This commit is contained in:
OlivierDehaene 2023-04-06 16:13:32 +02:00
parent 2378529c15
commit 9541c8f146
3 changed files with 119 additions and 83 deletions

View File

@ -18,7 +18,6 @@ from text_generation_server.models.t5 import T5Sharded
try:
from text_generation_server.models.flash_neox import FlashNeoX, FlashNeoXSharded
from text_generation_server.models.flash_santacoder import FlashSantacoder
from text_generation_server.models.flash_llama import FlashLlama, FlashLlamaSharded
from text_generation_server.models.flash_santacoder import FlashSantacoder, FlashSantacoderSharded
@ -84,7 +83,9 @@ def get_model(
if "bigcode" in model_id:
if sharded:
if not FLASH_ATTENTION:
raise NotImplementedError("sharded is not supported for Santacoder when FLASH_ATTENTION=0")
raise NotImplementedError(
"sharded is not supported for Santacoder when FLASH_ATTENTION=0"
)
return FlashSantacoderSharded(model_id, revision=revision)
else:
santacoder_cls = FlashSantacoder if FLASH_ATTENTION else SantaCoder

View File

@ -69,13 +69,13 @@ class FastLinear(nn.Linear):
class TensorParallelColumnLinear(FastLinear):
def __init__(
self,
in_features,
out_features,
process_group: torch.distributed.ProcessGroup,
bias=True,
device=None,
dtype=None,
self,
in_features,
out_features,
process_group: torch.distributed.ProcessGroup,
bias=True,
device=None,
dtype=None,
):
self.process_group = process_group
self.tp_world_size = process_group.size()
@ -93,14 +93,14 @@ class TensorParallelColumnLinear(FastLinear):
class TensorParallelRowLinear(FastLinear):
def __init__(
self,
in_features,
out_features,
process_group: torch.distributed.ProcessGroup,
reduce=True,
bias=True,
device=None,
dtype=None,
self,
in_features,
out_features,
process_group: torch.distributed.ProcessGroup,
reduce=True,
bias=True,
device=None,
dtype=None,
):
self.process_group = process_group
self.tp_world_size = process_group.size()
@ -126,19 +126,19 @@ class TensorParallelRowLinear(FastLinear):
class TensorParallelEmbedding(nn.Embedding):
def __init__(
self,
num_embeddings,
embedding_dim,
process_group: torch.distributed.ProcessGroup,
reduce=True,
padding_idx=None,
max_norm=None,
norm_type=2.0,
scale_grad_by_freq=False,
sparse=False,
_weight=None,
device=None,
dtype=None,
self,
num_embeddings,
embedding_dim,
process_group: torch.distributed.ProcessGroup,
reduce=True,
padding_idx=None,
max_norm=None,
norm_type=2.0,
scale_grad_by_freq=False,
sparse=False,
_weight=None,
device=None,
dtype=None,
):
self.process_group = process_group
self.tp_rank = process_group.rank()
@ -207,11 +207,7 @@ class FlashMQAttention(torch.nn.Module):
self.c_proj = FastLinear(hidden_size, hidden_size)
else:
self.num_heads = self.num_heads // process_group.size()
self.hidden_size = self.hidden_size // process_group.size()
self.c_attn = FastLinear(
hidden_size,
self.head_size * (self.num_heads + 2)
)
self.c_attn = FastLinear(hidden_size, self.head_size * (self.num_heads + 2))
self.c_proj = TensorParallelRowLinear(
hidden_size, hidden_size, process_group=process_group, reduce=True
)
@ -228,7 +224,9 @@ class FlashMQAttention(torch.nn.Module):
qkv = self.c_attn(hidden_states)
# Split query from key_value
query, key_value = qkv.split([self.head_size * self.num_heads, 2 * self.head_size], dim=1)
query, key_value = qkv.split(
[self.head_size * self.num_heads, 2 * self.head_size], dim=1
)
# Prepare query and key_value for indexing
query = query.view(-1, self.num_heads, self.head_size)
@ -302,7 +300,7 @@ class MLP(nn.Module):
x,
approximate="tanh"
if act in ["gelu_fast", "gelu_pytorch_tanh"]
else None,
else "none",
)
)
@ -399,11 +397,13 @@ class FlashSantacoderModel(nn.Module):
self.wte = TensorParallelEmbedding(
config.vocab_size,
config.hidden_size,
reduce=False,
process_group=process_group,
)
self.wpe = TensorParallelEmbedding(
config.max_position_embeddings,
config.hidden_size,
reduce=False,
process_group=process_group,
)
else:

View File

@ -195,7 +195,8 @@ class FlashSantacoderSharded(FlashSantacoder):
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
with init_empty_weights():
model = FlashSantacoderForCausalLM(config, self.process_group)
# model = FlashSantacoderForCausalLM(config, self.process_group)
model = FlashSantacoderForCausalLM(config)
torch.distributed.barrier(group=self.process_group)
self.load_weights(
@ -204,7 +205,7 @@ class FlashSantacoderSharded(FlashSantacoder):
device=device,
rank=self.rank,
world_size=self.world_size,
transpose=config.architectures[0].startswith("GPT2")
transpose=config.architectures[0].startswith("GPT2"),
)
self.model = model.eval().to(dtype)
torch.distributed.barrier(group=self.process_group)
@ -220,7 +221,7 @@ class FlashSantacoderSharded(FlashSantacoder):
device: torch.device,
rank: int,
world_size: int,
transpose: bool
transpose: bool,
):
for file in filenames:
with safe_open(file, framework="pt", device=str(device)) as f:
@ -240,44 +241,43 @@ class FlashSantacoderSharded(FlashSantacoder):
module_name, param_name = final_name.rsplit(".", 1)
module = model.get_submodule(module_name)
if isinstance(module, TensorParallelColumnLinear):
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
elif isinstance(module, TensorParallelRowLinear):
if param_name == "weight":
size = slice_.get_shape()[1]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[:, start:stop]
else:
tensor = slice_[:]
# XXX: Hack for Rowlinear to add the bias only once.
if rank != 0:
tensor = torch.zeros_like(tensor)
elif isinstance(module, TensorParallelEmbedding):
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
elif "c_attn" in name:
size = slice_.get_shape()[0]
raise ValueError
elif name == "lm_head.weight" and model.transformer.tp_embeddings:
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
else:
try:
tensor = slice_[:]
except:
tensor = f.get_tensor(name)
# if isinstance(module, TensorParallelColumnLinear):
# dim = 1 if transpose and "weight" in param_name else 0
# size = slice_.get_shape()[dim]
# block_size = size // world_size
# start = rank * block_size
# stop = (rank + 1) * block_size
# tensor = slice_[start:stop] if dim == 0 else slice_[:, start:stop]
# elif isinstance(module, TensorParallelRowLinear):
# if param_name == "weight":
# dim = 0 if transpose else 1
# size = slice_.get_shape()[dim]
# block_size = size // world_size
# start = rank * block_size
# stop = (rank + 1) * block_size
# tensor = slice_[start:stop] if dim == 0 else slice_[:, start:stop]
# else:
# tensor = slice_[:]
# # XXX: Hack for Rowlinear to add the bias only once.
# if rank != 0:
# tensor = torch.zeros_like(tensor)
# elif isinstance(module, TensorParallelEmbedding):
# size = slice_.get_shape()[0]
# block_size = size // world_size
# start = rank * block_size
# stop = (rank + 1) * block_size
# tensor = slice_[start:stop]
# elif name == "lm_head.weight" and model.transformer.tp_embeddings:
# size = slice_.get_shape()[0]
# block_size = size // world_size
# start = rank * block_size
# stop = (rank + 1) * block_size
# tensor = slice_[start:stop]
# else:
try:
tensor = slice_[:]
except:
tensor = f.get_tensor(name)
tensor = tensor.contiguous()
@ -295,7 +295,7 @@ class FlashSantacoderSharded(FlashSantacoder):
or "c_attn.weight" in name
):
# Tranpose as we use nn.Linear instead of Conv1D
value = value.T
tensor = tensor.T
if current_parameter_tensor.device == torch.device("meta"):
# Init qkv
@ -316,19 +316,54 @@ class FlashSantacoderSharded(FlashSantacoder):
)
# Copy to correct slice
# if "q_attn" in name:
# size = tensor.shape[0]
# block_size = size // world_size
# start = rank * block_size
# stop = (rank + 1) * block_size
# tensor = tensor[start:stop]
# module._parameters[param_name][: tensor.shape[0]] = tensor
# elif "kv_attn.weight" in name:
# module._parameters[param_name][
# model.transformer.head_size
# * model.transformer.num_heads :
# ] = tensor
# elif "kv_attn.bias" in name:
# module._parameters[param_name][
# model.transformer.head_size
# * model.transformer.num_heads :
# ] = tensor
# elif "c_attn" in name:
# q_tensor = tensor[: -2 * model.transformer.head_size]
# kv_tensor = tensor[-2 * model.transformer.head_size :]
# from loguru import logger
#
# block_size = q_tensor.shape[0] // world_size
# start = rank * block_size
# stop = (rank + 1) * block_size
# q_tensor = q_tensor[start:stop]
# logger.error(q_tensor.shape)
# logger.error(kv_tensor.shape)
# module._parameters[param_name][
# : q_tensor.shape[0]
# ] = q_tensor
# module._parameters[param_name][
# q_tensor.shape[0] :
# ] = kv_tensor
from loguru import logger
if "q_attn.weight" in name:
logger.error(f"q - {module._parameters[param_name][: tensor.shape[0]].shape} - {tensor.shape}")
module._parameters[param_name][: tensor.shape[0]] = tensor
elif "q_attn.bias" in name:
module._parameters[param_name][: tensor.shape[0]] = tensor
elif "kv_attn.weight" in name:
logger.error(f"kv - {module._parameters[param_name][model.transformer.head_size * model.transformer.num_heads:].shape} - {tensor.shape}")
module._parameters[param_name][
model.transformer.head_size
* model.transformer.num_heads :
model.transformer.head_size * model.transformer.num_heads:
] = tensor
elif "kv_attn.bias" in name:
module._parameters[param_name][
model.transformer.head_size
* model.transformer.num_heads :
model.transformer.head_size * model.transformer.num_heads:
] = tensor
else:
if current_parameter_tensor.shape != tensor.shape: