Spdk/lib/util/base64_neon.c
paul luse a6dbe3721e update Intel copyright notices
per Intel policy to include file commit date using git cmd
below.  The policy does not apply to non-Intel (C) notices.

git log --follow -C90% --format=%ad --date default <file> | tail -1

and then pull just the 4 digit year from the result.

Intel copyrights were not added to files where Intel either had
no contribution ot the contribution lacked substance (ie license
header updates, formatting changes, etc).  Contribution date used
"--follow -C95%" to get the most accurate date.

Note that several files in this patch didn't end the license/(c)
block with a blank comment line so these were added as the vast
majority of files do have this last blank line.  Simply there for
consistency.

Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: Id5b7ce4f658fe87132f14139ead58d6e285c04d4
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15192
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Community-CI: Mellanox Build Bot
2022-11-10 08:28:53 +00:00

203 lines
7.4 KiB
C

/* SPDX-License-Identifier: BSD-2-Clause
* Copyright (C) 2020 Intel Corporation.
* Copyright (c) 2005-2007, Nick Galbreath
* Copyright (c) 2013-2017, Alfred Klomp
* Copyright (c) 2015-2017, Wojciech Mula
* Copyright (c) 2016-2017, Matthieu Darbois
* All rights reserved.
*/
#ifndef __aarch64__
#error Unsupported hardware
#endif
#include "spdk/stdinc.h"
/*
* Encoding
* Use a 64-byte lookup to do the encoding.
* Reuse existing base64_dec_table and base64_dec_table.
* Decoding
* The input consists of five valid character sets in the Base64 alphabet,
* which we need to map back to the 6-bit values they represent.
* There are three ranges, two singles, and then there's the rest.
*
* LUT1[0-63] = base64_dec_table_neon64[0-63]
* LUT2[0-63] = base64_dec_table_neon64[64-127]
* # From To LUT Characters
* 1 [0..42] [255] #1 invalid input
* 2 [43] [62] #1 +
* 3 [44..46] [255] #1 invalid input
* 4 [47] [63] #1 /
* 5 [48..57] [52..61] #1 0..9
* 6 [58..63] [255] #1 invalid input
* 7 [64] [255] #2 invalid input
* 8 [65..90] [0..25] #2 A..Z
* 9 [91..96] [255] #2 invalid input
* 10 [97..122] [26..51] #2 a..z
* 11 [123..126] [255] #2 invalid input
* (12) Everything else => invalid input
*/
static const uint8_t base64_dec_table_neon64[] = {
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 62, 255, 255, 255, 63,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 255, 255, 255, 255, 255, 255,
0, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 255, 255, 255, 255,
255, 255, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 255, 255, 255, 255
};
/*
* LUT1[0-63] = base64_urlsafe_dec_table_neon64[0-63]
* LUT2[0-63] = base64_urlsafe_dec_table_neon64[64-127]
* # From To LUT Characters
* 1 [0..44] [255] #1 invalid input
* 2 [45] [62] #1 -
* 3 [46..47] [255] #1 invalid input
* 5 [48..57] [52..61] #1 0..9
* 6 [58..63] [255] #1 invalid input
* 7 [64] [255] #2 invalid input
* 8 [65..90] [0..25] #2 A..Z
* 9 [91..94] [255] #2 invalid input
* 10 [95] [63] #2 _
* 11 [96] [255] #2 invalid input
* 12 [97..122] [26..51] #2 a..z
* 13 [123..126] [255] #2 invalid input
* (14) Everything else => invalid input
*/
static const uint8_t base64_urlsafe_dec_table_neon64[] = {
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 62, 255, 255,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 255, 255, 255, 255, 255, 255,
0, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 255, 255, 255, 255,
63, 255, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 255, 255, 255, 255
};
#include <arm_neon.h>
#define CMPGT(s,n) vcgtq_u8((s), vdupq_n_u8(n))
static inline uint8x16x4_t
load_64byte_table(const uint8_t *p)
{
uint8x16x4_t ret;
ret.val[0] = vld1q_u8(p + 0);
ret.val[1] = vld1q_u8(p + 16);
ret.val[2] = vld1q_u8(p + 32);
ret.val[3] = vld1q_u8(p + 48);
return ret;
}
static void
base64_encode_neon64(char **dst, const char *enc_table, const void **src, size_t *src_len)
{
const uint8x16x4_t tbl_enc = load_64byte_table(enc_table);
while (*src_len >= 48) {
uint8x16x3_t str;
uint8x16x4_t res;
/* Load 48 bytes and deinterleave */
str = vld3q_u8((uint8_t *)*src);
/* Divide bits of three input bytes over four output bytes and clear top two bits */
res.val[0] = vshrq_n_u8(str.val[0], 2);
res.val[1] = vandq_u8(vorrq_u8(vshrq_n_u8(str.val[1], 4), vshlq_n_u8(str.val[0], 4)),
vdupq_n_u8(0x3F));
res.val[2] = vandq_u8(vorrq_u8(vshrq_n_u8(str.val[2], 6), vshlq_n_u8(str.val[1], 2)),
vdupq_n_u8(0x3F));
res.val[3] = vandq_u8(str.val[2], vdupq_n_u8(0x3F));
/*
* The bits have now been shifted to the right locations;
* translate their values 0..63 to the Base64 alphabet.
* Use a 64-byte table lookup:
*/
res.val[0] = vqtbl4q_u8(tbl_enc, res.val[0]);
res.val[1] = vqtbl4q_u8(tbl_enc, res.val[1]);
res.val[2] = vqtbl4q_u8(tbl_enc, res.val[2]);
res.val[3] = vqtbl4q_u8(tbl_enc, res.val[3]);
/* Interleave and store result */
vst4q_u8((uint8_t *)*dst, res);
*src += 48; /* 3 * 16 bytes of input */
*dst += 64; /* 4 * 16 bytes of output */
*src_len -= 48;
}
}
static void
base64_decode_neon64(void **dst, const uint8_t *dec_table_neon64, const uint8_t **src,
size_t *src_len)
{
/*
* First LUT tbl_dec1 will use VTBL instruction (out of range indices are set to 0 in destination).
* Second LUT tbl_dec2 will use VTBX instruction (out of range indices will be unchanged in destination).
* Input [64..126] will be mapped to index [1..63] in tb1_dec2. Index 0 means that value comes from tb1_dec1.
*/
const uint8x16x4_t tbl_dec1 = load_64byte_table(dec_table_neon64);
const uint8x16x4_t tbl_dec2 = load_64byte_table(dec_table_neon64 + 64);
const uint8x16_t offset = vdupq_n_u8(63U);
while (*src_len >= 64) {
uint8x16x4_t dec1, dec2;
uint8x16x3_t dec;
/* Load 64 bytes and deinterleave */
uint8x16x4_t str = vld4q_u8((uint8_t *)*src);
/* Get indices for 2nd LUT */
dec2.val[0] = vqsubq_u8(str.val[0], offset);
dec2.val[1] = vqsubq_u8(str.val[1], offset);
dec2.val[2] = vqsubq_u8(str.val[2], offset);
dec2.val[3] = vqsubq_u8(str.val[3], offset);
/* Get values from 1st LUT */
dec1.val[0] = vqtbl4q_u8(tbl_dec1, str.val[0]);
dec1.val[1] = vqtbl4q_u8(tbl_dec1, str.val[1]);
dec1.val[2] = vqtbl4q_u8(tbl_dec1, str.val[2]);
dec1.val[3] = vqtbl4q_u8(tbl_dec1, str.val[3]);
/* Get values from 2nd LUT */
dec2.val[0] = vqtbx4q_u8(dec2.val[0], tbl_dec2, dec2.val[0]);
dec2.val[1] = vqtbx4q_u8(dec2.val[1], tbl_dec2, dec2.val[1]);
dec2.val[2] = vqtbx4q_u8(dec2.val[2], tbl_dec2, dec2.val[2]);
dec2.val[3] = vqtbx4q_u8(dec2.val[3], tbl_dec2, dec2.val[3]);
/* Get final values */
str.val[0] = vorrq_u8(dec1.val[0], dec2.val[0]);
str.val[1] = vorrq_u8(dec1.val[1], dec2.val[1]);
str.val[2] = vorrq_u8(dec1.val[2], dec2.val[2]);
str.val[3] = vorrq_u8(dec1.val[3], dec2.val[3]);
/* Check for invalid input, any value larger than 63 */
uint8x16_t classified = CMPGT(str.val[0], 63);
classified = vorrq_u8(classified, CMPGT(str.val[1], 63));
classified = vorrq_u8(classified, CMPGT(str.val[2], 63));
classified = vorrq_u8(classified, CMPGT(str.val[3], 63));
/* check that all bits are zero */
if (vmaxvq_u8(classified) != 0U) {
break;
}
/* Compress four bytes into three */
dec.val[0] = vorrq_u8(vshlq_n_u8(str.val[0], 2), vshrq_n_u8(str.val[1], 4));
dec.val[1] = vorrq_u8(vshlq_n_u8(str.val[1], 4), vshrq_n_u8(str.val[2], 2));
dec.val[2] = vorrq_u8(vshlq_n_u8(str.val[2], 6), str.val[3]);
/* Interleave and store decoded result */
vst3q_u8((uint8_t *)*dst, dec);
*src += 64;
*dst += 48;
*src_len -= 64;
}
}