langchain-chat-with-milvus/read_from_db.py
2023-11-13 20:23:15 +08:00

166 lines
4.1 KiB
Python

import random
import pymysql
from langchain.docstore.document import Document
from os import environ
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Milvus
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain.llms import OpenAI
MILVUS_HOST = "127.0.0.1"
MILVUS_PORT = "19530"
from pymilvus import (
connections,
utility,
FieldSchema,
CollectionSchema,
DataType,
Collection,
)
# create connect
connections.connect("default", host=MILVUS_HOST, port=MILVUS_PORT)
# if not has book collection, create
if not utility.has_collection("todos"):
pk = FieldSchema(
name="pk",
dtype=DataType.INT64,
is_primary=True,
auto_id=True,
)
todo_id = FieldSchema(
name="todo_id",
dtype=DataType.INT64
)
todo_title = FieldSchema(
name="title",
dtype=DataType.VARCHAR,
max_length=65535,
default_value="Unknown"
)
source = FieldSchema(
name="source",
dtype=DataType.VARCHAR,
max_length=65535,
default_value="Unknown"
)
todo_description = FieldSchema(
name="todo_description",
dtype=DataType.VARCHAR,
max_length=65535,
default_value="Unknown"
)
todo_language = FieldSchema(
name="language",
dtype=DataType.VARCHAR,
max_length=65535,
default_value="zh_CN"
)
todo_text = FieldSchema(
name="text",
dtype=DataType.VARCHAR,
max_length=65535,
default_value="zh_CN"
)
user_id = FieldSchema(
name="user_id",
dtype=DataType.INT64,
)
todo_intro = FieldSchema(
name="vector",
dtype=DataType.FLOAT_VECTOR,
dim=1536,
)
schema = CollectionSchema(
fields=[pk, todo_id, source, todo_title, todo_description, todo_text, todo_language, user_id, todo_intro],
description="Test book search",
enable_dynamic_field=True
)
collection_name = "todos"
print("Create collection...")
collection = Collection(
name=collection_name,
schema=schema,
using='default',
)
# index
print("Create index: todo_intro...")
collection.create_index(
field_name="vector",
index_params={"metric_type": "L2", "M": 8, "efConstruction": 64, "index_type": "HNSW"},
)
collection.create_index(
field_name="user_id",
index_name="index"
)
# load
print("Loading data...")
collection.load()
# 打开数据库连接
db = pymysql.connect(host='localhost',
port=64639,
user='root',
password='6HbuKyjHO5',
database='go-todo')
# 使用 cursor() 方法创建一个游标对象 cursor
cursor = db.cursor()
# get all vector_id = null
sql = "SELECT * FROM `todos` WHERE `vector_id` IS NULL"
# 使用 execute() 方法执行 SQL 查询
cursor.execute(sql)
# 获取所有
results = cursor.fetchall()
db.close()
for row in results:
todo__id = row[0]
todo__title = row[1]
todo__description = row[2]
todo__user_id = row[3]
todoData = "Id: " + str(todo__id) + ";Title: " + todo__title + "\n" + ";Content: " + todo__description + "\n"
doc = Document(page_content=todoData)
# ins_data[0].append(todo__id)
# ins_data[1].append(todo__title)
# ins_data[2].append(todo__description)
# ins_data[3].append(todo__user_id)
print("转换为向量")
# 转换为向量
embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")
vec = embeddings.embed_query(
todo__title + "\n" + todo__description
)
collection = Collection("todos")
mr = collection.insert([
[todo__id],
["todo.awa.im"],
[todo__title],
[todo__title + todo__description],
[todo__title + todo__description],
["zh_CN"],
[todo__user_id],
[vec],
])
print(mr)
print(doc)