import os from concurrent import futures import langchain import proto.document_query_pb2 import proto.document_query_pb2_grpc import grpc import proto.documents_pb2 import init import doc_client from langchain.llms.openai import OpenAI from langchain.schema.document import Document from langchain.embeddings import OpenAIEmbeddings from langchain.chains.qa_with_sources import load_qa_with_sources_chain from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.cache import InMemoryCache langchain.llm_cache = InMemoryCache() CHUNK_SIZE = 500 class AIServer(proto.document_query_pb2_grpc.DocumentQuery): def Query(self, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): print("新的请求:" + target.question) vec = init.text_to_vector(target.question) question = "Reply in spoken language:" + target.question search_param = { "data": [vec], "anns_field": "vector", "param": {"metric_type": "L2"}, "limit": 5, "expr": "user_id == " + str(target.user_id), "output_fields": ["document_id", "user_id"], } res = init.collection.search(**search_param) # # 最多 5 个 # if len(res[0]) > 5: # res[0] = res[0][:5] # document_chunk_ids = [] real_document = [] for i in range(len(res[0])): _chunk_id = res[0][i].id print("正在获取分块 " + str(_chunk_id) + " 的内容...") try: _chunk_content = doc_client.stub.GetDocumentChunk(proto.documents_pb2.GetDocumentChunkByIdRequest( id=_chunk_id )) _doc_content_full = _chunk_content.content doc_obj = Document(page_content=_doc_content_full, metadata={"source": "chunked content"}) real_document.append(doc_obj) except Exception as e: print(e) print(real_document) print("正在调用 LLM...") chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="map_reduce", return_intermediate_steps=True, verbose=True) output = chain({"input_documents": real_document, "question": question}, return_only_outputs=False) print("回复:" + output["output_text"]) return proto.document_query_pb2.QueryResponse( text=output["output_text"] ) def Chunk(self, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): text_splitter = RecursiveCharacterTextSplitter( chunk_size=CHUNK_SIZE, chunk_overlap=20, length_function=len, add_start_index=True, ) page_contents = text_splitter.create_documents([ target.text ]) texts = [] for page_content in page_contents: texts.append(page_content.page_content) return proto.document_query_pb2.ChunkResponse( texts=texts ) def serve(): _ADDR = os.getenv("BIND") if _ADDR is None: _ADDR = "[::]:50051" print("Listening on", _ADDR) server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) proto.document_query_pb2_grpc.add_DocumentQueryServicer_to_server(AIServer(), server) server.add_insecure_port(_ADDR) server.start() server.wait_for_termination() if __name__ == '__main__': serve()