mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-11 04:14:52 +00:00
rename
This commit is contained in:
parent
f4eec092c6
commit
5da4b01cc5
@ -52,8 +52,8 @@ try:
|
||||
from text_generation_server.models.flash_llama import (
|
||||
FlashLlama,
|
||||
)
|
||||
from text_generation_server.models.flash_golden_gate import (
|
||||
FlashGoldenGate,
|
||||
from text_generation_server.models.flash_gemma import (
|
||||
FlashGemma,
|
||||
)
|
||||
from text_generation_server.models.flash_santacoder import (
|
||||
FlashSantacoderSharded,
|
||||
@ -315,9 +315,9 @@ def get_model(
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
if model_type == "golden_gate":
|
||||
if model_type == "gemma":
|
||||
if FLASH_ATTENTION:
|
||||
return FlashGoldenGate(
|
||||
return FlashGemma(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
@ -326,7 +326,9 @@ def get_model(
|
||||
use_medusa=use_medusa,
|
||||
)
|
||||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Golden Gate"))
|
||||
raise NotImplementedError(
|
||||
FLASH_ATT_ERROR_MESSAGE.format("Sharded Golden Gate")
|
||||
)
|
||||
else:
|
||||
return CausalLM(
|
||||
model_id,
|
||||
|
@ -20,11 +20,16 @@
|
||||
|
||||
import torch
|
||||
import torch.distributed
|
||||
import os
|
||||
from shutil import copyfile
|
||||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from typing import Optional, List, Tuple
|
||||
from tokenizers import processors
|
||||
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
||||
from transformers.utils import logging
|
||||
|
||||
from text_generation_server.utils import paged_attention, flash_attn
|
||||
from text_generation_server.utils.layers import (
|
||||
@ -37,8 +42,168 @@ from text_generation_server.utils.layers import (
|
||||
FastRMSNorm,
|
||||
)
|
||||
|
||||
GemmaTokenizer = None
|
||||
|
||||
class GoldenGateConfig(PretrainedConfig):
|
||||
logger = logging.get_logger(__name__)
|
||||
VOCAB_FILES_NAMES = {
|
||||
"vocab_file": "tokenizer.model",
|
||||
"tokenizer_file": "tokenizer.json",
|
||||
}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {
|
||||
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model",
|
||||
},
|
||||
"tokenizer_file": {
|
||||
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json",
|
||||
},
|
||||
}
|
||||
B_INST, E_INST = "[INST]", "[/INST]"
|
||||
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
||||
|
||||
# fmt: off
|
||||
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
|
||||
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
|
||||
that your responses are socially unbiased and positive in nature.
|
||||
|
||||
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
|
||||
correct. If you don't know the answer to a question, please don't share false information."""
|
||||
|
||||
|
||||
# fmt: on
|
||||
|
||||
|
||||
class GemmaTokenizerFast(PreTrainedTokenizerFast):
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
slow_tokenizer_class = GemmaTokenizer
|
||||
padding_side = "left"
|
||||
model_input_names = ["input_ids", "attention_mask"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file=None,
|
||||
tokenizer_file=None,
|
||||
clean_up_tokenization_spaces=False,
|
||||
unk_token="<unk>",
|
||||
bos_token="<bos>",
|
||||
eos_token="<eos>",
|
||||
pad_token="<pad>",
|
||||
add_bos_token=True,
|
||||
add_eos_token=False,
|
||||
use_default_system_prompt=False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
vocab_file=vocab_file,
|
||||
tokenizer_file=tokenizer_file,
|
||||
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||||
unk_token=unk_token,
|
||||
bos_token=bos_token,
|
||||
eos_token=eos_token,
|
||||
pad_token=pad_token,
|
||||
add_bos_token=add_bos_token,
|
||||
add_eos_token=add_eos_token,
|
||||
use_default_system_prompt=use_default_system_prompt,
|
||||
**kwargs,
|
||||
)
|
||||
self._add_bos_token = add_bos_token
|
||||
self._add_eos_token = add_eos_token
|
||||
self.update_post_processor()
|
||||
self.use_default_system_prompt = use_default_system_prompt
|
||||
self.vocab_file = vocab_file
|
||||
|
||||
@property
|
||||
def can_save_slow_tokenizer(self) -> bool:
|
||||
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
||||
|
||||
def update_post_processor(self):
|
||||
"""
|
||||
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
||||
"""
|
||||
bos = self.bos_token
|
||||
bos_token_id = self.bos_token_id
|
||||
if bos is None and self.add_bos_token:
|
||||
raise ValueError("add_bos_token = True but bos_token = None")
|
||||
|
||||
eos = self.eos_token
|
||||
eos_token_id = self.eos_token_id
|
||||
if eos is None and self.add_eos_token:
|
||||
raise ValueError("add_eos_token = True but eos_token = None")
|
||||
|
||||
single = f"{(bos + ':0 ') if self.add_bos_token else ''}$A:0{(' ' + eos + ':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' ' + bos + ':1') if self.add_bos_token else ''} $B:1{(' ' + eos + ':1') if self.add_eos_token else ''}"
|
||||
|
||||
special_tokens = []
|
||||
if self.add_bos_token:
|
||||
special_tokens.append((bos, bos_token_id))
|
||||
if self.add_eos_token:
|
||||
special_tokens.append((eos, eos_token_id))
|
||||
self._tokenizer.post_processor = processors.TemplateProcessing(
|
||||
single=single, pair=pair, special_tokens=special_tokens
|
||||
)
|
||||
|
||||
@property
|
||||
def add_eos_token(self):
|
||||
return self._add_eos_token
|
||||
|
||||
@property
|
||||
def add_bos_token(self):
|
||||
return self._add_bos_token
|
||||
|
||||
@add_eos_token.setter
|
||||
def add_eos_token(self, value):
|
||||
self._add_eos_token = value
|
||||
self.update_post_processor()
|
||||
|
||||
@add_bos_token.setter
|
||||
def add_bos_token(self, value):
|
||||
self._add_bos_token = value
|
||||
self.update_post_processor()
|
||||
|
||||
def save_vocabulary(
|
||||
self, save_directory: str, filename_prefix: Optional[str] = None
|
||||
) -> Tuple[str]:
|
||||
if not self.can_save_slow_tokenizer:
|
||||
raise ValueError(
|
||||
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
||||
"tokenizer."
|
||||
)
|
||||
|
||||
if not os.path.isdir(save_directory):
|
||||
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||||
return
|
||||
out_vocab_file = os.path.join(
|
||||
save_directory,
|
||||
(filename_prefix + "-" if filename_prefix else "")
|
||||
+ VOCAB_FILES_NAMES["vocab_file"],
|
||||
)
|
||||
|
||||
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
|
||||
return (out_vocab_file,)
|
||||
|
||||
@property
|
||||
# Copied from transformers.models.llama.tokenization_llama.GemmaTokenizer.default_chat_template
|
||||
def default_chat_template(self):
|
||||
raise NotImplementedError
|
||||
|
||||
# TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers
|
||||
# Copied from transformers.models.llama.tokenization_llama.GemmaTokenizer.build_inputs_with_special_tokens
|
||||
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
||||
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
||||
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
||||
|
||||
output = bos_token_id + token_ids_0 + eos_token_id
|
||||
|
||||
if token_ids_1 is not None:
|
||||
output = output + bos_token_id + token_ids_1 + eos_token_id
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class GemmaConfig(PretrainedConfig):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=256128,
|
||||
@ -93,7 +258,8 @@ class GoldenGateConfig(PretrainedConfig):
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
class GoldenGateFastRMSNorm(FastRMSNorm):
|
||||
|
||||
class GemmaFastRMSNorm(FastRMSNorm):
|
||||
@classmethod
|
||||
def load(cls, prefix, weights, eps=1e-6):
|
||||
weight = weights.get_tensor(f"{prefix}.weight") + 1
|
||||
@ -138,7 +304,7 @@ def _load_gqa(config, prefix: str, weights):
|
||||
)
|
||||
|
||||
|
||||
class FlashGoldenGateAttention(torch.nn.Module):
|
||||
class FlashGemmaAttention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
prefix: str,
|
||||
@ -242,7 +408,7 @@ class FlashGoldenGateAttention(torch.nn.Module):
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
||||
|
||||
class GoldenGateMLP(nn.Module):
|
||||
class GemmaMLP(nn.Module):
|
||||
def __init__(self, prefix, config, weights):
|
||||
super().__init__()
|
||||
act = config.hidden_act
|
||||
@ -251,9 +417,9 @@ class GoldenGateMLP(nn.Module):
|
||||
if "gelu" not in act
|
||||
else lambda x: torch.nn.functional.gelu(
|
||||
x,
|
||||
approximate="tanh"
|
||||
if act in ["gelu_fast", "gelu_pytorch_tanh"]
|
||||
else "none",
|
||||
approximate=(
|
||||
"tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none"
|
||||
),
|
||||
)
|
||||
)
|
||||
# Fuse gate and up proj
|
||||
@ -280,19 +446,19 @@ class GoldenGateMLP(nn.Module):
|
||||
return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1])
|
||||
|
||||
|
||||
class FlashGoldenGateLayer(nn.Module):
|
||||
class FlashGemmaLayer(nn.Module):
|
||||
def __init__(self, layer_id, config, weights):
|
||||
super().__init__()
|
||||
prefix = f"model.layers.{layer_id}"
|
||||
self.self_attn = FlashGoldenGateAttention(
|
||||
self.self_attn = FlashGemmaAttention(
|
||||
prefix=f"{prefix}.self_attn", config=config, weights=weights
|
||||
)
|
||||
self.mlp = GoldenGateMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
|
||||
self.mlp = GemmaMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
|
||||
|
||||
self.input_layernorm = GoldenGateFastRMSNorm.load(
|
||||
self.input_layernorm = GemmaFastRMSNorm.load(
|
||||
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
self.post_attention_layernorm = GoldenGateFastRMSNorm.load(
|
||||
self.post_attention_layernorm = GemmaFastRMSNorm.load(
|
||||
prefix=f"{prefix}.post_attention_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
@ -336,14 +502,14 @@ class FlashGoldenGateLayer(nn.Module):
|
||||
return mlp_output, attn_res
|
||||
|
||||
|
||||
class FlashGoldenGateModel(torch.nn.Module):
|
||||
class FlashGemmaModel(torch.nn.Module):
|
||||
def __init__(self, config, weights):
|
||||
super().__init__()
|
||||
|
||||
process_group = weights.process_group
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
embed_norm = config.hidden_size ** 0.5
|
||||
embed_norm = config.hidden_size**0.5
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix="model.embed_tokens", weights=weights
|
||||
)
|
||||
@ -351,7 +517,7 @@ class FlashGoldenGateModel(torch.nn.Module):
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
FlashGoldenGateLayer(
|
||||
FlashGemmaLayer(
|
||||
layer_id,
|
||||
config,
|
||||
weights,
|
||||
@ -359,7 +525,7 @@ class FlashGoldenGateModel(torch.nn.Module):
|
||||
for layer_id in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.norm = GoldenGateFastRMSNorm.load(
|
||||
self.norm = GemmaFastRMSNorm.load(
|
||||
prefix="model.norm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
@ -408,11 +574,11 @@ class FlashGoldenGateModel(torch.nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FlashGoldenGateForCausalLM(torch.nn.Module):
|
||||
class FlashGemmaForCausalLM(torch.nn.Module):
|
||||
def __init__(self, config, weights):
|
||||
super().__init__()
|
||||
|
||||
self.model = FlashGoldenGateModel(config, weights)
|
||||
self.model = FlashGemmaModel(config, weights)
|
||||
self.lm_head = TensorParallelHead.load(
|
||||
config,
|
||||
prefix="model.embed_tokens" if config.tie_word_embeddings else "lm_head",
|
@ -1,216 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2020 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from tokenizers import processors
|
||||
|
||||
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
||||
from transformers.utils import logging
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
require_version("tokenizers>=0.13.3")
|
||||
|
||||
GoldenGateTokenizer = None
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {
|
||||
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model",
|
||||
},
|
||||
"tokenizer_file": {
|
||||
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json",
|
||||
},
|
||||
}
|
||||
B_INST, E_INST = "[INST]", "[/INST]"
|
||||
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
||||
|
||||
# fmt: off
|
||||
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
|
||||
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
|
||||
that your responses are socially unbiased and positive in nature.
|
||||
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
|
||||
correct. If you don't know the answer to a question, please don't share false information."""
|
||||
# fmt: on
|
||||
|
||||
|
||||
class GoldenGateTokenizerFast(PreTrainedTokenizerFast):
|
||||
"""
|
||||
Construct a GoldenGate tokenizer. Based on byte-level Byte-Pair-Encoding.
|
||||
This uses notably ByteFallback and no normalization.
|
||||
```python
|
||||
>>> from transformers import GoldenGateTokenizerFast
|
||||
>>> tokenizer = GoldenGateTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
|
||||
>>> tokenizer.encode("Hello this is a test")
|
||||
[1, 15043, 445, 338, 263, 1243]
|
||||
```
|
||||
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
|
||||
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
|
||||
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
|
||||
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
|
||||
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
||||
refer to this superclass for more information regarding those methods.
|
||||
Args:
|
||||
vocab_file (`str`, *optional*):
|
||||
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
|
||||
contains the vocabulary necessary to instantiate a tokenizer.
|
||||
tokenizer_file (`str`, *optional*):
|
||||
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
|
||||
contains everything needed to load the tokenizer.
|
||||
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
||||
extra spaces.
|
||||
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
|
||||
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||||
token instead.
|
||||
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
|
||||
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
||||
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
|
||||
The end of sequence token.
|
||||
add_bos_token (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to add an `bos_token` at the start of sequences.
|
||||
add_eos_token (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to add an `eos_token` at the end of sequences.
|
||||
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not the default system prompt for GoldenGate should be used.
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
slow_tokenizer_class = GoldenGateTokenizer
|
||||
padding_side = "left"
|
||||
model_input_names = ["input_ids", "attention_mask"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file=None,
|
||||
tokenizer_file=None,
|
||||
clean_up_tokenization_spaces=False,
|
||||
unk_token="<unk>",
|
||||
bos_token="<bos>",
|
||||
eos_token="<eos>",
|
||||
pad_token="<pad>",
|
||||
add_bos_token=True,
|
||||
add_eos_token=False,
|
||||
use_default_system_prompt=False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
vocab_file=vocab_file,
|
||||
tokenizer_file=tokenizer_file,
|
||||
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||||
unk_token=unk_token,
|
||||
bos_token=bos_token,
|
||||
eos_token=eos_token,
|
||||
pad_token=pad_token,
|
||||
add_bos_token=add_bos_token,
|
||||
add_eos_token=add_eos_token,
|
||||
use_default_system_prompt=use_default_system_prompt,
|
||||
**kwargs,
|
||||
)
|
||||
self._add_bos_token = add_bos_token
|
||||
self._add_eos_token = add_eos_token
|
||||
self.update_post_processor()
|
||||
self.use_default_system_prompt = use_default_system_prompt
|
||||
self.vocab_file = vocab_file
|
||||
|
||||
@property
|
||||
def can_save_slow_tokenizer(self) -> bool:
|
||||
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
||||
|
||||
def update_post_processor(self):
|
||||
"""
|
||||
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
||||
"""
|
||||
bos = self.bos_token
|
||||
bos_token_id = self.bos_token_id
|
||||
if bos is None and self.add_bos_token:
|
||||
raise ValueError("add_bos_token = True but bos_token = None")
|
||||
|
||||
eos = self.eos_token
|
||||
eos_token_id = self.eos_token_id
|
||||
if eos is None and self.add_eos_token:
|
||||
raise ValueError("add_eos_token = True but eos_token = None")
|
||||
|
||||
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
||||
|
||||
special_tokens = []
|
||||
if self.add_bos_token:
|
||||
special_tokens.append((bos, bos_token_id))
|
||||
if self.add_eos_token:
|
||||
special_tokens.append((eos, eos_token_id))
|
||||
self._tokenizer.post_processor = processors.TemplateProcessing(
|
||||
single=single, pair=pair, special_tokens=special_tokens
|
||||
)
|
||||
|
||||
@property
|
||||
def add_eos_token(self):
|
||||
return self._add_eos_token
|
||||
|
||||
@property
|
||||
def add_bos_token(self):
|
||||
return self._add_bos_token
|
||||
|
||||
@add_eos_token.setter
|
||||
def add_eos_token(self, value):
|
||||
self._add_eos_token = value
|
||||
self.update_post_processor()
|
||||
|
||||
@add_bos_token.setter
|
||||
def add_bos_token(self, value):
|
||||
self._add_bos_token = value
|
||||
self.update_post_processor()
|
||||
|
||||
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||||
if not self.can_save_slow_tokenizer:
|
||||
raise ValueError(
|
||||
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
||||
"tokenizer."
|
||||
)
|
||||
|
||||
if not os.path.isdir(save_directory):
|
||||
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||||
return
|
||||
out_vocab_file = os.path.join(
|
||||
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||||
)
|
||||
|
||||
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
|
||||
return (out_vocab_file,)
|
||||
|
||||
@property
|
||||
# Copied from transformers.models.llama.tokenization_llama.GoldenGateTokenizer.default_chat_template
|
||||
def default_chat_template(self):
|
||||
raise NotImplementedError
|
||||
|
||||
# TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers
|
||||
# Copied from transformers.models.llama.tokenization_llama.GoldenGateTokenizer.build_inputs_with_special_tokens
|
||||
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
||||
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
||||
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
||||
|
||||
output = bos_token_id + token_ids_0 + eos_token_id
|
||||
|
||||
if token_ids_1 is not None:
|
||||
output = output + bos_token_id + token_ids_1 + eos_token_id
|
||||
|
||||
return output
|
@ -3,12 +3,12 @@ import torch.distributed
|
||||
|
||||
from opentelemetry import trace
|
||||
from typing import Optional
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from text_generation_server.models import FlashCausalLM
|
||||
from text_generation_server.models.custom_modeling.flash_golden_gate_modeling import (
|
||||
FlashGoldenGateForCausalLM,
|
||||
GoldenGateConfig,
|
||||
from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
|
||||
GemmaTokenizerFast,
|
||||
FlashGemmaForCausalLM,
|
||||
GemmaConfig,
|
||||
)
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
@ -19,7 +19,7 @@ from text_generation_server.utils import (
|
||||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
|
||||
class FlashGoldenGate(FlashCausalLM):
|
||||
class FlashGemma(FlashCausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
@ -32,12 +32,11 @@ class FlashGoldenGate(FlashCausalLM):
|
||||
self.process_group, rank, world_size = initialize_torch_distributed()
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
dtype = torch.float16 if dtype is None else dtype
|
||||
dtype = torch.bfloat16 if dtype is None else dtype
|
||||
else:
|
||||
raise NotImplementedError("FlashGoldenGate is only available on GPU")
|
||||
raise NotImplementedError("FlashGemma is only available on GPU")
|
||||
|
||||
from text_generation_server.models.custom_modeling.temp_tok import GoldenGateTokenizerFast
|
||||
tokenizer = GoldenGateTokenizerFast.from_pretrained(
|
||||
tokenizer = GemmaTokenizerFast.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
padding_side="left",
|
||||
@ -47,7 +46,7 @@ class FlashGoldenGate(FlashCausalLM):
|
||||
from_slow=False,
|
||||
)
|
||||
|
||||
config = GoldenGateConfig.from_pretrained(
|
||||
config = GemmaConfig.from_pretrained(
|
||||
model_id, revision=revision, trust_remote_code=trust_remote_code
|
||||
)
|
||||
config.quantize = quantize
|
||||
@ -59,18 +58,18 @@ class FlashGoldenGate(FlashCausalLM):
|
||||
if config.quantize in ["gptq", "awq"]:
|
||||
weights._set_gptq_params(model_id, revision)
|
||||
|
||||
model = FlashGoldenGateForCausalLM(config, weights)
|
||||
model = FlashGemmaForCausalLM(config, weights)
|
||||
if use_medusa:
|
||||
from text_generation_server.utils.medusa import MedusaModel
|
||||
from huggingface_hub import hf_hub_download
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
is_local_model = (Path(use_medusa).exists() and Path(use_medusa).is_dir()) or os.getenv(
|
||||
"WEIGHTS_CACHE_OVERRIDE", None
|
||||
) is not None
|
||||
|
||||
|
||||
is_local_model = (
|
||||
Path(use_medusa).exists() and Path(use_medusa).is_dir()
|
||||
) or os.getenv("WEIGHTS_CACHE_OVERRIDE", None) is not None
|
||||
|
||||
if not is_local_model:
|
||||
medusa_config = hf_hub_download(
|
||||
use_medusa, revision=revision, filename="config.json"
|
||||
@ -81,7 +80,7 @@ class FlashGoldenGate(FlashCausalLM):
|
||||
else:
|
||||
medusa_config = str(Path(use_medusa) / "config.json")
|
||||
medusa_head = str(Path(use_medusa) / "medusa_lm_head.pt")
|
||||
|
||||
|
||||
with open(medusa_config, "r") as f:
|
||||
config = json.load(f)
|
||||
medusa_sf = medusa_head[: -len(".pt")] + ".safetensors"
|
||||
@ -92,7 +91,7 @@ class FlashGoldenGate(FlashCausalLM):
|
||||
model.lm_head = MedusaModel(config, weights, lm_head)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashGoldenGate, self).__init__(
|
||||
super(FlashGemma, self).__init__(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
num_layers=len(model.model.layers),
|
Loading…
Reference in New Issue
Block a user