mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-21 14:52:20 +00:00
190 lines
6.3 KiB
Python
190 lines
6.3 KiB
Python
|
import torch
|
||
|
import torch.distributed
|
||
|
|
||
|
import math
|
||
|
from torch import nn
|
||
|
from typing import Optional, List, Tuple, Any
|
||
|
from transformers.configuration_utils import PretrainedConfig
|
||
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||
|
|
||
|
from text_generation_server.utils.layers import (
|
||
|
TensorParallelRowLinear,
|
||
|
TensorParallelColumnLinear,
|
||
|
TensorParallelEmbedding,
|
||
|
TensorParallelHead,
|
||
|
FastLinear,
|
||
|
FastRMSNorm,
|
||
|
)
|
||
|
|
||
|
class MambaConfig(PretrainedConfig):
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=51200,
|
||
|
n_positions=2048,
|
||
|
n_embd=2560,
|
||
|
n_layer=32,
|
||
|
n_inner=None,
|
||
|
n_head=32,
|
||
|
rotary_dim=32,
|
||
|
layer_norm_epsilon=1e-5,
|
||
|
tie_word_embeddings=False,
|
||
|
pad_vocab_size_multiple=64,
|
||
|
pad_token_id=0,
|
||
|
bos_token_id=1,
|
||
|
eos_token_id=2,
|
||
|
no_bias=False,
|
||
|
rms_norm_eps=1e-8,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.vocab_size = vocab_size
|
||
|
self.n_positions = n_positions
|
||
|
self.n_embd = n_embd
|
||
|
self.n_layer = n_layer
|
||
|
self.n_inner = n_inner
|
||
|
self.n_head = n_head
|
||
|
self.rotary_dim = rotary_dim
|
||
|
|
||
|
self.layer_norm_epsilon = layer_norm_epsilon
|
||
|
self.tie_word_embeddings = tie_word_embeddings
|
||
|
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
||
|
self.pad_token_id = pad_token_id
|
||
|
self.bos_token_id = bos_token_id
|
||
|
self.eos_token_id = eos_token_id
|
||
|
self.no_bias = no_bias
|
||
|
self.rms_norm_eps = rms_norm_eps
|
||
|
|
||
|
super().__init__(
|
||
|
pad_token_id=pad_token_id,
|
||
|
bos_token_id=bos_token_id,
|
||
|
eos_token_id=eos_token_id,
|
||
|
tie_word_embeddings=tie_word_embeddings,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
class MambaBlock(nn.Module):
|
||
|
def __init__(self, prefix, config, weights):
|
||
|
super().__init__()
|
||
|
# TODO: adjust how weights are loaded
|
||
|
|
||
|
# conv1d 768*2, 768*2, 4
|
||
|
self.conv1 = nn.Conv1d(768, 768, 4)
|
||
|
# add weight and bias to conv1
|
||
|
self.conv1.weight = nn.Parameter(weights.get_tensor(f"{prefix}.conv1d.weight").transpose(0, 1))
|
||
|
self.conv1.bias = nn.Parameter(weights.get_tensor(f"{prefix}.conv1d.bias"))
|
||
|
|
||
|
# TODO: load weights in correctly for other operations
|
||
|
self.dt_proj = TensorParallelColumnLinear.load(
|
||
|
config=config,
|
||
|
prefix=f"{prefix}.dt_proj",
|
||
|
weights=weights,
|
||
|
bias=True,
|
||
|
)
|
||
|
self.in_proj = TensorParallelColumnLinear.load(
|
||
|
config=config,
|
||
|
prefix=f"{prefix}.in_proj",
|
||
|
weights=weights,
|
||
|
bias=False,
|
||
|
)
|
||
|
self.x_proj = TensorParallelColumnLinear.load(
|
||
|
config=config,
|
||
|
prefix=f"{prefix}.x_proj",
|
||
|
weights=weights,
|
||
|
bias=False,
|
||
|
)
|
||
|
self.A_log = nn.Parameter(torch.randn(config.n_head, config.n_head, config.rotary_dim))
|
||
|
self.D = nn.Parameter(torch.randn(config.n_head, config.rotary_dim))
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
past_kv_cache,
|
||
|
attention_mask=None,
|
||
|
):
|
||
|
hidden_states_in_proj = self.in_proj(hidden_states)
|
||
|
hidden_states_and_residual = torch.chunk(hidden_states_in_proj, 2, dim=-1)
|
||
|
|
||
|
hs, res = hidden_states_and_residual[0], hidden_states_and_residual[1]
|
||
|
|
||
|
import ipdb; ipdb.set_trace()
|
||
|
|
||
|
class ResidualBlock(nn.Module):
|
||
|
def __init__(self, layer_id, config, weights):
|
||
|
super().__init__()
|
||
|
self.layer_id = layer_id
|
||
|
self.mixer = MambaBlock(prefix=f"{layer_id}.mixer", config=config, weights=weights)
|
||
|
self.layer_norm = FastLinear.load(
|
||
|
config=config,
|
||
|
prefix=f"{layer_id}.norm",
|
||
|
weights=weights,
|
||
|
bias=False,
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
kv_cache,
|
||
|
attention_mask,
|
||
|
):
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
attn_outputs, past_kv_cache = self.mixer(hidden_states, kv_cache, attention_mask)
|
||
|
hidden_states = residual + attn_outputs
|
||
|
return hidden_states, residual
|
||
|
|
||
|
class MambaModel(nn.Module):
|
||
|
def __init__(self, config, weights):
|
||
|
super().__init__()
|
||
|
self.tp_rank = weights.process_group.rank()
|
||
|
self.tp_world_size = weights.process_group.size()
|
||
|
self.embed_tokens = TensorParallelEmbedding(
|
||
|
prefix="backbone.embedding", weights=weights
|
||
|
)
|
||
|
self.blocks = nn.ModuleList(
|
||
|
[ResidualBlock(f"backbone.layers.{layer_id}", config, weights) for layer_id in range(config.n_layer)]
|
||
|
)
|
||
|
self.norm_f = FastRMSNorm.load(
|
||
|
prefix="backbone.norm_f",
|
||
|
weights=weights,
|
||
|
eps=config.rms_norm_eps
|
||
|
)
|
||
|
print("🌈 model init done")
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor,
|
||
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
||
|
attention_mask: Optional[torch.ByteTensor] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
||
|
hidden_states = self.embed_tokens(input_ids)
|
||
|
seq_len = hidden_states.shape[1]
|
||
|
mask = None if seq_len <= 1 else attention_mask
|
||
|
|
||
|
past_key_values = [None] * len(self.blocks) if past_key_values is None else past_key_values
|
||
|
|
||
|
for index, block in enumerate(self.blocks):
|
||
|
hidden_states, new_key_values = block(hidden_states, past_key_values[index], mask)
|
||
|
past_key_values[index] = new_key_values
|
||
|
|
||
|
hidden_states = self.norm_f(hidden_states)
|
||
|
return hidden_states, past_key_values
|
||
|
|
||
|
class MambaForCausalLM(torch.nn.Module):
|
||
|
def __init__(self, config, weights):
|
||
|
super().__init__()
|
||
|
self.model = MambaModel(config, weights)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor,
|
||
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
||
|
attention_mask: Optional[torch.ByteTensor] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
||
|
model_output = self.model(
|
||
|
input_ids, past_key_values, attention_mask, return_dict, use_cache
|
||
|
)
|
||
|
print("🌈 model output done")
|