
"sharded is not supported for Santacoder when FLASH_ATTENTION=0"
|
||||
)
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Santacoder"))
|
||||
return FlashSantacoderSharded(model_id, revision=revision)
|
||||
else:
|
||||
santacoder_cls = FlashSantacoder if FLASH_ATTENTION else SantaCoder
|
||||
|
@ -373,7 +373,7 @@ class LlamaMLP(nn.Module):
|
||||
x,
|
||||
approximate="tanh"
|
||||
if act in ["gelu_fast", "gelu_pytorch_tanh"]
|
||||
else None,
|
||||
else "none",
|
||||
)
|
||||
)
|
||||
|
||||
|
@ -376,7 +376,12 @@ class FlashMLP(nn.Module):
|
||||
self.act = (
|
||||
ACT2FN[act]
|
||||
if "gelu" not in act
|
||||
else lambda x: torch.nn.functional.gelu(x, approximate="tanh")
|
||||
else lambda x: torch.nn.functional.gelu(
|
||||
x,
|
||||
approximate="tanh"
|
||||
if act in ["gelu_fast", "gelu_pytorch_tanh"]
|
||||
else "none",
|
||||
)
|
||||
)
|
||||
|
||||
if process_group is None:
|
||||
|
@ -209,7 +209,7 @@ class FlashMQAttention(torch.nn.Module):
|
||||
self.num_heads = self.num_heads // process_group.size()
|
||||
self.c_attn = FastLinear(hidden_size, self.head_size * (self.num_heads + 2))
|
||||
self.c_proj = TensorParallelRowLinear(
|
||||
hidden_size, hidden_size, process_group=process_group, reduce=True
|
||||
hidden_size, hidden_size, process_group=process_group,
|
||||
)
|
||||
|
||||
def forward(
|
||||
@ -317,7 +317,6 @@ class MLP(nn.Module):
|
||||
intermediate_size,
|
||||
hidden_size,
|
||||
process_group=process_group,
|
||||
reduce=False,
|
||||
)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
|
@ -64,7 +64,7 @@ class FlashSantacoder(FlashCausalLM):
|
||||
dtype,
|
||||
config.architectures[0].startswith("GPT2")
|
||||
)
|
||||
self.model = model.eval().to(device).to(dtype)
|
||||
self.model = model.eval()
|
||||
|
||||
super(FlashCausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
@ -176,38 +176,37 @@ class FlashSantacoderSharded(FlashSantacoder):
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashSantacoder is only available on GPU")
|
||||
raise NotImplementedError("FlashSantacoderSharded is only available on GPU")
|
||||
|
||||
if quantize:
|
||||
raise NotImplementedError("FlashSantacoder does not support quantization")
|
||||
raise NotImplementedError("FlashSantacoderSharded does not support quantization")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left"
|
||||
model_id, revision=revision, padding_side="left", truncation_side="left"
|
||||
)
|
||||
|
||||
config = GPT2Config.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
trust_remote_code=True, # Needed as the config is not part of Transformers
|
||||
)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
with init_empty_weights():
|
||||
# model = FlashSantacoderForCausalLM(config, self.process_group)
|
||||
model = FlashSantacoderForCausalLM(config)
|
||||
model = FlashSantacoderForCausalLM(config, self.process_group)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
self.load_weights(
|
||||
model,
|
||||
filenames,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
transpose=config.architectures[0].startswith("GPT2"),
|
||||
)
|
||||
self.model = model.eval().to(dtype)
|
||||
self.model = model.eval()
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashCausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
@ -219,67 +218,68 @@ class FlashSantacoderSharded(FlashSantacoder):
|
||||
model,
|
||||
filenames: List[str],
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
transpose: bool,
|
||||
):
|
||||
for file in filenames:
|
||||
with safe_open(file, framework="pt", device=str(device)) as f:
|
||||
for name in f.keys():
|
||||
slice_ = f.get_slice(name)
|
||||
for key in f.keys():
|
||||
slice_ = f.get_slice(key)
|
||||
|
||||
layer_name = ".".join(name.split(".")[:4])
|
||||
layer_name = ".".join(key.split(".")[:4])
|
||||
|
||||
# Fused qkv
|
||||
if "q_attn.weight" in name or "kv_attn.weight" in name:
|
||||
final_name = layer_name + ".c_attn.weight"
|
||||
elif "q_attn.bias" in name or "kv_attn.bias" in name:
|
||||
final_name = layer_name + ".c_attn.bias"
|
||||
if "q_attn.weight" in key or "kv_attn.weight" in key:
|
||||
final_key = layer_name + ".c_attn.weight"
|
||||
elif "q_attn.bias" in key or "kv_attn.bias" in key:
|
||||
final_key = layer_name + ".c_attn.bias"
|
||||
else:
|
||||
final_name = name
|
||||
final_key = key
|
||||
|
||||
module_name, param_name = final_name.rsplit(".", 1)
|
||||
module_name, param_name = final_key.rsplit(".", 1)
|
||||
module = model.get_submodule(module_name)
|
||||
|
||||
# if isinstance(module, TensorParallelColumnLinear):
|
||||
# dim = 1 if transpose and "weight" in param_name else 0
|
||||
# size = slice_.get_shape()[dim]
|
||||
# block_size = size // world_size
|
||||
# start = rank * block_size
|
||||
# stop = (rank + 1) * block_size
|
||||
# tensor = slice_[start:stop] if dim == 0 else slice_[:, start:stop]
|
||||
# elif isinstance(module, TensorParallelRowLinear):
|
||||
# if param_name == "weight":
|
||||
# dim = 0 if transpose else 1
|
||||
# size = slice_.get_shape()[dim]
|
||||
# block_size = size // world_size
|
||||
# start = rank * block_size
|
||||
# stop = (rank + 1) * block_size
|
||||
# tensor = slice_[start:stop] if dim == 0 else slice_[:, start:stop]
|
||||
# else:
|
||||
# tensor = slice_[:]
|
||||
# # XXX: Hack for Rowlinear to add the bias only once.
|
||||
# if rank != 0:
|
||||
# tensor = torch.zeros_like(tensor)
|
||||
# elif isinstance(module, TensorParallelEmbedding):
|
||||
# size = slice_.get_shape()[0]
|
||||
# block_size = size // world_size
|
||||
# start = rank * block_size
|
||||
# stop = (rank + 1) * block_size
|
||||
# tensor = slice_[start:stop]
|
||||
# elif name == "lm_head.weight" and model.transformer.tp_embeddings:
|
||||
# size = slice_.get_shape()[0]
|
||||
# block_size = size // world_size
|
||||
# start = rank * block_size
|
||||
# stop = (rank + 1) * block_size
|
||||
# tensor = slice_[start:stop]
|
||||
# else:
|
||||
try:
|
||||
tensor = slice_[:]
|
||||
except:
|
||||
tensor = f.get_tensor(name)
|
||||
if isinstance(module, TensorParallelColumnLinear):
|
||||
dim = 1 if transpose and "weight" in param_name else 0
|
||||
size = slice_.get_shape()[dim]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop] if dim == 0 else slice_[:, start:stop]
|
||||
elif isinstance(module, TensorParallelRowLinear):
|
||||
if param_name == "weight":
|
||||
dim = 0 if transpose else 1
|
||||
size = slice_.get_shape()[dim]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop] if dim == 0 else slice_[:, start:stop]
|
||||
else:
|
||||
tensor = slice_[:]
|
||||
# XXX: Hack for Rowlinear to add the bias only once.
|
||||
if rank != 0:
|
||||
tensor = torch.zeros_like(tensor)
|
||||
elif isinstance(module, TensorParallelEmbedding):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif key == "lm_head.weight" and model.transformer.tp_embeddings:
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
try:
|
||||
tensor = slice_[:]
|
||||
except:
|
||||
tensor = f.get_tensor(key)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
tensor = tensor.contiguous().to(dtype)
|
||||
|
||||
try:
|
||||
current_parameter_tensor = module._parameters[param_name]
|
||||
@ -288,18 +288,18 @@ class FlashSantacoderSharded(FlashSantacoder):
|
||||
|
||||
if current_parameter_tensor is not None:
|
||||
if transpose and (
|
||||
"c_fc.weight" in name
|
||||
or "c_proj.weight" in name
|
||||
or "q_attn.weight" in name
|
||||
or "kv_attn.weight" in name
|
||||
or "c_attn.weight" in name
|
||||
"c_fc.weight" in key
|
||||
or "c_proj.weight" in key
|
||||
or "q_attn.weight" in key
|
||||
or "kv_attn.weight" in key
|
||||
or "c_attn.weight" in key
|
||||
):
|
||||
# Tranpose as we use nn.Linear instead of Conv1D
|
||||
tensor = tensor.T
|
||||
|
||||
if current_parameter_tensor.device == torch.device("meta"):
|
||||
# Init qkv
|
||||
if "c_attn.weight" in final_name:
|
||||
if "c_attn.weight" in final_key:
|
||||
module._parameters[param_name] = tensor.new_empty(
|
||||
(
|
||||
model.transformer.head_size
|
||||
@ -307,7 +307,7 @@ class FlashSantacoderSharded(FlashSantacoder):
|
||||
tensor.shape[1],
|
||||
)
|
||||
)
|
||||
elif "c_attn.bias" in final_name:
|
||||
elif "c_attn.bias" in final_key:
|
||||
module._parameters[param_name] = tensor.new_empty(
|
||||
(
|
||||
model.transformer.head_size
|
||||
@ -316,63 +316,47 @@ class FlashSantacoderSharded(FlashSantacoder):
|
||||
)
|
||||
|
||||
# Copy to correct slice
|
||||
# if "q_attn" in name:
|
||||
# size = tensor.shape[0]
|
||||
# block_size = size // world_size
|
||||
# start = rank * block_size
|
||||
# stop = (rank + 1) * block_size
|
||||
# tensor = tensor[start:stop]
|
||||
# module._parameters[param_name][: tensor.shape[0]] = tensor
|
||||
# elif "kv_attn.weight" in name:
|
||||
# module._parameters[param_name][
|
||||
# model.transformer.head_size
|
||||
# * model.transformer.num_heads :
|
||||
# ] = tensor
|
||||
# elif "kv_attn.bias" in name:
|
||||
# module._parameters[param_name][
|
||||
# model.transformer.head_size
|
||||
# * model.transformer.num_heads :
|
||||
# ] = tensor
|
||||
# elif "c_attn" in name:
|
||||
# q_tensor = tensor[: -2 * model.transformer.head_size]
|
||||
# kv_tensor = tensor[-2 * model.transformer.head_size :]
|
||||
# from loguru import logger
|
||||
#
|
||||
# block_size = q_tensor.shape[0] // world_size
|
||||
# start = rank * block_size
|
||||
# stop = (rank + 1) * block_size
|
||||
# q_tensor = q_tensor[start:stop]
|
||||
# logger.error(q_tensor.shape)
|
||||
# logger.error(kv_tensor.shape)
|
||||
# module._parameters[param_name][
|
||||
# : q_tensor.shape[0]
|
||||
# ] = q_tensor
|
||||
# module._parameters[param_name][
|
||||
# q_tensor.shape[0] :
|
||||
# ] = kv_tensor
|
||||
from loguru import logger
|
||||
if "q_attn.weight" in name:
|
||||
logger.error(f"q - {module._parameters[param_name][: tensor.shape[0]].shape} - {tensor.shape}")
|
||||
if "q_attn" in key:
|
||||
size = tensor.shape[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = tensor[start:stop]
|
||||
module._parameters[param_name][: tensor.shape[0]] = tensor
|
||||
elif "q_attn.bias" in name:
|
||||
module._parameters[param_name][: tensor.shape[0]] = tensor
|
||||
elif "kv_attn.weight" in name:
|
||||
logger.error(f"kv - {module._parameters[param_name][model.transformer.head_size * model.transformer.num_heads:].shape} - {tensor.shape}")
|
||||
elif "kv_attn.weight" in key:
|
||||
module._parameters[param_name][
|
||||
model.transformer.head_size * model.transformer.num_heads:
|
||||
model.transformer.head_size
|
||||
* model.transformer.num_heads :
|
||||
] = tensor
|
||||
elif "kv_attn.bias" in name:
|
||||
elif "kv_attn.bias" in key:
|
||||
module._parameters[param_name][
|
||||
model.transformer.head_size * model.transformer.num_heads:
|
||||
model.transformer.head_size
|
||||
* model.transformer.num_heads :
|
||||
] = tensor
|
||||
elif "c_attn" in key:
|
||||
# Slice q_tensor by shard
|
||||
q_tensor = tensor[: -2 * model.transformer.head_size]
|
||||
block_size = q_tensor.shape[0] // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
q_tensor = q_tensor[start:stop]
|
||||
|
||||
module._parameters[param_name][
|
||||
: q_tensor.shape[0]
|
||||
] = q_tensor
|
||||
|
||||
# Kv tensor is copied for every shard
|
||||
kv_tensor = tensor[-2 * model.transformer.head_size :]
|
||||
module._parameters[param_name][
|
||||
q_tensor.shape[0] :
|
||||
] = kv_tensor
|
||||
else:
|
||||
if current_parameter_tensor.shape != tensor.shape:
|
||||
raise ValueError(
|
||||
f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
|
||||
f"Name {key} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
module._parameters[param_name] = tensor
|
||||
|
||||
else:
|
||||
module._buffers[param_name] = tensor
|
||||
torch.cuda.empty_cache()
|
||||
|
Loading…
Reference in New Issue
Block a user