mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-21 23:12:07 +00:00
354 lines
12 KiB
Rust
354 lines
12 KiB
Rust
|
/// Batching and inference logic
|
||
|
use crate::validation::{Validation, ValidationError};
|
||
|
use crate::GenerateRequest;
|
||
|
use crate::{Db, Entry, Token};
|
||
|
use nohash_hasher::IntMap;
|
||
|
use std::future::Future;
|
||
|
use std::sync::Arc;
|
||
|
use text_generation_client::{
|
||
|
Batch, ClientError, GeneratedText, Generation, PrefillTokens, ShardedClient,
|
||
|
};
|
||
|
use thiserror::Error;
|
||
|
use tokio::sync::{mpsc, Notify, Semaphore, TryAcquireError};
|
||
|
use tokio::time::Instant;
|
||
|
use tokio_stream::wrappers::UnboundedReceiverStream;
|
||
|
use tokio_stream::StreamExt;
|
||
|
use tracing::instrument;
|
||
|
|
||
|
/// Inference struct
|
||
|
#[derive(Clone)]
|
||
|
pub struct Infer {
|
||
|
/// Validation
|
||
|
validation: Validation,
|
||
|
/// Request database
|
||
|
db: Db,
|
||
|
/// Shared state
|
||
|
shared: Arc<Shared>,
|
||
|
/// Inference limit
|
||
|
limit_concurrent_requests: Arc<Semaphore>,
|
||
|
}
|
||
|
|
||
|
/// Infer shared state
|
||
|
struct Shared {
|
||
|
/// Batching background Tokio task notifier
|
||
|
batching_task: Notify,
|
||
|
}
|
||
|
|
||
|
impl Infer {
|
||
|
pub(crate) fn new(
|
||
|
client: ShardedClient,
|
||
|
validation: Validation,
|
||
|
max_batch_size: usize,
|
||
|
max_waiting_tokens: usize,
|
||
|
max_concurrent_requests: usize,
|
||
|
) -> Self {
|
||
|
// Infer shared state
|
||
|
let db = Db::new();
|
||
|
let shared = Arc::new(Shared {
|
||
|
batching_task: Notify::new(),
|
||
|
});
|
||
|
|
||
|
// Spawn batching background task that contains all the inference logic
|
||
|
tokio::spawn(batching_task(
|
||
|
client,
|
||
|
max_batch_size,
|
||
|
max_waiting_tokens,
|
||
|
db.clone(),
|
||
|
shared.clone(),
|
||
|
));
|
||
|
|
||
|
// Inference limit with a semaphore
|
||
|
let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));
|
||
|
|
||
|
Self {
|
||
|
validation,
|
||
|
db,
|
||
|
shared,
|
||
|
limit_concurrent_requests: semaphore,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Add a new request to the database and return a stream of InferStreamResponse
|
||
|
pub(crate) async fn generate_stream(
|
||
|
&self,
|
||
|
request: GenerateRequest,
|
||
|
) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
|
||
|
// Limit concurrent requests by acquiring a permit from the semaphore
|
||
|
// This permit will live as long as Entry
|
||
|
let permit = self.clone().limit_concurrent_requests.try_acquire_owned()?;
|
||
|
|
||
|
// Validate request
|
||
|
let valid_request = self.validation.validate(request).await?;
|
||
|
|
||
|
// MPSC channel to communicate with the background batching task
|
||
|
let (response_tx, response_rx) = mpsc::unbounded_channel();
|
||
|
|
||
|
// Append the request to the database
|
||
|
self.db.append(Entry {
|
||
|
request: valid_request,
|
||
|
response_tx,
|
||
|
time: Instant::now(),
|
||
|
batch_time: None,
|
||
|
_permit: permit,
|
||
|
});
|
||
|
|
||
|
// Notify the background task that we have a new entry in the database that needs
|
||
|
// to be batched
|
||
|
self.shared.batching_task.notify_one();
|
||
|
|
||
|
// Return stream
|
||
|
Ok(UnboundedReceiverStream::new(response_rx))
|
||
|
}
|
||
|
|
||
|
/// Add a new request to the database and return a InferResponse
|
||
|
pub(crate) async fn generate(
|
||
|
&self,
|
||
|
request: GenerateRequest,
|
||
|
) -> Result<InferResponse, InferError> {
|
||
|
// Create stream
|
||
|
let mut stream = self.generate_stream(request).await?;
|
||
|
|
||
|
// Return values
|
||
|
let mut result_prefill = Vec::new();
|
||
|
let mut result_tokens = Vec::new();
|
||
|
let mut result_generated_text = None;
|
||
|
let mut result_start = None;
|
||
|
let mut result_queued = None;
|
||
|
|
||
|
// Iterate on stream
|
||
|
while let Some(response) = stream.next().await {
|
||
|
match response? {
|
||
|
// Add prefill tokens
|
||
|
InferStreamResponse::Prefill(tokens) => {
|
||
|
// Create Token objects
|
||
|
// We do that here instead of in the Python code as Rust for loops are faster
|
||
|
result_prefill = tokens
|
||
|
.ids
|
||
|
.into_iter()
|
||
|
.zip(tokens.logprobs.into_iter())
|
||
|
.zip(tokens.texts.into_iter())
|
||
|
.map(|((id, logprob), text)| Token(id, text, logprob))
|
||
|
.collect();
|
||
|
}
|
||
|
// Push last token
|
||
|
InferStreamResponse::Token(token) => result_tokens.push(token),
|
||
|
// Final message
|
||
|
// Set return values
|
||
|
InferStreamResponse::End {
|
||
|
token,
|
||
|
generated_text,
|
||
|
start,
|
||
|
queued,
|
||
|
} => {
|
||
|
result_tokens.push(token);
|
||
|
result_generated_text = Some(generated_text);
|
||
|
result_start = Some(start);
|
||
|
result_queued = Some(queued)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Check that we received a `InferStreamResponse::End` message
|
||
|
if let (Some(generated_text), Some(queued), Some(start)) =
|
||
|
(result_generated_text, result_queued, result_start)
|
||
|
{
|
||
|
Ok(InferResponse {
|
||
|
prefill: result_prefill,
|
||
|
tokens: result_tokens,
|
||
|
generated_text,
|
||
|
queued,
|
||
|
start,
|
||
|
})
|
||
|
} else {
|
||
|
Err(InferError::IncompleteGeneration)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Batching logic
|
||
|
/// Will be launched in a background Tokio task
|
||
|
///
|
||
|
/// Batches requests and sends them to the inference server
|
||
|
#[instrument(skip(client, db, shared))]
|
||
|
async fn batching_task(
|
||
|
mut client: ShardedClient,
|
||
|
max_batch_size: usize,
|
||
|
max_waiting_tokens: usize,
|
||
|
db: Db,
|
||
|
shared: Arc<Shared>,
|
||
|
) {
|
||
|
// Minimum batch size after which we try to add more requests
|
||
|
let limit_min_batch_size = (max_batch_size / 2) as u32;
|
||
|
|
||
|
// Infinite loop
|
||
|
loop {
|
||
|
// Wait for a notification from the Infer struct
|
||
|
shared.batching_task.notified().await;
|
||
|
|
||
|
// Get the next batch from the DB
|
||
|
// This batch might be smaller than the maximum batch size if there are not enough requests
|
||
|
// waiting in the DB
|
||
|
while let Some((mut entries, batch)) = db.next_batch(None, max_batch_size) {
|
||
|
let mut cached_batch = wrap_future(client.prefill(batch), &mut entries).await;
|
||
|
let mut waiting_tokens = 1;
|
||
|
|
||
|
// We loop until we do not receive any cached batch from the inference server (== until
|
||
|
// all requests have met their stopping criteria)
|
||
|
while let Some(batch) = cached_batch {
|
||
|
// Get current batch info
|
||
|
let batch_size = batch.size;
|
||
|
let mut batches = vec![batch];
|
||
|
|
||
|
// If the current batch is too small, we try to add more requests to it
|
||
|
if batch_size <= limit_min_batch_size {
|
||
|
let min_size = match waiting_tokens {
|
||
|
// If we didn't onboard any new requests since >= max_waiting_tokens, we try
|
||
|
// to add a new batch even though its size might be small
|
||
|
_ if waiting_tokens >= max_waiting_tokens => None,
|
||
|
// Minimum size criteria
|
||
|
_ => Some(limit_min_batch_size as usize),
|
||
|
};
|
||
|
|
||
|
// Try to get a new batch
|
||
|
if let Some((mut new_entries, new_batch)) =
|
||
|
db.next_batch(min_size, max_batch_size - batch_size as usize)
|
||
|
{
|
||
|
// Generate one token for this new batch to have the attention past in cache
|
||
|
let new_cached_batch =
|
||
|
wrap_future(client.prefill(new_batch), &mut new_entries).await;
|
||
|
// Reset waiting counter
|
||
|
waiting_tokens = 1;
|
||
|
// Extend current batch with the new batch
|
||
|
if let Some(new_cached_batch) = new_cached_batch {
|
||
|
entries.extend(new_entries);
|
||
|
batches.push(new_cached_batch);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cached_batch = wrap_future(client.decode(batches), &mut entries).await;
|
||
|
waiting_tokens += 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Wrap a future inside a match statement to handle errors and send the responses to Infer
|
||
|
async fn wrap_future(
|
||
|
future: impl Future<Output = Result<(Vec<Generation>, Option<Batch>), ClientError>>,
|
||
|
entries: &mut IntMap<u64, Entry>,
|
||
|
) -> Option<Batch> {
|
||
|
match future.await {
|
||
|
Ok((generations, next_batch)) => {
|
||
|
send_generations(generations, entries);
|
||
|
next_batch
|
||
|
}
|
||
|
// If we have an error, we discard the whole batch
|
||
|
Err(err) => {
|
||
|
send_error(err, entries);
|
||
|
None
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Send errors to Infer for all `entries`
|
||
|
fn send_error(error: ClientError, entries: &mut IntMap<u64, Entry>) {
|
||
|
entries.drain().for_each(|(_, entry)| {
|
||
|
// unwrap_or is valid here as we don't care if the receiver is gone.
|
||
|
entry
|
||
|
.response_tx
|
||
|
.send(Err(InferError::GenerationError(error.to_string())))
|
||
|
.unwrap_or(());
|
||
|
});
|
||
|
}
|
||
|
|
||
|
/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
|
||
|
fn send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
|
||
|
generations.into_iter().for_each(|generation| {
|
||
|
// Get entry
|
||
|
// We can `expect` here as the request id should always be in the entries
|
||
|
let entry = entries
|
||
|
.get(&generation.request_id)
|
||
|
.expect("ID not found in entries. This is a bug.");
|
||
|
|
||
|
if let Some(prefill_tokens) = generation.prefill_tokens {
|
||
|
// Send message
|
||
|
// unwrap_or is valid here as we don't care if the receiver is gone.
|
||
|
entry
|
||
|
.response_tx
|
||
|
.send(Ok(InferStreamResponse::Prefill(prefill_tokens)))
|
||
|
.unwrap_or(());
|
||
|
}
|
||
|
|
||
|
// Create last Token
|
||
|
let token = Token(
|
||
|
generation.token_id,
|
||
|
generation.token_text,
|
||
|
generation.token_logprob,
|
||
|
);
|
||
|
|
||
|
if let Some(generated_text) = generation.generated_text {
|
||
|
// Remove entry as this is the last message
|
||
|
// We can `expect` here as the request id should always be in the entries
|
||
|
let entry = entries
|
||
|
.remove(&generation.request_id)
|
||
|
.expect("ID not found in entries. This is a bug.");
|
||
|
|
||
|
// Send message
|
||
|
// unwrap_or is valid here as we don't care if the receiver is gone.
|
||
|
entry
|
||
|
.response_tx
|
||
|
.send(Ok(InferStreamResponse::End {
|
||
|
token,
|
||
|
generated_text,
|
||
|
queued: entry.time,
|
||
|
start: entry.batch_time.unwrap(),
|
||
|
}))
|
||
|
.unwrap_or(());
|
||
|
} else {
|
||
|
// Send message
|
||
|
// unwrap_or is valid here as we don't care if the receiver is gone.
|
||
|
entry
|
||
|
.response_tx
|
||
|
.send(Ok(InferStreamResponse::Token(token)))
|
||
|
.unwrap_or(());
|
||
|
}
|
||
|
});
|
||
|
}
|
||
|
|
||
|
#[derive(Debug)]
|
||
|
pub(crate) enum InferStreamResponse {
|
||
|
// Optional first message
|
||
|
Prefill(PrefillTokens),
|
||
|
// Intermediate messages
|
||
|
Token(Token),
|
||
|
// Last message
|
||
|
End {
|
||
|
token: Token,
|
||
|
generated_text: GeneratedText,
|
||
|
start: Instant,
|
||
|
queued: Instant,
|
||
|
},
|
||
|
}
|
||
|
|
||
|
#[derive(Debug)]
|
||
|
pub(crate) struct InferResponse {
|
||
|
pub(crate) prefill: Vec<Token>,
|
||
|
pub(crate) tokens: Vec<Token>,
|
||
|
pub(crate) generated_text: GeneratedText,
|
||
|
pub(crate) queued: Instant,
|
||
|
pub(crate) start: Instant,
|
||
|
}
|
||
|
|
||
|
#[derive(Debug, Error)]
|
||
|
pub enum InferError {
|
||
|
#[error("Request failed during generation: {0}")]
|
||
|
GenerationError(String),
|
||
|
#[error("Model is overloaded")]
|
||
|
Overloaded(#[from] TryAcquireError),
|
||
|
#[error("Input validation error: {0}")]
|
||
|
ValidationError(#[from] ValidationError),
|
||
|
#[error("Incomplete generation")]
|
||
|
IncompleteGeneration,
|
||
|
}
|