2023-01-31 16:04:00 +00:00
|
|
|
/// Batching and inference logic
|
|
|
|
use crate::validation::{Validation, ValidationError};
|
2024-01-18 11:31:56 +00:00
|
|
|
use crate::{
|
|
|
|
ChatTemplateInputs, Entry, GenerateRequest, GenerateStreamResponse, HubTokenizerConfig,
|
|
|
|
Message, PrefillToken, Queue, Token,
|
|
|
|
};
|
2023-03-09 14:30:54 +00:00
|
|
|
use futures::future::try_join_all;
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
|
|
|
use minijinja::{Environment, ErrorKind, Template};
|
2023-01-31 16:04:00 +00:00
|
|
|
use nohash_hasher::IntMap;
|
2023-04-26 18:23:54 +00:00
|
|
|
use std::sync::{
|
|
|
|
atomic::{AtomicBool, Ordering},
|
|
|
|
Arc,
|
|
|
|
};
|
2023-01-31 16:04:00 +00:00
|
|
|
use text_generation_client::{
|
2023-12-11 11:46:30 +00:00
|
|
|
Batch, CachedBatch, ClientError, GeneratedText, Generation, ShardedClient, Tokens,
|
2023-01-31 16:04:00 +00:00
|
|
|
};
|
|
|
|
use thiserror::Error;
|
2023-10-23 13:51:12 +00:00
|
|
|
use tokio::sync::mpsc::error::SendError;
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
|
|
|
use tokio::sync::{mpsc, Notify, Semaphore, TryAcquireError};
|
2023-01-31 16:04:00 +00:00
|
|
|
use tokio::time::Instant;
|
2023-10-23 13:51:12 +00:00
|
|
|
use tokio_stream::wrappers::UnboundedReceiverStream;
|
|
|
|
use tokio_stream::StreamExt;
|
2023-02-13 12:02:45 +00:00
|
|
|
use tracing::{info_span, instrument, Instrument, Span};
|
2023-01-31 16:04:00 +00:00
|
|
|
|
|
|
|
/// Inference struct
|
|
|
|
#[derive(Clone)]
|
|
|
|
pub struct Infer {
|
|
|
|
/// Validation
|
|
|
|
validation: Validation,
|
2023-02-02 13:59:27 +00:00
|
|
|
/// Request queue
|
|
|
|
queue: Queue,
|
2023-01-31 16:04:00 +00:00
|
|
|
/// Shared state
|
|
|
|
shared: Arc<Shared>,
|
|
|
|
/// Inference limit
|
|
|
|
limit_concurrent_requests: Arc<Semaphore>,
|
2024-01-18 11:31:56 +00:00
|
|
|
/// Chat template (template, bos_token, eos_token)
|
|
|
|
template: (
|
|
|
|
Option<Template<'static, 'static>>,
|
|
|
|
Option<String>,
|
|
|
|
Option<String>,
|
|
|
|
),
|
2023-01-31 16:04:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Infer shared state
|
|
|
|
struct Shared {
|
|
|
|
/// Batching background Tokio task notifier
|
|
|
|
batching_task: Notify,
|
|
|
|
}
|
|
|
|
|
2024-01-18 11:31:56 +00:00
|
|
|
/// Raise a exception (custom function) used in the chat templates
|
|
|
|
fn raise_exception(err_text: String) -> Result<String, minijinja::Error> {
|
|
|
|
Err(minijinja::Error::new(ErrorKind::SyntaxError, err_text))
|
|
|
|
}
|
|
|
|
|
2023-01-31 16:04:00 +00:00
|
|
|
impl Infer {
|
2023-04-26 18:23:54 +00:00
|
|
|
#[allow(clippy::too_many_arguments)]
|
2023-01-31 16:04:00 +00:00
|
|
|
pub(crate) fn new(
|
|
|
|
client: ShardedClient,
|
|
|
|
validation: Validation,
|
2023-04-24 15:59:00 +00:00
|
|
|
waiting_served_ratio: f32,
|
2023-06-30 17:09:59 +00:00
|
|
|
max_batch_prefill_tokens: u32,
|
2023-04-24 15:59:00 +00:00
|
|
|
max_batch_total_tokens: u32,
|
2023-01-31 16:04:00 +00:00
|
|
|
max_waiting_tokens: usize,
|
|
|
|
max_concurrent_requests: usize,
|
2023-04-24 15:59:00 +00:00
|
|
|
requires_padding: bool,
|
2023-09-28 07:55:47 +00:00
|
|
|
window_size: Option<u32>,
|
2023-12-11 11:46:30 +00:00
|
|
|
speculate: u32,
|
2023-04-26 18:23:54 +00:00
|
|
|
generation_health: Arc<AtomicBool>,
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
|
|
|
tokenizer_config: HubTokenizerConfig,
|
2023-01-31 16:04:00 +00:00
|
|
|
) -> Self {
|
|
|
|
// Infer shared state
|
2023-12-11 11:46:30 +00:00
|
|
|
let queue = Queue::new(requires_padding, 16, window_size, speculate);
|
2023-01-31 16:04:00 +00:00
|
|
|
let shared = Arc::new(Shared {
|
|
|
|
batching_task: Notify::new(),
|
|
|
|
});
|
|
|
|
|
|
|
|
// Spawn batching background task that contains all the inference logic
|
|
|
|
tokio::spawn(batching_task(
|
|
|
|
client,
|
2023-04-24 15:59:00 +00:00
|
|
|
waiting_served_ratio,
|
2023-06-30 17:09:59 +00:00
|
|
|
max_batch_prefill_tokens,
|
2023-04-24 15:59:00 +00:00
|
|
|
max_batch_total_tokens,
|
2023-01-31 16:04:00 +00:00
|
|
|
max_waiting_tokens,
|
2023-02-02 13:59:27 +00:00
|
|
|
queue.clone(),
|
2023-01-31 16:04:00 +00:00
|
|
|
shared.clone(),
|
2023-04-26 18:23:54 +00:00
|
|
|
generation_health,
|
2023-01-31 16:04:00 +00:00
|
|
|
));
|
|
|
|
|
|
|
|
// Inference limit with a semaphore
|
|
|
|
let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));
|
|
|
|
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
|
|
|
let template = tokenizer_config.chat_template.map(|t| {
|
2024-01-18 11:31:56 +00:00
|
|
|
let mut env = Box::new(Environment::new());
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
|
|
|
let template_str = t.into_boxed_str();
|
2024-01-18 11:31:56 +00:00
|
|
|
env.add_function("raise_exception", raise_exception);
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
|
|
|
// leaking env and template_str as read-only, static resources for performance.
|
|
|
|
Box::leak(env)
|
|
|
|
.template_from_str(Box::leak(template_str))
|
|
|
|
.unwrap()
|
|
|
|
});
|
2024-01-18 11:31:56 +00:00
|
|
|
let eos_token = tokenizer_config
|
|
|
|
.eos_token
|
|
|
|
.map_or_else(String::new, |t| t)
|
|
|
|
.into();
|
|
|
|
let bos_token = tokenizer_config
|
|
|
|
.bos_token
|
|
|
|
.map_or_else(String::new, |t| t)
|
|
|
|
.into();
|
2023-01-31 16:04:00 +00:00
|
|
|
Self {
|
|
|
|
validation,
|
2023-02-02 13:59:27 +00:00
|
|
|
queue,
|
2023-01-31 16:04:00 +00:00
|
|
|
shared,
|
|
|
|
limit_concurrent_requests: semaphore,
|
2024-01-18 11:31:56 +00:00
|
|
|
template: (template, eos_token, bos_token),
|
2023-01-31 16:04:00 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-02-02 13:59:27 +00:00
|
|
|
/// Add a new request to the queue and return a stream of InferStreamResponse
|
2023-11-20 09:33:44 +00:00
|
|
|
#[instrument(skip_all)]
|
2023-01-31 16:04:00 +00:00
|
|
|
pub(crate) async fn generate_stream(
|
|
|
|
&self,
|
|
|
|
request: GenerateRequest,
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
|
|
|
) -> Result<GenerateStreamResponse, InferError> {
|
2023-01-31 16:04:00 +00:00
|
|
|
// Limit concurrent requests by acquiring a permit from the semaphore
|
2023-02-13 12:02:45 +00:00
|
|
|
let permit = self
|
|
|
|
.clone()
|
|
|
|
.limit_concurrent_requests
|
|
|
|
.try_acquire_owned()
|
|
|
|
.map_err(|err| {
|
2023-02-16 16:18:53 +00:00
|
|
|
metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
|
2023-02-13 12:02:45 +00:00
|
|
|
tracing::error!("{err}");
|
|
|
|
err
|
|
|
|
})?;
|
2023-01-31 16:04:00 +00:00
|
|
|
|
|
|
|
// Validate request
|
2023-04-09 18:22:27 +00:00
|
|
|
let valid_request = self.validation.validate(request).await.map_err(|err| {
|
|
|
|
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
|
|
|
tracing::error!("{err}");
|
|
|
|
err
|
|
|
|
})?;
|
2023-01-31 16:04:00 +00:00
|
|
|
|
|
|
|
// MPSC channel to communicate with the background batching task
|
2023-10-23 13:51:12 +00:00
|
|
|
let (response_tx, response_rx) = mpsc::unbounded_channel();
|
2024-01-11 18:01:43 +00:00
|
|
|
let input_length = valid_request.input_length;
|
2023-01-31 16:04:00 +00:00
|
|
|
|
2023-02-02 13:59:27 +00:00
|
|
|
// Append the request to the queue
|
|
|
|
self.queue.append(Entry {
|
2023-01-31 16:04:00 +00:00
|
|
|
request: valid_request,
|
|
|
|
response_tx,
|
2023-02-13 12:02:45 +00:00
|
|
|
span: Span::current(),
|
|
|
|
temp_span: None,
|
|
|
|
queue_time: Instant::now(),
|
2023-01-31 16:04:00 +00:00
|
|
|
batch_time: None,
|
|
|
|
});
|
|
|
|
|
2023-02-02 13:59:27 +00:00
|
|
|
// Notify the background task that we have a new entry in the queue that needs
|
2023-01-31 16:04:00 +00:00
|
|
|
// to be batched
|
|
|
|
self.shared.batching_task.notify_one();
|
|
|
|
|
|
|
|
// Return stream
|
2024-01-11 18:01:43 +00:00
|
|
|
Ok((
|
|
|
|
permit,
|
|
|
|
input_length,
|
|
|
|
UnboundedReceiverStream::new(response_rx),
|
|
|
|
))
|
2023-01-31 16:04:00 +00:00
|
|
|
}
|
|
|
|
|
Add a new `/tokenize` route to get the tokenized input (#1471)
# What does this PR do?
Ideally this is done client side, but this is a recurring request,
therefore we implemented it.
- Runs only if rust tokenizer is present (not encumbering the main
inference pipeline is important).
- Returns simple results, ID, text (gotten with offsets from the
original string) and offsets (so users can do things like highlighting
text).
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
2024-01-25 13:19:03 +00:00
|
|
|
/// Tokenizer the input
|
|
|
|
#[instrument(skip_all)]
|
|
|
|
pub(crate) async fn tokenize(
|
|
|
|
&self,
|
|
|
|
request: GenerateRequest,
|
|
|
|
) -> Result<Option<tokenizers::Encoding>, InferError> {
|
|
|
|
// Tokenize request
|
|
|
|
let inputs = request.inputs;
|
|
|
|
let truncate = request.parameters.truncate;
|
|
|
|
let encoding = self
|
|
|
|
.validation
|
|
|
|
.tokenize(inputs, truncate)
|
|
|
|
.await
|
|
|
|
.map_err(|err| {
|
|
|
|
tracing::error!("Tokenization {err}");
|
|
|
|
err
|
|
|
|
})?;
|
|
|
|
|
|
|
|
// Return Encoding
|
|
|
|
Ok(encoding.map(|(encoding, _)| encoding))
|
|
|
|
}
|
|
|
|
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
|
|
|
/// Apply the chat template to the chat request
|
|
|
|
#[instrument(skip_all)]
|
2024-01-18 11:31:56 +00:00
|
|
|
pub(crate) fn apply_chat_template(&self, messages: Vec<Message>) -> Result<String, InferError> {
|
|
|
|
let (template, bos_token, eos_token) = &self.template;
|
|
|
|
template
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
|
|
|
.as_ref()
|
|
|
|
.ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))?
|
2024-01-18 11:31:56 +00:00
|
|
|
.render(ChatTemplateInputs {
|
|
|
|
messages,
|
|
|
|
eos_token: eos_token.as_deref(),
|
|
|
|
bos_token: bos_token.as_deref(),
|
|
|
|
})
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
|
|
|
.map_err(|e| {
|
|
|
|
metrics::increment_counter!("tgi_request_failure", "err" => "template");
|
|
|
|
tracing::error!("{e}");
|
|
|
|
InferError::TemplateError(e)
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
2023-02-02 13:59:27 +00:00
|
|
|
/// Add a new request to the queue and return a InferResponse
|
2023-11-20 09:33:44 +00:00
|
|
|
#[instrument(skip_all)]
|
2023-01-31 16:04:00 +00:00
|
|
|
pub(crate) async fn generate(
|
|
|
|
&self,
|
|
|
|
request: GenerateRequest,
|
|
|
|
) -> Result<InferResponse, InferError> {
|
2023-08-28 09:43:47 +00:00
|
|
|
let use_top_tokens = request.parameters.top_n_tokens.is_some_and(|x| x > 0);
|
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
// Create stream and keep semaphore permit as long as generate lives
|
2024-01-11 18:01:43 +00:00
|
|
|
let (_permit, _input_length, mut stream) = self.generate_stream(request).await?;
|
2023-01-31 16:04:00 +00:00
|
|
|
|
|
|
|
// Return values
|
|
|
|
let mut result_prefill = Vec::new();
|
|
|
|
let mut result_tokens = Vec::new();
|
2023-08-28 09:43:47 +00:00
|
|
|
let mut result_top_tokens = Vec::new();
|
2023-01-31 16:04:00 +00:00
|
|
|
let mut result_generated_text = None;
|
|
|
|
let mut result_start = None;
|
|
|
|
let mut result_queued = None;
|
|
|
|
|
|
|
|
// Iterate on stream
|
|
|
|
while let Some(response) = stream.next().await {
|
|
|
|
match response? {
|
|
|
|
// Add prefill tokens
|
|
|
|
InferStreamResponse::Prefill(tokens) => {
|
|
|
|
// Create Token objects
|
|
|
|
// We do that here instead of in the Python code as Rust for loops are faster
|
|
|
|
result_prefill = tokens
|
|
|
|
.ids
|
|
|
|
.into_iter()
|
|
|
|
.zip(tokens.logprobs.into_iter())
|
|
|
|
.zip(tokens.texts.into_iter())
|
2023-02-24 14:55:57 +00:00
|
|
|
.map(|((id, logprob), text)| PrefillToken { id, text, logprob })
|
2023-01-31 16:04:00 +00:00
|
|
|
.collect();
|
|
|
|
}
|
|
|
|
// Push last token
|
2023-08-28 09:43:47 +00:00
|
|
|
InferStreamResponse::Intermediate { token, top_tokens } => {
|
|
|
|
result_tokens.push(token);
|
|
|
|
result_top_tokens.push(top_tokens);
|
|
|
|
}
|
2023-01-31 16:04:00 +00:00
|
|
|
// Final message
|
|
|
|
// Set return values
|
|
|
|
InferStreamResponse::End {
|
|
|
|
token,
|
|
|
|
generated_text,
|
|
|
|
start,
|
|
|
|
queued,
|
2023-08-28 09:43:47 +00:00
|
|
|
top_tokens,
|
2023-01-31 16:04:00 +00:00
|
|
|
} => {
|
|
|
|
result_tokens.push(token);
|
2023-08-28 09:43:47 +00:00
|
|
|
result_top_tokens.push(top_tokens);
|
2023-01-31 16:04:00 +00:00
|
|
|
result_generated_text = Some(generated_text);
|
|
|
|
result_start = Some(start);
|
|
|
|
result_queued = Some(queued)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check that we received a `InferStreamResponse::End` message
|
|
|
|
if let (Some(generated_text), Some(queued), Some(start)) =
|
|
|
|
(result_generated_text, result_queued, result_start)
|
|
|
|
{
|
|
|
|
Ok(InferResponse {
|
|
|
|
prefill: result_prefill,
|
2024-01-11 18:01:43 +00:00
|
|
|
_input_length,
|
2023-01-31 16:04:00 +00:00
|
|
|
tokens: result_tokens,
|
|
|
|
generated_text,
|
|
|
|
queued,
|
|
|
|
start,
|
2023-08-28 09:43:47 +00:00
|
|
|
top_tokens: if use_top_tokens {
|
|
|
|
result_top_tokens
|
|
|
|
} else {
|
|
|
|
Vec::new()
|
|
|
|
},
|
2023-01-31 16:04:00 +00:00
|
|
|
})
|
|
|
|
} else {
|
2023-02-13 12:02:45 +00:00
|
|
|
let err = InferError::IncompleteGeneration;
|
2023-02-16 16:18:53 +00:00
|
|
|
metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
|
2023-02-13 12:02:45 +00:00
|
|
|
tracing::error!("{err}");
|
|
|
|
Err(err)
|
2023-01-31 16:04:00 +00:00
|
|
|
}
|
|
|
|
}
|
2023-03-09 14:30:54 +00:00
|
|
|
/// Add best_of new requests to the queue and return a InferResponse of the sequence with
|
|
|
|
/// the highest log probability per token
|
2023-11-20 09:33:44 +00:00
|
|
|
#[instrument(skip(self, request))]
|
2023-03-09 14:30:54 +00:00
|
|
|
pub(crate) async fn generate_best_of(
|
|
|
|
&self,
|
|
|
|
request: GenerateRequest,
|
|
|
|
best_of: usize,
|
|
|
|
) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
|
|
|
|
// validate best_of parameter separately
|
|
|
|
let best_of = self.validation.validate_best_of(best_of)?;
|
|
|
|
|
|
|
|
// create multiple generate requests
|
|
|
|
let mut infer_responses: Vec<InferResponse> =
|
|
|
|
try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;
|
|
|
|
|
|
|
|
// get the sequence with the highest log probability per token
|
|
|
|
let mut max_index = 0;
|
|
|
|
let mut max_logprob: f32 = f32::MIN;
|
|
|
|
|
|
|
|
for (i, response) in infer_responses.iter().enumerate() {
|
|
|
|
// mean logprobs of the generated tokens
|
|
|
|
let sequence_logprob = response
|
|
|
|
.tokens
|
|
|
|
.iter()
|
|
|
|
.map(|token| token.logprob)
|
|
|
|
.sum::<f32>()
|
|
|
|
/ response.tokens.len() as f32;
|
|
|
|
|
|
|
|
// set best sequence
|
|
|
|
if sequence_logprob > max_logprob {
|
|
|
|
max_index = i;
|
|
|
|
max_logprob = sequence_logprob;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
let best_response = infer_responses.remove(max_index);
|
|
|
|
Ok((best_response, infer_responses))
|
|
|
|
}
|
2023-01-31 16:04:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Batching logic
|
|
|
|
/// Will be launched in a background Tokio task
|
|
|
|
///
|
|
|
|
/// Batches requests and sends them to the inference server
|
2023-06-30 17:09:59 +00:00
|
|
|
#[allow(clippy::too_many_arguments)]
|
2023-01-31 16:04:00 +00:00
|
|
|
async fn batching_task(
|
|
|
|
mut client: ShardedClient,
|
2023-04-24 15:59:00 +00:00
|
|
|
waiting_served_ratio: f32,
|
2023-06-30 17:09:59 +00:00
|
|
|
max_batch_prefill_tokens: u32,
|
2023-04-24 15:59:00 +00:00
|
|
|
max_batch_total_tokens: u32,
|
2023-01-31 16:04:00 +00:00
|
|
|
max_waiting_tokens: usize,
|
2023-02-02 13:59:27 +00:00
|
|
|
queue: Queue,
|
2023-01-31 16:04:00 +00:00
|
|
|
shared: Arc<Shared>,
|
2023-04-26 18:23:54 +00:00
|
|
|
generation_health: Arc<AtomicBool>,
|
2023-01-31 16:04:00 +00:00
|
|
|
) {
|
|
|
|
// Infinite loop
|
|
|
|
loop {
|
|
|
|
// Wait for a notification from the Infer struct
|
|
|
|
shared.batching_task.notified().await;
|
|
|
|
|
2023-02-02 13:59:27 +00:00
|
|
|
// Get the next batch from the queue
|
2023-01-31 16:04:00 +00:00
|
|
|
// This batch might be smaller than the maximum batch size if there are not enough requests
|
2023-02-02 13:59:27 +00:00
|
|
|
// waiting in the queue
|
2023-06-30 17:09:59 +00:00
|
|
|
while let Some((mut entries, batch, span)) = queue
|
|
|
|
.next_batch(None, max_batch_prefill_tokens, max_batch_total_tokens)
|
|
|
|
.await
|
2023-04-24 15:59:00 +00:00
|
|
|
{
|
2023-04-26 18:23:54 +00:00
|
|
|
let mut cached_batch = prefill(&mut client, batch, &mut entries, &generation_health)
|
2023-02-13 12:02:45 +00:00
|
|
|
.instrument(span)
|
|
|
|
.await;
|
2023-01-31 16:04:00 +00:00
|
|
|
let mut waiting_tokens = 1;
|
|
|
|
|
|
|
|
// We loop until we do not receive any cached batch from the inference server (== until
|
|
|
|
// all requests have met their stopping criteria)
|
|
|
|
while let Some(batch) = cached_batch {
|
|
|
|
// Get current batch info
|
|
|
|
let batch_size = batch.size;
|
2023-04-24 15:59:00 +00:00
|
|
|
let batch_max_tokens = batch.max_tokens;
|
2023-01-31 16:04:00 +00:00
|
|
|
let mut batches = vec![batch];
|
2023-02-16 16:18:53 +00:00
|
|
|
metrics::gauge!("tgi_batch_current_size", batch_size as f64);
|
2023-04-24 15:59:00 +00:00
|
|
|
metrics::gauge!("tgi_batch_current_max_tokens", batch_max_tokens as f64);
|
|
|
|
|
|
|
|
let min_size = if waiting_tokens >= max_waiting_tokens {
|
|
|
|
// If we didn't onboard any new requests since >= max_waiting_tokens, we try
|
|
|
|
// to add a new batch even though its size might be small
|
|
|
|
None
|
|
|
|
} else {
|
|
|
|
// Minimum batch size
|
|
|
|
Some((batch_size as f32 * waiting_served_ratio).floor() as usize)
|
|
|
|
};
|
|
|
|
|
2023-06-30 17:09:59 +00:00
|
|
|
let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens);
|
2023-04-24 15:59:00 +00:00
|
|
|
|
|
|
|
// Try to get a new batch
|
2023-06-30 17:09:59 +00:00
|
|
|
if let Some((mut new_entries, new_batch, span)) = queue
|
|
|
|
.next_batch(min_size, max_batch_prefill_tokens, token_budget)
|
|
|
|
.await
|
2023-04-24 15:59:00 +00:00
|
|
|
{
|
|
|
|
// Tracking metrics
|
|
|
|
if min_size.is_some() {
|
|
|
|
metrics::increment_counter!("tgi_batch_concat", "reason" => "backpressure");
|
|
|
|
} else {
|
|
|
|
metrics::increment_counter!("tgi_batch_concat", "reason" => "wait_exceeded");
|
|
|
|
}
|
2023-01-31 16:04:00 +00:00
|
|
|
|
2023-04-24 15:59:00 +00:00
|
|
|
entries.iter_mut().for_each(|(_, entry)| {
|
|
|
|
// Create a new span to add the info that this entry is waiting
|
|
|
|
// because a new batch is being computed
|
|
|
|
let entry_waiting_span = info_span!(parent: &entry.span, "waiting");
|
|
|
|
// Add relationships
|
|
|
|
span.follows_from(&entry_waiting_span);
|
|
|
|
entry_waiting_span.follows_from(&span);
|
|
|
|
// Update entry
|
|
|
|
entry.temp_span = Some(entry_waiting_span);
|
|
|
|
});
|
|
|
|
|
|
|
|
// Generate one token for this new batch to have the attention past in cache
|
2023-04-26 18:23:54 +00:00
|
|
|
let new_cached_batch =
|
|
|
|
prefill(&mut client, new_batch, &mut new_entries, &generation_health)
|
|
|
|
.instrument(span)
|
|
|
|
.await;
|
2023-04-24 15:59:00 +00:00
|
|
|
// Reset waiting counter
|
|
|
|
waiting_tokens = 1;
|
|
|
|
// Extend current batch with the new batch
|
|
|
|
if let Some(new_cached_batch) = new_cached_batch {
|
|
|
|
entries.extend(new_entries);
|
|
|
|
batches.push(new_cached_batch);
|
2023-01-31 16:04:00 +00:00
|
|
|
}
|
|
|
|
}
|
2023-04-24 15:59:00 +00:00
|
|
|
|
2023-02-13 12:02:45 +00:00
|
|
|
// Create span for this batch to add context to inference calls
|
|
|
|
let next_batch_size = entries.len();
|
|
|
|
let next_batch_span =
|
|
|
|
info_span!(parent: None, "batch", batch_size = next_batch_size);
|
|
|
|
entries.iter_mut().for_each(|(_, entry)| {
|
|
|
|
// Create a new span to link the batch back to this entry
|
2023-04-20 09:07:40 +00:00
|
|
|
let entry_batch_span = info_span!(parent: &entry.span, "infer");
|
2023-03-16 11:12:26 +00:00
|
|
|
// Add relationships
|
|
|
|
next_batch_span.follows_from(&entry_batch_span);
|
2023-02-13 12:02:45 +00:00
|
|
|
entry_batch_span.follows_from(&next_batch_span);
|
|
|
|
// Update entry
|
|
|
|
entry.temp_span = Some(entry_batch_span);
|
|
|
|
});
|
2023-01-31 16:04:00 +00:00
|
|
|
|
2023-04-26 18:23:54 +00:00
|
|
|
cached_batch = decode(&mut client, batches, &mut entries, &generation_health)
|
2023-02-13 12:02:45 +00:00
|
|
|
.instrument(next_batch_span)
|
|
|
|
.await;
|
2023-01-31 16:04:00 +00:00
|
|
|
waiting_tokens += 1;
|
|
|
|
}
|
2023-02-16 16:18:53 +00:00
|
|
|
metrics::gauge!("tgi_batch_current_size", 0.0);
|
2023-04-24 15:59:00 +00:00
|
|
|
metrics::gauge!("tgi_batch_current_max_tokens", 0.0);
|
2023-01-31 16:04:00 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-02-13 12:02:45 +00:00
|
|
|
#[instrument(skip_all)]
|
2023-02-16 16:18:53 +00:00
|
|
|
async fn prefill(
|
|
|
|
client: &mut ShardedClient,
|
|
|
|
batch: Batch,
|
2023-01-31 16:04:00 +00:00
|
|
|
entries: &mut IntMap<u64, Entry>,
|
2023-04-26 18:23:54 +00:00
|
|
|
generation_health: &Arc<AtomicBool>,
|
2023-05-24 17:19:57 +00:00
|
|
|
) -> Option<CachedBatch> {
|
2023-02-16 16:18:53 +00:00
|
|
|
let start_time = Instant::now();
|
2023-03-28 09:29:35 +00:00
|
|
|
let batch_id = batch.id;
|
2023-04-09 18:13:28 +00:00
|
|
|
metrics::increment_counter!("tgi_batch_inference_count", "method" => "prefill");
|
2023-02-16 16:18:53 +00:00
|
|
|
|
|
|
|
match client.prefill(batch).await {
|
2023-12-14 14:59:38 +00:00
|
|
|
Ok((generations, next_batch, timings)) => {
|
2023-04-26 18:23:54 +00:00
|
|
|
// Update health
|
|
|
|
generation_health.store(true, Ordering::SeqCst);
|
2023-12-14 14:59:38 +00:00
|
|
|
|
|
|
|
let start_filtering_time = Instant::now();
|
2023-04-24 15:59:00 +00:00
|
|
|
// Send generated tokens and filter stopped entries
|
2023-04-20 09:07:40 +00:00
|
|
|
filter_send_generations(generations, entries);
|
|
|
|
|
|
|
|
// Filter next batch and remove requests that were stopped
|
2023-04-24 15:59:00 +00:00
|
|
|
let next_batch = filter_batch(client, next_batch, entries).await;
|
2023-04-20 09:07:40 +00:00
|
|
|
|
2023-12-14 14:59:38 +00:00
|
|
|
metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "prefill");
|
|
|
|
metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "prefill");
|
|
|
|
metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "prefill");
|
2023-04-09 18:13:28 +00:00
|
|
|
metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill");
|
2023-02-16 16:18:53 +00:00
|
|
|
metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
|
|
|
|
next_batch
|
|
|
|
}
|
|
|
|
// If we have an error, we discard the whole batch
|
|
|
|
Err(err) => {
|
2023-04-26 18:23:54 +00:00
|
|
|
// Update health
|
|
|
|
generation_health.store(false, Ordering::SeqCst);
|
2023-03-28 09:29:35 +00:00
|
|
|
let _ = client.clear_cache(Some(batch_id)).await;
|
2023-02-16 16:18:53 +00:00
|
|
|
send_errors(err, entries);
|
|
|
|
metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill");
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[instrument(skip_all)]
|
|
|
|
async fn decode(
|
|
|
|
client: &mut ShardedClient,
|
2023-05-24 17:19:57 +00:00
|
|
|
batches: Vec<CachedBatch>,
|
2023-02-16 16:18:53 +00:00
|
|
|
entries: &mut IntMap<u64, Entry>,
|
2023-04-26 18:23:54 +00:00
|
|
|
generation_health: &Arc<AtomicBool>,
|
2023-05-24 17:19:57 +00:00
|
|
|
) -> Option<CachedBatch> {
|
2023-02-16 16:18:53 +00:00
|
|
|
let start_time = Instant::now();
|
2023-04-20 09:07:40 +00:00
|
|
|
let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
|
2023-04-09 18:13:28 +00:00
|
|
|
metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode");
|
2023-02-16 16:18:53 +00:00
|
|
|
|
|
|
|
match client.decode(batches).await {
|
2023-12-14 14:59:38 +00:00
|
|
|
Ok((generations, next_batch, timings)) => {
|
2023-04-26 18:23:54 +00:00
|
|
|
// Update health
|
|
|
|
generation_health.store(true, Ordering::SeqCst);
|
2023-12-14 14:59:38 +00:00
|
|
|
|
|
|
|
let start_filtering_time = Instant::now();
|
2023-04-24 15:59:00 +00:00
|
|
|
// Send generated tokens and filter stopped entries
|
2023-04-20 09:07:40 +00:00
|
|
|
filter_send_generations(generations, entries);
|
|
|
|
|
|
|
|
// Filter next batch and remove requests that were stopped
|
2023-04-24 15:59:00 +00:00
|
|
|
let next_batch = filter_batch(client, next_batch, entries).await;
|
2023-04-20 09:07:40 +00:00
|
|
|
|
2023-12-14 14:59:38 +00:00
|
|
|
if let Some(concat_duration) = timings.concat {
|
|
|
|
metrics::histogram!("tgi_batch_concat_duration", concat_duration.as_secs_f64(), "method" => "decode");
|
|
|
|
}
|
|
|
|
metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "decode");
|
|
|
|
metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "decode");
|
|
|
|
metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "decode");
|
2023-04-09 18:13:28 +00:00
|
|
|
metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode");
|
2023-02-16 16:18:53 +00:00
|
|
|
metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
|
2023-01-31 16:04:00 +00:00
|
|
|
next_batch
|
|
|
|
}
|
|
|
|
// If we have an error, we discard the whole batch
|
|
|
|
Err(err) => {
|
2023-04-26 18:23:54 +00:00
|
|
|
generation_health.store(false, Ordering::SeqCst);
|
2023-04-20 09:07:40 +00:00
|
|
|
for id in batch_ids {
|
|
|
|
let _ = client.clear_cache(Some(id)).await;
|
|
|
|
}
|
2023-02-13 12:02:45 +00:00
|
|
|
send_errors(err, entries);
|
2023-02-16 16:18:53 +00:00
|
|
|
metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
|
2023-01-31 16:04:00 +00:00
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
/// Filter a `batch` and remove all requests not present in `entries`
|
|
|
|
#[instrument(skip_all)]
|
2023-04-24 15:59:00 +00:00
|
|
|
async fn filter_batch(
|
|
|
|
client: &mut ShardedClient,
|
2023-05-24 17:19:57 +00:00
|
|
|
next_batch: Option<CachedBatch>,
|
2023-04-24 15:59:00 +00:00
|
|
|
entries: &IntMap<u64, Entry>,
|
2023-05-24 17:19:57 +00:00
|
|
|
) -> Option<CachedBatch> {
|
2023-04-24 15:59:00 +00:00
|
|
|
let mut batch = next_batch?;
|
|
|
|
|
|
|
|
// No need to filter
|
|
|
|
if batch.size as usize == entries.len() {
|
|
|
|
return Some(batch);
|
|
|
|
}
|
|
|
|
|
|
|
|
let id = batch.id;
|
|
|
|
|
|
|
|
// Retain only requests that are still in entries
|
2023-05-24 17:19:57 +00:00
|
|
|
batch.request_ids.retain(|id| entries.contains_key(id));
|
2023-04-24 15:59:00 +00:00
|
|
|
|
2023-05-24 17:19:57 +00:00
|
|
|
if batch.request_ids.is_empty() {
|
2023-04-24 15:59:00 +00:00
|
|
|
// All requests have been filtered out
|
|
|
|
// Next batch is now empty
|
|
|
|
// Clear it from the Python shards cache
|
|
|
|
// We unwrap here as we need to panic since we cannot recover if this method fails
|
|
|
|
client.clear_cache(Some(id)).await.unwrap();
|
|
|
|
None
|
|
|
|
} else {
|
|
|
|
// Filter Python shard cache
|
|
|
|
// We unwrap here as we need to panic since we cannot recover if this method fails
|
2023-05-24 17:19:57 +00:00
|
|
|
client.filter_batch(id, batch.request_ids).await.unwrap()
|
2023-04-20 09:07:40 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
|
|
|
|
/// and filter entries
|
|
|
|
#[instrument(skip_all)]
|
|
|
|
fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
|
|
|
|
generations.into_iter().for_each(|generation| {
|
|
|
|
let id = generation.request_id;
|
|
|
|
// Get entry
|
|
|
|
// We can `expect` here as the request id should always be in the entries
|
|
|
|
let entry = entries
|
|
|
|
.get(&id)
|
|
|
|
.expect("ID not found in entries. This is a bug.");
|
|
|
|
|
|
|
|
// Create and enter a span to link this function back to the entry
|
|
|
|
let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
|
|
|
|
// Send generation responses back to the infer task
|
|
|
|
// If the receive an error from the Flume channel, it means that the client dropped the
|
|
|
|
// request and we need to stop generating hence why we unwrap_or(true)
|
|
|
|
let stopped = send_responses(generation, entry).map_err(|err| {
|
2023-10-23 13:51:12 +00:00
|
|
|
tracing::error!("Entry response channel error.");
|
2023-04-20 09:07:40 +00:00
|
|
|
metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
|
|
|
|
err
|
|
|
|
}).unwrap_or(true);
|
|
|
|
if stopped {
|
|
|
|
entries.remove(&id).expect("ID not found in entries. This is a bug.");
|
|
|
|
}
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Send responses through the `entry` response channel
|
|
|
|
fn send_responses(
|
|
|
|
generation: Generation,
|
|
|
|
entry: &Entry,
|
2023-10-23 13:51:12 +00:00
|
|
|
) -> Result<bool, Box<SendError<Result<InferStreamResponse, InferError>>>> {
|
2023-06-23 12:58:28 +00:00
|
|
|
// Return directly if the channel is disconnected
|
2023-10-23 13:51:12 +00:00
|
|
|
if entry.response_tx.is_closed() {
|
|
|
|
metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
|
2023-06-23 12:58:28 +00:00
|
|
|
return Ok(true);
|
|
|
|
}
|
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
let mut stopped = false;
|
|
|
|
|
|
|
|
if let Some(prefill_tokens) = generation.prefill_tokens {
|
|
|
|
// Send message
|
2023-10-23 13:51:12 +00:00
|
|
|
entry
|
|
|
|
.response_tx
|
|
|
|
.send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?;
|
2023-04-20 09:07:40 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Create last Token
|
2023-12-11 11:46:30 +00:00
|
|
|
let tokens_ = generation.tokens.expect("Non empty tokens in generation");
|
|
|
|
let n = tokens_.ids.len();
|
|
|
|
metrics::histogram!("tgi_request_skipped_tokens", (n - 1) as f64);
|
|
|
|
let mut iterator = tokens_
|
|
|
|
.ids
|
|
|
|
.into_iter()
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
|
|
|
.zip(tokens_.logprobs)
|
|
|
|
.zip(tokens_.texts)
|
|
|
|
.zip(tokens_.is_special)
|
2023-12-11 11:46:30 +00:00
|
|
|
.enumerate()
|
|
|
|
.peekable();
|
|
|
|
while let Some((i, (((id, logprob), text), special))) = iterator.next() {
|
|
|
|
let token = Token {
|
|
|
|
id,
|
|
|
|
text,
|
|
|
|
logprob,
|
|
|
|
special,
|
|
|
|
};
|
|
|
|
let top_tokens = if let Some(top_tokens_) = generation.top_tokens.get(i) {
|
2023-08-28 09:43:47 +00:00
|
|
|
top_tokens_
|
|
|
|
.ids
|
2023-12-11 11:46:30 +00:00
|
|
|
.iter()
|
|
|
|
.zip(top_tokens_.logprobs.iter())
|
|
|
|
.zip(top_tokens_.texts.iter())
|
|
|
|
.zip(top_tokens_.is_special.iter())
|
|
|
|
.map(|(((&id, &logprob), text), &special)| Token {
|
2023-08-28 09:43:47 +00:00
|
|
|
id,
|
2023-12-11 11:46:30 +00:00
|
|
|
text: text.to_string(),
|
2023-08-28 09:43:47 +00:00
|
|
|
logprob,
|
|
|
|
special,
|
2023-12-11 11:46:30 +00:00
|
|
|
})
|
|
|
|
.collect()
|
|
|
|
} else {
|
|
|
|
vec![]
|
|
|
|
};
|
|
|
|
match (&generation.generated_text, iterator.peek()) {
|
|
|
|
(Some(generated_text), None) => {
|
|
|
|
// Generation has ended
|
|
|
|
stopped = true;
|
|
|
|
// Send message
|
|
|
|
entry.response_tx.send(Ok(InferStreamResponse::End {
|
|
|
|
token,
|
|
|
|
top_tokens,
|
|
|
|
generated_text: generated_text.clone(),
|
|
|
|
queued: entry.queue_time,
|
|
|
|
start: entry.batch_time.unwrap(),
|
|
|
|
}))?;
|
|
|
|
}
|
|
|
|
_ => {
|
|
|
|
// Send message
|
|
|
|
entry
|
|
|
|
.response_tx
|
|
|
|
.send(Ok(InferStreamResponse::Intermediate { token, top_tokens }))?;
|
|
|
|
}
|
|
|
|
}
|
2023-08-28 09:43:47 +00:00
|
|
|
}
|
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
Ok(stopped)
|
|
|
|
}
|
|
|
|
|
2023-01-31 16:04:00 +00:00
|
|
|
/// Send errors to Infer for all `entries`
|
2023-02-13 12:02:45 +00:00
|
|
|
#[instrument(skip_all)]
|
|
|
|
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
|
2023-01-31 16:04:00 +00:00
|
|
|
entries.drain().for_each(|(_, entry)| {
|
2023-02-13 12:02:45 +00:00
|
|
|
// Create and enter a span to link this function back to the entry
|
|
|
|
let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
|
|
|
|
let err = InferError::GenerationError(error.to_string());
|
2023-02-16 16:18:53 +00:00
|
|
|
metrics::increment_counter!("tgi_request_failure", "err" => "generation");
|
2023-02-13 12:02:45 +00:00
|
|
|
tracing::error!("{err}");
|
|
|
|
|
2023-01-31 16:04:00 +00:00
|
|
|
// unwrap_or is valid here as we don't care if the receiver is gone.
|
|
|
|
entry
|
|
|
|
.response_tx
|
2023-10-23 13:51:12 +00:00
|
|
|
.send(Err(err))
|
2023-01-31 16:04:00 +00:00
|
|
|
.unwrap_or(());
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Debug)]
|
|
|
|
pub(crate) enum InferStreamResponse {
|
|
|
|
// Optional first message
|
2023-12-11 11:46:30 +00:00
|
|
|
Prefill(Tokens),
|
2023-01-31 16:04:00 +00:00
|
|
|
// Intermediate messages
|
2023-08-28 09:43:47 +00:00
|
|
|
Intermediate {
|
|
|
|
token: Token,
|
|
|
|
top_tokens: Vec<Token>,
|
|
|
|
},
|
2023-01-31 16:04:00 +00:00
|
|
|
// Last message
|
|
|
|
End {
|
|
|
|
token: Token,
|
2023-08-28 09:43:47 +00:00
|
|
|
top_tokens: Vec<Token>,
|
2023-01-31 16:04:00 +00:00
|
|
|
generated_text: GeneratedText,
|
|
|
|
start: Instant,
|
|
|
|
queued: Instant,
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Debug)]
|
|
|
|
pub(crate) struct InferResponse {
|
2024-01-11 18:01:43 +00:00
|
|
|
/// input_length is the input as perceived by the rust tokenizer in the
|
|
|
|
/// validation pathway. It is redundant with prefill.len() but prefill
|
|
|
|
/// has data only if the user asked for it. This will always be filled.
|
|
|
|
pub(crate) _input_length: u32,
|
2023-02-24 14:55:57 +00:00
|
|
|
pub(crate) prefill: Vec<PrefillToken>,
|
2023-01-31 16:04:00 +00:00
|
|
|
pub(crate) tokens: Vec<Token>,
|
|
|
|
pub(crate) generated_text: GeneratedText,
|
|
|
|
pub(crate) queued: Instant,
|
|
|
|
pub(crate) start: Instant,
|
2023-08-28 09:43:47 +00:00
|
|
|
pub(crate) top_tokens: Vec<Vec<Token>>,
|
2023-01-31 16:04:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Debug, Error)]
|
|
|
|
pub enum InferError {
|
|
|
|
#[error("Request failed during generation: {0}")]
|
|
|
|
GenerationError(String),
|
|
|
|
#[error("Model is overloaded")]
|
|
|
|
Overloaded(#[from] TryAcquireError),
|
|
|
|
#[error("Input validation error: {0}")]
|
|
|
|
ValidationError(#[from] ValidationError),
|
|
|
|
#[error("Incomplete generation")]
|
|
|
|
IncompleteGeneration,
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
|
|
|
#[error("Template error: {0}")]
|
|
|
|
TemplateError(#[from] minijinja::Error),
|
2023-01-31 16:04:00 +00:00
|
|
|
}
|
2023-03-07 17:52:22 +00:00
|
|
|
|
|
|
|
impl InferError {
|
|
|
|
pub(crate) fn error_type(&self) -> &str {
|
|
|
|
match self {
|
|
|
|
InferError::GenerationError(_) => "generation",
|
|
|
|
InferError::Overloaded(_) => "overloaded",
|
|
|
|
InferError::ValidationError(_) => "validation",
|
|
|
|
InferError::IncompleteGeneration => "incomplete_generation",
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
|
|
|
InferError::TemplateError(_) => "template_error",
|
2023-03-07 17:52:22 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2024-01-18 11:31:56 +00:00
|
|
|
|
|
|
|
// tests
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use crate::infer::raise_exception;
|
|
|
|
use crate::ChatTemplateInputs;
|
|
|
|
use crate::Message;
|
|
|
|
use minijinja::Environment;
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_chat_template() {
|
|
|
|
let env = Environment::new();
|
|
|
|
|
|
|
|
let source = r#"
|
|
|
|
{% for message in messages %}
|
|
|
|
{% if message['role'] == 'system' %}
|
|
|
|
{% if message['content']%}
|
|
|
|
{{'### System:\n' + message['content']+'\n\n'}}
|
|
|
|
{% endif %}
|
|
|
|
{% elif message['role'] == 'user' %}
|
|
|
|
{{'### User:\n' + message['content']+'\n\n'}}
|
|
|
|
{% elif message['role'] == 'assistant' %}
|
|
|
|
{{'### Assistant:\n' + message['content']}}
|
|
|
|
{% endif %}
|
|
|
|
{% if loop.last and add_generation_prompt %}
|
|
|
|
{{ '### Assistant:\n' }}
|
|
|
|
{% endif %}
|
|
|
|
{% endfor %}"#;
|
|
|
|
|
|
|
|
// trim all the whitespace
|
|
|
|
let source = source
|
|
|
|
.lines()
|
|
|
|
.map(|line| line.trim())
|
|
|
|
.collect::<Vec<&str>>()
|
|
|
|
.join("");
|
|
|
|
|
|
|
|
let tmpl = env.template_from_str(&source);
|
|
|
|
|
|
|
|
let chat_template_inputs = ChatTemplateInputs {
|
|
|
|
messages: vec![
|
|
|
|
Message {
|
|
|
|
role: "user".to_string(),
|
|
|
|
content: "Hi!".to_string(),
|
|
|
|
},
|
|
|
|
Message {
|
|
|
|
role: "assistant".to_string(),
|
|
|
|
content: "Hello how can I help?".to_string(),
|
|
|
|
},
|
|
|
|
Message {
|
|
|
|
role: "user".to_string(),
|
|
|
|
content: "What is Deep Learning?".to_string(),
|
|
|
|
},
|
|
|
|
Message {
|
|
|
|
role: "assistant".to_string(),
|
|
|
|
content: "magic!".to_string(),
|
|
|
|
},
|
|
|
|
],
|
|
|
|
bos_token: Some("[BOS]"),
|
|
|
|
eos_token: Some("[EOS]"),
|
|
|
|
};
|
|
|
|
|
|
|
|
let result = tmpl.unwrap().render(chat_template_inputs).unwrap();
|
|
|
|
|
|
|
|
assert_eq!(
|
|
|
|
result,
|
|
|
|
r#"### User:
|
|
|
|
Hi!
|
|
|
|
|
|
|
|
### Assistant:
|
|
|
|
Hello how can I help?### User:
|
|
|
|
What is Deep Learning?
|
|
|
|
|
|
|
|
### Assistant:
|
|
|
|
magic!"#
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_chat_template_invalid_with_raise() {
|
|
|
|
let mut env = Environment::new();
|
|
|
|
env.add_function("raise_exception", raise_exception);
|
|
|
|
|
|
|
|
let source = r#"
|
|
|
|
{{ bos_token }}
|
|
|
|
{% for message in messages %}
|
|
|
|
{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}
|
|
|
|
{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
|
|
|
|
{% endif %}
|
|
|
|
{% if message['role'] == 'user' %}
|
|
|
|
{{ '[INST] ' + message['content'] + ' [/INST]' }}
|
|
|
|
{% elif message['role'] == 'assistant' %}
|
|
|
|
{{ message['content'] + eos_token}}
|
|
|
|
{% else %}
|
|
|
|
{{ raise_exception('Only user and assistant roles are supported!') }}
|
|
|
|
{% endif %}
|
|
|
|
{% endfor %}"#;
|
|
|
|
|
|
|
|
// trim all the whitespace
|
|
|
|
let source = source
|
|
|
|
.lines()
|
|
|
|
.map(|line| line.trim())
|
|
|
|
.collect::<Vec<&str>>()
|
|
|
|
.join("");
|
|
|
|
|
|
|
|
let tmpl = env.template_from_str(&source);
|
|
|
|
|
|
|
|
let chat_template_inputs = ChatTemplateInputs {
|
|
|
|
messages: vec![
|
|
|
|
Message {
|
|
|
|
role: "user".to_string(),
|
|
|
|
content: "Hi!".to_string(),
|
|
|
|
},
|
|
|
|
Message {
|
|
|
|
role: "user".to_string(),
|
|
|
|
content: "Hi again!".to_string(),
|
|
|
|
},
|
|
|
|
Message {
|
|
|
|
role: "assistant".to_string(),
|
|
|
|
content: "Hello how can I help?".to_string(),
|
|
|
|
},
|
|
|
|
Message {
|
|
|
|
role: "user".to_string(),
|
|
|
|
content: "What is Deep Learning?".to_string(),
|
|
|
|
},
|
|
|
|
Message {
|
|
|
|
role: "assistant".to_string(),
|
|
|
|
content: "magic!".to_string(),
|
|
|
|
},
|
|
|
|
],
|
|
|
|
bos_token: Some("[BOS]"),
|
|
|
|
eos_token: Some("[EOS]"),
|
|
|
|
};
|
|
|
|
|
|
|
|
let result = tmpl.unwrap().render(chat_template_inputs); //.err().unwrap();
|
|
|
|
|
|
|
|
match result {
|
|
|
|
Ok(_) => panic!("Should have failed"),
|
|
|
|
Err(e) => {
|
|
|
|
assert_eq!(
|
|
|
|
e.detail().unwrap(),
|
|
|
|
"Conversation roles must alternate user/assistant/user/assistant/..."
|
|
|
|
);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_chat_template_valid_with_raise() {
|
|
|
|
let mut env = Environment::new();
|
|
|
|
env.add_function("raise_exception", raise_exception);
|
|
|
|
|
|
|
|
let source = r#"
|
|
|
|
{{ bos_token }}
|
|
|
|
{% for message in messages %}
|
|
|
|
{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}
|
|
|
|
{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
|
|
|
|
{% endif %}
|
|
|
|
{% if message['role'] == 'user' %}
|
|
|
|
{{ '[INST] ' + message['content'] + ' [/INST]' }}
|
|
|
|
{% elif message['role'] == 'assistant' %}
|
|
|
|
{{ message['content'] + eos_token}}
|
|
|
|
{% else %}
|
|
|
|
{{ raise_exception('Only user and assistant roles are supported!') }}
|
|
|
|
{% endif %}
|
|
|
|
{% endfor %}"#;
|
|
|
|
|
|
|
|
// trim all the whitespace
|
|
|
|
let source = source
|
|
|
|
.lines()
|
|
|
|
.map(|line| line.trim())
|
|
|
|
.collect::<Vec<&str>>()
|
|
|
|
.join("");
|
|
|
|
|
|
|
|
let tmpl = env.template_from_str(&source);
|
|
|
|
|
|
|
|
let chat_template_inputs = ChatTemplateInputs {
|
|
|
|
messages: vec![
|
|
|
|
Message {
|
|
|
|
role: "user".to_string(),
|
|
|
|
content: "Hi!".to_string(),
|
|
|
|
},
|
|
|
|
Message {
|
|
|
|
role: "assistant".to_string(),
|
|
|
|
content: "Hello how can I help?".to_string(),
|
|
|
|
},
|
|
|
|
Message {
|
|
|
|
role: "user".to_string(),
|
|
|
|
content: "What is Deep Learning?".to_string(),
|
|
|
|
},
|
|
|
|
Message {
|
|
|
|
role: "assistant".to_string(),
|
|
|
|
content: "magic!".to_string(),
|
|
|
|
},
|
|
|
|
],
|
|
|
|
bos_token: Some("[BOS]"),
|
|
|
|
eos_token: Some("[EOS]"),
|
|
|
|
};
|
|
|
|
|
|
|
|
let result = tmpl.unwrap().render(chat_template_inputs).unwrap();
|
|
|
|
assert_eq!(result, "[BOS][INST] Hi! [/INST]Hello how can I help?[EOS][INST] What is Deep Learning? [/INST]magic![EOS]");
|
|
|
|
}
|
|
|
|
}
|