Spdk/module/accel/dpdk_compressdev/accel_dpdk_compressdev.c
Konrad Sztyber dcce5fcf5c accel/dpdk_compressdev: remove handling for non-iovec dst
Handling for scalar dst buffers were removed in 1866faffe, and all
buffers are now described by iovecs.  The dst field was removed from
spdk_accel_task, so we also need to remove any references to that field
from dpdk_compressdev.  This patch fixes the build with compressdev
enabled.

Signed-off-by: Konrad Sztyber <konrad.sztyber@intel.com>
Change-Id: I21fbbb45a15e7250944753e445dede7d586bf35b
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/16349
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Reviewed-by: Michal Berger <michal.berger@intel.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2023-01-19 13:39:27 +00:00

893 lines
24 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2018 Intel Corporation.
* All rights reserved.
* Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*/
#include "accel_dpdk_compressdev.h"
#include "spdk_internal/accel_module.h"
#include "spdk/stdinc.h"
#include "spdk/rpc.h"
#include "spdk/env.h"
#include "spdk/endian.h"
#include "spdk/string.h"
#include "spdk/thread.h"
#include "spdk/util.h"
#include "spdk/likely.h"
#include "spdk/log.h"
#include <rte_config.h>
#include <rte_bus_vdev.h>
#include <rte_compressdev.h>
#include <rte_comp.h>
#include <rte_mbuf_dyn.h>
/* Used to store IO context in mbuf */
static const struct rte_mbuf_dynfield rte_mbuf_dynfield_io_context = {
.name = "context_accel_comp",
.size = sizeof(uint64_t),
.align = __alignof__(uint64_t),
.flags = 0,
};
static int g_mbuf_offset;
static enum compress_pmd g_opts;
static bool g_compressdev_enable = false;
static bool g_compressdev_initialized = false;
#define NUM_MAX_XFORMS 2
#define NUM_MAX_INFLIGHT_OPS 128
#define DEFAULT_WINDOW_SIZE 15
#define MBUF_SPLIT (1UL << DEFAULT_WINDOW_SIZE)
#define QAT_PMD "compress_qat"
#define MLX5_PMD "mlx5_pci"
#define NUM_MBUFS 65536
#define POOL_CACHE_SIZE 256
/* Global list of available compression devices. */
struct compress_dev {
struct rte_compressdev_info cdev_info; /* includes device friendly name */
uint8_t cdev_id; /* identifier for the device */
void *comp_xform; /* shared private xform for comp on this PMD */
void *decomp_xform; /* shared private xform for decomp on this PMD */
bool sgl_in;
bool sgl_out;
TAILQ_ENTRY(compress_dev) link;
};
static TAILQ_HEAD(, compress_dev) g_compress_devs = TAILQ_HEAD_INITIALIZER(g_compress_devs);
#define MAX_NUM_QP 48
/* Global list and lock for unique device/queue pair combos */
struct comp_device_qp {
struct compress_dev *device; /* ptr to compression device */
uint8_t qp; /* queue pair for this node */
struct compress_io_channel *chan;
TAILQ_ENTRY(comp_device_qp) link;
};
static TAILQ_HEAD(, comp_device_qp) g_comp_device_qp = TAILQ_HEAD_INITIALIZER(g_comp_device_qp);
static pthread_mutex_t g_comp_device_qp_lock = PTHREAD_MUTEX_INITIALIZER;
struct compress_io_channel {
char *drv_name; /* name of the compression device driver */
struct comp_device_qp *device_qp;
struct spdk_poller *poller;
struct rte_mbuf **src_mbufs;
struct rte_mbuf **dst_mbufs;
TAILQ_HEAD(, spdk_accel_task) queued_tasks;
};
/* Shared mempools between all devices on this system */
static struct rte_mempool *g_mbuf_mp = NULL; /* mbuf mempool */
static struct rte_mempool *g_comp_op_mp = NULL; /* comp operations, must be rte* mempool */
static struct rte_mbuf_ext_shared_info g_shinfo = {}; /* used by DPDK mbuf macros */
static bool g_qat_available = false;
static bool g_mlx5_pci_available = false;
/* Create shared (between all ops per PMD) compress xforms. */
static struct rte_comp_xform g_comp_xform = {
.type = RTE_COMP_COMPRESS,
.compress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.deflate.huffman = RTE_COMP_HUFFMAN_DEFAULT,
.level = RTE_COMP_LEVEL_MAX,
.window_size = DEFAULT_WINDOW_SIZE,
.chksum = RTE_COMP_CHECKSUM_NONE,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
/* Create shared (between all ops per PMD) decompress xforms. */
static struct rte_comp_xform g_decomp_xform = {
.type = RTE_COMP_DECOMPRESS,
.decompress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.chksum = RTE_COMP_CHECKSUM_NONE,
.window_size = DEFAULT_WINDOW_SIZE,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
/* Dummy function used by DPDK to free ext attached buffers
* to mbufs, we free them ourselves but this callback has to
* be here.
*/
static void
shinfo_free_cb(void *arg1, void *arg2)
{
}
/* Called by accel_init_compress_drivers() to init each discovered compression device */
static int
create_compress_dev(uint8_t index)
{
struct compress_dev *device;
uint16_t q_pairs;
uint8_t cdev_id;
int rc, i;
struct comp_device_qp *dev_qp;
struct comp_device_qp *tmp_qp;
device = calloc(1, sizeof(struct compress_dev));
if (!device) {
return -ENOMEM;
}
/* Get details about this device. */
rte_compressdev_info_get(index, &device->cdev_info);
cdev_id = device->cdev_id = index;
/* Zero means no limit so choose number of lcores. */
if (device->cdev_info.max_nb_queue_pairs == 0) {
q_pairs = MAX_NUM_QP;
} else {
q_pairs = spdk_min(device->cdev_info.max_nb_queue_pairs, MAX_NUM_QP);
}
/* Configure the compression device. */
struct rte_compressdev_config config = {
.socket_id = rte_socket_id(),
.nb_queue_pairs = q_pairs,
.max_nb_priv_xforms = NUM_MAX_XFORMS,
.max_nb_streams = 0
};
rc = rte_compressdev_configure(cdev_id, &config);
if (rc < 0) {
SPDK_ERRLOG("Failed to configure compressdev %u\n", cdev_id);
goto err;
}
/* Pre-setup all potential qpairs now and assign them in the channel
* callback.
*/
for (i = 0; i < q_pairs; i++) {
rc = rte_compressdev_queue_pair_setup(cdev_id, i,
NUM_MAX_INFLIGHT_OPS,
rte_socket_id());
if (rc) {
if (i > 0) {
q_pairs = i;
SPDK_NOTICELOG("FYI failed to setup a queue pair on "
"compressdev %u with error %u "
"so limiting to %u qpairs\n",
cdev_id, rc, q_pairs);
break;
} else {
SPDK_ERRLOG("Failed to setup queue pair on "
"compressdev %u with error %u\n", cdev_id, rc);
rc = -EINVAL;
goto err;
}
}
}
rc = rte_compressdev_start(cdev_id);
if (rc < 0) {
SPDK_ERRLOG("Failed to start device %u: error %d\n",
cdev_id, rc);
goto err;
}
if (device->cdev_info.capabilities->comp_feature_flags & RTE_COMP_FF_SHAREABLE_PRIV_XFORM) {
rc = rte_compressdev_private_xform_create(cdev_id, &g_comp_xform,
&device->comp_xform);
if (rc < 0) {
SPDK_ERRLOG("Failed to create private comp xform device %u: error %d\n",
cdev_id, rc);
goto err;
}
rc = rte_compressdev_private_xform_create(cdev_id, &g_decomp_xform,
&device->decomp_xform);
if (rc) {
SPDK_ERRLOG("Failed to create private decomp xform device %u: error %d\n",
cdev_id, rc);
goto err;
}
} else {
SPDK_ERRLOG("PMD does not support shared transforms\n");
goto err;
}
/* Build up list of device/qp combinations */
for (i = 0; i < q_pairs; i++) {
dev_qp = calloc(1, sizeof(struct comp_device_qp));
if (!dev_qp) {
rc = -ENOMEM;
goto err;
}
dev_qp->device = device;
dev_qp->qp = i;
dev_qp->chan = NULL;
TAILQ_INSERT_TAIL(&g_comp_device_qp, dev_qp, link);
}
TAILQ_INSERT_TAIL(&g_compress_devs, device, link);
if (strcmp(device->cdev_info.driver_name, QAT_PMD) == 0) {
g_qat_available = true;
}
if (strcmp(device->cdev_info.driver_name, MLX5_PMD) == 0) {
g_mlx5_pci_available = true;
}
return 0;
err:
TAILQ_FOREACH_SAFE(dev_qp, &g_comp_device_qp, link, tmp_qp) {
TAILQ_REMOVE(&g_comp_device_qp, dev_qp, link);
free(dev_qp);
}
free(device);
return rc;
}
/* Called from driver init entry point, accel_compress_init() */
static int
accel_init_compress_drivers(void)
{
uint8_t cdev_count, i;
struct compress_dev *tmp_dev;
struct compress_dev *device;
int rc;
/* If we have no compression devices, there's no reason to continue. */
cdev_count = rte_compressdev_count();
if (cdev_count == 0) {
return 0;
}
if (cdev_count > RTE_COMPRESS_MAX_DEVS) {
SPDK_ERRLOG("invalid device count from rte_compressdev_count()\n");
return -EINVAL;
}
g_mbuf_offset = rte_mbuf_dynfield_register(&rte_mbuf_dynfield_io_context);
if (g_mbuf_offset < 0) {
SPDK_ERRLOG("error registering dynamic field with DPDK\n");
return -EINVAL;
}
g_mbuf_mp = rte_pktmbuf_pool_create("comp_mbuf_mp", NUM_MBUFS, POOL_CACHE_SIZE,
sizeof(struct rte_mbuf), 0, rte_socket_id());
if (g_mbuf_mp == NULL) {
SPDK_ERRLOG("Cannot create mbuf pool\n");
rc = -ENOMEM;
goto error_create_mbuf;
}
g_comp_op_mp = rte_comp_op_pool_create("comp_op_pool", NUM_MBUFS, POOL_CACHE_SIZE,
0, rte_socket_id());
if (g_comp_op_mp == NULL) {
SPDK_ERRLOG("Cannot create comp op pool\n");
rc = -ENOMEM;
goto error_create_op;
}
/* Init all devices */
for (i = 0; i < cdev_count; i++) {
rc = create_compress_dev(i);
if (rc != 0) {
goto error_create_compress_devs;
}
}
if (g_qat_available == true) {
SPDK_NOTICELOG("initialized QAT PMD\n");
}
g_shinfo.free_cb = shinfo_free_cb;
return 0;
/* Error cleanup paths. */
error_create_compress_devs:
TAILQ_FOREACH_SAFE(device, &g_compress_devs, link, tmp_dev) {
TAILQ_REMOVE(&g_compress_devs, device, link);
free(device);
}
error_create_op:
error_create_mbuf:
rte_mempool_free(g_mbuf_mp);
return rc;
}
int
accel_compressdev_enable_probe(enum compress_pmd *opts)
{
g_opts = *opts;
g_compressdev_enable = true;
return 0;
}
static int
_setup_compress_mbuf(struct rte_mbuf **mbufs, int *mbuf_total, uint64_t *total_length,
struct iovec *iovs, int iovcnt, struct spdk_accel_task *task)
{
uint64_t iovec_length, updated_length, phys_addr;
uint64_t processed, mbuf_length, remainder;
uint8_t *current_base = NULL;
int iov_index, mbuf_index;
int rc = 0;
/* Setup mbufs */
iov_index = mbuf_index = 0;
while (iov_index < iovcnt) {
processed = 0;
iovec_length = iovs[iov_index].iov_len;
current_base = iovs[iov_index].iov_base;
if (total_length) {
*total_length += iovec_length;
}
assert(mbufs[mbuf_index] != NULL);
*RTE_MBUF_DYNFIELD(mbufs[mbuf_index], g_mbuf_offset, uint64_t *) = (uint64_t)task;
do {
/* new length is min of remaining left or max mbuf size of MBUF_SPLIT */
mbuf_length = updated_length = spdk_min(MBUF_SPLIT, iovec_length - processed);
phys_addr = spdk_vtophys((void *)current_base, &updated_length);
rte_pktmbuf_attach_extbuf(mbufs[mbuf_index],
current_base,
phys_addr,
updated_length,
&g_shinfo);
rte_pktmbuf_append(mbufs[mbuf_index], updated_length);
remainder = mbuf_length - updated_length;
/* although the mbufs were preallocated, we still need to chain them */
if (mbuf_index > 0) {
rte_pktmbuf_chain(mbufs[0], mbufs[mbuf_index]);
}
/* keep track of the total we've put into the mbuf chain */
processed += updated_length;
/* bump the base by what was previously added */
current_base += updated_length;
/* If we crossed 2MB boundary we need another mbuf for the remainder */
if (remainder > 0) {
assert(remainder <= MBUF_SPLIT);
/* allocate an mbuf at the end of the array */
rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp,
(struct rte_mbuf **)&mbufs[*mbuf_total], 1);
if (rc) {
SPDK_ERRLOG("ERROR trying to get an extra mbuf!\n");
return -1;
}
(*mbuf_total)++;
mbuf_index++;
*RTE_MBUF_DYNFIELD(mbufs[mbuf_index], g_mbuf_offset, uint64_t *) = (uint64_t)task;
/* bump the base by what was previously added */
current_base += updated_length;
updated_length = remainder;
phys_addr = spdk_vtophys((void *)current_base, &updated_length);
/* assert we don't cross another */
assert(remainder == updated_length);
rte_pktmbuf_attach_extbuf(mbufs[mbuf_index],
current_base,
phys_addr,
remainder,
&g_shinfo);
rte_pktmbuf_append(mbufs[mbuf_index], remainder);
rte_pktmbuf_chain(mbufs[0], mbufs[mbuf_index]);
/* keep track of the total we've put into the mbuf chain */
processed += remainder;
}
mbuf_index++;
} while (processed < iovec_length);
assert(processed == iovec_length);
iov_index++;
}
return 0;
}
static int
_compress_operation(struct compress_io_channel *chan, struct spdk_accel_task *task)
{
int dst_iovcnt = task->d.iovcnt;
struct iovec *dst_iovs = task->d.iovs;
int src_iovcnt = task->s.iovcnt;
struct iovec *src_iovs = task->s.iovs;
struct rte_comp_op *comp_op;
uint8_t cdev_id;
uint64_t total_length = 0;
int rc = 0, i;
int src_mbuf_total = 0;
int dst_mbuf_total = 0;
bool device_error = false;
bool compress = (task->op_code == ACCEL_OPC_COMPRESS);
assert(chan->device_qp->device != NULL);
cdev_id = chan->device_qp->device->cdev_id;
/* calc our mbuf totals based on max MBUF size allowed so we can pre-alloc mbufs in bulk */
for (i = 0 ; i < src_iovcnt; i++) {
src_mbuf_total += spdk_divide_round_up(src_iovs[i].iov_len, MBUF_SPLIT);
}
for (i = 0 ; i < dst_iovcnt; i++) {
dst_mbuf_total += spdk_divide_round_up(dst_iovs[i].iov_len, MBUF_SPLIT);
}
comp_op = rte_comp_op_alloc(g_comp_op_mp);
if (!comp_op) {
SPDK_ERRLOG("trying to get a comp op!\n");
rc = -ENOMEM;
goto error_get_op;
}
/* get an mbuf per iov, src and dst */
rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, chan->src_mbufs, src_mbuf_total);
if (rc) {
SPDK_ERRLOG("ERROR trying to get src_mbufs!\n");
rc = -ENOMEM;
goto error_get_src;
}
assert(chan->src_mbufs[0]);
rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, chan->dst_mbufs, dst_mbuf_total);
if (rc) {
SPDK_ERRLOG("ERROR trying to get dst_mbufs!\n");
rc = -ENOMEM;
goto error_get_dst;
}
assert(chan->dst_mbufs[0]);
rc = _setup_compress_mbuf(chan->src_mbufs, &src_mbuf_total, &total_length,
src_iovs, src_iovcnt, task);
if (rc < 0) {
goto error_src_dst;
}
if (!chan->device_qp->device->sgl_in && src_mbuf_total > 1) {
SPDK_ERRLOG("Src buffer uses chained mbufs but driver %s doesn't support SGL input\n",
chan->drv_name);
rc = -EINVAL;
goto error_src_dst;
}
comp_op->m_src = chan->src_mbufs[0];
comp_op->src.offset = 0;
comp_op->src.length = total_length;
rc = _setup_compress_mbuf(chan->dst_mbufs, &dst_mbuf_total, NULL,
dst_iovs, dst_iovcnt, task);
if (rc < 0) {
goto error_src_dst;
}
if (!chan->device_qp->device->sgl_out && dst_mbuf_total > 1) {
SPDK_ERRLOG("Dst buffer uses chained mbufs but driver %s doesn't support SGL output\n",
chan->drv_name);
rc = -EINVAL;
goto error_src_dst;
}
comp_op->m_dst = chan->dst_mbufs[0];
comp_op->dst.offset = 0;
if (compress == true) {
comp_op->private_xform = chan->device_qp->device->comp_xform;
} else {
comp_op->private_xform = chan->device_qp->device->decomp_xform;
}
comp_op->op_type = RTE_COMP_OP_STATELESS;
comp_op->flush_flag = RTE_COMP_FLUSH_FINAL;
rc = rte_compressdev_enqueue_burst(cdev_id, chan->device_qp->qp, &comp_op, 1);
assert(rc <= 1);
/* We always expect 1 got queued, if 0 then we need to queue it up. */
if (rc == 1) {
return 0;
} else if (comp_op->status == RTE_COMP_OP_STATUS_NOT_PROCESSED) {
rc = -EAGAIN;
} else {
device_error = true;
}
/* Error cleanup paths. */
error_src_dst:
rte_pktmbuf_free_bulk(chan->dst_mbufs, dst_iovcnt);
error_get_dst:
rte_pktmbuf_free_bulk(chan->src_mbufs, src_iovcnt);
error_get_src:
rte_comp_op_free(comp_op);
error_get_op:
if (device_error == true) {
/* There was an error sending the op to the device, most
* likely with the parameters.
*/
SPDK_ERRLOG("Compression API returned 0x%x\n", comp_op->status);
return -EINVAL;
}
if (rc != -ENOMEM && rc != -EAGAIN) {
return rc;
}
TAILQ_INSERT_TAIL(&chan->queued_tasks, task, link);
return 0;
}
/* Poller for the DPDK compression driver. */
static int
comp_dev_poller(void *args)
{
struct compress_io_channel *chan = args;
uint8_t cdev_id;
struct rte_comp_op *deq_ops[NUM_MAX_INFLIGHT_OPS];
uint16_t num_deq;
struct spdk_accel_task *task, *task_to_resubmit;
int rc, i, status;
assert(chan->device_qp->device != NULL);
cdev_id = chan->device_qp->device->cdev_id;
num_deq = rte_compressdev_dequeue_burst(cdev_id, chan->device_qp->qp, deq_ops,
NUM_MAX_INFLIGHT_OPS);
for (i = 0; i < num_deq; i++) {
/* We store this off regardless of success/error so we know how to contruct the
* next task
*/
task = (struct spdk_accel_task *)*RTE_MBUF_DYNFIELD(deq_ops[i]->m_src, g_mbuf_offset,
uint64_t *);
status = deq_ops[i]->status;
if (spdk_likely(status == RTE_COMP_OP_STATUS_SUCCESS)) {
if (task->output_size != NULL) {
*task->output_size = deq_ops[i]->produced;
}
} else {
SPDK_NOTICELOG("Deque status %u\n", status);
}
spdk_accel_task_complete(task, status);
/* Now free both mbufs and the compress operation. The rte_pktmbuf_free()
* call takes care of freeing all of the mbufs in the chain back to their
* original pool.
*/
rte_pktmbuf_free(deq_ops[i]->m_src);
rte_pktmbuf_free(deq_ops[i]->m_dst);
/* There is no bulk free for com ops so we have to free them one at a time
* here however it would be rare that we'd ever have more than 1 at a time
* anyways.
*/
rte_comp_op_free(deq_ops[i]);
/* Check if there are any pending comp ops to process, only pull one
* at a time off as _compress_operation() may re-queue the op.
*/
if (!TAILQ_EMPTY(&chan->queued_tasks)) {
task_to_resubmit = TAILQ_FIRST(&chan->queued_tasks);
rc = _compress_operation(chan, task_to_resubmit);
if (rc == 0) {
TAILQ_REMOVE(&chan->queued_tasks, task_to_resubmit, link);
}
}
}
return num_deq == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
}
static int
_process_single_task(struct spdk_io_channel *ch, struct spdk_accel_task *task)
{
struct compress_io_channel *chan = spdk_io_channel_get_ctx(ch);
int rc;
rc = _compress_operation(chan, task);
if (rc) {
SPDK_ERRLOG("Error (%d) in comrpess operation\n", rc);
assert(false);
}
return rc;
}
static int
compress_submit_tasks(struct spdk_io_channel *ch, struct spdk_accel_task *first_task)
{
struct compress_io_channel *chan = spdk_io_channel_get_ctx(ch);
struct spdk_accel_task *task, *tmp;
int rc = 0;
task = first_task;
if (!TAILQ_EMPTY(&chan->queued_tasks)) {
goto queue_tasks;
}
/* The caller will either submit a single task or a group of tasks that are
* linked together but they cannot be on a list. For example, see poller
* where a list of queued tasks is being resubmitted, the list they are on
* is initialized after saving off the first task from the list which is then
* passed in here. Similar thing is done in the accel framework.
*/
while (task) {
tmp = TAILQ_NEXT(task, link);
rc = _process_single_task(ch, task);
if (rc == -EBUSY) {
goto queue_tasks;
} else if (rc) {
spdk_accel_task_complete(task, rc);
}
task = tmp;
}
return 0;
queue_tasks:
while (task != NULL) {
tmp = TAILQ_NEXT(task, link);
TAILQ_INSERT_TAIL(&chan->queued_tasks, task, link);
task = tmp;
}
return 0;
}
static bool
_set_pmd(struct compress_io_channel *chan)
{
/* Note: the compress_isal PMD is not supported as accel_fw supports native ISAL
* using the accel_sw module */
if (g_opts == COMPRESS_PMD_AUTO) {
if (g_qat_available) {
chan->drv_name = QAT_PMD;
} else if (g_mlx5_pci_available) {
chan->drv_name = MLX5_PMD;
}
} else if (g_opts == COMPRESS_PMD_QAT_ONLY && g_qat_available) {
chan->drv_name = QAT_PMD;
} else if (g_opts == COMPRESS_PMD_MLX5_PCI_ONLY && g_mlx5_pci_available) {
chan->drv_name = MLX5_PMD;
} else {
SPDK_ERRLOG("Requested PMD is not available.\n");
return false;
}
SPDK_NOTICELOG("Channel %p PMD being used: %s\n", chan, chan->drv_name);
return true;
}
static int compress_create_cb(void *io_device, void *ctx_buf);
static void compress_destroy_cb(void *io_device, void *ctx_buf);
static struct spdk_accel_module_if g_compress_module;
static int
accel_compress_init(void)
{
int rc;
if (!g_compressdev_enable) {
return -EINVAL;
}
rc = accel_init_compress_drivers();
if (rc) {
assert(TAILQ_EMPTY(&g_compress_devs));
SPDK_NOTICELOG("no available compression devices\n");
return -EINVAL;
}
g_compressdev_initialized = true;
SPDK_NOTICELOG("Accel framework compressdev module initialized.\n");
spdk_io_device_register(&g_compress_module, compress_create_cb, compress_destroy_cb,
sizeof(struct compress_io_channel), "compressdev_accel_module");
return 0;
}
static int
compress_create_cb(void *io_device, void *ctx_buf)
{
struct compress_io_channel *chan = ctx_buf;
const struct rte_compressdev_capabilities *capab;
struct comp_device_qp *device_qp;
size_t length;
if (_set_pmd(chan) == false) {
assert(false);
return -ENODEV;
}
/* The following variable length arrays of mbuf pointers are required to submit to compressdev */
length = NUM_MBUFS * sizeof(void *);
chan->src_mbufs = spdk_zmalloc(length, 0x40, NULL,
SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (chan->src_mbufs == NULL) {
return -ENOMEM;
}
chan->dst_mbufs = spdk_zmalloc(length, 0x40, NULL,
SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (chan->dst_mbufs == NULL) {
free(chan->src_mbufs);
return -ENOMEM;
}
chan->poller = SPDK_POLLER_REGISTER(comp_dev_poller, chan, 0);
TAILQ_INIT(&chan->queued_tasks);
pthread_mutex_lock(&g_comp_device_qp_lock);
TAILQ_FOREACH(device_qp, &g_comp_device_qp, link) {
if (strcmp(device_qp->device->cdev_info.driver_name, chan->drv_name) == 0) {
if (device_qp->chan == NULL) {
chan->device_qp = device_qp;
device_qp->chan = chan;
break;
}
}
}
pthread_mutex_unlock(&g_comp_device_qp_lock);
if (chan->device_qp == NULL) {
SPDK_ERRLOG("out of qpairs, cannot assign one\n");
assert(false);
return -ENOMEM;
} else {
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
if (capab->comp_feature_flags & (RTE_COMP_FF_OOP_SGL_IN_SGL_OUT | RTE_COMP_FF_OOP_SGL_IN_LB_OUT)) {
chan->device_qp->device->sgl_in = true;
}
if (capab->comp_feature_flags & (RTE_COMP_FF_OOP_SGL_IN_SGL_OUT | RTE_COMP_FF_OOP_LB_IN_SGL_OUT)) {
chan->device_qp->device->sgl_out = true;
}
}
return 0;
}
static void
accel_compress_write_config_json(struct spdk_json_write_ctx *w)
{
if (g_compressdev_enable) {
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "compressdev_scan_accel_module");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_uint32(w, "pmd", g_opts);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
}
static void
compress_destroy_cb(void *io_device, void *ctx_buf)
{
struct compress_io_channel *chan = ctx_buf;
struct comp_device_qp *device_qp = chan->device_qp;
spdk_free(chan->src_mbufs);
spdk_free(chan->dst_mbufs);
spdk_poller_unregister(&chan->poller);
pthread_mutex_lock(&g_comp_device_qp_lock);
chan->device_qp = NULL;
device_qp->chan = NULL;
pthread_mutex_unlock(&g_comp_device_qp_lock);
}
static size_t
accel_compress_get_ctx_size(void)
{
return 0;
}
static bool
compress_supports_opcode(enum accel_opcode opc)
{
if (g_mlx5_pci_available || g_qat_available) {
switch (opc) {
case ACCEL_OPC_COMPRESS:
case ACCEL_OPC_DECOMPRESS:
return true;
default:
break;
}
}
return false;
}
static struct spdk_io_channel *
compress_get_io_channel(void)
{
return spdk_get_io_channel(&g_compress_module);
}
static void accel_compress_exit(void *ctx);
static struct spdk_accel_module_if g_compress_module = {
.module_init = accel_compress_init,
.module_fini = accel_compress_exit,
.write_config_json = accel_compress_write_config_json,
.get_ctx_size = accel_compress_get_ctx_size,
.name = "dpdk_compressdev",
.supports_opcode = compress_supports_opcode,
.get_io_channel = compress_get_io_channel,
.submit_tasks = compress_submit_tasks
};
void
accel_dpdk_compressdev_enable(void)
{
spdk_accel_module_list_add(&g_compress_module);
}
/* Callback for unregistering the IO device. */
static void
_device_unregister_cb(void *io_device)
{
struct comp_device_qp *dev_qp;
struct compress_dev *device;
while ((device = TAILQ_FIRST(&g_compress_devs))) {
TAILQ_REMOVE(&g_compress_devs, device, link);
free(device);
}
while ((dev_qp = TAILQ_FIRST(&g_comp_device_qp))) {
TAILQ_REMOVE(&g_comp_device_qp, dev_qp, link);
free(dev_qp);
}
pthread_mutex_destroy(&g_comp_device_qp_lock);
rte_mempool_free(g_comp_op_mp);
rte_mempool_free(g_mbuf_mp);
spdk_accel_module_finish();
}
static void
accel_compress_exit(void *ctx)
{
if (g_compressdev_initialized) {
spdk_io_device_unregister(&g_compress_module, _device_unregister_cb);
g_compressdev_initialized = false;
} else {
spdk_accel_module_finish();
}
}