mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-21 14:52:20 +00:00
feat: initial weight load
This commit is contained in:
parent
98e5faff9d
commit
bcf145733c
@ -18,6 +18,7 @@ from text_generation_server.models.galactica import GalacticaSharded
|
||||
from text_generation_server.models.santacoder import SantaCoder
|
||||
from text_generation_server.models.t5 import T5Sharded
|
||||
from text_generation_server.models.gpt_neox import GPTNeoxSharded
|
||||
from text_generation_server.models.mamba import Mamba
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
# in PyTorch 1.12 and later.
|
||||
@ -161,7 +162,25 @@ def get_model(
|
||||
if speculate > 0:
|
||||
logger.info(f"Using speculation {method} with {speculate} input ids.")
|
||||
|
||||
model_type = config_dict["model_type"]
|
||||
model_type = config_dict.get("model_type", None)
|
||||
if model_type is None:
|
||||
# TODO: fix how we determine model type for Mamba
|
||||
if "ssm_cfg" in config_dict:
|
||||
# *only happens in Mamba case
|
||||
model_type = "ssm"
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Could not determine model type for {model_id} revision {revision}"
|
||||
)
|
||||
|
||||
if model_type == "ssm":
|
||||
return Mamba(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
if model_type == "gpt_bigcode":
|
||||
if FLASH_ATTENTION:
|
||||
|
@ -0,0 +1,190 @@
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
import math
|
||||
from torch import nn
|
||||
from typing import Optional, List, Tuple, Any
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
from text_generation_server.utils.layers import (
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelHead,
|
||||
FastLinear,
|
||||
FastRMSNorm,
|
||||
)
|
||||
|
||||
class MambaConfig(PretrainedConfig):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=51200,
|
||||
n_positions=2048,
|
||||
n_embd=2560,
|
||||
n_layer=32,
|
||||
n_inner=None,
|
||||
n_head=32,
|
||||
rotary_dim=32,
|
||||
layer_norm_epsilon=1e-5,
|
||||
tie_word_embeddings=False,
|
||||
pad_vocab_size_multiple=64,
|
||||
pad_token_id=0,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
no_bias=False,
|
||||
rms_norm_eps=1e-8,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.n_positions = n_positions
|
||||
self.n_embd = n_embd
|
||||
self.n_layer = n_layer
|
||||
self.n_inner = n_inner
|
||||
self.n_head = n_head
|
||||
self.rotary_dim = rotary_dim
|
||||
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.tie_word_embeddings = tie_word_embeddings
|
||||
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
||||
self.pad_token_id = pad_token_id
|
||||
self.bos_token_id = bos_token_id
|
||||
self.eos_token_id = eos_token_id
|
||||
self.no_bias = no_bias
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
class MambaBlock(nn.Module):
|
||||
def __init__(self, prefix, config, weights):
|
||||
super().__init__()
|
||||
# TODO: adjust how weights are loaded
|
||||
|
||||
# conv1d 768*2, 768*2, 4
|
||||
self.conv1 = nn.Conv1d(768, 768, 4)
|
||||
# add weight and bias to conv1
|
||||
self.conv1.weight = nn.Parameter(weights.get_tensor(f"{prefix}.conv1d.weight").transpose(0, 1))
|
||||
self.conv1.bias = nn.Parameter(weights.get_tensor(f"{prefix}.conv1d.bias"))
|
||||
|
||||
# TODO: load weights in correctly for other operations
|
||||
self.dt_proj = TensorParallelColumnLinear.load(
|
||||
config=config,
|
||||
prefix=f"{prefix}.dt_proj",
|
||||
weights=weights,
|
||||
bias=True,
|
||||
)
|
||||
self.in_proj = TensorParallelColumnLinear.load(
|
||||
config=config,
|
||||
prefix=f"{prefix}.in_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.x_proj = TensorParallelColumnLinear.load(
|
||||
config=config,
|
||||
prefix=f"{prefix}.x_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.A_log = nn.Parameter(torch.randn(config.n_head, config.n_head, config.rotary_dim))
|
||||
self.D = nn.Parameter(torch.randn(config.n_head, config.rotary_dim))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
past_kv_cache,
|
||||
attention_mask=None,
|
||||
):
|
||||
hidden_states_in_proj = self.in_proj(hidden_states)
|
||||
hidden_states_and_residual = torch.chunk(hidden_states_in_proj, 2, dim=-1)
|
||||
|
||||
hs, res = hidden_states_and_residual[0], hidden_states_and_residual[1]
|
||||
|
||||
import ipdb; ipdb.set_trace()
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, layer_id, config, weights):
|
||||
super().__init__()
|
||||
self.layer_id = layer_id
|
||||
self.mixer = MambaBlock(prefix=f"{layer_id}.mixer", config=config, weights=weights)
|
||||
self.layer_norm = FastLinear.load(
|
||||
config=config,
|
||||
prefix=f"{layer_id}.norm",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
kv_cache,
|
||||
attention_mask,
|
||||
):
|
||||
residual = hidden_states
|
||||
hidden_states = self.layer_norm(hidden_states)
|
||||
attn_outputs, past_kv_cache = self.mixer(hidden_states, kv_cache, attention_mask)
|
||||
hidden_states = residual + attn_outputs
|
||||
return hidden_states, residual
|
||||
|
||||
class MambaModel(nn.Module):
|
||||
def __init__(self, config, weights):
|
||||
super().__init__()
|
||||
self.tp_rank = weights.process_group.rank()
|
||||
self.tp_world_size = weights.process_group.size()
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix="backbone.embedding", weights=weights
|
||||
)
|
||||
self.blocks = nn.ModuleList(
|
||||
[ResidualBlock(f"backbone.layers.{layer_id}", config, weights) for layer_id in range(config.n_layer)]
|
||||
)
|
||||
self.norm_f = FastRMSNorm.load(
|
||||
prefix="backbone.norm_f",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps
|
||||
)
|
||||
print("🌈 model init done")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor,
|
||||
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
||||
attention_mask: Optional[torch.ByteTensor] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
seq_len = hidden_states.shape[1]
|
||||
mask = None if seq_len <= 1 else attention_mask
|
||||
|
||||
past_key_values = [None] * len(self.blocks) if past_key_values is None else past_key_values
|
||||
|
||||
for index, block in enumerate(self.blocks):
|
||||
hidden_states, new_key_values = block(hidden_states, past_key_values[index], mask)
|
||||
past_key_values[index] = new_key_values
|
||||
|
||||
hidden_states = self.norm_f(hidden_states)
|
||||
return hidden_states, past_key_values
|
||||
|
||||
class MambaForCausalLM(torch.nn.Module):
|
||||
def __init__(self, config, weights):
|
||||
super().__init__()
|
||||
self.model = MambaModel(config, weights)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor,
|
||||
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
||||
attention_mask: Optional[torch.ByteTensor] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
||||
model_output = self.model(
|
||||
input_ids, past_key_values, attention_mask, return_dict, use_cache
|
||||
)
|
||||
print("🌈 model output done")
|
62
server/text_generation_server/models/mamba.py
Normal file
62
server/text_generation_server/models/mamba.py
Normal file
@ -0,0 +1,62 @@
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from transformers import AutoConfig, AutoTokenizer
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.models.custom_modeling.mamba_modeling import MambaConfig, MambaForCausalLM
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
Weights,
|
||||
)
|
||||
|
||||
class Mamba(CausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
quantize: Optional[str] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
trust_remote_code: bool = False,
|
||||
):
|
||||
self.process_group, _rank, _world_size = initialize_torch_distributed()
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.float16 if dtype is None else dtype
|
||||
else:
|
||||
if quantize:
|
||||
raise ValueError("quantization is not available on CPU")
|
||||
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"EleutherAI/gpt-neox-20b",
|
||||
revision=revision,
|
||||
padding_side="left",
|
||||
truncation_side="left",
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
config = MambaConfig.from_pretrained(
|
||||
model_id, revision=revision, trust_remote_code=trust_remote_code
|
||||
)
|
||||
|
||||
tokenizer.bos_token_id = config.bos_token_id
|
||||
tokenizer.eos_token_id = config.eos_token_id
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
config.quantize = quantize
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
weights = Weights(filenames, device, dtype, process_group=self.process_group)
|
||||
model = MambaForCausalLM(config, weights)
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
requires_padding=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
Loading…
Reference in New Issue
Block a user