Spdk/lib/nvme/nvme_rdma.c
Tomasz Zawadzki 1e39a6df17 lib/nvme_rdma: return negated error from nvme_rdma_parse_addr
All paths in nvme_rdma_parse_addr(), except the one in this patch
already returned negated error values, so fix it.

Change-Id: I615956e4139f70bfc171bcab94e6e89f60e62ac3
Signed-off-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/17098
Community-CI: Mellanox Build Bot
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Aleksey Marchuk <alexeymar@nvidia.com>
2023-03-10 16:44:37 +00:00

3341 lines
90 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2016 Intel Corporation. All rights reserved.
* Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
* Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*/
/*
* NVMe over RDMA transport
*/
#include "spdk/stdinc.h"
#include "spdk/assert.h"
#include "spdk/dma.h"
#include "spdk/log.h"
#include "spdk/trace.h"
#include "spdk/queue.h"
#include "spdk/nvme.h"
#include "spdk/nvmf_spec.h"
#include "spdk/string.h"
#include "spdk/endian.h"
#include "spdk/likely.h"
#include "spdk/config.h"
#include "nvme_internal.h"
#include "spdk_internal/rdma.h"
#define NVME_RDMA_TIME_OUT_IN_MS 2000
#define NVME_RDMA_RW_BUFFER_SIZE 131072
/*
* NVME RDMA qpair Resource Defaults
*/
#define NVME_RDMA_DEFAULT_TX_SGE 2
#define NVME_RDMA_DEFAULT_RX_SGE 1
/* Max number of NVMe-oF SGL descriptors supported by the host */
#define NVME_RDMA_MAX_SGL_DESCRIPTORS 16
/* number of STAILQ entries for holding pending RDMA CM events. */
#define NVME_RDMA_NUM_CM_EVENTS 256
/* CM event processing timeout */
#define NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US 1000000
/* The default size for a shared rdma completion queue. */
#define DEFAULT_NVME_RDMA_CQ_SIZE 4096
/*
* In the special case of a stale connection we don't expose a mechanism
* for the user to retry the connection so we need to handle it internally.
*/
#define NVME_RDMA_STALE_CONN_RETRY_MAX 5
#define NVME_RDMA_STALE_CONN_RETRY_DELAY_US 10000
/*
* Maximum value of transport_retry_count used by RDMA controller
*/
#define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT 7
/*
* Maximum value of transport_ack_timeout used by RDMA controller
*/
#define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT 31
/*
* Number of microseconds to wait until the lingering qpair becomes quiet.
*/
#define NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US 1000000ull
/*
* The max length of keyed SGL data block (3 bytes)
*/
#define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1)
#define WC_PER_QPAIR(queue_depth) (queue_depth * 2)
#define NVME_RDMA_POLL_GROUP_CHECK_QPN(_rqpair, qpn) \
((_rqpair)->rdma_qp && (_rqpair)->rdma_qp->qp->qp_num == (qpn)) \
struct nvme_rdma_memory_domain {
TAILQ_ENTRY(nvme_rdma_memory_domain) link;
uint32_t ref;
struct ibv_pd *pd;
struct spdk_memory_domain *domain;
struct spdk_memory_domain_rdma_ctx rdma_ctx;
};
enum nvme_rdma_wr_type {
RDMA_WR_TYPE_RECV,
RDMA_WR_TYPE_SEND,
};
struct nvme_rdma_wr {
/* Using this instead of the enum allows this struct to only occupy one byte. */
uint8_t type;
};
struct spdk_nvmf_cmd {
struct spdk_nvme_cmd cmd;
struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS];
};
struct spdk_nvme_rdma_hooks g_nvme_hooks = {};
/* STAILQ wrapper for cm events. */
struct nvme_rdma_cm_event_entry {
struct rdma_cm_event *evt;
STAILQ_ENTRY(nvme_rdma_cm_event_entry) link;
};
/* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
struct nvme_rdma_ctrlr {
struct spdk_nvme_ctrlr ctrlr;
uint16_t max_sge;
struct rdma_event_channel *cm_channel;
STAILQ_HEAD(, nvme_rdma_cm_event_entry) pending_cm_events;
STAILQ_HEAD(, nvme_rdma_cm_event_entry) free_cm_events;
struct nvme_rdma_cm_event_entry *cm_events;
};
struct nvme_rdma_poller_stats {
uint64_t polls;
uint64_t idle_polls;
uint64_t queued_requests;
uint64_t completions;
struct spdk_rdma_qp_stats rdma_stats;
};
struct nvme_rdma_poll_group;
struct nvme_rdma_rsps;
struct nvme_rdma_poller {
struct ibv_context *device;
struct ibv_cq *cq;
struct spdk_rdma_srq *srq;
struct nvme_rdma_rsps *rsps;
struct ibv_pd *pd;
struct spdk_rdma_mem_map *mr_map;
uint32_t refcnt;
int required_num_wc;
int current_num_wc;
struct nvme_rdma_poller_stats stats;
struct nvme_rdma_poll_group *group;
STAILQ_ENTRY(nvme_rdma_poller) link;
};
struct nvme_rdma_poll_group {
struct spdk_nvme_transport_poll_group group;
STAILQ_HEAD(, nvme_rdma_poller) pollers;
uint32_t num_pollers;
};
enum nvme_rdma_qpair_state {
NVME_RDMA_QPAIR_STATE_INVALID = 0,
NVME_RDMA_QPAIR_STATE_STALE_CONN,
NVME_RDMA_QPAIR_STATE_INITIALIZING,
NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND,
NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL,
NVME_RDMA_QPAIR_STATE_RUNNING,
NVME_RDMA_QPAIR_STATE_EXITING,
NVME_RDMA_QPAIR_STATE_LINGERING,
NVME_RDMA_QPAIR_STATE_EXITED,
};
struct nvme_rdma_qpair;
typedef int (*nvme_rdma_cm_event_cb)(struct nvme_rdma_qpair *rqpair, int ret);
struct nvme_rdma_rsp_opts {
uint16_t num_entries;
struct nvme_rdma_qpair *rqpair;
struct spdk_rdma_srq *srq;
struct spdk_rdma_mem_map *mr_map;
};
struct nvme_rdma_rsps {
/* Parallel arrays of response buffers + response SGLs of size num_entries */
struct ibv_sge *rsp_sgls;
struct spdk_nvme_rdma_rsp *rsps;
struct ibv_recv_wr *rsp_recv_wrs;
/* Count of outstanding recv objects */
uint16_t current_num_recvs;
uint16_t num_entries;
};
/* NVMe RDMA qpair extensions for spdk_nvme_qpair */
struct nvme_rdma_qpair {
struct spdk_nvme_qpair qpair;
struct spdk_rdma_qp *rdma_qp;
struct rdma_cm_id *cm_id;
struct ibv_cq *cq;
struct spdk_rdma_srq *srq;
struct spdk_nvme_rdma_req *rdma_reqs;
uint32_t max_send_sge;
uint32_t max_recv_sge;
uint16_t num_entries;
bool delay_cmd_submit;
uint32_t num_completions;
struct nvme_rdma_rsps *rsps;
/*
* Array of num_entries NVMe commands registered as RDMA message buffers.
* Indexed by rdma_req->id.
*/
struct spdk_nvmf_cmd *cmds;
struct spdk_rdma_mem_map *mr_map;
TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs;
TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs;
struct nvme_rdma_memory_domain *memory_domain;
/* Count of outstanding send objects */
uint16_t current_num_sends;
/* Placed at the end of the struct since it is not used frequently */
struct rdma_cm_event *evt;
struct nvme_rdma_poller *poller;
uint64_t evt_timeout_ticks;
nvme_rdma_cm_event_cb evt_cb;
enum rdma_cm_event_type expected_evt_type;
enum nvme_rdma_qpair_state state;
bool in_connect_poll;
uint8_t stale_conn_retry_count;
bool need_destroy;
};
enum NVME_RDMA_COMPLETION_FLAGS {
NVME_RDMA_SEND_COMPLETED = 1u << 0,
NVME_RDMA_RECV_COMPLETED = 1u << 1,
};
struct spdk_nvme_rdma_req {
uint16_t id;
uint16_t completion_flags: 2;
uint16_t reserved: 14;
/* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request
* during processing of RDMA_SEND. To complete the request we must know the response
* received in RDMA_RECV, so store it in this field */
struct spdk_nvme_rdma_rsp *rdma_rsp;
struct nvme_rdma_wr rdma_wr;
struct ibv_send_wr send_wr;
struct nvme_request *req;
struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE];
TAILQ_ENTRY(spdk_nvme_rdma_req) link;
};
struct spdk_nvme_rdma_rsp {
struct spdk_nvme_cpl cpl;
struct nvme_rdma_qpair *rqpair;
struct ibv_recv_wr *recv_wr;
struct nvme_rdma_wr rdma_wr;
};
struct nvme_rdma_memory_translation_ctx {
void *addr;
size_t length;
uint32_t lkey;
uint32_t rkey;
};
static const char *rdma_cm_event_str[] = {
"RDMA_CM_EVENT_ADDR_RESOLVED",
"RDMA_CM_EVENT_ADDR_ERROR",
"RDMA_CM_EVENT_ROUTE_RESOLVED",
"RDMA_CM_EVENT_ROUTE_ERROR",
"RDMA_CM_EVENT_CONNECT_REQUEST",
"RDMA_CM_EVENT_CONNECT_RESPONSE",
"RDMA_CM_EVENT_CONNECT_ERROR",
"RDMA_CM_EVENT_UNREACHABLE",
"RDMA_CM_EVENT_REJECTED",
"RDMA_CM_EVENT_ESTABLISHED",
"RDMA_CM_EVENT_DISCONNECTED",
"RDMA_CM_EVENT_DEVICE_REMOVAL",
"RDMA_CM_EVENT_MULTICAST_JOIN",
"RDMA_CM_EVENT_MULTICAST_ERROR",
"RDMA_CM_EVENT_ADDR_CHANGE",
"RDMA_CM_EVENT_TIMEWAIT_EXIT"
};
static struct nvme_rdma_poller *nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group,
struct ibv_context *device);
static void nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group,
struct nvme_rdma_poller *poller);
static TAILQ_HEAD(, nvme_rdma_memory_domain) g_memory_domains = TAILQ_HEAD_INITIALIZER(
g_memory_domains);
static pthread_mutex_t g_memory_domains_lock = PTHREAD_MUTEX_INITIALIZER;
static struct nvme_rdma_memory_domain *
nvme_rdma_get_memory_domain(struct ibv_pd *pd)
{
struct nvme_rdma_memory_domain *domain = NULL;
struct spdk_memory_domain_ctx ctx;
int rc;
pthread_mutex_lock(&g_memory_domains_lock);
TAILQ_FOREACH(domain, &g_memory_domains, link) {
if (domain->pd == pd) {
domain->ref++;
pthread_mutex_unlock(&g_memory_domains_lock);
return domain;
}
}
domain = calloc(1, sizeof(*domain));
if (!domain) {
SPDK_ERRLOG("Memory allocation failed\n");
pthread_mutex_unlock(&g_memory_domains_lock);
return NULL;
}
domain->rdma_ctx.size = sizeof(domain->rdma_ctx);
domain->rdma_ctx.ibv_pd = pd;
ctx.size = sizeof(ctx);
ctx.user_ctx = &domain->rdma_ctx;
rc = spdk_memory_domain_create(&domain->domain, SPDK_DMA_DEVICE_TYPE_RDMA, &ctx,
SPDK_RDMA_DMA_DEVICE);
if (rc) {
SPDK_ERRLOG("Failed to create memory domain\n");
free(domain);
pthread_mutex_unlock(&g_memory_domains_lock);
return NULL;
}
domain->pd = pd;
domain->ref = 1;
TAILQ_INSERT_TAIL(&g_memory_domains, domain, link);
pthread_mutex_unlock(&g_memory_domains_lock);
return domain;
}
static void
nvme_rdma_put_memory_domain(struct nvme_rdma_memory_domain *device)
{
if (!device) {
return;
}
pthread_mutex_lock(&g_memory_domains_lock);
assert(device->ref > 0);
device->ref--;
if (device->ref == 0) {
spdk_memory_domain_destroy(device->domain);
TAILQ_REMOVE(&g_memory_domains, device, link);
free(device);
}
pthread_mutex_unlock(&g_memory_domains_lock);
}
static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair);
static inline struct nvme_rdma_qpair *
nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
{
assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
}
static inline struct nvme_rdma_poll_group *
nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group)
{
return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group));
}
static inline struct nvme_rdma_ctrlr *
nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
}
static struct spdk_nvme_rdma_req *
nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
{
struct spdk_nvme_rdma_req *rdma_req;
rdma_req = TAILQ_FIRST(&rqpair->free_reqs);
if (rdma_req) {
TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link);
TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
}
return rdma_req;
}
static void
nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
{
rdma_req->completion_flags = 0;
rdma_req->req = NULL;
TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
}
static void
nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req,
struct spdk_nvme_cpl *rsp,
bool print_on_error)
{
struct nvme_request *req = rdma_req->req;
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_qpair *qpair;
bool error, print_error;
assert(req != NULL);
qpair = req->qpair;
rqpair = nvme_rdma_qpair(qpair);
error = spdk_nvme_cpl_is_error(rsp);
print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging;
if (print_error) {
spdk_nvme_qpair_print_command(qpair, &req->cmd);
}
if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) {
spdk_nvme_qpair_print_completion(qpair, rsp);
}
TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, rsp);
nvme_free_request(req);
nvme_rdma_req_put(rqpair, rdma_req);
}
static const char *
nvme_rdma_cm_event_str_get(uint32_t event)
{
if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
return rdma_cm_event_str[event];
} else {
return "Undefined";
}
}
static int
nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair)
{
struct rdma_cm_event *event = rqpair->evt;
struct spdk_nvmf_rdma_accept_private_data *accept_data;
int rc = 0;
if (event) {
switch (event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
case RDMA_CM_EVENT_ADDR_ERROR:
case RDMA_CM_EVENT_ROUTE_RESOLVED:
case RDMA_CM_EVENT_ROUTE_ERROR:
break;
case RDMA_CM_EVENT_CONNECT_REQUEST:
break;
case RDMA_CM_EVENT_CONNECT_ERROR:
break;
case RDMA_CM_EVENT_UNREACHABLE:
case RDMA_CM_EVENT_REJECTED:
break;
case RDMA_CM_EVENT_CONNECT_RESPONSE:
rc = spdk_rdma_qp_complete_connect(rqpair->rdma_qp);
/* fall through */
case RDMA_CM_EVENT_ESTABLISHED:
accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
if (accept_data == NULL) {
rc = -1;
} else {
SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Target receive queue depth %d.\n",
rqpair->num_entries + 1, accept_data->crqsize);
}
break;
case RDMA_CM_EVENT_DISCONNECTED:
rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
rqpair->need_destroy = true;
break;
case RDMA_CM_EVENT_MULTICAST_JOIN:
case RDMA_CM_EVENT_MULTICAST_ERROR:
break;
case RDMA_CM_EVENT_ADDR_CHANGE:
rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
break;
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
break;
default:
SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
break;
}
rqpair->evt = NULL;
rdma_ack_cm_event(event);
}
return rc;
}
/*
* This function must be called under the nvme controller's lock
* because it touches global controller variables. The lock is taken
* by the generic transport code before invoking a few of the functions
* in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair,
* and conditionally nvme_rdma_qpair_process_completions when it is calling
* completions on the admin qpair. When adding a new call to this function, please
* verify that it is in a situation where it falls under the lock.
*/
static int
nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr)
{
struct nvme_rdma_cm_event_entry *entry, *tmp;
struct nvme_rdma_qpair *event_qpair;
struct rdma_cm_event *event;
struct rdma_event_channel *channel = rctrlr->cm_channel;
STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
event_qpair = entry->evt->id->context;
if (event_qpair->evt == NULL) {
event_qpair->evt = entry->evt;
STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
}
}
while (rdma_get_cm_event(channel, &event) == 0) {
event_qpair = event->id->context;
if (event_qpair->evt == NULL) {
event_qpair->evt = event;
} else {
assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr));
entry = STAILQ_FIRST(&rctrlr->free_cm_events);
if (entry == NULL) {
rdma_ack_cm_event(event);
return -ENOMEM;
}
STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link);
entry->evt = event;
STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link);
}
}
/* rdma_get_cm_event() returns -1 on error. If an error occurs, errno
* will be set to indicate the failure reason. So return negated errno here.
*/
return -errno;
}
static int
nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type,
struct rdma_cm_event *reaped_evt)
{
int rc = -EBADMSG;
if (expected_evt_type == reaped_evt->event) {
return 0;
}
switch (expected_evt_type) {
case RDMA_CM_EVENT_ESTABLISHED:
/*
* There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as
* IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get
* the same values here.
*/
if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) {
rc = -ESTALE;
} else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) {
/*
* If we are using a qpair which is not created using rdma cm API
* then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of
* RDMA_CM_EVENT_ESTABLISHED.
*/
return 0;
}
break;
default:
break;
}
SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
nvme_rdma_cm_event_str_get(expected_evt_type),
nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event,
reaped_evt->status);
return rc;
}
static int
nvme_rdma_process_event_start(struct nvme_rdma_qpair *rqpair,
enum rdma_cm_event_type evt,
nvme_rdma_cm_event_cb evt_cb)
{
int rc;
assert(evt_cb != NULL);
if (rqpair->evt != NULL) {
rc = nvme_rdma_qpair_process_cm_event(rqpair);
if (rc) {
return rc;
}
}
rqpair->expected_evt_type = evt;
rqpair->evt_cb = evt_cb;
rqpair->evt_timeout_ticks = (NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US * spdk_get_ticks_hz()) /
SPDK_SEC_TO_USEC + spdk_get_ticks();
return 0;
}
static int
nvme_rdma_process_event_poll(struct nvme_rdma_qpair *rqpair)
{
struct nvme_rdma_ctrlr *rctrlr;
int rc = 0, rc2;
rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
assert(rctrlr != NULL);
if (!rqpair->evt && spdk_get_ticks() < rqpair->evt_timeout_ticks) {
rc = nvme_rdma_poll_events(rctrlr);
if (rc == -EAGAIN || rc == -EWOULDBLOCK) {
return rc;
}
}
if (rqpair->evt == NULL) {
rc = -EADDRNOTAVAIL;
goto exit;
}
rc = nvme_rdma_validate_cm_event(rqpair->expected_evt_type, rqpair->evt);
rc2 = nvme_rdma_qpair_process_cm_event(rqpair);
/* bad message takes precedence over the other error codes from processing the event. */
rc = rc == 0 ? rc2 : rc;
exit:
assert(rqpair->evt_cb != NULL);
return rqpair->evt_cb(rqpair, rc);
}
static int
nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller)
{
int current_num_wc, required_num_wc;
required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries);
current_num_wc = poller->current_num_wc;
if (current_num_wc < required_num_wc) {
current_num_wc = spdk_max(current_num_wc * 2, required_num_wc);
}
if (poller->current_num_wc != current_num_wc) {
SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc,
current_num_wc);
if (ibv_resize_cq(poller->cq, current_num_wc)) {
SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
return -1;
}
poller->current_num_wc = current_num_wc;
}
poller->required_num_wc = required_num_wc;
return 0;
}
static int
nvme_rdma_qpair_set_poller(struct spdk_nvme_qpair *qpair)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
struct nvme_rdma_poller *poller;
assert(rqpair->cq == NULL);
poller = nvme_rdma_poll_group_get_poller(group, rqpair->cm_id->verbs);
if (!poller) {
SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group);
return -EINVAL;
}
if (!poller->srq) {
if (nvme_rdma_resize_cq(rqpair, poller)) {
nvme_rdma_poll_group_put_poller(group, poller);
return -EPROTO;
}
}
rqpair->cq = poller->cq;
rqpair->srq = poller->srq;
if (rqpair->srq) {
rqpair->rsps = poller->rsps;
}
rqpair->poller = poller;
return 0;
}
static int
nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
{
int rc;
struct spdk_rdma_qp_init_attr attr = {};
struct ibv_device_attr dev_attr;
struct nvme_rdma_ctrlr *rctrlr;
rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr);
if (rc != 0) {
SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
return -1;
}
if (rqpair->qpair.poll_group) {
assert(!rqpair->cq);
rc = nvme_rdma_qpair_set_poller(&rqpair->qpair);
if (rc) {
SPDK_ERRLOG("Unable to activate the rdmaqpair.\n");
return -1;
}
assert(rqpair->cq);
} else {
rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0);
if (!rqpair->cq) {
SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
return -1;
}
}
rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
if (g_nvme_hooks.get_ibv_pd) {
attr.pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs);
} else {
attr.pd = spdk_rdma_get_pd(rqpair->cm_id->verbs);
}
attr.stats = rqpair->poller ? &rqpair->poller->stats.rdma_stats : NULL;
attr.send_cq = rqpair->cq;
attr.recv_cq = rqpair->cq;
attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */
if (rqpair->srq) {
attr.srq = rqpair->srq->srq;
} else {
attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */
}
attr.cap.max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge);
attr.cap.max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge);
rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &attr);
if (!rqpair->rdma_qp) {
return -1;
}
rqpair->memory_domain = nvme_rdma_get_memory_domain(rqpair->rdma_qp->qp->pd);
if (!rqpair->memory_domain) {
SPDK_ERRLOG("Failed to get memory domain\n");
return -1;
}
/* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */
rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge);
rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge);
rqpair->current_num_sends = 0;
rqpair->cm_id->context = rqpair;
return 0;
}
static void
nvme_rdma_reset_failed_sends(struct nvme_rdma_qpair *rqpair,
struct ibv_send_wr *bad_send_wr, int rc)
{
SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n",
rc, spdk_strerror(rc), bad_send_wr);
while (bad_send_wr != NULL) {
assert(rqpair->current_num_sends > 0);
rqpair->current_num_sends--;
bad_send_wr = bad_send_wr->next;
}
}
static void
nvme_rdma_reset_failed_recvs(struct nvme_rdma_rsps *rsps,
struct ibv_recv_wr *bad_recv_wr, int rc)
{
SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n",
rc, spdk_strerror(rc), bad_recv_wr);
while (bad_recv_wr != NULL) {
assert(rsps->current_num_recvs > 0);
rsps->current_num_recvs--;
bad_recv_wr = bad_recv_wr->next;
}
}
static inline int
nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair)
{
struct ibv_send_wr *bad_send_wr = NULL;
int rc;
rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr);
if (spdk_unlikely(rc)) {
nvme_rdma_reset_failed_sends(rqpair, bad_send_wr, rc);
}
return rc;
}
static inline int
nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair)
{
struct ibv_recv_wr *bad_recv_wr;
int rc = 0;
rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
if (spdk_unlikely(rc)) {
nvme_rdma_reset_failed_recvs(rqpair->rsps, bad_recv_wr, rc);
}
return rc;
}
static inline int
nvme_rdma_poller_submit_recvs(struct nvme_rdma_poller *poller)
{
struct ibv_recv_wr *bad_recv_wr;
int rc;
rc = spdk_rdma_srq_flush_recv_wrs(poller->srq, &bad_recv_wr);
if (spdk_unlikely(rc)) {
nvme_rdma_reset_failed_recvs(poller->rsps, bad_recv_wr, rc);
}
return rc;
}
#define nvme_rdma_trace_ibv_sge(sg_list) \
if (sg_list) { \
SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \
(void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
}
static void
nvme_rdma_free_rsps(struct nvme_rdma_rsps *rsps)
{
if (!rsps) {
return;
}
spdk_free(rsps->rsps);
spdk_free(rsps->rsp_sgls);
spdk_free(rsps->rsp_recv_wrs);
spdk_free(rsps);
}
static struct nvme_rdma_rsps *
nvme_rdma_create_rsps(struct nvme_rdma_rsp_opts *opts)
{
struct nvme_rdma_rsps *rsps;
struct spdk_rdma_memory_translation translation;
uint16_t i;
int rc;
rsps = spdk_zmalloc(sizeof(*rsps), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
if (!rsps) {
SPDK_ERRLOG("Failed to allocate rsps object\n");
return NULL;
}
rsps->rsp_sgls = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_sgls), 0, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
if (!rsps->rsp_sgls) {
SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
goto fail;
}
rsps->rsp_recv_wrs = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_recv_wrs), 0, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
if (!rsps->rsp_recv_wrs) {
SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
goto fail;
}
rsps->rsps = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsps), 0, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
if (!rsps->rsps) {
SPDK_ERRLOG("can not allocate rdma rsps\n");
goto fail;
}
for (i = 0; i < opts->num_entries; i++) {
struct ibv_sge *rsp_sgl = &rsps->rsp_sgls[i];
struct spdk_nvme_rdma_rsp *rsp = &rsps->rsps[i];
struct ibv_recv_wr *recv_wr = &rsps->rsp_recv_wrs[i];
rsp->rqpair = opts->rqpair;
rsp->rdma_wr.type = RDMA_WR_TYPE_RECV;
rsp->recv_wr = recv_wr;
rsp_sgl->addr = (uint64_t)rsp;
rsp_sgl->length = sizeof(struct spdk_nvme_cpl);
rc = spdk_rdma_get_translation(opts->mr_map, rsp, sizeof(*rsp), &translation);
if (rc) {
goto fail;
}
rsp_sgl->lkey = spdk_rdma_memory_translation_get_lkey(&translation);
recv_wr->wr_id = (uint64_t)&rsp->rdma_wr;
recv_wr->next = NULL;
recv_wr->sg_list = rsp_sgl;
recv_wr->num_sge = 1;
nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
if (opts->rqpair) {
spdk_rdma_qp_queue_recv_wrs(opts->rqpair->rdma_qp, recv_wr);
} else {
spdk_rdma_srq_queue_recv_wrs(opts->srq, recv_wr);
}
}
rsps->num_entries = opts->num_entries;
rsps->current_num_recvs = opts->num_entries;
return rsps;
fail:
nvme_rdma_free_rsps(rsps);
return NULL;
}
static void
nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
{
if (!rqpair->rdma_reqs) {
return;
}
spdk_free(rqpair->cmds);
rqpair->cmds = NULL;
spdk_free(rqpair->rdma_reqs);
rqpair->rdma_reqs = NULL;
}
static int
nvme_rdma_create_reqs(struct nvme_rdma_qpair *rqpair)
{
struct spdk_rdma_memory_translation translation;
uint16_t i;
int rc;
assert(!rqpair->rdma_reqs);
rqpair->rdma_reqs = spdk_zmalloc(rqpair->num_entries * sizeof(struct spdk_nvme_rdma_req), 0, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
if (rqpair->rdma_reqs == NULL) {
SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
goto fail;
}
assert(!rqpair->cmds);
rqpair->cmds = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->cmds), 0, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
if (!rqpair->cmds) {
SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
goto fail;
}
TAILQ_INIT(&rqpair->free_reqs);
TAILQ_INIT(&rqpair->outstanding_reqs);
for (i = 0; i < rqpair->num_entries; i++) {
struct spdk_nvme_rdma_req *rdma_req;
struct spdk_nvmf_cmd *cmd;
rdma_req = &rqpair->rdma_reqs[i];
rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND;
cmd = &rqpair->cmds[i];
rdma_req->id = i;
rc = spdk_rdma_get_translation(rqpair->mr_map, cmd, sizeof(*cmd), &translation);
if (rc) {
goto fail;
}
rdma_req->send_sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
/* The first RDMA sgl element will always point
* at this data structure. Depending on whether
* an NVMe-oF SGL is required, the length of
* this element may change. */
rdma_req->send_sgl[0].addr = (uint64_t)cmd;
rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr;
rdma_req->send_wr.next = NULL;
rdma_req->send_wr.opcode = IBV_WR_SEND;
rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
rdma_req->send_wr.sg_list = rdma_req->send_sgl;
rdma_req->send_wr.imm_data = 0;
TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
}
return 0;
fail:
nvme_rdma_free_reqs(rqpair);
return -ENOMEM;
}
static int nvme_rdma_connect(struct nvme_rdma_qpair *rqpair);
static int
nvme_rdma_route_resolved(struct nvme_rdma_qpair *rqpair, int ret)
{
if (ret) {
SPDK_ERRLOG("RDMA route resolution error\n");
return -1;
}
ret = nvme_rdma_qpair_init(rqpair);
if (ret < 0) {
SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
return -1;
}
return nvme_rdma_connect(rqpair);
}
static int
nvme_rdma_addr_resolved(struct nvme_rdma_qpair *rqpair, int ret)
{
if (ret) {
SPDK_ERRLOG("RDMA address resolution error\n");
return -1;
}
if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) {
#ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT
uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout;
ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID,
RDMA_OPTION_ID_ACK_TIMEOUT,
&timeout, sizeof(timeout));
if (ret) {
SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret);
}
#else
SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n");
#endif
}
if (rqpair->qpair.ctrlr->opts.transport_tos != SPDK_NVME_TRANSPORT_TOS_DISABLED) {
#ifdef SPDK_CONFIG_RDMA_SET_TOS
uint8_t tos = rqpair->qpair.ctrlr->opts.transport_tos;
ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_TOS, &tos, sizeof(tos));
if (ret) {
SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_TOS %u, ret %d\n", tos, ret);
}
#else
SPDK_DEBUGLOG(nvme, "transport_tos is not supported\n");
#endif
}
ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
if (ret) {
SPDK_ERRLOG("rdma_resolve_route\n");
return ret;
}
return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ROUTE_RESOLVED,
nvme_rdma_route_resolved);
}
static int
nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
struct sockaddr *src_addr,
struct sockaddr *dst_addr)
{
int ret;
if (src_addr) {
int reuse = 1;
ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
&reuse, sizeof(reuse));
if (ret) {
SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_REUSEADDR %d, ret %d\n",
reuse, ret);
/* It is likely that rdma_resolve_addr() returns -EADDRINUSE, but
* we may missing something. We rely on rdma_resolve_addr().
*/
}
}
ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
NVME_RDMA_TIME_OUT_IN_MS);
if (ret) {
SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
return ret;
}
return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ADDR_RESOLVED,
nvme_rdma_addr_resolved);
}
static int nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair);
static int
nvme_rdma_connect_established(struct nvme_rdma_qpair *rqpair, int ret)
{
struct nvme_rdma_rsp_opts opts = {};
if (ret == -ESTALE) {
return nvme_rdma_stale_conn_retry(rqpair);
} else if (ret) {
SPDK_ERRLOG("RDMA connect error %d\n", ret);
return ret;
}
assert(!rqpair->mr_map);
rqpair->mr_map = spdk_rdma_create_mem_map(rqpair->rdma_qp->qp->pd, &g_nvme_hooks,
SPDK_RDMA_MEMORY_MAP_ROLE_INITIATOR);
if (!rqpair->mr_map) {
SPDK_ERRLOG("Unable to register RDMA memory translation map\n");
return -1;
}
ret = nvme_rdma_create_reqs(rqpair);
SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
if (ret) {
SPDK_ERRLOG("Unable to create rqpair RDMA requests\n");
return -1;
}
SPDK_DEBUGLOG(nvme, "RDMA requests created\n");
if (!rqpair->srq) {
opts.num_entries = rqpair->num_entries;
opts.rqpair = rqpair;
opts.srq = NULL;
opts.mr_map = rqpair->mr_map;
assert(!rqpair->rsps);
rqpair->rsps = nvme_rdma_create_rsps(&opts);
if (!rqpair->rsps) {
SPDK_ERRLOG("Unable to create rqpair RDMA responses\n");
return -1;
}
SPDK_DEBUGLOG(nvme, "RDMA responses created\n");
ret = nvme_rdma_qpair_submit_recvs(rqpair);
SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
if (ret) {
SPDK_ERRLOG("Unable to submit rqpair RDMA responses\n");
return -1;
}
SPDK_DEBUGLOG(nvme, "RDMA responses submitted\n");
}
rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND;
return 0;
}
static int
nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
{
struct rdma_conn_param param = {};
struct spdk_nvmf_rdma_request_private_data request_data = {};
struct ibv_device_attr attr;
int ret;
struct spdk_nvme_ctrlr *ctrlr;
ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
if (ret != 0) {
SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
return ret;
}
param.responder_resources = attr.max_qp_rd_atom;
ctrlr = rqpair->qpair.ctrlr;
if (!ctrlr) {
return -1;
}
request_data.qid = rqpair->qpair.id;
request_data.hrqsize = rqpair->num_entries + 1;
request_data.hsqsize = rqpair->num_entries;
request_data.cntlid = ctrlr->cntlid;
param.private_data = &request_data;
param.private_data_len = sizeof(request_data);
param.retry_count = ctrlr->opts.transport_retry_count;
param.rnr_retry_count = 7;
/* Fields below are ignored by rdma cm if qpair has been
* created using rdma cm API. */
param.srq = 0;
param.qp_num = rqpair->rdma_qp->qp->qp_num;
ret = rdma_connect(rqpair->cm_id, &param);
if (ret) {
SPDK_ERRLOG("nvme rdma connect error\n");
return ret;
}
return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ESTABLISHED,
nvme_rdma_connect_established);
}
static int
nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service)
{
struct addrinfo *res;
struct addrinfo hints;
int ret;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = 0;
ret = getaddrinfo(addr, service, &hints, &res);
if (ret) {
SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
return -(abs(ret));
}
if (res->ai_addrlen > sizeof(*sa)) {
SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
ret = -EINVAL;
} else {
memcpy(sa, res->ai_addr, res->ai_addrlen);
}
freeaddrinfo(res);
return ret;
}
static int
nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct sockaddr_storage dst_addr;
struct sockaddr_storage src_addr;
bool src_addr_specified;
int rc;
struct nvme_rdma_ctrlr *rctrlr;
struct nvme_rdma_qpair *rqpair;
int family;
rqpair = nvme_rdma_qpair(qpair);
rctrlr = nvme_rdma_ctrlr(ctrlr);
assert(rctrlr != NULL);
switch (ctrlr->trid.adrfam) {
case SPDK_NVMF_ADRFAM_IPV4:
family = AF_INET;
break;
case SPDK_NVMF_ADRFAM_IPV6:
family = AF_INET6;
break;
default:
SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
return -1;
}
SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
memset(&dst_addr, 0, sizeof(dst_addr));
SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid);
rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid);
if (rc != 0) {
SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n");
return -1;
}
if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
memset(&src_addr, 0, sizeof(src_addr));
rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid);
if (rc != 0) {
SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n");
return -1;
}
src_addr_specified = true;
} else {
src_addr_specified = false;
}
rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
if (rc < 0) {
SPDK_ERRLOG("rdma_create_id() failed\n");
return -1;
}
rc = nvme_rdma_resolve_addr(rqpair,
src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
(struct sockaddr *)&dst_addr);
if (rc < 0) {
SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
return -1;
}
rqpair->state = NVME_RDMA_QPAIR_STATE_INITIALIZING;
return 0;
}
static int
nvme_rdma_stale_conn_reconnect(struct nvme_rdma_qpair *rqpair)
{
struct spdk_nvme_qpair *qpair = &rqpair->qpair;
if (spdk_get_ticks() < rqpair->evt_timeout_ticks) {
return -EAGAIN;
}
return nvme_rdma_ctrlr_connect_qpair(qpair->ctrlr, qpair);
}
static int
nvme_rdma_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
int rc;
if (rqpair->in_connect_poll) {
return -EAGAIN;
}
rqpair->in_connect_poll = true;
switch (rqpair->state) {
case NVME_RDMA_QPAIR_STATE_INVALID:
rc = -EAGAIN;
break;
case NVME_RDMA_QPAIR_STATE_INITIALIZING:
case NVME_RDMA_QPAIR_STATE_EXITING:
if (!nvme_qpair_is_admin_queue(qpair)) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
}
rc = nvme_rdma_process_event_poll(rqpair);
if (!nvme_qpair_is_admin_queue(qpair)) {
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
if (rc == 0) {
rc = -EAGAIN;
}
rqpair->in_connect_poll = false;
return rc;
case NVME_RDMA_QPAIR_STATE_STALE_CONN:
rc = nvme_rdma_stale_conn_reconnect(rqpair);
if (rc == 0) {
rc = -EAGAIN;
}
break;
case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND:
rc = nvme_fabric_qpair_connect_async(qpair, rqpair->num_entries + 1);
if (rc == 0) {
rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL;
rc = -EAGAIN;
} else {
SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
}
break;
case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL:
rc = nvme_fabric_qpair_connect_poll(qpair);
if (rc == 0) {
rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING;
nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
} else if (rc != -EAGAIN) {
SPDK_ERRLOG("Failed to poll NVMe-oF Fabric CONNECT command\n");
}
break;
case NVME_RDMA_QPAIR_STATE_RUNNING:
rc = 0;
break;
default:
assert(false);
rc = -EINVAL;
break;
}
rqpair->in_connect_poll = false;
return rc;
}
static inline int
nvme_rdma_get_memory_translation(struct nvme_request *req, struct nvme_rdma_qpair *rqpair,
struct nvme_rdma_memory_translation_ctx *_ctx)
{
struct spdk_memory_domain_translation_ctx ctx;
struct spdk_memory_domain_translation_result dma_translation = {.iov_count = 0};
struct spdk_rdma_memory_translation rdma_translation;
int rc;
assert(req);
assert(rqpair);
assert(_ctx);
if (req->payload.opts && req->payload.opts->memory_domain) {
ctx.size = sizeof(struct spdk_memory_domain_translation_ctx);
ctx.rdma.ibv_qp = rqpair->rdma_qp->qp;
dma_translation.size = sizeof(struct spdk_memory_domain_translation_result);
rc = spdk_memory_domain_translate_data(req->payload.opts->memory_domain,
req->payload.opts->memory_domain_ctx,
rqpair->memory_domain->domain, &ctx, _ctx->addr,
_ctx->length, &dma_translation);
if (spdk_unlikely(rc) || dma_translation.iov_count != 1) {
SPDK_ERRLOG("DMA memory translation failed, rc %d, iov count %u\n", rc, dma_translation.iov_count);
return rc;
}
_ctx->lkey = dma_translation.rdma.lkey;
_ctx->rkey = dma_translation.rdma.rkey;
_ctx->addr = dma_translation.iov.iov_base;
_ctx->length = dma_translation.iov.iov_len;
} else {
rc = spdk_rdma_get_translation(rqpair->mr_map, _ctx->addr, _ctx->length, &rdma_translation);
if (spdk_unlikely(rc)) {
SPDK_ERRLOG("RDMA memory translation failed, rc %d\n", rc);
return rc;
}
if (rdma_translation.translation_type == SPDK_RDMA_TRANSLATION_MR) {
_ctx->lkey = rdma_translation.mr_or_key.mr->lkey;
_ctx->rkey = rdma_translation.mr_or_key.mr->rkey;
} else {
_ctx->lkey = _ctx->rkey = (uint32_t)rdma_translation.mr_or_key.key;
}
}
return 0;
}
/*
* Build SGL describing empty payload.
*/
static int
nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
/* The RDMA SGL needs one element describing the NVMe command. */
rdma_req->send_wr.num_sge = 1;
req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
req->cmd.dptr.sgl1.keyed.length = 0;
req->cmd.dptr.sgl1.keyed.key = 0;
req->cmd.dptr.sgl1.address = 0;
return 0;
}
/*
* Build inline SGL describing contiguous payload buffer.
*/
static int
nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair,
struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
struct nvme_rdma_memory_translation_ctx ctx = {
.addr = req->payload.contig_or_cb_arg + req->payload_offset,
.length = req->payload_size
};
int rc;
assert(ctx.length != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
if (spdk_unlikely(rc)) {
return -1;
}
rdma_req->send_sgl[1].lkey = ctx.lkey;
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr;
rdma_req->send_sgl[1].length = (uint32_t)ctx.length;
/* The RDMA SGL contains two elements. The first describes
* the NVMe command and the second describes the data
* payload. */
rdma_req->send_wr.num_sge = 2;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length;
/* Inline only supported for icdoff == 0 currently. This function will
* not get called for controllers with other values. */
req->cmd.dptr.sgl1.address = (uint64_t)0;
return 0;
}
/*
* Build SGL describing contiguous payload buffer.
*/
static int
nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair,
struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
struct nvme_rdma_memory_translation_ctx ctx = {
.addr = req->payload.contig_or_cb_arg + req->payload_offset,
.length = req->payload_size
};
int rc;
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
return -1;
}
rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
if (spdk_unlikely(rc)) {
return -1;
}
req->cmd.dptr.sgl1.keyed.key = ctx.rkey;
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
/* The RDMA SGL needs one element describing the NVMe command. */
rdma_req->send_wr.num_sge = 1;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
req->cmd.dptr.sgl1.keyed.length = (uint32_t)ctx.length;
req->cmd.dptr.sgl1.address = (uint64_t)ctx.addr;
return 0;
}
/*
* Build SGL describing scattered payload buffer.
*/
static int
nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair,
struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id];
struct nvme_rdma_memory_translation_ctx ctx;
uint32_t remaining_size;
uint32_t sge_length;
int rc, max_num_sgl, num_sgl_desc;
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.reset_sgl_fn != NULL);
assert(req->payload.next_sge_fn != NULL);
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
max_num_sgl = req->qpair->ctrlr->max_sges;
remaining_size = req->payload_size;
num_sgl_desc = 0;
do {
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &sge_length);
if (rc) {
return -1;
}
sge_length = spdk_min(remaining_size, sge_length);
if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
return -1;
}
ctx.length = sge_length;
rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
if (spdk_unlikely(rc)) {
return -1;
}
cmd->sgl[num_sgl_desc].keyed.key = ctx.rkey;
cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
cmd->sgl[num_sgl_desc].keyed.length = (uint32_t)ctx.length;
cmd->sgl[num_sgl_desc].address = (uint64_t)ctx.addr;
remaining_size -= ctx.length;
num_sgl_desc++;
} while (remaining_size > 0 && num_sgl_desc < max_num_sgl);
/* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
if (remaining_size > 0) {
return -1;
}
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
/* The RDMA SGL needs one element describing some portion
* of the spdk_nvmf_cmd structure. */
rdma_req->send_wr.num_sge = 1;
/*
* If only one SGL descriptor is required, it can be embedded directly in the command
* as a data block descriptor.
*/
if (num_sgl_desc == 1) {
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type;
req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype;
req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length;
req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key;
req->cmd.dptr.sgl1.address = cmd->sgl[0].address;
} else {
/*
* Otherwise, The SGL descriptor embedded in the command must point to the list of
* SGL descriptors used to describe the operation. In that case it is a last segment descriptor.
*/
uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc;
if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) {
SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n",
descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes);
return -1;
}
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size;
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
req->cmd.dptr.sgl1.unkeyed.length = descriptors_size;
req->cmd.dptr.sgl1.address = (uint64_t)0;
}
return 0;
}
/*
* Build inline SGL describing sgl payload buffer.
*/
static int
nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair,
struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
struct nvme_rdma_memory_translation_ctx ctx;
uint32_t length;
int rc;
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.reset_sgl_fn != NULL);
assert(req->payload.next_sge_fn != NULL);
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &length);
if (rc) {
return -1;
}
if (length < req->payload_size) {
SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n");
return nvme_rdma_build_sgl_request(rqpair, rdma_req);
}
if (length > req->payload_size) {
length = req->payload_size;
}
ctx.length = length;
rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
if (spdk_unlikely(rc)) {
return -1;
}
rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr;
rdma_req->send_sgl[1].length = (uint32_t)ctx.length;
rdma_req->send_sgl[1].lkey = ctx.lkey;
rdma_req->send_wr.num_sge = 2;
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length;
/* Inline only supported for icdoff == 0 currently. This function will
* not get called for controllers with other values. */
req->cmd.dptr.sgl1.address = (uint64_t)0;
return 0;
}
static int
nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req,
struct spdk_nvme_rdma_req *rdma_req)
{
struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
enum nvme_payload_type payload_type;
bool icd_supported;
int rc;
assert(rdma_req->req == NULL);
rdma_req->req = req;
req->cmd.cid = rdma_req->id;
payload_type = nvme_payload_type(&req->payload);
/*
* Check if icdoff is non zero, to avoid interop conflicts with
* targets with non-zero icdoff. Both SPDK and the Linux kernel
* targets use icdoff = 0. For targets with non-zero icdoff, we
* will currently just not use inline data for now.
*/
icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER
&& req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0;
if (req->payload_size == 0) {
rc = nvme_rdma_build_null_request(rdma_req);
} else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) {
if (icd_supported) {
rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req);
} else {
rc = nvme_rdma_build_contig_request(rqpair, rdma_req);
}
} else if (payload_type == NVME_PAYLOAD_TYPE_SGL) {
if (icd_supported) {
rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req);
} else {
rc = nvme_rdma_build_sgl_request(rqpair, rdma_req);
}
} else {
rc = -1;
}
if (rc) {
rdma_req->req = NULL;
return rc;
}
memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
return 0;
}
static struct spdk_nvme_qpair *
nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
uint16_t qid, uint32_t qsize,
enum spdk_nvme_qprio qprio,
uint32_t num_requests,
bool delay_cmd_submit,
bool async)
{
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_qpair *qpair;
int rc;
if (qsize < SPDK_NVME_QUEUE_MIN_ENTRIES) {
SPDK_ERRLOG("Failed to create qpair with size %u. Minimum queue size is %d.\n",
qsize, SPDK_NVME_QUEUE_MIN_ENTRIES);
return NULL;
}
rqpair = spdk_zmalloc(sizeof(struct nvme_rdma_qpair), 0, NULL, SPDK_ENV_SOCKET_ID_ANY,
SPDK_MALLOC_DMA);
if (!rqpair) {
SPDK_ERRLOG("failed to get create rqpair\n");
return NULL;
}
/* Set num_entries one less than queue size. According to NVMe
* and NVMe-oF specs we can not submit queue size requests,
* one slot shall always remain empty.
*/
rqpair->num_entries = qsize - 1;
rqpair->delay_cmd_submit = delay_cmd_submit;
rqpair->state = NVME_RDMA_QPAIR_STATE_INVALID;
qpair = &rqpair->qpair;
rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests, async);
if (rc != 0) {
spdk_free(rqpair);
return NULL;
}
return qpair;
}
static void
nvme_rdma_qpair_destroy(struct nvme_rdma_qpair *rqpair)
{
struct spdk_nvme_qpair *qpair = &rqpair->qpair;
struct nvme_rdma_ctrlr *rctrlr;
struct nvme_rdma_cm_event_entry *entry, *tmp;
spdk_rdma_free_mem_map(&rqpair->mr_map);
if (rqpair->evt) {
rdma_ack_cm_event(rqpair->evt);
rqpair->evt = NULL;
}
/*
* This works because we have the controller lock both in
* this function and in the function where we add new events.
*/
if (qpair->ctrlr != NULL) {
rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
if (entry->evt->id->context == rqpair) {
STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
rdma_ack_cm_event(entry->evt);
STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
}
}
}
if (rqpair->cm_id) {
if (rqpair->rdma_qp) {
spdk_rdma_put_pd(rqpair->rdma_qp->qp->pd);
spdk_rdma_qp_destroy(rqpair->rdma_qp);
rqpair->rdma_qp = NULL;
}
}
if (rqpair->poller) {
struct nvme_rdma_poll_group *group;
assert(qpair->poll_group);
group = nvme_rdma_poll_group(qpair->poll_group);
nvme_rdma_poll_group_put_poller(group, rqpair->poller);
rqpair->poller = NULL;
rqpair->cq = NULL;
if (rqpair->srq) {
rqpair->srq = NULL;
rqpair->rsps = NULL;
}
} else if (rqpair->cq) {
ibv_destroy_cq(rqpair->cq);
rqpair->cq = NULL;
}
nvme_rdma_free_reqs(rqpair);
nvme_rdma_free_rsps(rqpair->rsps);
rqpair->rsps = NULL;
/* destroy cm_id last so cma device will not be freed before we destroy the cq. */
if (rqpair->cm_id) {
rdma_destroy_id(rqpair->cm_id);
rqpair->cm_id = NULL;
}
}
static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
static int
nvme_rdma_qpair_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
{
nvme_rdma_qpair_abort_reqs(&rqpair->qpair, 0);
if (ret) {
SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
goto quiet;
}
if (rqpair->poller == NULL) {
/* If poller is not used, cq is not shared or already destroyed.
* So complete disconnecting qpair immediately.
*/
goto quiet;
}
if (rqpair->rsps == NULL) {
goto quiet;
}
if (rqpair->need_destroy ||
(rqpair->current_num_sends != 0 ||
(!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) {
rqpair->state = NVME_RDMA_QPAIR_STATE_LINGERING;
rqpair->evt_timeout_ticks = (NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US * spdk_get_ticks_hz()) /
SPDK_SEC_TO_USEC + spdk_get_ticks();
return -EAGAIN;
}
quiet:
rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
nvme_rdma_qpair_destroy(rqpair);
nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
return 0;
}
static int
nvme_rdma_qpair_wait_until_quiet(struct nvme_rdma_qpair *rqpair)
{
if (spdk_get_ticks() < rqpair->evt_timeout_ticks &&
(rqpair->current_num_sends != 0 ||
(!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) {
return -EAGAIN;
}
rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
nvme_rdma_qpair_destroy(rqpair);
nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
return 0;
}
static void
_nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
nvme_rdma_cm_event_cb disconnected_qpair_cb)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
int rc;
assert(disconnected_qpair_cb != NULL);
rqpair->state = NVME_RDMA_QPAIR_STATE_EXITING;
if (rqpair->cm_id) {
if (rqpair->rdma_qp) {
rc = spdk_rdma_qp_disconnect(rqpair->rdma_qp);
if ((qpair->ctrlr != NULL) && (rc == 0)) {
rc = nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_DISCONNECTED,
disconnected_qpair_cb);
if (rc == 0) {
return;
}
}
}
}
disconnected_qpair_cb(rqpair, 0);
}
static int
nvme_rdma_ctrlr_disconnect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
int rc;
switch (rqpair->state) {
case NVME_RDMA_QPAIR_STATE_EXITING:
if (!nvme_qpair_is_admin_queue(qpair)) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
}
rc = nvme_rdma_process_event_poll(rqpair);
if (!nvme_qpair_is_admin_queue(qpair)) {
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
break;
case NVME_RDMA_QPAIR_STATE_LINGERING:
rc = nvme_rdma_qpair_wait_until_quiet(rqpair);
break;
case NVME_RDMA_QPAIR_STATE_EXITED:
rc = 0;
break;
default:
assert(false);
rc = -EAGAIN;
break;
}
return rc;
}
static void
nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
int rc;
_nvme_rdma_ctrlr_disconnect_qpair(ctrlr, qpair, nvme_rdma_qpair_disconnected);
/* If the async mode is disabled, poll the qpair until it is actually disconnected.
* It is ensured that poll_group_process_completions() calls disconnected_qpair_cb
* for any disconnected qpair. Hence, we do not have to check if the qpair is in
* a poll group or not.
*/
if (qpair->async) {
return;
}
while (1) {
rc = nvme_rdma_ctrlr_disconnect_qpair_poll(ctrlr, qpair);
if (rc != -EAGAIN) {
break;
}
}
}
static int
nvme_rdma_stale_conn_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
{
struct spdk_nvme_qpair *qpair = &rqpair->qpair;
if (ret) {
SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
}
nvme_rdma_qpair_destroy(rqpair);
qpair->last_transport_failure_reason = qpair->transport_failure_reason;
qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_NONE;
rqpair->state = NVME_RDMA_QPAIR_STATE_STALE_CONN;
rqpair->evt_timeout_ticks = (NVME_RDMA_STALE_CONN_RETRY_DELAY_US * spdk_get_ticks_hz()) /
SPDK_SEC_TO_USEC + spdk_get_ticks();
return 0;
}
static int
nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair)
{
struct spdk_nvme_qpair *qpair = &rqpair->qpair;
if (rqpair->stale_conn_retry_count >= NVME_RDMA_STALE_CONN_RETRY_MAX) {
SPDK_ERRLOG("Retry failed %d times, give up stale connection to qpair (cntlid:%u, qid:%u).\n",
NVME_RDMA_STALE_CONN_RETRY_MAX, qpair->ctrlr->cntlid, qpair->id);
return -ESTALE;
}
rqpair->stale_conn_retry_count++;
SPDK_NOTICELOG("%d times, retry stale connection to qpair (cntlid:%u, qid:%u).\n",
rqpair->stale_conn_retry_count, qpair->ctrlr->cntlid, qpair->id);
_nvme_rdma_ctrlr_disconnect_qpair(qpair->ctrlr, qpair, nvme_rdma_stale_conn_disconnected);
return 0;
}
static int
nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct nvme_rdma_qpair *rqpair;
assert(qpair != NULL);
rqpair = nvme_rdma_qpair(qpair);
if (rqpair->state != NVME_RDMA_QPAIR_STATE_EXITED) {
int rc __attribute__((unused));
/* qpair was removed from the poll group while the disconnect is not finished.
* Destroy rdma resources forcefully. */
rc = nvme_rdma_qpair_disconnected(rqpair, 0);
assert(rc == 0);
}
nvme_rdma_qpair_abort_reqs(qpair, 0);
nvme_qpair_deinit(qpair);
nvme_rdma_put_memory_domain(rqpair->memory_domain);
spdk_free(rqpair);
return 0;
}
static struct spdk_nvme_qpair *
nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
const struct spdk_nvme_io_qpair_opts *opts)
{
return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
opts->io_queue_requests,
opts->delay_cmd_submit,
opts->async_mode);
}
static int
nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
/* do nothing here */
return 0;
}
static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
/* We have to use the typedef in the function declaration to appease astyle. */
typedef struct spdk_nvme_ctrlr spdk_nvme_ctrlr_t;
static spdk_nvme_ctrlr_t *
nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle)
{
struct nvme_rdma_ctrlr *rctrlr;
struct ibv_context **contexts;
struct ibv_device_attr dev_attr;
int i, flag, rc;
rctrlr = spdk_zmalloc(sizeof(struct nvme_rdma_ctrlr), 0, NULL, SPDK_ENV_SOCKET_ID_ANY,
SPDK_MALLOC_DMA);
if (rctrlr == NULL) {
SPDK_ERRLOG("could not allocate ctrlr\n");
return NULL;
}
rctrlr->ctrlr.opts = *opts;
rctrlr->ctrlr.trid = *trid;
if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) {
SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n",
NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT);
rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT;
}
if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) {
SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n",
NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT);
rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT;
}
contexts = rdma_get_devices(NULL);
if (contexts == NULL) {
SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
spdk_free(rctrlr);
return NULL;
}
i = 0;
rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS;
while (contexts[i] != NULL) {
rc = ibv_query_device(contexts[i], &dev_attr);
if (rc < 0) {
SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
rdma_free_devices(contexts);
spdk_free(rctrlr);
return NULL;
}
rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge);
i++;
}
rdma_free_devices(contexts);
rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
if (rc != 0) {
spdk_free(rctrlr);
return NULL;
}
STAILQ_INIT(&rctrlr->pending_cm_events);
STAILQ_INIT(&rctrlr->free_cm_events);
rctrlr->cm_events = spdk_zmalloc(NVME_RDMA_NUM_CM_EVENTS * sizeof(*rctrlr->cm_events), 0, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
if (rctrlr->cm_events == NULL) {
SPDK_ERRLOG("unable to allocate buffers to hold CM events.\n");
goto destruct_ctrlr;
}
for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) {
STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link);
}
rctrlr->cm_channel = rdma_create_event_channel();
if (rctrlr->cm_channel == NULL) {
SPDK_ERRLOG("rdma_create_event_channel() failed\n");
goto destruct_ctrlr;
}
flag = fcntl(rctrlr->cm_channel->fd, F_GETFL);
if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
SPDK_ERRLOG("Cannot set event channel to non blocking\n");
goto destruct_ctrlr;
}
rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
rctrlr->ctrlr.opts.admin_queue_size, 0,
rctrlr->ctrlr.opts.admin_queue_size, false, true);
if (!rctrlr->ctrlr.adminq) {
SPDK_ERRLOG("failed to create admin qpair\n");
goto destruct_ctrlr;
}
if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) {
SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
goto destruct_ctrlr;
}
SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n");
return &rctrlr->ctrlr;
destruct_ctrlr:
nvme_ctrlr_destruct(&rctrlr->ctrlr);
return NULL;
}
static int
nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
struct nvme_rdma_cm_event_entry *entry;
if (ctrlr->adminq) {
nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq);
}
STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) {
rdma_ack_cm_event(entry->evt);
}
STAILQ_INIT(&rctrlr->free_cm_events);
STAILQ_INIT(&rctrlr->pending_cm_events);
spdk_free(rctrlr->cm_events);
if (rctrlr->cm_channel) {
rdma_destroy_event_channel(rctrlr->cm_channel);
rctrlr->cm_channel = NULL;
}
nvme_ctrlr_destruct_finish(ctrlr);
spdk_free(rctrlr);
return 0;
}
static int
nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req)
{
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_rdma_req *rdma_req;
struct ibv_send_wr *wr;
rqpair = nvme_rdma_qpair(qpair);
assert(rqpair != NULL);
assert(req != NULL);
rdma_req = nvme_rdma_req_get(rqpair);
if (spdk_unlikely(!rdma_req)) {
if (rqpair->poller) {
rqpair->poller->stats.queued_requests++;
}
/* Inform the upper layer to try again later. */
return -EAGAIN;
}
if (nvme_rdma_req_init(rqpair, req, rdma_req)) {
SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
nvme_rdma_req_put(rqpair, rdma_req);
return -1;
}
assert(rqpair->current_num_sends < rqpair->num_entries);
rqpair->current_num_sends++;
wr = &rdma_req->send_wr;
wr->next = NULL;
nvme_rdma_trace_ibv_sge(wr->sg_list);
spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, wr);
if (!rqpair->delay_cmd_submit) {
return nvme_rdma_qpair_submit_sends(rqpair);
}
return 0;
}
static int
nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
{
/* Currently, doing nothing here */
return 0;
}
static void
nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
{
struct spdk_nvme_rdma_req *rdma_req, *tmp;
struct spdk_nvme_cpl cpl;
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
cpl.sqid = qpair->id;
cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
cpl.status.dnr = dnr;
/*
* We cannot abort requests at the RDMA layer without
* unregistering them. If we do, we can still get error
* free completions on the shared completion queue.
*/
if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING &&
nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) {
nvme_ctrlr_disconnect_qpair(qpair);
}
TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
nvme_rdma_req_complete(rdma_req, &cpl, true);
}
}
static void
nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
{
uint64_t t02;
struct spdk_nvme_rdma_req *rdma_req, *tmp;
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct spdk_nvme_ctrlr_process *active_proc;
/* Don't check timeouts during controller initialization. */
if (ctrlr->state != NVME_CTRLR_STATE_READY) {
return;
}
if (nvme_qpair_is_admin_queue(qpair)) {
active_proc = nvme_ctrlr_get_current_process(ctrlr);
} else {
active_proc = qpair->active_proc;
}
/* Only check timeouts if the current process has a timeout callback. */
if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
return;
}
t02 = spdk_get_ticks();
TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
assert(rdma_req->req != NULL);
if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) {
/*
* The requests are in order, so as soon as one has not timed out,
* stop iterating.
*/
break;
}
}
}
static inline void
nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
{
struct spdk_nvme_rdma_rsp *rdma_rsp = rdma_req->rdma_rsp;
struct ibv_recv_wr *recv_wr = rdma_rsp->recv_wr;
nvme_rdma_req_complete(rdma_req, &rdma_rsp->cpl, true);
assert(rqpair->rsps->current_num_recvs < rqpair->rsps->num_entries);
rqpair->rsps->current_num_recvs++;
recv_wr->next = NULL;
nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
if (!rqpair->srq) {
spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, recv_wr);
} else {
spdk_rdma_srq_queue_recv_wrs(rqpair->srq, recv_wr);
}
}
#define MAX_COMPLETIONS_PER_POLL 128
static void
nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason)
{
if (failure_reason == IBV_WC_RETRY_EXC_ERR) {
qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
} else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) {
qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
}
nvme_ctrlr_disconnect_qpair(qpair);
}
static struct nvme_rdma_qpair *
get_rdma_qpair_from_wc(struct nvme_rdma_poll_group *group, struct ibv_wc *wc)
{
struct spdk_nvme_qpair *qpair;
struct nvme_rdma_qpair *rqpair;
STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) {
rqpair = nvme_rdma_qpair(qpair);
if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
return rqpair;
}
}
STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) {
rqpair = nvme_rdma_qpair(qpair);
if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
return rqpair;
}
}
return NULL;
}
static inline void
nvme_rdma_log_wc_status(struct nvme_rdma_qpair *rqpair, struct ibv_wc *wc)
{
struct nvme_rdma_wr *rdma_wr = (struct nvme_rdma_wr *)wc->wr_id;
if (wc->status == IBV_WC_WR_FLUSH_ERR) {
/* If qpair is in ERR state, we will receive completions for all posted and not completed
* Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
SPDK_DEBUGLOG(nvme, "WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
ibv_wc_status_str(wc->status));
} else {
SPDK_ERRLOG("WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
ibv_wc_status_str(wc->status));
}
}
static inline int
nvme_rdma_process_recv_completion(struct nvme_rdma_poller *poller, struct ibv_wc *wc,
struct nvme_rdma_wr *rdma_wr)
{
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_rdma_req *rdma_req;
struct spdk_nvme_rdma_rsp *rdma_rsp;
rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr);
if (poller && poller->srq) {
rqpair = get_rdma_qpair_from_wc(poller->group, wc);
if (spdk_unlikely(!rqpair)) {
/* Since we do not handle the LAST_WQE_REACHED event, we do not know when
* a Receive Queue in a QP, that is associated with an SRQ, is flushed.
* We may get a WC for a already destroyed QP.
*
* However, for the SRQ, this is not any error. Hence, just re-post the
* receive request to the SRQ to reuse for other QPs, and return 0.
*/
spdk_rdma_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr);
return 0;
}
} else {
rqpair = rdma_rsp->rqpair;
if (spdk_unlikely(!rqpair)) {
/* TODO: Fix forceful QP destroy when it is not async mode.
* CQ itself did not cause any error. Hence, return 0 for now.
*/
SPDK_WARNLOG("QP might be already destroyed.\n");
return 0;
}
}
assert(rqpair->rsps->current_num_recvs > 0);
rqpair->rsps->current_num_recvs--;
if (wc->status) {
nvme_rdma_log_wc_status(rqpair, wc);
goto err_wc;
}
SPDK_DEBUGLOG(nvme, "CQ recv completion\n");
if (wc->byte_len < sizeof(struct spdk_nvme_cpl)) {
SPDK_ERRLOG("recv length %u less than expected response size\n", wc->byte_len);
goto err_wc;
}
rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid];
rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED;
rdma_req->rdma_rsp = rdma_rsp;
if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) == 0) {
return 0;
}
nvme_rdma_request_ready(rqpair, rdma_req);
if (!rqpair->delay_cmd_submit) {
if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
SPDK_ERRLOG("Unable to re-post rx descriptor\n");
nvme_rdma_fail_qpair(&rqpair->qpair, 0);
return -ENXIO;
}
}
rqpair->num_completions++;
return 1;
err_wc:
nvme_rdma_fail_qpair(&rqpair->qpair, 0);
if (poller && poller->srq) {
spdk_rdma_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr);
}
return -ENXIO;
}
static inline int
nvme_rdma_process_send_completion(struct nvme_rdma_poller *poller,
struct nvme_rdma_qpair *rdma_qpair,
struct ibv_wc *wc, struct nvme_rdma_wr *rdma_wr)
{
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_rdma_req *rdma_req;
rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr);
rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL;
if (!rqpair) {
rqpair = rdma_qpair != NULL ? rdma_qpair : get_rdma_qpair_from_wc(poller->group, wc);
}
/* If we are flushing I/O */
if (wc->status) {
if (!rqpair) {
/* When poll_group is used, several qpairs share the same CQ and it is possible to
* receive a completion with error (e.g. IBV_WC_WR_FLUSH_ERR) for already disconnected qpair
* That happens due to qpair is destroyed while there are submitted but not completed send/receive
* Work Requests */
assert(poller);
return 0;
}
assert(rqpair->current_num_sends > 0);
rqpair->current_num_sends--;
nvme_rdma_log_wc_status(rqpair, wc);
nvme_rdma_fail_qpair(&rqpair->qpair, 0);
if (rdma_req->rdma_rsp && poller && poller->srq) {
spdk_rdma_srq_queue_recv_wrs(poller->srq, rdma_req->rdma_rsp->recv_wr);
}
return -ENXIO;
}
/* We do not support Soft Roce anymore. Other than Soft Roce's bug, we should not
* receive a completion without error status after qpair is disconnected/destroyed.
*/
if (spdk_unlikely(rdma_req->req == NULL)) {
/*
* Some infiniband drivers do not guarantee the previous assumption after we
* received a RDMA_CM_EVENT_DEVICE_REMOVAL event.
*/
SPDK_ERRLOG("Received malformed completion: request 0x%"PRIx64" type %d\n", wc->wr_id,
rdma_wr->type);
if (!rqpair || !rqpair->need_destroy) {
assert(0);
}
return -ENXIO;
}
rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED;
assert(rqpair->current_num_sends > 0);
rqpair->current_num_sends--;
if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) == 0) {
return 0;
}
nvme_rdma_request_ready(rqpair, rdma_req);
if (!rqpair->delay_cmd_submit) {
if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
SPDK_ERRLOG("Unable to re-post rx descriptor\n");
nvme_rdma_fail_qpair(&rqpair->qpair, 0);
return -ENXIO;
}
}
rqpair->num_completions++;
return 1;
}
static int
nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size,
struct nvme_rdma_poller *poller,
struct nvme_rdma_qpair *rdma_qpair,
uint64_t *rdma_completions)
{
struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL];
struct nvme_rdma_wr *rdma_wr;
uint32_t reaped = 0;
int completion_rc = 0;
int rc, _rc, i;
rc = ibv_poll_cq(cq, batch_size, wc);
if (rc < 0) {
SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
errno, spdk_strerror(errno));
return -ECANCELED;
} else if (rc == 0) {
return 0;
}
for (i = 0; i < rc; i++) {
rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id;
switch (rdma_wr->type) {
case RDMA_WR_TYPE_RECV:
_rc = nvme_rdma_process_recv_completion(poller, &wc[i], rdma_wr);
break;
case RDMA_WR_TYPE_SEND:
_rc = nvme_rdma_process_send_completion(poller, rdma_qpair, &wc[i], rdma_wr);
break;
default:
SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type);
return -ECANCELED;
}
if (spdk_likely(_rc >= 0)) {
reaped += _rc;
} else {
completion_rc = _rc;
}
}
*rdma_completions += rc;
if (completion_rc) {
return completion_rc;
}
return reaped;
}
static void
dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
{
}
static int
nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
uint32_t max_completions)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
int rc = 0, batch_size;
struct ibv_cq *cq;
uint64_t rdma_completions = 0;
/*
* This is used during the connection phase. It's possible that we are still reaping error completions
* from other qpairs so we need to call the poll group function. Also, it's more correct since the cq
* is shared.
*/
if (qpair->poll_group != NULL) {
return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions,
dummy_disconnected_qpair_cb);
}
if (max_completions == 0) {
max_completions = rqpair->num_entries;
} else {
max_completions = spdk_min(max_completions, rqpair->num_entries);
}
switch (nvme_qpair_get_state(qpair)) {
case NVME_QPAIR_CONNECTING:
rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
if (rc == 0) {
/* Once the connection is completed, we can submit queued requests */
nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
} else if (rc != -EAGAIN) {
SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
goto failed;
} else if (rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING) {
return 0;
}
break;
case NVME_QPAIR_DISCONNECTING:
nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
return -ENXIO;
default:
if (nvme_qpair_is_admin_queue(qpair)) {
nvme_rdma_poll_events(rctrlr);
}
nvme_rdma_qpair_process_cm_event(rqpair);
break;
}
if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
goto failed;
}
cq = rqpair->cq;
rqpair->num_completions = 0;
do {
batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL);
rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair, &rdma_completions);
if (rc == 0) {
break;
/* Handle the case where we fail to poll the cq. */
} else if (rc == -ECANCELED) {
goto failed;
} else if (rc == -ENXIO) {
return rc;
}
} while (rqpair->num_completions < max_completions);
if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) ||
nvme_rdma_qpair_submit_recvs(rqpair))) {
goto failed;
}
if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
nvme_rdma_qpair_check_timeout(qpair);
}
return rqpair->num_completions;
failed:
nvme_rdma_fail_qpair(qpair, 0);
return -ENXIO;
}
static uint32_t
nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
/* max_mr_size by ibv_query_device indicates the largest value that we can
* set for a registered memory region. It is independent from the actual
* I/O size and is very likely to be larger than 2 MiB which is the
* granularity we currently register memory regions. Hence return
* UINT32_MAX here and let the generic layer use the controller data to
* moderate this value.
*/
return UINT32_MAX;
}
static uint16_t
nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
uint32_t max_sge = rctrlr->max_sge;
uint32_t max_in_capsule_sge = (ctrlr->cdata.nvmf_specific.ioccsz * 16 -
sizeof(struct spdk_nvme_cmd)) /
sizeof(struct spdk_nvme_sgl_descriptor);
/* Max SGE is limited by capsule size */
max_sge = spdk_min(max_sge, max_in_capsule_sge);
/* Max SGE may be limited by MSDBD */
if (ctrlr->cdata.nvmf_specific.msdbd != 0) {
max_sge = spdk_min(max_sge, ctrlr->cdata.nvmf_specific.msdbd);
}
/* Max SGE can't be less than 1 */
max_sge = spdk_max(1, max_sge);
return max_sge;
}
static int
nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
int (*iter_fn)(struct nvme_request *req, void *arg),
void *arg)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
struct spdk_nvme_rdma_req *rdma_req, *tmp;
int rc;
assert(iter_fn != NULL);
TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
assert(rdma_req->req != NULL);
rc = iter_fn(rdma_req->req, arg);
if (rc != 0) {
return rc;
}
}
return 0;
}
static void
nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
{
struct spdk_nvme_rdma_req *rdma_req, *tmp;
struct spdk_nvme_cpl cpl;
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
assert(rdma_req->req != NULL);
if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
continue;
}
nvme_rdma_req_complete(rdma_req, &cpl, false);
}
}
static void
nvme_rdma_poller_destroy(struct nvme_rdma_poller *poller)
{
if (poller->cq) {
ibv_destroy_cq(poller->cq);
}
if (poller->rsps) {
nvme_rdma_free_rsps(poller->rsps);
}
if (poller->srq) {
spdk_rdma_srq_destroy(poller->srq);
}
if (poller->mr_map) {
spdk_rdma_free_mem_map(&poller->mr_map);
}
if (poller->pd) {
spdk_rdma_put_pd(poller->pd);
}
free(poller);
}
static struct nvme_rdma_poller *
nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx)
{
struct nvme_rdma_poller *poller;
struct ibv_device_attr dev_attr;
struct spdk_rdma_srq_init_attr srq_init_attr = {};
struct nvme_rdma_rsp_opts opts;
int num_cqe;
int rc;
poller = calloc(1, sizeof(*poller));
if (poller == NULL) {
SPDK_ERRLOG("Unable to allocate poller.\n");
return NULL;
}
poller->group = group;
poller->device = ctx;
if (g_spdk_nvme_transport_opts.rdma_srq_size != 0) {
rc = ibv_query_device(ctx, &dev_attr);
if (rc) {
SPDK_ERRLOG("Unable to query RDMA device.\n");
goto fail;
}
poller->pd = spdk_rdma_get_pd(ctx);
if (poller->pd == NULL) {
SPDK_ERRLOG("Unable to get PD.\n");
goto fail;
}
poller->mr_map = spdk_rdma_create_mem_map(poller->pd, &g_nvme_hooks,
SPDK_RDMA_MEMORY_MAP_ROLE_INITIATOR);
if (poller->mr_map == NULL) {
SPDK_ERRLOG("Unable to create memory map.\n");
goto fail;
}
srq_init_attr.stats = &poller->stats.rdma_stats.recv;
srq_init_attr.pd = poller->pd;
srq_init_attr.srq_init_attr.attr.max_wr = spdk_min((uint32_t)dev_attr.max_srq_wr,
g_spdk_nvme_transport_opts.rdma_srq_size);
srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(dev_attr.max_sge,
NVME_RDMA_DEFAULT_RX_SGE);
poller->srq = spdk_rdma_srq_create(&srq_init_attr);
if (poller->srq == NULL) {
SPDK_ERRLOG("Unable to create SRQ.\n");
goto fail;
}
opts.num_entries = g_spdk_nvme_transport_opts.rdma_srq_size;
opts.rqpair = NULL;
opts.srq = poller->srq;
opts.mr_map = poller->mr_map;
poller->rsps = nvme_rdma_create_rsps(&opts);
if (poller->rsps == NULL) {
SPDK_ERRLOG("Unable to create poller RDMA responses.\n");
goto fail;
}
rc = nvme_rdma_poller_submit_recvs(poller);
if (rc) {
SPDK_ERRLOG("Unable to submit poller RDMA responses.\n");
goto fail;
}
/*
* When using an srq, fix the size of the completion queue at startup.
* The initiator sends only send and recv WRs. Hence, the multiplier is 2.
* (The target sends also data WRs. Hence, the multiplier is 3.)
*/
num_cqe = g_spdk_nvme_transport_opts.rdma_srq_size * 2;
} else {
num_cqe = DEFAULT_NVME_RDMA_CQ_SIZE;
}
poller->cq = ibv_create_cq(poller->device, num_cqe, group, NULL, 0);
if (poller->cq == NULL) {
SPDK_ERRLOG("Unable to create CQ, errno %d.\n", errno);
goto fail;
}
STAILQ_INSERT_HEAD(&group->pollers, poller, link);
group->num_pollers++;
poller->current_num_wc = num_cqe;
poller->required_num_wc = 0;
return poller;
fail:
nvme_rdma_poller_destroy(poller);
return NULL;
}
static void
nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group)
{
struct nvme_rdma_poller *poller, *tmp_poller;
STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) {
assert(poller->refcnt == 0);
if (poller->refcnt) {
SPDK_WARNLOG("Destroying poller with non-zero ref count: poller %p, refcnt %d\n",
poller, poller->refcnt);
}
STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
nvme_rdma_poller_destroy(poller);
}
}
static struct nvme_rdma_poller *
nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, struct ibv_context *device)
{
struct nvme_rdma_poller *poller = NULL;
STAILQ_FOREACH(poller, &group->pollers, link) {
if (poller->device == device) {
break;
}
}
if (!poller) {
poller = nvme_rdma_poller_create(group, device);
if (!poller) {
SPDK_ERRLOG("Failed to create a poller for device %p\n", device);
return NULL;
}
}
poller->refcnt++;
return poller;
}
static void
nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, struct nvme_rdma_poller *poller)
{
assert(poller->refcnt > 0);
if (--poller->refcnt == 0) {
STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
group->num_pollers--;
nvme_rdma_poller_destroy(poller);
}
}
static struct spdk_nvme_transport_poll_group *
nvme_rdma_poll_group_create(void)
{
struct nvme_rdma_poll_group *group;
group = calloc(1, sizeof(*group));
if (group == NULL) {
SPDK_ERRLOG("Unable to allocate poll group.\n");
return NULL;
}
STAILQ_INIT(&group->pollers);
return &group->group;
}
static int
nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
{
return 0;
}
static int
nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
{
return 0;
}
static int
nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_qpair *qpair)
{
return 0;
}
static int
nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_qpair *qpair)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(tgroup);
assert(qpair->poll_group_tailq_head == &tgroup->disconnected_qpairs);
if (rqpair->poller) {
nvme_rdma_poll_group_put_poller(group, rqpair->poller);
rqpair->poller = NULL;
rqpair->cq = NULL;
}
return 0;
}
static int64_t
nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
{
struct spdk_nvme_qpair *qpair, *tmp_qpair;
struct nvme_rdma_qpair *rqpair;
struct nvme_rdma_poll_group *group;
struct nvme_rdma_poller *poller;
int num_qpairs = 0, batch_size, rc, rc2 = 0;
int64_t total_completions = 0;
uint64_t completions_allowed = 0;
uint64_t completions_per_poller = 0;
uint64_t poller_completions = 0;
uint64_t rdma_completions;
if (completions_per_qpair == 0) {
completions_per_qpair = MAX_COMPLETIONS_PER_POLL;
}
group = nvme_rdma_poll_group(tgroup);
STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
rc = nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
if (rc == 0) {
disconnected_qpair_cb(qpair, tgroup->group->ctx);
}
}
STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
rqpair = nvme_rdma_qpair(qpair);
rqpair->num_completions = 0;
if (spdk_unlikely(nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING)) {
rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
if (rc == 0) {
/* Once the connection is completed, we can submit queued requests */
nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
} else if (rc != -EAGAIN) {
SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
nvme_rdma_fail_qpair(qpair, 0);
continue;
}
} else {
nvme_rdma_qpair_process_cm_event(rqpair);
}
if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
rc2 = -ENXIO;
nvme_rdma_fail_qpair(qpair, 0);
continue;
}
num_qpairs++;
}
completions_allowed = completions_per_qpair * num_qpairs;
if (group->num_pollers) {
completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1);
}
STAILQ_FOREACH(poller, &group->pollers, link) {
poller_completions = 0;
rdma_completions = 0;
do {
poller->stats.polls++;
batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL);
rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, poller, NULL, &rdma_completions);
if (rc <= 0) {
if (rc == -ECANCELED) {
return -EIO;
} else if (rc == 0) {
poller->stats.idle_polls++;
}
break;
}
poller_completions += rc;
} while (poller_completions < completions_per_poller);
total_completions += poller_completions;
poller->stats.completions += rdma_completions;
if (poller->srq) {
nvme_rdma_poller_submit_recvs(poller);
}
}
STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
rqpair = nvme_rdma_qpair(qpair);
if (spdk_unlikely(rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING)) {
continue;
}
if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
nvme_rdma_qpair_check_timeout(qpair);
}
nvme_rdma_qpair_submit_sends(rqpair);
if (!rqpair->srq) {
nvme_rdma_qpair_submit_recvs(rqpair);
}
if (rqpair->num_completions > 0) {
nvme_qpair_resubmit_requests(qpair, rqpair->num_completions);
}
}
return rc2 != 0 ? rc2 : total_completions;
}
static int
nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
{
struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(tgroup);
if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
return -EBUSY;
}
nvme_rdma_poll_group_free_pollers(group);
free(group);
return 0;
}
static int
nvme_rdma_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_transport_poll_group_stat **_stats)
{
struct nvme_rdma_poll_group *group;
struct spdk_nvme_transport_poll_group_stat *stats;
struct spdk_nvme_rdma_device_stat *device_stat;
struct nvme_rdma_poller *poller;
uint32_t i = 0;
if (tgroup == NULL || _stats == NULL) {
SPDK_ERRLOG("Invalid stats or group pointer\n");
return -EINVAL;
}
group = nvme_rdma_poll_group(tgroup);
stats = calloc(1, sizeof(*stats));
if (!stats) {
SPDK_ERRLOG("Can't allocate memory for RDMA stats\n");
return -ENOMEM;
}
stats->trtype = SPDK_NVME_TRANSPORT_RDMA;
stats->rdma.num_devices = group->num_pollers;
if (stats->rdma.num_devices == 0) {
*_stats = stats;
return 0;
}
stats->rdma.device_stats = calloc(stats->rdma.num_devices, sizeof(*stats->rdma.device_stats));
if (!stats->rdma.device_stats) {
SPDK_ERRLOG("Can't allocate memory for RDMA device stats\n");
free(stats);
return -ENOMEM;
}
STAILQ_FOREACH(poller, &group->pollers, link) {
device_stat = &stats->rdma.device_stats[i];
device_stat->name = poller->device->device->name;
device_stat->polls = poller->stats.polls;
device_stat->idle_polls = poller->stats.idle_polls;
device_stat->completions = poller->stats.completions;
device_stat->queued_requests = poller->stats.queued_requests;
device_stat->total_send_wrs = poller->stats.rdma_stats.send.num_submitted_wrs;
device_stat->send_doorbell_updates = poller->stats.rdma_stats.send.doorbell_updates;
device_stat->total_recv_wrs = poller->stats.rdma_stats.recv.num_submitted_wrs;
device_stat->recv_doorbell_updates = poller->stats.rdma_stats.recv.doorbell_updates;
i++;
}
*_stats = stats;
return 0;
}
static void
nvme_rdma_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_transport_poll_group_stat *stats)
{
if (stats) {
free(stats->rdma.device_stats);
}
free(stats);
}
static int
nvme_rdma_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
struct spdk_memory_domain **domains, int array_size)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(ctrlr->adminq);
if (domains && array_size > 0) {
domains[0] = rqpair->memory_domain->domain;
}
return 1;
}
void
spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
{
g_nvme_hooks = *hooks;
}
const struct spdk_nvme_transport_ops rdma_ops = {
.name = "RDMA",
.type = SPDK_NVME_TRANSPORT_RDMA,
.ctrlr_construct = nvme_rdma_ctrlr_construct,
.ctrlr_scan = nvme_fabric_ctrlr_scan,
.ctrlr_destruct = nvme_rdma_ctrlr_destruct,
.ctrlr_enable = nvme_rdma_ctrlr_enable,
.ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4,
.ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8,
.ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4,
.ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8,
.ctrlr_set_reg_4_async = nvme_fabric_ctrlr_set_reg_4_async,
.ctrlr_set_reg_8_async = nvme_fabric_ctrlr_set_reg_8_async,
.ctrlr_get_reg_4_async = nvme_fabric_ctrlr_get_reg_4_async,
.ctrlr_get_reg_8_async = nvme_fabric_ctrlr_get_reg_8_async,
.ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size,
.ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges,
.ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair,
.ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair,
.ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair,
.ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair,
.ctrlr_get_memory_domains = nvme_rdma_ctrlr_get_memory_domains,
.qpair_abort_reqs = nvme_rdma_qpair_abort_reqs,
.qpair_reset = nvme_rdma_qpair_reset,
.qpair_submit_request = nvme_rdma_qpair_submit_request,
.qpair_process_completions = nvme_rdma_qpair_process_completions,
.qpair_iterate_requests = nvme_rdma_qpair_iterate_requests,
.admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers,
.poll_group_create = nvme_rdma_poll_group_create,
.poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair,
.poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair,
.poll_group_add = nvme_rdma_poll_group_add,
.poll_group_remove = nvme_rdma_poll_group_remove,
.poll_group_process_completions = nvme_rdma_poll_group_process_completions,
.poll_group_destroy = nvme_rdma_poll_group_destroy,
.poll_group_get_stats = nvme_rdma_poll_group_get_stats,
.poll_group_free_stats = nvme_rdma_poll_group_free_stats,
};
SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops);