langchain-chat-with-milvus/document_ai/server.py
2023-11-15 16:20:30 +08:00

81 lines
2.5 KiB
Python

import os
from concurrent import futures
import document_query_pb2
import document_query_pb2_grpc
import grpc
import documents_pb2
import init
import doc_client
from langchain.llms.openai import OpenAI
from langchain.schema.document import Document
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
class AIServer(document_query_pb2_grpc.DocumentQuery):
def Query(self, request, context):
vec = init.text_to_vector(request.question)
question = request.question + "(必须使用中文回复)"
search_param = {
"data": [vec],
"anns_field": "vector",
"param": {"metric_type": "L2"},
"limit": 10,
"expr": "user_id == " + str(request.user_id),
"output_fields": ["document_id", "user_id"],
}
res = init.collection.search(**search_param)
document_ids = []
real_document = []
for i in range(len(res[0])):
_doc_id = res[0][i].id
print("正在获取 " + str(_doc_id) + " 的内容...")
try:
_doc_content = doc_client.stub.GetDocumentById(documents_pb2.GetDocumentByIdRequest(
id=_doc_id
))
_doc_content_full = _doc_content.title + "\n" + _doc_content.content
# real_document.append(_doc_content)
doc_obj = Document(page_content=_doc_content_full, metadata={"source": _doc_content.title})
real_document.append(doc_obj)
except Exception as e:
print(e)
print(real_document)
print("正在调用 LLM...")
chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="map_reduce",
return_intermediate_steps=True,
verbose=True)
output = chain({"input_documents": real_document, "question": question}, return_only_outputs=False)
print("回复:" + output["output_text"])
return document_query_pb2.QueryResponse(
text=output["output_text"]
)
def serve():
_ADDR = os.getenv("BIND")
if _ADDR is None:
_ADDR = "[::]:50051"
print("Listening on", _ADDR)
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
document_query_pb2_grpc.add_DocumentQueryServicer_to_server(AIServer(), server)
server.add_insecure_port(_ADDR)
server.start()
server.wait_for_termination()
serve()