text-generation-inference/backends/trtllm/lib/backend.cpp

98 lines
3.3 KiB
C++
Raw Normal View History

#include <fmt/std.h>
2024-07-08 22:08:49 +00:00
#include <spdlog/spdlog.h>
#include "backend.h"
2024-07-08 22:08:49 +00:00
void huggingface::tgi::backends::InitializeBackend() {
SPDLOG_INFO("Initializing Backend...");
2024-07-08 22:08:49 +00:00
initTrtLlmPlugins();
}
2024-07-08 22:08:49 +00:00
tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &config, const std::string &workerPath) {
tle::ExecutorConfig execConfig(1);
// TODO : Need to check for >= sm_80 (ampere)
// execConfig.setEnableChunkedContext(true)
execConfig.setKvCacheConfig(tle::KvCacheConfig(true));
2024-07-08 22:08:49 +00:00
if(config["/pretrained_config/mapping/world_size"_json_pointer].get<uint8_t>() == 1){
SPDLOG_INFO("Detected single engine deployment, using leader mode");
execConfig.setParallelConfig(tle::ParallelConfig(
tle::CommunicationType::kMPI,
tle::CommunicationMode::kLEADER,
std::nullopt,
std::nullopt,
std::nullopt
));
} else {
SPDLOG_INFO("Detected sharded engine deployment, using orchestrator mode");
execConfig.setParallelConfig(tle::ParallelConfig(
tle::CommunicationType::kMPI,
tle::CommunicationMode::kORCHESTRATOR,
std::nullopt,
std::nullopt,
tle::OrchestratorConfig(true, workerPath)
));
}
return execConfig;
}
huggingface::tgi::backends::TensorRtLlmBackend::TensorRtLlmBackend(
2024-07-08 22:08:49 +00:00
const std::filesystem::path &enginesFolder,
const std::filesystem::path &executorWorker
):
2024-07-08 22:08:49 +00:00
config(json::parse(std::ifstream(enginesFolder / "config.json"))),
executor(
enginesFolder,
tensorrt_llm::executor::ModelType::kDECODER_ONLY,
GetExecutorConfig(config, executorWorker.string()
))
{
2024-07-08 22:08:49 +00:00
SPDLOG_INFO(FMT_STRING("Engine (version={})"), config["/version"_json_pointer].get_ref<const std::string&>());
}
2024-07-03 08:27:53 +00:00
tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit(
2024-07-08 22:08:49 +00:00
const std::vector<tle::TokenIdType> &tokens,
2024-07-03 08:27:53 +00:00
const int32_t maxNewTokens,
2024-07-08 22:08:49 +00:00
const int32_t topK,
2024-07-03 08:27:53 +00:00
const float_t topP,
const float_t temperature,
const int32_t minLength,
2024-07-08 22:08:49 +00:00
std::optional<float_t> repetitionPenalty,
std::optional<float_t> frequencyPenalty,
std::optional<uint32_t> seed,
std::optional<uint32_t> nTopTokens
2024-07-03 08:27:53 +00:00
) {
2024-07-08 22:08:49 +00:00
spdlog::debug(
"Submitting inference over {:d} tokens to the executor {:d}",
tokens.size(),
executor.getLatestIterationStats().back().numActiveRequests
);
const auto sampling = tle::SamplingConfig{
1,
topK,
topP,
std::nullopt,
std::nullopt,
std::nullopt,
seed,
temperature,
minLength,
std::nullopt,
repetitionPenalty,
std::nullopt,
frequencyPenalty,
};
const auto output = tle::OutputConfig{false, false, nTopTokens.value_or(1) > 1};
const auto request = tle::Request{tokens, maxNewTokens, true, sampling, output};
return executor.enqueueRequest(request);
2024-07-03 08:27:53 +00:00
}
2024-07-08 22:08:49 +00:00
std::vector<tle::Response> huggingface::tgi::backends::TensorRtLlmBackend::Poll(const tle::IdType reqId) {
SPDLOG_DEBUG("Polling request {:d}", reqId);
const auto responses = executor.awaitResponses(reqId);
return responses;
}