From 5da4b01cc5525f1fd671d156968412f832fe0a67 Mon Sep 17 00:00:00 2001
From: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
Date: Tue, 20 Feb 2024 15:43:44 +0100
Subject: [PATCH] rename
---
.../text_generation_server/models/__init__.py | 12 +-
...te_modeling.py => flash_gemma_modeling.py} | 202 ++++++++++++++--
.../models/custom_modeling/temp_tok.py | 216 ------------------
.../{flash_golden_gate.py => flash_gemma.py} | 35 ++-
4 files changed, 208 insertions(+), 257 deletions(-)
rename server/text_generation_server/models/custom_modeling/{flash_golden_gate_modeling.py => flash_gemma_modeling.py} (65%)
delete mode 100644 server/text_generation_server/models/custom_modeling/temp_tok.py
rename server/text_generation_server/models/{flash_golden_gate.py => flash_gemma.py} (76%)
diff --git a/server/text_generation_server/models/__init__.py b/server/text_generation_server/models/__init__.py
index b1994314..abab3486 100644
--- a/server/text_generation_server/models/__init__.py
+++ b/server/text_generation_server/models/__init__.py
@@ -52,8 +52,8 @@ try:
from text_generation_server.models.flash_llama import (
FlashLlama,
)
- from text_generation_server.models.flash_golden_gate import (
- FlashGoldenGate,
+ from text_generation_server.models.flash_gemma import (
+ FlashGemma,
)
from text_generation_server.models.flash_santacoder import (
FlashSantacoderSharded,
@@ -315,9 +315,9 @@ def get_model(
dtype=dtype,
trust_remote_code=trust_remote_code,
)
- if model_type == "golden_gate":
+ if model_type == "gemma":
if FLASH_ATTENTION:
- return FlashGoldenGate(
+ return FlashGemma(
model_id,
revision,
quantize=quantize,
@@ -326,7 +326,9 @@ def get_model(
use_medusa=use_medusa,
)
elif sharded:
- raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Golden Gate"))
+ raise NotImplementedError(
+ FLASH_ATT_ERROR_MESSAGE.format("Sharded Golden Gate")
+ )
else:
return CausalLM(
model_id,
diff --git a/server/text_generation_server/models/custom_modeling/flash_golden_gate_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py
similarity index 65%
rename from server/text_generation_server/models/custom_modeling/flash_golden_gate_modeling.py
rename to server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py
index ca5b5952..bb55f5d5 100644
--- a/server/text_generation_server/models/custom_modeling/flash_golden_gate_modeling.py
+++ b/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py
@@ -20,11 +20,16 @@
import torch
import torch.distributed
+import os
+from shutil import copyfile
from torch import nn
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple
+from tokenizers import processors
+from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
+from transformers.utils import logging
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import (
@@ -37,8 +42,168 @@ from text_generation_server.utils.layers import (
FastRMSNorm,
)
+GemmaTokenizer = None
-class GoldenGateConfig(PretrainedConfig):
+logger = logging.get_logger(__name__)
+VOCAB_FILES_NAMES = {
+ "vocab_file": "tokenizer.model",
+ "tokenizer_file": "tokenizer.json",
+}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model",
+ },
+ "tokenizer_file": {
+ "hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json",
+ },
+}
+B_INST, E_INST = "[INST]", "[/INST]"
+B_SYS, E_SYS = "<>\n", "\n<>\n\n"
+
+# fmt: off
+DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
+answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
+ that your responses are socially unbiased and positive in nature.
+
+If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
+correct. If you don't know the answer to a question, please don't share false information."""
+
+
+# fmt: on
+
+
+class GemmaTokenizerFast(PreTrainedTokenizerFast):
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ slow_tokenizer_class = GemmaTokenizer
+ padding_side = "left"
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ clean_up_tokenization_spaces=False,
+ unk_token="",
+ bos_token="",
+ eos_token="",
+ pad_token="",
+ add_bos_token=True,
+ add_eos_token=False,
+ use_default_system_prompt=False,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file=vocab_file,
+ tokenizer_file=tokenizer_file,
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
+ unk_token=unk_token,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ pad_token=pad_token,
+ add_bos_token=add_bos_token,
+ add_eos_token=add_eos_token,
+ use_default_system_prompt=use_default_system_prompt,
+ **kwargs,
+ )
+ self._add_bos_token = add_bos_token
+ self._add_eos_token = add_eos_token
+ self.update_post_processor()
+ self.use_default_system_prompt = use_default_system_prompt
+ self.vocab_file = vocab_file
+
+ @property
+ def can_save_slow_tokenizer(self) -> bool:
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
+
+ def update_post_processor(self):
+ """
+ Updates the underlying post processor with the current `bos_token` and `eos_token`.
+ """
+ bos = self.bos_token
+ bos_token_id = self.bos_token_id
+ if bos is None and self.add_bos_token:
+ raise ValueError("add_bos_token = True but bos_token = None")
+
+ eos = self.eos_token
+ eos_token_id = self.eos_token_id
+ if eos is None and self.add_eos_token:
+ raise ValueError("add_eos_token = True but eos_token = None")
+
+ single = f"{(bos + ':0 ') if self.add_bos_token else ''}$A:0{(' ' + eos + ':0') if self.add_eos_token else ''}"
+ pair = f"{single}{(' ' + bos + ':1') if self.add_bos_token else ''} $B:1{(' ' + eos + ':1') if self.add_eos_token else ''}"
+
+ special_tokens = []
+ if self.add_bos_token:
+ special_tokens.append((bos, bos_token_id))
+ if self.add_eos_token:
+ special_tokens.append((eos, eos_token_id))
+ self._tokenizer.post_processor = processors.TemplateProcessing(
+ single=single, pair=pair, special_tokens=special_tokens
+ )
+
+ @property
+ def add_eos_token(self):
+ return self._add_eos_token
+
+ @property
+ def add_bos_token(self):
+ return self._add_bos_token
+
+ @add_eos_token.setter
+ def add_eos_token(self, value):
+ self._add_eos_token = value
+ self.update_post_processor()
+
+ @add_bos_token.setter
+ def add_bos_token(self, value):
+ self._add_bos_token = value
+ self.update_post_processor()
+
+ def save_vocabulary(
+ self, save_directory: str, filename_prefix: Optional[str] = None
+ ) -> Tuple[str]:
+ if not self.can_save_slow_tokenizer:
+ raise ValueError(
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
+ "tokenizer."
+ )
+
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory,
+ (filename_prefix + "-" if filename_prefix else "")
+ + VOCAB_FILES_NAMES["vocab_file"],
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+
+ return (out_vocab_file,)
+
+ @property
+ # Copied from transformers.models.llama.tokenization_llama.GemmaTokenizer.default_chat_template
+ def default_chat_template(self):
+ raise NotImplementedError
+
+ # TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers
+ # Copied from transformers.models.llama.tokenization_llama.GemmaTokenizer.build_inputs_with_special_tokens
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
+
+ output = bos_token_id + token_ids_0 + eos_token_id
+
+ if token_ids_1 is not None:
+ output = output + bos_token_id + token_ids_1 + eos_token_id
+
+ return output
+
+
+class GemmaConfig(PretrainedConfig):
def __init__(
self,
vocab_size=256128,
@@ -93,7 +258,8 @@ class GoldenGateConfig(PretrainedConfig):
**kwargs,
)
-class GoldenGateFastRMSNorm(FastRMSNorm):
+
+class GemmaFastRMSNorm(FastRMSNorm):
@classmethod
def load(cls, prefix, weights, eps=1e-6):
weight = weights.get_tensor(f"{prefix}.weight") + 1
@@ -138,7 +304,7 @@ def _load_gqa(config, prefix: str, weights):
)
-class FlashGoldenGateAttention(torch.nn.Module):
+class FlashGemmaAttention(torch.nn.Module):
def __init__(
self,
prefix: str,
@@ -242,7 +408,7 @@ class FlashGoldenGateAttention(torch.nn.Module):
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
-class GoldenGateMLP(nn.Module):
+class GemmaMLP(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
act = config.hidden_act
@@ -251,9 +417,9 @@ class GoldenGateMLP(nn.Module):
if "gelu" not in act
else lambda x: torch.nn.functional.gelu(
x,
- approximate="tanh"
- if act in ["gelu_fast", "gelu_pytorch_tanh"]
- else "none",
+ approximate=(
+ "tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none"
+ ),
)
)
# Fuse gate and up proj
@@ -280,19 +446,19 @@ class GoldenGateMLP(nn.Module):
return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1])
-class FlashGoldenGateLayer(nn.Module):
+class FlashGemmaLayer(nn.Module):
def __init__(self, layer_id, config, weights):
super().__init__()
prefix = f"model.layers.{layer_id}"
- self.self_attn = FlashGoldenGateAttention(
+ self.self_attn = FlashGemmaAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
- self.mlp = GoldenGateMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
+ self.mlp = GemmaMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
- self.input_layernorm = GoldenGateFastRMSNorm.load(
+ self.input_layernorm = GemmaFastRMSNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
)
- self.post_attention_layernorm = GoldenGateFastRMSNorm.load(
+ self.post_attention_layernorm = GemmaFastRMSNorm.load(
prefix=f"{prefix}.post_attention_layernorm",
weights=weights,
eps=config.rms_norm_eps,
@@ -336,14 +502,14 @@ class FlashGoldenGateLayer(nn.Module):
return mlp_output, attn_res
-class FlashGoldenGateModel(torch.nn.Module):
+class FlashGemmaModel(torch.nn.Module):
def __init__(self, config, weights):
super().__init__()
process_group = weights.process_group
self.tp_rank = process_group.rank()
self.tp_world_size = process_group.size()
- embed_norm = config.hidden_size ** 0.5
+ embed_norm = config.hidden_size**0.5
self.embed_tokens = TensorParallelEmbedding(
prefix="model.embed_tokens", weights=weights
)
@@ -351,7 +517,7 @@ class FlashGoldenGateModel(torch.nn.Module):
self.layers = nn.ModuleList(
[
- FlashGoldenGateLayer(
+ FlashGemmaLayer(
layer_id,
config,
weights,
@@ -359,7 +525,7 @@ class FlashGoldenGateModel(torch.nn.Module):
for layer_id in range(config.num_hidden_layers)
]
)
- self.norm = GoldenGateFastRMSNorm.load(
+ self.norm = GemmaFastRMSNorm.load(
prefix="model.norm", weights=weights, eps=config.rms_norm_eps
)
@@ -408,11 +574,11 @@ class FlashGoldenGateModel(torch.nn.Module):
return hidden_states
-class FlashGoldenGateForCausalLM(torch.nn.Module):
+class FlashGemmaForCausalLM(torch.nn.Module):
def __init__(self, config, weights):
super().__init__()
- self.model = FlashGoldenGateModel(config, weights)
+ self.model = FlashGemmaModel(config, weights)
self.lm_head = TensorParallelHead.load(
config,
prefix="model.embed_tokens" if config.tie_word_embeddings else "lm_head",
diff --git a/server/text_generation_server/models/custom_modeling/temp_tok.py b/server/text_generation_server/models/custom_modeling/temp_tok.py
deleted file mode 100644
index 06516cbc..00000000
--- a/server/text_generation_server/models/custom_modeling/temp_tok.py
+++ /dev/null
@@ -1,216 +0,0 @@
-# coding=utf-8
-# Copyright 2020 The HuggingFace Inc. team.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-import os
-from shutil import copyfile
-from typing import Optional, Tuple
-
-from tokenizers import processors
-
-from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
-from transformers.utils import logging
-from transformers.utils.versions import require_version
-
-
-require_version("tokenizers>=0.13.3")
-
-GoldenGateTokenizer = None
-
-logger = logging.get_logger(__name__)
-VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
-
-PRETRAINED_VOCAB_FILES_MAP = {
- "vocab_file": {
- "hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model",
- },
- "tokenizer_file": {
- "hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json",
- },
-}
-B_INST, E_INST = "[INST]", "[/INST]"
-B_SYS, E_SYS = "<>\n", "\n<>\n\n"
-
-# fmt: off
-DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
-answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
- that your responses are socially unbiased and positive in nature.
-If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
-correct. If you don't know the answer to a question, please don't share false information."""
-# fmt: on
-
-
-class GoldenGateTokenizerFast(PreTrainedTokenizerFast):
- """
- Construct a GoldenGate tokenizer. Based on byte-level Byte-Pair-Encoding.
- This uses notably ByteFallback and no normalization.
- ```python
- >>> from transformers import GoldenGateTokenizerFast
- >>> tokenizer = GoldenGateTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
- >>> tokenizer.encode("Hello this is a test")
- [1, 15043, 445, 338, 263, 1243]
- ```
- If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
- call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
- values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
- [post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
- This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
- refer to this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`, *optional*):
- [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
- contains the vocabulary necessary to instantiate a tokenizer.
- tokenizer_file (`str`, *optional*):
- [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
- contains everything needed to load the tokenizer.
- clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
- Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
- extra spaces.
- unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`):
- The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
- eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`):
- The end of sequence token.
- add_bos_token (`bool`, *optional*, defaults to `True`):
- Whether or not to add an `bos_token` at the start of sequences.
- add_eos_token (`bool`, *optional*, defaults to `False`):
- Whether or not to add an `eos_token` at the end of sequences.
- use_default_system_prompt (`bool`, *optional*, defaults to `False`):
- Whether or not the default system prompt for GoldenGate should be used.
- """
-
- vocab_files_names = VOCAB_FILES_NAMES
- pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
- slow_tokenizer_class = GoldenGateTokenizer
- padding_side = "left"
- model_input_names = ["input_ids", "attention_mask"]
-
- def __init__(
- self,
- vocab_file=None,
- tokenizer_file=None,
- clean_up_tokenization_spaces=False,
- unk_token="",
- bos_token="",
- eos_token="",
- pad_token="",
- add_bos_token=True,
- add_eos_token=False,
- use_default_system_prompt=False,
- **kwargs,
- ):
- super().__init__(
- vocab_file=vocab_file,
- tokenizer_file=tokenizer_file,
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
- unk_token=unk_token,
- bos_token=bos_token,
- eos_token=eos_token,
- pad_token=pad_token,
- add_bos_token=add_bos_token,
- add_eos_token=add_eos_token,
- use_default_system_prompt=use_default_system_prompt,
- **kwargs,
- )
- self._add_bos_token = add_bos_token
- self._add_eos_token = add_eos_token
- self.update_post_processor()
- self.use_default_system_prompt = use_default_system_prompt
- self.vocab_file = vocab_file
-
- @property
- def can_save_slow_tokenizer(self) -> bool:
- return os.path.isfile(self.vocab_file) if self.vocab_file else False
-
- def update_post_processor(self):
- """
- Updates the underlying post processor with the current `bos_token` and `eos_token`.
- """
- bos = self.bos_token
- bos_token_id = self.bos_token_id
- if bos is None and self.add_bos_token:
- raise ValueError("add_bos_token = True but bos_token = None")
-
- eos = self.eos_token
- eos_token_id = self.eos_token_id
- if eos is None and self.add_eos_token:
- raise ValueError("add_eos_token = True but eos_token = None")
-
- single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
- pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
-
- special_tokens = []
- if self.add_bos_token:
- special_tokens.append((bos, bos_token_id))
- if self.add_eos_token:
- special_tokens.append((eos, eos_token_id))
- self._tokenizer.post_processor = processors.TemplateProcessing(
- single=single, pair=pair, special_tokens=special_tokens
- )
-
- @property
- def add_eos_token(self):
- return self._add_eos_token
-
- @property
- def add_bos_token(self):
- return self._add_bos_token
-
- @add_eos_token.setter
- def add_eos_token(self, value):
- self._add_eos_token = value
- self.update_post_processor()
-
- @add_bos_token.setter
- def add_bos_token(self, value):
- self._add_bos_token = value
- self.update_post_processor()
-
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- if not self.can_save_slow_tokenizer:
- raise ValueError(
- "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
- "tokenizer."
- )
-
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
- return
- out_vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
-
- if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
- copyfile(self.vocab_file, out_vocab_file)
-
- return (out_vocab_file,)
-
- @property
- # Copied from transformers.models.llama.tokenization_llama.GoldenGateTokenizer.default_chat_template
- def default_chat_template(self):
- raise NotImplementedError
-
- # TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers
- # Copied from transformers.models.llama.tokenization_llama.GoldenGateTokenizer.build_inputs_with_special_tokens
- def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
-
- output = bos_token_id + token_ids_0 + eos_token_id
-
- if token_ids_1 is not None:
- output = output + bos_token_id + token_ids_1 + eos_token_id
-
- return output
\ No newline at end of file
diff --git a/server/text_generation_server/models/flash_golden_gate.py b/server/text_generation_server/models/flash_gemma.py
similarity index 76%
rename from server/text_generation_server/models/flash_golden_gate.py
rename to server/text_generation_server/models/flash_gemma.py
index ae5940d8..220b3992 100644
--- a/server/text_generation_server/models/flash_golden_gate.py
+++ b/server/text_generation_server/models/flash_gemma.py
@@ -3,12 +3,12 @@ import torch.distributed
from opentelemetry import trace
from typing import Optional
-from transformers import AutoTokenizer
from text_generation_server.models import FlashCausalLM
-from text_generation_server.models.custom_modeling.flash_golden_gate_modeling import (
- FlashGoldenGateForCausalLM,
- GoldenGateConfig,
+from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
+ GemmaTokenizerFast,
+ FlashGemmaForCausalLM,
+ GemmaConfig,
)
from text_generation_server.utils import (
initialize_torch_distributed,
@@ -19,7 +19,7 @@ from text_generation_server.utils import (
tracer = trace.get_tracer(__name__)
-class FlashGoldenGate(FlashCausalLM):
+class FlashGemma(FlashCausalLM):
def __init__(
self,
model_id: str,
@@ -32,12 +32,11 @@ class FlashGoldenGate(FlashCausalLM):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
- dtype = torch.float16 if dtype is None else dtype
+ dtype = torch.bfloat16 if dtype is None else dtype
else:
- raise NotImplementedError("FlashGoldenGate is only available on GPU")
+ raise NotImplementedError("FlashGemma is only available on GPU")
- from text_generation_server.models.custom_modeling.temp_tok import GoldenGateTokenizerFast
- tokenizer = GoldenGateTokenizerFast.from_pretrained(
+ tokenizer = GemmaTokenizerFast.from_pretrained(
model_id,
revision=revision,
padding_side="left",
@@ -47,7 +46,7 @@ class FlashGoldenGate(FlashCausalLM):
from_slow=False,
)
- config = GoldenGateConfig.from_pretrained(
+ config = GemmaConfig.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
config.quantize = quantize
@@ -59,18 +58,18 @@ class FlashGoldenGate(FlashCausalLM):
if config.quantize in ["gptq", "awq"]:
weights._set_gptq_params(model_id, revision)
- model = FlashGoldenGateForCausalLM(config, weights)
+ model = FlashGemmaForCausalLM(config, weights)
if use_medusa:
from text_generation_server.utils.medusa import MedusaModel
from huggingface_hub import hf_hub_download
import json
import os
from pathlib import Path
-
- is_local_model = (Path(use_medusa).exists() and Path(use_medusa).is_dir()) or os.getenv(
- "WEIGHTS_CACHE_OVERRIDE", None
- ) is not None
-
+
+ is_local_model = (
+ Path(use_medusa).exists() and Path(use_medusa).is_dir()
+ ) or os.getenv("WEIGHTS_CACHE_OVERRIDE", None) is not None
+
if not is_local_model:
medusa_config = hf_hub_download(
use_medusa, revision=revision, filename="config.json"
@@ -81,7 +80,7 @@ class FlashGoldenGate(FlashCausalLM):
else:
medusa_config = str(Path(use_medusa) / "config.json")
medusa_head = str(Path(use_medusa) / "medusa_lm_head.pt")
-
+
with open(medusa_config, "r") as f:
config = json.load(f)
medusa_sf = medusa_head[: -len(".pt")] + ".safetensors"
@@ -92,7 +91,7 @@ class FlashGoldenGate(FlashCausalLM):
model.lm_head = MedusaModel(config, weights, lm_head)
torch.distributed.barrier(group=self.process_group)
- super(FlashGoldenGate, self).__init__(
+ super(FlashGemma, self).__init__(
model=model,
tokenizer=tokenizer,
num_layers=len(model.model.layers),