text-generation-inference/backends/trtllm/lib/backend.cpp

52 lines
1.7 KiB
C++
Raw Normal View History

#include <spdlog/spdlog.h>
#include <fmt/std.h>
#include "backend.h"
2024-07-03 08:27:53 +00:00
huggingface::tgi::backends::TensorRtLlmBackend::TensorRtLlmBackend(const std::filesystem::path &engineFolder)
: executor(engineFolder, tle::ModelType::kDECODER_ONLY, tle::ExecutorConfig{}) {
SPDLOG_INFO(FMT_STRING("Loading engines from {}"), engineFolder);
}
2024-07-03 08:27:53 +00:00
tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit(
std::vector<tle::TokenIdType> &tokens,
const int32_t maxNewTokens,
const float_t topK,
const float_t topP,
const float_t temperature,
const int32_t minLength,
const std::optional<float_t> repetitionPenalty,
const std::optional<float_t> frequencePenalty,
const std::optional<uint32_t> seed,
const std::optional<uint32_t> nTopTokens
) {
if (IsReady()) {
spdlog::debug(
"Submitting inference over {:d} tokens to the executor {:d}",
tokens.size(),
executor.getLatestIterationStats().back().numActiveRequests
);
const auto sampling = tle::SamplingConfig{
1,
topK,
topP,
std::nullopt,
std::nullopt,
std::nullopt,
seed,
temperature,
minLength,
std::nullopt,
repetitionPenalty.value_or(0.0),
std::nullopt,
frequencePenalty.value_or(1.0),
};
const auto output = tle::OutputConfig{false, false, nTopTokens.value_or(1) > 1};
const auto request = tle::Request{std::move(tokens), maxNewTokens, true, sampling, output};
return executor.enqueueRequest(request);
}
return 0;
}