langchain-chat-with-milvus/document_ai/server.py

96 lines
3.0 KiB
Python
Raw Normal View History

2023-11-15 08:20:30 +00:00
import os
from concurrent import futures
2023-11-15 14:24:03 +00:00
import langchain
from langchain.text_splitter import RecursiveCharacterTextSplitter
2023-11-15 08:20:30 +00:00
import document_query_pb2
import document_query_pb2_grpc
import grpc
import documents_pb2
import init
import doc_client
from langchain.llms.openai import OpenAI
from langchain.schema.document import Document
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
2023-11-15 14:24:03 +00:00
from langchain.cache import InMemoryCache
langchain.llm_cache = InMemoryCache()
2023-11-15 08:20:30 +00:00
class AIServer(document_query_pb2_grpc.DocumentQuery):
def Query(self, request, context):
vec = init.text_to_vector(request.question)
question = request.question + "(必须使用中文回复)"
search_param = {
"data": [vec],
"anns_field": "vector",
"param": {"metric_type": "L2"},
"limit": 10,
"expr": "user_id == " + str(request.user_id),
"output_fields": ["document_id", "user_id"],
}
res = init.collection.search(**search_param)
document_ids = []
real_document = []
for i in range(len(res[0])):
_doc_id = res[0][i].id
print("正在获取 " + str(_doc_id) + " 的内容...")
try:
_doc_content = doc_client.stub.GetDocumentById(documents_pb2.GetDocumentByIdRequest(
id=_doc_id
))
_doc_content_full = _doc_content.title + "\n" + _doc_content.content
# real_document.append(_doc_content)
doc_obj = Document(page_content=_doc_content_full, metadata={"source": _doc_content.title})
real_document.append(doc_obj)
except Exception as e:
print(e)
2023-11-15 14:24:03 +00:00
# print(real_document)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=0)
all_splits = text_splitter.split_documents(real_document)
print("real_document: ", all_splits)
# 文档长度
# print("文档长度: ", len(all_splits))
2023-11-15 08:20:30 +00:00
2023-11-15 13:12:06 +00:00
print("正在调用 LLM: " + question + "...")
2023-11-15 14:24:03 +00:00
chain = load_qa_with_sources_chain(OpenAI(temperature=0, max_tokens=4097), chain_type="map_reduce",
2023-11-15 13:12:06 +00:00
return_intermediate_steps=False,
verbose=False)
2023-11-15 14:24:03 +00:00
output = chain({"input_documents": all_splits, "question": question}, return_only_outputs=False)
2023-11-15 08:20:30 +00:00
print("回复:" + output["output_text"])
return document_query_pb2.QueryResponse(
text=output["output_text"]
2023-11-15 14:24:03 +00:00
# text = "test"
2023-11-15 08:20:30 +00:00
)
def serve():
_ADDR = os.getenv("BIND")
if _ADDR is None:
_ADDR = "[::]:50051"
print("Listening on", _ADDR)
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
document_query_pb2_grpc.add_DocumentQueryServicer_to_server(AIServer(), server)
server.add_insecure_port(_ADDR)
server.start()
server.wait_for_termination()